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Abstract

Structural theories based on 1D component-wise models are proposed to investigate the

progressive disbonding in sandwich structures. The structural framework adopts the Car-

rera Unified Formulation to generate higher-order theories of structures via a variable

kinematic approach. The component-wise approach, formulated within the Lagrange poly-

nomial based CUF models, permits modelling of various components of a complex struc-

ture through 1D CUF models at reduced computational costs and 3D accuracy. The

disbonding constitutive models are retrieved from well-established works in the literature

and based on cohesive elements. The results verify the accuracy of 1D models with some

10-20% computational time as compared to 3D finite elements.

Keywords: disbonding, sandwich structures, CUF, FEM, cohesive elements.
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1 Introduction

Due to the superior stiffness-weight ratio as compared to traditional materials, composite

sandwich structures are of high interest for aerospace and naval structures. Delamination

and disbonding are common failure modes for this kind of structures. Typical triggers

are the mismatch of material properties and defects introduced during the manufactur-

ing process. The delamination and disbonding can result in a significant reduction in the

load-bearing capacity of the structure, and the analysis of the initiation and propagation

of failure is essential.

Early research on delamination and disbonding problems of composite sandwich struc-

tures relied on experimental methods [1, 2, 3, 4]. Subsequently, the research activity

considered the use of the finite element method (FEM) to support experimental results

[5, 6, 7]. In FEM, the cohesive method proposed by Dugdale [8] and Barenblatt [9] is a

common tool for modelling the delamination or fracture, and has applications in various

fields, such as biomechanics [10], electro-mechanical coupling [11, 12], and mixed-mode

layering in composite materials [13, 14, 15]. Examples of works with cohesive elements

and sandwich structures are those by Hower et al. [16, 17] with investigations on the

pure mode-I disbonding of face/core interface via bilinear cohesive elements. The use

of numerical frameworks for this class of problems involves nonlinear solvers and the

use of 3D elements to detect transverse stresses. Such features make the computational

costs high and preclude the analysis of complex structures and the use in non-academic

environments. The use of shell elements can alleviate the computational overhead com-

pared to 3D solid elements, and, recently, some works have focused on delamination

problems [18, 19]. However, the use of such models may not be sufficiently accurate as

sandwich structures with soft cores are analyzed, as higher-order layer-wise models can

be necessary [20].

The prime purpose of this work is to verify the accuracy and computational efficiency
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of 1D structural models for progressive disbonding in sandwich structures via cohesive

elements. The structural theories are higher-order and generated by the Carrera Uni-

fied formulation (CUF), a framework for generating various classes of structural theories

by varying the kinematic definitions [21]. The 1D component-wise (CW) [22] approach

employed in this work can efficiently model the cohesive kinematics and simulate the

interface behavior. Previous works include the introduction of cohesive elements in the

CUF framework and its use in delamination modelling [23], and the present work focuses

on the extension of the framework to disbonding of sandwich structures. Moreover, CUF

models can handle the severe transverse anisotropy of sandwich structures with soft cores

[24]. The present work is organized in the following manner: Section 2 introduces higher-

order structural theories based on 1D-CUF, as well as the theory and constitutive laws

for the cohesive model. The finite element formulation, for both the bulk and cohesive

elements, is presented in Section 3. A series of numerical assessments are performed

to demonstrate the capability of the proposed framework in the analysis of disbonding

in sandwich structures, and is given in Section 4. Finally, the main conclusions of the

present work are highlighted in Section 5.

2 1D CUF and cohesive models

Assuming an orthogonal reference frame in which the beam axis is parallel to the y-axis,

the displacement field in CUF is

u = Fτ (x, z)uτ (y) , τ = 1, ...,M (1)

u =

{
ux uy uz

}T

(2)

Fτ (x, z) are cross-sectional expansion functions [21] allowing for the use of any structural

theory. M is the number of terms in the expansion function. uτ are generalized displace-
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ments defined over the beam axis. There are various implementable classes of expansion

functions, such as Taylor, Lagrange and Legendre polynomials, or trigonometric and

exponential functions. Still, there is no need for formal modifications of the equations as

the expansion and its order do not affect the governing equations of CUF. The current

work uses Lagrange Expansions (LE), which are based on Lagrange polynomials and are

implemented in the form of 9-node second-order quadrilateral element (L9), providing

a higher-order model based on pure displacements. LE leads to 1D component-wise

models (CW) [24], allowing to retain material and geometrical characteristics of each

component of a structure. A six-node cohesive Lagrange cross-section element, as shown

in Fig. 1, is introduced with expansion functions expressed as

u+ = F1u4 + F2u5 + F3u6

u− = F1u1 + F2u2 + F3u3

(3)

F1 = 1
2ξ (1− ξ)

F2 = − (1− ξ) (1 + ξ)

F3 = 1
2ξ (1 + ξ)

(4)

ξ1 = −1, ξ2 = 0, ξ3 = 1 (5)

where u+ and u− are the displacements of the upper and lower surfaces of the interface,

respectively. A mixed-mode cohesive constitutive model proposed by Camanho et al.

[15] is adopted in this work. Based on the damage mechanics theory, the cohesive

constitutive law relates the cohesive traction tj to the displacement jump ∆j in the local

coordinate system [25],

tj = (1− d)D0
ij∆j − dD0

ijδ3j 〈−∆3〉 (6)
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Figure 1: (a) Six-node cohesive Lagrange cross-section element (CS6) inserted between
two bulk L9 elements, and (b) Topology of a CS6 cohesive element with node numbering.

in which the second term prevents non-physical post-decohesion interfacial penetrations.

d is the damage variable, <> is the MacAuley bracket and D0
ij is the initial stiffness

tensor, which is defined as a function of the penalty parameter K and Kronecker delta

δij ,

D0
ij = δijK (7)

The damage variable d makes use of a damage criterion built within the equivalent

displacement jump space,

F
(
λt, rt

)
= G

(
λt
)
−G

(
rt
)
6 0 ∀ t > 0 (8)
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where t denotes the quasi-static time and rt is the damage threshold for the current

time. Based on the mixed-mode bilinear constitutive formulation,

G (λ) =
∆f
(
λ−∆0

)
λ (∆f −∆0)

(9)

dt = G
(
rt
)
∀ rt = max

s

{
r0, λ

}
0 > s > t (10)

where ∆0 and ∆f are the equivalent displacements at the beginning of damage and com-

plete failure (d = 1), respectively. λ is the current equivalent non-negative displacement

jump.

The propagation criteria depends on the formulation presented by Benzeggagh and Ke-

nane [26], which is a function of mode I and mode II fracture toughness, mode mixity

and an experimentally obtained parameter η.

Gc = GcI + (GcII −GcI)
(
GcI
GT

)η
, GT =

GII

GI +GII
(11)

The displacement jump criterion is

∆0 =
√

∆2
3 +

(
∆2

shear −∆2
3

)
Bη (12)

B =
Gshear

GT
,∆shear =

√
∆2

I + ∆2
II, Gshear = GI +GII (13)

By differentiating the traction-displacement relationship in Eq. 6, the tangent constitu-

tive matrix is derived [25] as follows

ṫ = Dtan
ij ∆̇j (14)

Dtan
ij =


{
Dij −K

[
1 + δ3j

〈−∆j〉
∆j

] [
1 + δ3j

〈−∆i〉
∆i

]
H∆i∆j , r < λ < ∆f

}
Dij , r > λ or∆f < λ

(15)
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where H is the scalar parameter defined as

H =
∆f∆0

(∆f −∆0)λ3
(16)

3 Finite element formulation

Under the assumption of small deformation, the linear stress-strain law is as follows

σ = Cε (17)

ε = Du (18)

where σ = {σxx, σyy, σzz, σyz, σxz, σxy}T and ε = {εxx, εyy, εzz, εyz, εxz, εxy}T. C is the

matrix of the material elastic properties and D is the differential operator defined as

follows:

DT =


∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0

 (19)

By introducing the standard FE shape functions, the generalized displacement field

becomes

u = Ni (y)Fτ (x, z)uτi (y) ∀ τ = 1, 2, ...,M i = 1, 2, ..., p+ 1 (20)

uτi =

[
uxτi uyτi uzτi

]
(21)

where Ni is the beam shape function of order p. uτi is the nodal displacement vector.

The choice of the shape function order p and the expansion function terms M remain

independent and are input of the analysis. Then, the displacement fields on the upper
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and lower interface of the cohesive elements (CS6) can be expressed as

u+ = FτNiu
+
τi,u

− = FτNiu
−
τi (22)

The displacement jump across the cohesive element surface will be

[[u]] = FτNi

(
u+
τi − u−τi

)
(23)

The displacement jump is computed as the difference between the displacements at the

upper and lower edge of the CS6 cohesive element, whose values are calculated using

the nodal displacements in combination with the shape and expansion functions. The

tractions are computed at the integration points of the CS6 element. The equilibrium

equations in terms of FE matrices become [21]

kbulk
ijτsuτi + kcoh

ijτs [[uτi]]− pτi = 0 (24)

where the kbulk
ijτs and kcoh

ijτs present the Fundamental Nuclei (FNs) of the bulk and cohesive

stiffness matrix, respectively. The pτi is the external loading of FN. The FN of cohesive

forces is [23]

f+
cohτi

=

∫
Γc

FτNiu
+
τit

+dΓc,f
−
cohτi

=

∫
Γc

FτNiu
−
τit
−dΓc (25)

The rate form of the cohesive constitutive law is Eq. 14 [25],

ṫc = QDtanQT [[u̇]] = QDtanQTFτNi

(
u+
τi − u−τi

)
(26)

where Q is the orthogonal transformation matrix of the system for transforming local

and global cohesive elements. The FN of the cohesive tangent matrix stems from the
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linearization of the cohesive force vector (Eq. 25),

kcoh
ijτs =

∫
Γc

FτNiQDtanQTFsNjdΓc (27)

The integration of cohesive elements via the standard Gauss quadrature results in re-

sponses with spurious oscillations, especially when there are large stress gradients across

a cohesive element. Consequently, The Newton-Cotes integration scheme is employed in

this work to integrate the FN tangent stiffness matrix and internal force vector. The

weak form of discrete equation is as follows

f int + f coh − f ext = 0 (28)

where f int, f coh and f ext denote the global vectors for internal, cohesive and external

forces, respectively. Based on the energy release rate, an arc-length solver with a path-

following constraint [27, 28] is implemented in this work. Then, the global system of

equation becomes

 f int (u)− λf ext

g (u, λ)

 = 0 (29)

g =
1

2
fT
ext (λ0∆u−∆λu0)−∆τ (30)

where f int (u) includes contributions from bulk as well cohesive finite elements and g is

the energy-release constraint equation. fT
ext denotes the global unit external force vector.

∆τ is the dissipation path parameter, λ0 and u0 are the last converged load factor and

displacement vector, respectively. Given the best iteration value of each increment kopt,

the path parameter of the given increment i is [27]

∆τ i = ∆τ i−1 kopt

ki−1
(31)
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where kopt and ki−1 is the number of iterations required in the last converged loading

step.

4 Numerical results

4.1 Single cantilever beam

This section presents the numerical results concerning a single cantilever beam (SCB),

see Fig. 2. The load is introduced through a block bonded to the end of top facesheet

above the pre-crack. The bottom facesheet is clamped. The parameters of the materials

and cohesive layer can be found in Table 1. The numerical results from 1D CUF are

z

y x

z

Figure 2: A schematic representation of the single cantilever beam (SCB). The sandwich
structure is composed of a soft core with top and bottom facesheets made with an
isotropic material.

Table 1: Material properties of the constituents of the SCB [16]

Facesheet Load block
E [MPa] ν E [MPa] ν
86,593.9 0.311 72,000 0.3

Core
E‖ [MPa] E⊥ [MPa] ν⊥‖ ν⊥ G⊥ [MPa] G⊥‖ [MPa]

517.1* 0.1467 0.33 0.0001 0.03669 151.68*

Cohesive layer
Tmax [MPa] GIc [J/m2] K0 [MPa]
0.5 1,050 75
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verified via 3D FE solutions and validated with experimental results from the literature

[16]. In CUF, the mesh configuration of the cross-section is 2 × 6 L9 elements for the

composite part, 2×2 L9 for the loading block, and 2 CS6 cohesive elements. Furthermore,

more refined discretizations were used to test convergence, see Table 2. The refinement

of the discretization was carried out along x. Along the length, 80 B4 cubic elements

were used. The thickness of the cohesive layer in the CUF models is of the order 10−7

m; it does not significantly affect the global stiffness of the structure. In the ABAQUS

analysis, the full integration standard continuum quadratic elements were used for the

facesheets, core, and load introduction block. A schematic representation of the cross-

section mesh used in both models is shown in Fig. 3. The discretisation used in both

approaches were determined on the basis of a mesh convergence study, whose results

are plotted in Fig. 4. The comparison of the details between these two methods and

an FE model from the literature is shown in Table 2. The time reported in the present

work refers to real (wall) time. All the analyses in the present work consider geometrical

linearity, with nonlinearity arising from the cohesive constitutive law. The ABAQUS

models are solved using the Riks method, while CUF utilises an arc-length approach

with an energy-dissipation constraint as described at the end of Section 3.

The SCB load-displacement curves are shown in Fig. 5, along with reference numerical

and experimental data from the literature [16]. In Table 3, some of the load-displacement

values are reported. The comparison of deformation patterns in CUF and ABAQUS is

given in Fig. 6 when displacement of the load point, u, is 26mm and 36mm, respectively.

The numerical results show that

� The pre-peak portion of the equilibrium curves are identical for CUF and the

3D FE model. Some differences are visible, considering the FE results from the

literature and the experiment. The differences between the two sets of numerical

models may be due to the use of plane stress elements in [16].
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x

z

(a) CUF (b) ABAQUS

Figure 3: Schematic representation of the cross-section mesh used in the CUF (2×6 L9)
and ABAQUS (Mesh-2) models

Table 2: Model information on the various numerical approaches used for the SCB

Methods Discretisation Total nodes DOF Time∗ (hh:mm:ss)

CUF - 2×6L9 12L9-2CS6-80B4 17,190 51,570 00:17:35
CUF - 4×6L9 24L9-4CS6-80B4 30,456 91,368 01:03:00
CUF - 6×6L9 36L9-6CS6-80B4 43,992 131,976 01:52:20
ABAQUS - Mesh 1 C3D20-COH3D8 36,300 108,942 01:32:07
ABAQUS - Mesh 2 C3D20-COH3D8 67,372 202,158 03:26:47
ABAQUS - Mesh 3 C3D20-COH3D8 90,189 270,609 04:55:29
Höwer [16] CPS4R-user elements 191,621 N/A N/A
∗ The reported run-times are based on analyses performed on a laptop using a single core.

Table 3: Load-displacement values for the SCB

Displacements [mm] Loads [N] Difference [%]
CUF ABAQUS

Peak Load 67.768 66.596 1.76
5 34.977 35.973 0.64
10 56.112 55.666 0.80
20 65.026 62.733 3.65
30 52.997 51.104 3.70
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Figure 4: Load-displacement response obtained from a mesh convergence study for the
CUF and ABAQUS models
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Figure 5: Load-displacement curves obtained from the CUF and ABAQUS solutions of
the SCB test. Reference numerical and experimental data is obtained from [16].

14



-5.4e-02

2.6e+01

5

10

15

20

U
 U

3

-5.4e-02

2.6e+01

5

10

15

20

y

x
z

(a) CUF, U=26 mm

-5.6e-02

3.6e+01

5

10

15

20

25

30

(b) CUF, U=36 mm

U, U3

-5.248e-02
+2.062e+00
+4.177e+00
+6.292e+00
+8.407e+00
+1.052e+01
+1.264e+01
+1.475e+01
+1.687e+01
+1.898e+01
+2.109e+01
+2.321e+01
+2.532e+01

, U3

-5.248e-02
+2.062e+00
+4.177e+00
+6.292e+00
+8.407e+00
+1.052e+01
+1.264e+01
+1.475e+01
+1.687e+01
+1.898e+01
+2.109e+01
+2.321e+01
+2.532e+01

(c) ABAQUS, U=26 mm

U, U3

-5.515e-02
+3.007e+00
+6.069e+00
+9.131e+00
+1.219e+01
+1.526e+01
+1.832e+01
+2.138e+01
+2.444e+01
+2.750e+01
+3.057e+01
+3.363e+01
+3.669e+01

, U3

-5.515e-02
+3.007e+00
+6.069e+00
+9.131e+00
+1.219e+01
+1.526e+01
+1.832e+01
+2.138e+01
+2.444e+01
+2.750e+01
+3.057e+01
+3.363e+01
+3.669e+01

(d) ABAQUS, U=36 mm

Figure 6: 3D displacement profile of the SCB at various load levels

� The post-peak curves are all quite close with differences ranging from 1.7 to 3.7%.

For a given load value, the CUF result has higher displacements.

� The computational time of the CUF models is some 10% the one of 3D FE.

4.2 Double cantilever beam

In this section, the same cohesive parameters and geometry dimensions of SCB - Table

1 - but without the load block, were employed to simulate the double cantilever beam

model (DCB), see Fig. 7. The differences from SCB are the boundary conditions and

loading modes, namely, the clamping at the left end of the beam and symmetrical loads

at both right ends of top and bottom facesheets. 1D CUF and 3D FE were used, as

shown in Table 4.

The equilibrium curves are shown in Fig. 8 with numerical values in Table 5. The 3D

deformed configurations are in Fig. 9.

The numerical results suggest that

� As in the previous case, the pre-peak curves match perfectly.

� Some differences are still visible in the post-peak curves. Such a result is consistent
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Figure 7: Schematic representation of the double cantilever beam (DCB) test

Table 4: Models used for the DCB
Methods Discratisations DOF Time∗ (hh:mm:ss)

CUF 12L9-2CS6-80B4 49,980 01:33:14
ABAQUS C3D20-COH3D8 159,096 06:57:16
∗ The reported run-times are based on analyses performed on a laptop using a single core.

Table 5: Load-displacement values for the DCB
Displacements [mm] CUF [N] ABAQUS [N] Difference [%]

Peak load 44.776 43.870 2.07
15 42.378 42.051 0.78
20 43.577 41.896 4.01
25 38.472 37.009 3.95
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CUF approaches

-1.2e+01

2.0e+01

-5

0

5

10

15

U U3

-1.2e+01

2.0e+01

-5

0

5

10

15

y

x
z

(a) CUF, u=20 mm

-2.0e+01

3.0e+01

-10

0

10

20

U3 U

-2.0e+01

3.0e+01

-10

0

10

20

(b) CUF, u=30 mm

U, U3

-1.263e+01
-9.886e+00
-7.137e+00
-4.388e+00
-1.639e+00
+1.110e+00
+3.859e+00
+6.608e+00
+9.357e+00
+1.211e+01
+1.485e+01
+1.760e+01
+2.035e+01

, U3

-1.263e+01
-9.886e+00
-7.137e+00
-4.388e+00
-1.639e+00
+1.110e+00
+3.859e+00
+6.608e+00
+9.357e+00
+1.211e+01
+1.485e+01
+1.760e+01
+2.035e+01

(c) ABAQUS, u=20 mm

U, U3

-2.025e+01
-1.606e+01
-1.187e+01
-7.683e+00
-3.492e+00
+6.984e-01
+4.889e+00
+9.079e+00
+1.327e+01
+1.746e+01
+2.165e+01
+2.584e+01
+3.003e+01

, U3

-2.025e+01
-1.606e+01
-1.187e+01
-7.683e+00
-3.492e+00
+6.984e-01
+4.889e+00
+9.079e+00
+1.327e+01
+1.746e+01
+2.165e+01
+2.584e+01
+3.003e+01

(d) ABAQUS, u=30 mm

Figure 9: 3D displacement profile of the DCB at various load levels
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with the findings in [23] in which a comprehensive analysis on the effect of 1D and

3D mesh refinement was carried out to show how further 3D refinements tend to

converge to the 1D solution. The 1D solution can enrich the kinematics over the

cross-section without aspect ratio constraints. Therefore, very refined transverse

stress fields are obtainable without the DOF overhead of 3D.

� The computational costs of 1D CUF are some 20% of 3D.

4.3 Mixed-mode bending test

The last numerical case concerns the mixed-mode bending (MMB) test. This section

aims to verify the accuracy of the present formulation also for MMB. For the sake of

the numerical assessment, the fracture characterization was retrieved from unidirectional

composites as the authors struggled to find published literature with a complete dataset

to investigate the sandwich MMB model through cohesive element theory.

The geometry of this model is shown in Fig. 10. The ratios of cohesive tractions and the

energy release rates in different directions adopted in the present work are hypothetical

and listed in Table 6; the other material parameters are as in the previous sections. The

ratio of energy release rate is G II/GT = 0.5. Based on the rigid body motion assumption

for the loading arm, the load-point displacement is computed as [15]

u =
2c+ L

L
um −

2c

L
ue (32)

The cross-section mesh is 2×6L9 and 2CS6, and, along the longitudinal direction, 65

cubic elements (B4). Contact elements were added along the initial crack surface to avoid

the inter-penetration. In ABAQUS, quadratic brick elements (C3D20) were employed

with linear cohesive elements, see Table 7. Results are shown in Fig. 11 and Table 8

and suggest that

� There is a good match between the two models with some differences in the post-
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Figure 10: A schematic representation of the mixed-mode bending test (MMB)

Table 6: Parameters of the sandwich MMB [23]

Cohesive
T3 [MPa] T2 [MPa] GIc [J/m2] GIIc [J/m2] K0 [MPa]
0.5 0.625 1,050 1,863 75

Table 7: Model information for the MMB
Method Discretisation Total element DOF Time∗ (hh:mm:ss)

CUF 12L9-2CS6-65B4 910 41,160 01:14:35
ABAQUS C3D20R-COH3D8 20,797 171,888 09:10:20
∗ The reported run-times are based on analyses performed on a laptop using a single core.
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peak regime. Such differences are similar to the previous cases.

� The computational cost of the CUF model is some 10% of the 3D FE.

Table 8: Load-displacement values for MMB
Displace [mm] Load P [N] Difference [%]

CUF ABAQUS

Peak load 85.962 84.965 1.16
Valley load 54.302 54.483 0.33
5 80.928 81.494 0.70
10 72.835 69.581 4.47
15 58.772 56.848 3.27
20 54.358 54.612 0.47
25 55.857 57.046 2.13
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Figure 11: Load-displacement curves for MMB as obtained from the ABAQUS and CUF
approaches
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5 Conclusions

This paper has presented numerical results concerning disbonding problems in sandwich

structures. The aim has been to verify the accuracy and computational efficiency of 1D

refined models; whereas, for verification and validation purposes, 3D FE and experimen-

tal data were employed. The structural formulation stems from the CUF and is based on

1D FE with Lagrange polynomials to define the cross-section kinematics. Although the

presented structural modelling approach is based on a 1D formulation, the complete 3D

stress field can be obtained; furthermore, the primary variables are pure displacement

degrees of freedom. Disbonding of the sandwich structure is modelled using well estab-

lished cohesive constitutive laws from the literature and based on works of Camanho et

al. [25]. The findings of this paper highlight the accuracy and efficiency of the proposed

approach, and the capability of overcoming a priori assumptions typical of 1D models.

In fact,

� There is a good match between the various models with maximum differences of 3-

4%. The presented numerical assessments serve as validation cases to demonstrate

the capability of the proposed approach in the numerical modelling of disbonding

in sandwich structures.

� The computational time of the present framework falls between 10-20% of 3D FE,

thus demonstrating its computational efficiency.

� The 1D approach can provide an accurate 3D distribution of deformation and

stress and does not require any a priori kinematic assumptions.

Due to the good computational efficiency, future extensions could deal with more com-

plex structures and the introduction of multifield effects.
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