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Abstract Slow biphasic complexes (SBC) have been identified in the EEG of
patients suffering for inflammatory brain diseases. Their amplitude, location
and frequency of appearance were found to correlate with the severity of en-
cephalitis. Other characteristics of SBCs and of EEG traces of patients could
reflect the grade of pathology. Here, EEG rhythms are investigated together
with SBCs for a better characterization of encephalitis.
EEGs have been acquired from pediatric patients: 10 controls and 10 en-
cephalitic patients. They were split by neurologists into five classes of different
severity of the pathology. The relative power of EEG rhythms was found to
change significantly in EEGs labeled with different severity scores. Moreover, a
significant variation was found in the last seconds before the appearance of an
SBC. This information and quantitative indexes characterizing the SBCs were
used to build a binary classification decision tree able to identify the classes
of severity. True classification rate of the best model was 76.1% (73.5% with
leave-one-out test). Moreover, the classification errors were among classes with
similar severity scores (precision higher than 80% was achieved considering 3
instead of 5 classes). Our classification method may be a promising supporting
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tool for clinicians to diagnose, assess and make the follow-up of patients with
encephalitis.

Keywords EEG · EEG rhythms · Encephalitis · Slow Biphasic Complex ·
Binary Classification Decision Tree.

1 Introduction

Encephalitis reflects a brain inflammation associated with neurological prob-
lems [21][40][52][57]. In children, its incidence is about 1 out of 10,000 [59]. The
lethal rate is high: for example, encephalitis by herpes simplex (i.e., the most
common etiologic agent) has a mortality rate in the order of 5-20% (which rises
to 70% if an antiviral treatment is not applied [12]). Encephalitis can be caused
by infectious diseases, immune disorders, vascular pathology or cancer [5]. The
rapid diagnosis of the pathology is of primary importance to reduce deleterious
consequences [5][31][40]. However, its assessment is mostly subjective, based
on the integration of many clinical observations (e.g., about body tempera-
ture and level of consciousness) and measurements (e.g., imaging, blood tests,
analysis of the cerebrospinal fluid).

The EEG was found to be useful for the assessment of different kinds of
encephalopathy [20][48][51][55]. A wide variability of EEG activity is present
in childhood especially during the rapid brain development that occurs in the
newborns [29][44]. However, the EEG has characteristics similar to adults al-
ready at the end of the first year of life [29]. The sleep elements occur around
the third month reaching their maturity at around two years [44].
The EEG has also been investigated in the case of patients with suspected en-
cephalitis [49], by neurologists looking for possible anomalies. Its use is fairly
appreciated as the recordings are fast, non-invasive and economic, thus allow-
ing to be applied in emergency and in the follow-up. However, EEG traces
are usually assessed subjectively by experts and only qualitative information
(e.g., about the presence of anomalous waveforms) is usually extracted. The
automated EEG processing for its interpretation would remove the subjective
analysis of the traces and provide quantitative information which could be
very useful for a detailed assessment of the condition of the patient and iden-
tification of the proper therapy.
A waveform which has been found to emerge in patients with brain inflamma-
tions is the slow biphasic complex (SBC) [7][8][9][13][15][23][26][32][50]. After
being observed during decades in EEG traces of patients with different patholo-
gies (e.g., human immunodeficiency virus - HIV [7][8], West syndrome [15][50],
encephalitis [7] and Rasmussen’s syndrome [9]), we proposed an automated
method to identify it [37]. We found a high correlation of the number and
amplitude of the identified SBCs with the severity of encephalitis. This infor-
mation was further used to identify automatically a severity score associated
to each EEG trace by the medical doctors, considering both electrophysio-
logical and clinical data. Specifically, a binary classification decision tree was
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developed, based on quantitative indexes characterizing SBCs [38]. The perfor-
mances (predictive value of about 60%) were good enough to further indicate
that SBCs indeed contain important information on encephalitis, but not so
high to provide a reliable clinical diagnosis. Thus, other investigation, e.g., on
body temperature, level of consciousness, focal neurologic deficits and possible
seizures, was suggested to be still considered to refine the clinical picture [38].

In order to provide a more reliable identification of the severity of encephali-
tis using only electrophysiological data, here we extend our previous method
by including also information on EEG rhythms. Their relative power was found
to be specific of different tasks [60], levels of consciousness [42] and pathologies
[36]. Since its onset, encephalitis mainly shows slow focal or diffused electrical
activity often associated with other various anomalies, including epileptiform
anomalies (e.g., periodic discharges) [4][41][48][49]. Moreover, EEG rhythms
have been recently used for the diagnosis of encephalopathy [27], showing a
larger relative contribution of slow waves (with significant increase of delta and
decrease of alpha and beta rhythms). Thus, it is reasonable that they could
provide useful information also on the severity of encephalitis. In this paper,
we investigate both their average relative power in the EEG traces and how
they change before the onset of an SBC. This information on EEG rhythms,
together with properties of the identified SBCs, was included in the set of input
features of a classifier aimed at identifying the severity of the encephalitis.

2 Methods

2.1 Automated detection of SBCs

SBCs were identified by the algorithm proposed in [37]. Specifically, SBCs
have been manually identified in decades of clinical observations. They were
then averaged, obtaining a waveform that was considered as a prototype of
complex to be identified in new EEG traces (see Figure 1A). SBCs were then
found automatically by the use of match filtering [11][45], applied on EEG
data band-pass filtered between 0.1 and 30 Hz. Specifically, the EEG traces
were compared to 10 time-scaled versions of this prototype waveform [37]. A
template matching was identified when the cross-correlation was at least 90%.
The method was adapted to the qualitative information acquired by clinical
experience. In particular, repetitive appearance of SBCs was excluded; more-
over, the complexes should emerge from background EEG. Finally, they may
have different amplitude and duration, but with a positive correlation between
them, so that different complexes appear to be approximately time-scalings of
the same waveform, with similar magnification along the amplitude and time
directions. These indications were used to review automatically the candidate
waveforms identified by the match filters. Specifically, identified waveforms
showing repetitive discharges or with amplitudes which were either very large
or low (probably related to artifacts or noisy oscillations, respectively) were
removed.
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Examples of automatically identified SBCs are shown in Figure 1, in the
cases of a control subject and two patients with either moderate or serious
manifestations of encephalitis. Notice that in the healthy subject only few
waveforms are identified: they have a slow biphasic shape that resembles a
complex, but these identifications are false positives. On the other hand, many
complexes are identified in the EEG traces of the patients (with appearance
rate and cumulative amplitude of SBCs directly related to the level of severity
of encephalitis).

Fig. 1 Slow biphasic complexes (SBC) and examples of processing of portions of EEG
recordings. A) Waveform used as prototype to identify SBCs. B) Waveforms similar to an
SBC automatically identified in an EEG trace recorded from a control subject (root mean
square amplitude is about 9 µV). C) SBCs automatically identified in an EEG trace from
a patient with moderate encephalitis (root mean square amplitude of about 40 µV). D)
Processing of an EEG from a patient with serious encephalitis (root mean square amplitude
of about 7 µV).

2.2 Relation between SBCs and EEG rhythms

Not published personal observations of the authors indicate that SBCs are
more common during hyperventilation than in rest conditions and in waking
than during sleeping. EEG rhythms are affected by many conditions, includ-
ing the level of consciousness, the mental task and pathologies. Thus, it was
reasonable that the relative power of different EEG rhythms could change de-
pending on the severity of the encephalitis. Moreover, we suspected that the
EEG rhythms could change before the appearance of an SBC.

Then, the delta (1-4 Hz), theta (4-8 Hz), alpha (8-13) and beta (13-30 Hz)
rhythms were estimated. Band-pass Chebyshev type I filters of order 6 were
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used to select the bandwidths of interest. They were run in both directions
to remove phase shifts and distortion. In this way, time series including the
specific frequency ranges were obtained. Their instant powers were computed
as the squared of each time sample, further smoothed by a low-pass filter with
cut-off equal to the lower frequency bound of the rhythm divided by 4 (again,
anti-causal zero-phase Chebyshev type I filters of order 6 were used). Then,
their relative contributions were obtained by the ratio between the power of
the rhythm of interest and the sum of the powers of all 4 rhythms. In this
way, the relative power of each rhythm was obtained as a function of time.
These time series were averaged over different intervals of interest: the mean
of all samples provided the average contribution of the rhythm in the entire
EEG trace; the mean of all samples in intervals of 2 s duration preceding each
SBC was also considered as an indicator of the average contribution before the
onset of a complex.

Examples of SBCs are shown in Figure 2 together with the contributions
of the different EEG rhythms.

Fig. 2 Examples of SBCs extracted from a patient (the same as in Figure 1D; the 5 largest
SBCs are considered). The raw signal portions are shown above; below them, the contribu-
tions in the delta, theta, alpha and beta ranges are provided.

2.3 Experimental data

We considered the same dataset as in [37] and [38]. A Micromed system (sam-
pling frequency 256 Hz, analog band-pass filter with bandwidth 0.5-70 Hz)
was used with different set-ups, including either 10 or 18 bipolar channels,
to acquire 128 spontaneous EEGs from pediatric subjects: 10 patients with
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encephalitis (age 2-14 years; 5 males and 5 females) and 10 controls (age 1-15
years; 5 males and 5 females).

Control subjects were monitored only once, whereas patients were followed-
up for a period ranging from few weeks to months. Different levels of severity
of the pathology were observed in the follow-up of patients. It was assessed
on the basis of the following data: possible seizures and focal neurological
deficits, body temperature, level of consciousness, lesions on either computer-
ized tomography or magnetic resonance, cerebrospinal fluid pleiocytosis. Fi-
nally, EEG traces were observed by expert neurophysiologists, looking for pos-
sible abnormalities, e.g., some SBCs identified subjectively. This subjective
electrophysiological evaluation was integrated to the available clinical infor-
mation (recorded in the same day of the EEGs) to associate to each trace the
severity of the pathological condition, indicated by the following scores:

0 normal condition (shown by either patients, in a period in which they
manifested no sign of disease, or controls; assigned to 22 traces);

1 mild disease (assigned to 29 traces);
2 moderate disease (assigned to 25 traces);
3 severe condition (assigned to 22 traces);
4 serious pathology (assigned to 20 traces);

NC not classified (assigned to 10 traces which were not manageable).

Not manageable signals were excluded, thus considering a database of 118
EEGs.

2.4 Algorithm to identify the severity scores

A multi-class estimation problem was faced to identify the severity score (5
classes, from 0 to 4) associated to the EEG traces. It is a classification problem
aimed at identifying the correct severity using features extracted from our EEG
data. The problem requires to select both optimal input features and a reliable
classifier. Three different classification approaches were tested in the same
conditions: the error-correcting output codes (ECOC) model, using support
vector machines (SVM) for binary one-to-one classifications [22][30]; the Naive
Bayes classifier (estimating data distributions using smoothed densities with
normal kernel); the binary tree model (BTM) [53]. As the BTM provided best
results (in terms of a 10-fold cross-validation test), in the following we’ll focus
only on it.

A BTM splits sequentially the data in two groups, on the basis of a test
on a specific feature. The features to be used, how many divisions to consider
and the threshold for each test should be chosen.
We considered the following set of features, including information about the
number, amplitude and spatial distribution of SBCs (selected by the best
classifier in [38]) and the additional properties related to EEG rhythms:

1. number of SBCs automatically identified (divided by the duration of the
EEG and the number of channels);
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2. cumulative root mean square (RMS) of SBCs (i.e., the sum of the RMSs
of SBCs divided by the duration of the trace and the number of channels);

3. number of SBCs in the frontal channels (again normalized by EEG duration
and channel number);

4. cumulative RMS of SBCs in frontal channels (with same normalization as
before);

5. relative average power of delta rhythm in the 2 s before the SBCs;
6. relative average power of theta rhythm in the 2 s before the SBCs;
7. relative average power of alpha rhythm in the 2 s before the SBCs;
8. relative average power of beta rhythm in the 2 s before the SBCs;
9. relative mean power of delta rhythm in the entire EEG trace;

10. relative mean power of theta rhythm in the entire EEG trace;
11. relative mean power of alpha rhythm in the entire EEG trace;
12. relative mean power of beta rhythm in the entire EEG trace.

Notice that the relative average powers of the rhythms in the entire EEG
and in windows of 2 s before the SBCs were both kept as they were found to
be statistically different (paired Wilkoxon signed rank test, p <<0.01). Specif-
ically, the relative contribution of the delta rhythm was statistically greater
before the SBCs than in the entire EEG, whereas all other rhythms were
smaller. Thus, the EEG was found to slower (as low frequency contributions
increased) before the onset of an SBC.

An exhaustive search was implemented, considering all possible combina-
tions of features as inputs of different BTMs. The implementation of the BTMs
was based on functions available in MATLAB R2019a (The Mathworks, Nat-
ick, Massachusetts, USA). Gini’s diversity index was used as splitting criterion.
All possible combinations of choices was considered and the best categorical
predictor split was then chosen on the basis of a cross-validation test with
10 folds. As the model could be still complicated (i.e., it could include many
features and data divisions), it was pruned selecting the smallest tree with
a number of misclassified observations within one standard error of the min-
imum. This model was then proposed for the identification of the severity
scores. Its performance was tested by a leave-one-out approach (i.e., each sin-
gle sample was used for test of the BTM trained on the rest of the data; this
method was chosen due to the small size of our dataset).

3 Results

Figure 3 shows the distributions of the features selected by the best BTM (i.e.,
the one with best generalization and after pruning). They are the number of
SBCs identified in the frontal lobe (also selected by the best BTM in [38])
and two features related to EEG rhythms: the relative average power of alpha
and theta rhythms in the 2 s before the onset of SBCs. All features were
statistically affected by the severity scores (Kruskal-Wallis test, p <<0.01).
Notice that there is at least one index for which the difference between close
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severity scores can be statistically discriminated (Wilcoxon rank sum test,
p <0.01).

Fig. 3 Distribution of the features selected by the best classifier (statistically significant
differences assessed by the Wilcoxon rank sum test; the average power of the rhythms are
considered for all identified SBCs, which were more than 2 thousands, whereas the total
number of SBCs in the frontal channels was computed for all manageable EEG traces, i.e.,
118).

Figure 4 shows the best BTM selected after training on the entire dataset,
10-fold cross-validation and final pruning. Notice that the powers of theta and
alpha rhythms before SBC onset (features x6 and x7 in Figure 4) decrease for
larger severity scores (as shown in Figure 3); on the other hand, the number of
identified SBCs increases with the worsening of encephalitis (feature x3, i.e.,
the number of SBCs in frontal location). In fact, the first tests (starting from
the top of the BTM) select the extreme conditions (i.e., severity scores equal
to either 0 or 4) on the basis of the powers of the rhythms (x6 lower than a
threshold for score 4, x7 larger than another for score 0); then, the number
of SBCs is considered to discriminate score 3 from lower values (a number of
SBC larger than a threshold is imposed to identify score 3); finally, score 1
and 2 are discriminated imposing a larger power of theta rhythm for the first.
The confusion matrix of this BTM is given in Table 1. The severity score was
correctly estimated in the 76.1% of cases; misclassification by 1 severity score
was found in the 17.1% of tests; mistakes of 2 scores occurred in the 6% of
cases; 1 mistake was made with 3 grades of difference; no misclassification of
healthy with serious patients was obtained.
The method was also tested using a leave-one-out approach (keeping the best
features selected before, but considering different training sets, as the test
sample is excluded, thus getting slightly different trees). The confusion matrix
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in Table 2 was obtained. Notice that there is only a small degradation of
the performance with respect to the best BTM obtained by training on the
entire dataset (the precision dropped from 76.1% to 73.5%, with 3 additional
mistakes). This is an important difference with respect to the model obtained
in [38], where the performances dropped from 64.1% (on the training set) to
55.6% (with the leave-one-out test).
As in [38], we made further tests to assess classifier performances when splitting
data only into 3 instead of 5 severity scores (grouping mild/moderate in a class
and severe/serious in another).
The classification was obtained by simply grouping the classes identified by the
previous algorithm. Specifically, the cases estimated as healthy were included
in class number 1, those with estimated severity scores equal to either 1 or 2
were placed in class 2, and those estimated as either severe or serious in class
3. The classification precision was 82.9% for the best model (trained on the
whole dataset) and 82.1% when tested with the leave-one-out approach.

Fig. 4 Best binary tree model (BTM), selected as the one which could fit our data with best
performances. The tested features are listed on the left, indicating in bold those included
in the model. When a new case is considered, the active features undergo sequential binary
tests (displayed as rectangles in the shown BTM), starting from the top and going on with
other tests until ending on an estimated severity score.

4 Discussion

Encephalitis can have serious consequences. Frequently, it shows neurological
sequelae and is an important economic burden, due to expensive monitoring
and treatments in a hospital [58]. In order to reduce mortality and morbidity,
the diagnosis should be reliable and fast [5][31][40]. Moreover, a non-invasive,
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Table 1 Confusion matrix of the binary tree model shown in Figure 4, obtained after a
training on the entire dataset (mean sensitivity 76.1%; mean specificity 93.5%; negative
predictive value 93.7%; mean accuracy 89.9%).

Predicted Target score Predictive
score 0 1 2 3 4 value

0 19 3 1 0 0 82.6%
1 3 22 6 2 1 64.7%
2 0 1 14 3 1 73.7%
3 0 2 3 16 0 76.2%
4 0 0 1 1 18 90%

True rate 86.4% 78.6% 56.0% 72.7% 90.0% 76.1%

Table 2 Confusion matrix obtained by testing the best binary tree model with a leave-
one-out approach (mean sensitivity 73.5%; mean specificity 93.0%; negative predictive value
93.1%; mean accuracy 89.0%).

Predicted Target score Predictive
score 0 1 2 3 4 value

0 19 3 2 0 0 79.2%
1 3 21 5 2 1 65.6%
2 0 2 14 2 2 70.0%
3 0 2 3 15 0 75.0%
4 0 0 1 3 17 81%

True rate 86.4% 75.0% 56.0% 68.2% 85.0% 73.5%

simple and economic method is needed to assess the progress of the pathology
in patients and to monitor their response to therapy. However, the available
diagnostic methods are based on multiple serological and instrumental exam-
inations, for the assessment of the basic vital functions and the identification
of symptoms. The most specific clinical investigations are either invasive or
expensive. Moreover, emergency therapy is mostly empirical and leads to the
administration of antiviral drugs, antibiotics and steroids.

EEG analysis is non-invasive and low cost, so that it is desirable to use it
to obtain an objective method to diagnose encephalitis [16][19]. The SBC was
found in the EEG of patients with different inflammatory diseases of the brain
and was proposed as a selective marker useful for their diagnosis [6][7][8][9].
The automated analysis of EEG is finding more and more applications and
is important to remove subjectivity [1][2][3][28][39][43][46][47]. An automated
method was proposed for SBC identification [37]. This approach allows to
overcome the problems of subjective interpretations of the traces. This is also
important if we consider that only a few experts have worked in the past in
this field and have the skills required to correctly identify the SBCs. More-
over, a post-processing can provide quantitative information on SBCs. For
example, their number and cumulative amplitude correlate with the severity
of encephalitis [37]. Furthermore, different groups of similar SBCs were found
to appear in the EEG [37], suggesting that different inflamed sites (spread in
the brain) were repeatedly activated.
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Some features characterizing the SBCs automatically identified (e.g., rate
of appearance and its variability, location and cumulative amplitude) were
employed to develop a classifier to discriminate EEG traces associated to dif-
ferent severity of encephalitis in [38]. A simple BTM was used to face the
multi-class problem; here additional approaches were tested (ECOC model
with SVMs for binary one-to-one classifications and Naive Bayes model), but
the BTM has still provided the best performances. Many other classification
approaches have been studied in EEG processing, e.g., for brain computer in-
terface applications [34][35] or for the identification of the phases of absence
seizure [30]. A few simple and fast approaches were here considered, in order to
get reliable indication of the best features for the classification of encephalitis,
after making an exhaustive search (notice that making more tests with other
methods should be avoided, as, with a high number of tested configurations,
there is the risk of obtaining overoptimistic results due to overfitting of our
small dataset [54]). The BTM allows a simple description, interpretation and
implementation of our results. Specifically, different properties of the SBCs
were considered as potentially useful to identify the severity of encephalitis.
The features that allowed to get the best classification performances in [38]
were related to the number of SBCs, their amplitude and location. These fea-
tures have been here augmented by descriptors of the average relative powers
of EEG rhythms, which were indeed reliable indicators of the severity of the
pathology (with larger low frequency contributions associated to higher sever-
ity, as already found in other pathologies [27][36]). The same data considered
in [38] were further investigated to see if the inclusion of information on EEG
rhythms improved the identification of the correct severity. Indeed, classifica-
tion performances largely increased and the best classifier included as input
features the relative average power of alpha and theta rhythms in the 2 s be-
fore the SBCs, together with the number of SBCs in the frontal region.
Notice that the average power of the rhythms was similar in a time interval
of a few seconds before and after the SBC. The seconds before the onset were
chosen only to exclude the SBC, which has characteristic low frequency contri-
butions that could bias the relative contributions of the rhythms. Specifically,
we noticed that in a short time interval in which a SBC appears the slower
rhythms are relatively more important than in the entire EEG trace. Thus,
a slowdown of the activity was observed before and after an SBC and this
slowing was larger when the severity of the pathology was greater.

As mentioned above, the classification performances are largely improved
with respect to the previous method proposed in [38], showing that the EEG
rhythms are important indicators of the severity of the encephalitis (primarily
in the channel and in the time period around which an SBC appears). The
performance is quite stable when considering the error of the classification
model trained on the entire dataset or the performances of a leave-one-out test.
The predictive value is over the 70% and the 80% when considering a 5- and
3-level severity classification, respectively. This performance can be considered
high enough to provide a useful support to the diagnosis of encephalitis, mainly
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in emergency settings or during a follow-up of the patient, in which invasive
and time-consuming examinations are usually avoided.

General clinical assessment of the patient was not standardized (indeed,
this is a retrospective study). Thus, some data (e.g., level of consciousness and
body temperature) were not available for all medical examinations in which
EEG traces were acquired. These data will be acquired in future prospective
studies as their inclusion as input features could further improve the estimation
of the severity of encephalitis.

Further studies are needed to assess other interesting properties of the
SBCs. For example, their sources could be investigated, by estimating their
locations [17][18], which could be then correlated with the lesions found in
neuroimages (some promising results were obtained recently [56]). Deepening
the study of SBCs could also be of help in improving their identification by
adding some a-priori constraints to the processing algorithm. Moreover, addi-
tional features related to the severity of the pathology could be found and fed
to a classifier to improve further the classification performance. As a further
interesting future study, different pathological brain inflammations showing
SBCs (e.g., HIV [7][8], Rasmussen’s syndrome [10][14][24][25][33], West syn-
drome [15][50]) could be investigated, to understand if specific properties of
this marker may be used to discriminate them.

5 Conclusion

Encephalitis should be diagnosed rapidly, but clinical assessment usually relies
on either subjective evaluations or invasive and expensive examinations. An
accurate and objective electrophysiological assessment could be a valid sup-
port for a rapid diagnosis and follow-up of patients. The slow biphasic complex
(SBC) and the EEG rhythms (mainly in time windows close to SBC appear-
ance) are reliable markers of encephalitis. Their automated identification al-
lows to remove clinical subjectivity in EEG trace interpretation. Moreover, the
classifier here developed using this information allows to assess the severity of
the pathology. The method is non-invasive, economic and fast, thus providing
an interesting support to the clinical examination. This promising result will
be further tested in the future in different clinical settings.
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41. Rosenberg S, Périn B, Michel V, Debs R, Navarro V, Convers P (2015) EEG in adults
in the laboratory or at the patient’s bedside, Neurophysiol. Clin., 45(1):19–37.

42. Rusalova MN (2006) Frequency-amplitude characteristics of the EEG at different levels
of consciousness. Neurosci Behav Physiol. 36(4):351–8.

43. Scheuer ML, Bagic A, Wilson SB (2017) Spike detection: Inter–reader agreement and a
statistical Turing test on a large data set. Clin Neurophysiol., 128(1):243–50.

44. Sheth R (2019) Patterns Specific to Pediatric EEG, Journal of clinical neurophysiology:
official publication of the American Electroencephalographic Society, 36(4):289–293.

45. Stamoulis C, Richardson AG (2010) Application of matched filtering to identify behav-
ioral modulation of brain oscillations. J Comput Neurosci., 29(1–2):63–72.

46. Stevenson NJ, Korotchikova I, Temko A, Lightbody G, Marnane WP, Boylan GB (2013)
An automated system for grading EEG abnormality in term neonates with hypoxic-
ischaemic encephalopathy. Ann Biomed Eng., 41(4):775–85.



Automated diagnosis of encephalitis 15

47. Stroink H, Schimsheimer RJ, de Weerd AW, Geerts AT, Arts WF, Peeters EA, Brouwer
OF, Boudewijn Peters A, van Donselaar CA (2006) Interobserver reliability of visual
interpretation of electroencephalograms in children with newly diagnosed seizures. Dev
Med Child Neurol., 48(5):374–377.

48. Sutter R, Kaplan PW (2013) Clinical and electroencephalographic correlates of acute
encephalopathy. J Clin Neurophysiol., 30(5):443–53.

49. Sutter R, Kaplan PW, Cervenka MC, Thakur KT, Asemota AO, Venkatesan A, Geo-
cadin RG (2015) Electroencephalography for diagnosis and prognosis of acute encephali-
tis. Clin Neurophysiol., 126(8):1524–31.

50. Tanoue K, Oguni H, Nakayama N, Sasaki K, Ito Y, Imai K, Osawa M (2008) Focal
epileptic spasms, involving one leg, manifesting during the clinical course of west syn-
drome (WS). Brain Dev., 30(2):155–9.

51. Tauber SC, Eiffert H, Bruck W, Nau R (2017) Septic encephalopathy and septic en-
cephalitis. Expert Rev Anti Infect Ther., 15(2):121–32.

52. Thompson C, Kneen R, Riordan A, Kelly D, Pollard AJ (2012) Encephalitis in children.
Arch Dis Child., 97(2):150–61.

53. Trevor H, Tibshirani R, Friedman J, The Elements of Statistical Learning, Springer
Series in Statistics, Springer New York Inc., USA, 2001.

54. Tsamardinos I, Rakhshani A, Lagani V (2014) Performance-estimation properties of
cross-validation-based protocols with simultaneous hyperparameter optimization, in
Proc. 8th Hellenic Conf. Artif. Intell. Methods Appl., pp. 1–14.

55. Tuncer T, Dogan S, Akbal E (2019) A novel local senary pattern based epilepsy diagnosis
system using EEG signals. Australas Phys Eng Sci Med., 42(4):939–48.

56. Valerio M, Rivera S, Mesin L (2020) Relation between lesions and localization of sources
of slow biphasic complexes in encephalitis, submitted to Neuroimmunol Neuroinflam-
mation.

57. Venkatesan A (2015) Epidemiology and outcomes of acute encephalitis. Curr Opin Neu-
rol., 28(3):277–82.

58. Vora NM, Holman RC, Mehal JM, Steiner CA, Blanton J, Sejvar J (2014) Burden
of encephalitis-associated hospitalizations in the United States, 1998-2010. Neurology.,
82(5):443–51.

59. Weingarten L, Enarson P, Klassen T (2013) Encephalitis. Pediatr Emerg Care,
29(2):235–41.

60. Zhao C, Zhao M, Yang Y, Gao J, Rao N, Lin P (2017) The reorganization of human
brain networks modulated by driving mental fatigue. IEEE J Biomed Health Inform,
21(3):743–55.

Luca Mesin graduated in Electronics Engineering
in 1999 and received the Ph.D. in Applied Mathemat-
ics in 2003 from Politecnico di Torino, Italy. From 2003
to 2008 he was a Fellow of the Laboratory for Neuro-
muscular System Engineering of the Department of Elec-
tronics, Politecnico di Torino. Since 2008, he is Assistant
Professor in Biomedical Engineering at the Department
of Electronics and Telecommunications and head of the
Mathematical Biology and Physiology group (Politecnico
di Torino). His main research activities are in the fields

of biomedical image/signal processing and mathematical modelling.



16 Luca Mesin et al.

Massimo Valerio graduated in Medicine and
Surgery in 2011 and obtained his specialization in Child
Neuropsychiatry in 2017, at the University of Turin. He is
currently a PhD student in Bioengineering and Medical-
Surgical Sciences and works at the Department of Medi-
cal Science, University of Turin. His research interests are
Neurosurgery, Neuroradiology and Neurology in Chilhood
and Adolescence.

Giorgio Capizzi is a Medical Doctor expert in Neu-
ropsychiatry in Chilhood. He has been director of the Ital-
ian League for Epilepsy and of a ward of Neuropsychiatry
in the Regina Margherita Children’s Hospital, Turin. He
has been Associate Professor at the Department of Child
Neuropsychiatry, Universitá di Torino, Turin, Italy. His
main research interests are in the field of Child Neuro-
physiology.


