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Abstract

Structural theories based on 1D component-wise models are proposed to investigate the

progressive disbonding in sandwich structures. The structural framework adopts the Car-

rera Uni�ed Formulation to generate higher-order theories of structures via a variable

kinematic approach. The component-wise approach, formulated within the Lagrange poly-

nomial based CUF models, permits modelling of various components of a complex struc-

ture through 1D CUF models at reduced computational costs and 3D-like accuracy. The

disbonding constitutive models are retrieved from well-established works in the literature

and based on cohesive elements. The results verify the accuracy of 1D models with some

10-20% computational time as compared to 3D �nite elements.

Keywords: disbonding, sandwich structures, CUF, FEM, cohesive elements.
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1 Introduction

Due to the superior sti�ness-weight ratio as compared to traditional materials, composite

sandwich structures are of high interest for aerospace and naval structures. Delamination

and disbonding are common failure modes for this kind of structures. Typical triggers

are the mismatch of material properties and defects introduced during the manufactur-

ing process. The delamination and disbonding can result in a signi�cant reduction in the

load-bearing capacity of the structure, and the analysis of the initiation and propagation

of failure is essential.

Early research on delamination and disbonding problems of composite sandwich struc-

tures relied on experimental methods [1, 2, 3, 4]. Subsequently, the research activity

considered the use of the �nite element method (FEM) to support experimental results

[5, 6, 7]. In FEM, the cohesive method proposed by Dugdale [8] and Barenblatt [9] is a

common tool for modelling the delamination or fracture, and has applications in various

�elds, such as biomechanics [10], electro-mechanical coupling [11, 12], and mixed-mode

layering in composite materials [13, 14, 15]. Examples of works with cohesive elements

and sandwich structures are those by Hower et al. [16, 17] with investigations on the

pure mode-I disbonding of face/core interface via bilinear cohesive elements. The use

of numerical frameworks for this class of problems involves nonlinear solvers and the

use of 3D elements to detect transverse stresses. Such features make the computational

costs high and preclude the analysis of complex structures and the use in non-academic

environments.

The prime purpose of this work is to verify the accuracy and computational e�ciency

of 1D structural models for progressive disbonding in sandwich structures via cohesive

elements. The structural theories are higher-order and generated by the Carrera Uni-

�ed formulation (CUF), a framework for generating various classes of structural theories

by varying the kinematic de�nitions [18]. The 1D component-wise (CW) [19] approach
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employed in this work can e�ciently model the cohesive kinematics and simulate the in-

terface behavior [20]. Moreover, CUF models can handle the severe transverse anisotropy

of sandwich structures with soft cores [21]. The present work extends the �ndings in

[20] to sandwich structures and is organized as follows: Section 2 presents the structural

theories, Section 3 describes the FEM approach for progressive delamination, results and

conclusions are in Sections 4 and 5, respectively.

2 1D CUF models

Assuming an orthogonal reference frame in which the beam axis is parallel to y, the

displacement �eld in CUF is

u = F� (x; z) u� (y) ; � = 1; :::;M (1)

u =

�
ux uy uz

�T

(2)

F� (x; z) are cross-sectional expansion functions [18] allowing for the use of any struc-

tural theory. M is the number of terms in the expansion function. u� are generalized

displacements. There are various implementable classes of expansion functions, such as

Taylor, Lagrange and Legendre polynomials, or trigonometric and exponential functions.

Still, there is no need for formal modi�cations of the equations as the expansion and

its order do not a�ect the governing equations of CUF. The Lagrange polynomials with

nine nodes (LE) are implemented in this work to provide a higher-order model based

on pure displacements. LE leads to 1D component-wise models (CW) [21], allowing

to retain material and geometrical characteristics of each component of a structure. A

six-node cohesive Lagrange cross-section element, as shown in Fig. 1, is introduced with

4



expansion functions expressed as

u+ = F1u4 + F2u5 + F3u6

u� = F1u1 + F2u2 + F3u3

(3)

F1 = 1
2� (1� �)

F2 = � (1� �) (1 + �)

F3 = 1
2� (1 + �)

(4)

�1 = �1; �2 = 0; �3 = 1 (5)

where u+ and u� are the displacements of the upper and lower surfaces of the interface,

respectively. A mixed-mode cohesive constitutive model proposed by Camanho et al.

Figure 1: Six-node cohesive Lagrange cross-section element

[15] is adopted in this work. Based on the damage mechanics theory, the cohesive

constitutive law relates the cohesive traction tj to the displacement jump �j in the local

coordinate system,

tj = (1� d)D0
ij�j � dD0

ij�3j h��3i (6)

in which the second term prevents non-physical post-decohesion interfacial penetrations.

d is the damage variable, <> is the MacAuley bracket and D0
ij is the initial sti�ness

tensor, which is de�ned as a function of the penalty parameter K and Kronecker delta
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�ij ,

D0
ij = �ijK (7)

The damage variable d makes use of a damage criterion built within the equivalent

displacement jump space,

F
�
�t; rt

�
= G

�
�t
�
�G

�
rt
�

6 0 8 t > 0 (8)

where t denotes the quasi-static time and rt is the damage threshold for the current

time. Based on the mixed-mode bilinear constitutive formulation,

G (�) =
�f
�
���0

�
� (�f ��0)

(9)

dt = G
�
rt
�
8 rt = max

s

�
r0; �

	
0 > s > t (10)

where �0 and �f are the equivalent displacements at the beginning of damage and com-

plete failure (d = 1), respectively. � is the current equivalent non-negative displacement

jump.

The propagation criteria depends on the formulation presented by Benzeggagh and Ke-

nane [22], which is a function of mode I and mode II fracture toughness, mode mixity

and an experimentally obtained parameter �.

Gc = GcI + (GcII �GcI)
�
GcI
GT

��
; GT =

GII

GI +GII
(11)

The displacement jump criterion is

�0 =
q

�2
3 +

�
�2

shear ��2
3

�
B� (12)

B =
Gshear

GT
;�shear =

q
�2

I + �2
II; Gshear = GI +GII (13)
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By di�erentiating the traction-displacement relationship in Eq. 6, the tangent constitu-

tive matrix is derived [23] as follows

_t = Dtan
ij

_�j (14)

Dtan
ij =

8><>:
n
Dij �K

h
1 + �3j

h��ji
�j

i h
1 + �3j

h��ii
�i

i
H�i�j ; r < � < �f

o
Dij ; r > � or�f < �

(15)

where H is the scalar parameter de�ned as

H =
�f�0

(�f ��0)�3
(16)

3 Finite element formulation

Under the assumption of small deformation, the linear stress-strain law is as follows

� = C" (17)

" = Du (18)

� =

�
�xx �yy �zz �yz �xz �xy

�T

(19)

" =

�
"xx "yy "zz "yz "xz "xy

�T

(20)

DT =

266664
@x 0 0 0 @z @y

0 @y 0 @z 0 @x

0 0 @z @y @x 0

377775 (21)
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where D is the di�erential operator and C is the matrix of the material elastic properties.

Introducing the standard FE shape functions, the generalized displacement �eld becomes

u = Ni (y)F� (x; z) u�i (y) 8 � = 1; 2; :::;M i = 1; 2; :::; p+ 1 (22)

u�i =

�
ux�i uy�i uz�i

�
(23)

where Ni is the beam shape function of order p. u�i is the nodal displacement vector.

The choice of the shape function order p and the expansion function terms M remain

independent and are input of the analysis. Then, the displacement �elds on the upper

and lower interface of the cohesive elements (CS6) can be expressed as

u+ = F�Niu
+
�i;u

� = F�Niu
�
�i (24)

The displacement jump across the cohesive element surface will be

[[u]] = F�Ni

�
u+
�i � u��i

�
(25)

The equilibrium equations in terms of FE matrices become [18]

kbulk
ij�su�i + kcoh

ij�s [[u�i]]� p�i = 0 (26)

where the kbulk
ij�s and kcoh

ij�s present the Fundamental Nuclei (FN) of the bulk and cohesive

sti�ness matrix, respectively. The p�i is the external loading of FN. The FN of cohesive

forces are [20]

f+
coh�i

=

Z
�c

F�Niu
+
�it

+d�c;f
�
coh�i

=

Z
�c

F�Niu
�
�it
�d�c (27)
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The rate form of the cohesive constitutive law is Eq. 14 [23],

_tc = QDtanQT [[ _u]] = QDtanQTF�Ni

�
u+
�i � u��i

�
(28)

where Q is the orthogonal transformation matrix of the system for transforming local

and global cohesive elements. The FN of the cohesive tangent matrix stems from the

linearization of the cohesive force vector (Eq. 27),

kcoh
ij�s =

Z
�c

F�NiQDtanQTFsNjd�c (29)

The integration of cohesive elements via the standard Gauss quadrature results in re-

sponses with spurious oscillations, especially when there are large stress gradients across

a cohesive element. Consequently, The Newton-Cotes integration scheme is employed in

this work to integrate the FN tangent sti�ness matrix and internal force vector. The

weak form of discrete equation is as follows

f int + f coh � f ext = 0 (30)

where f int, f coh and f ext denote the global vectors for internal, cohesive and external

forces, respectively. Based on the energy release rate, an arc-length solver with a path-

following constraint [24, 25] is implemented in this work. Then, the global system of

equation becomes

264 f int (u)� �f ext

g (u; �)

375 = 0 (31)

g =
1

2
fT
ext (�0�u���u0)��� (32)
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where f int (u) includes contributions from bulk as well cohesive �nite elements and g is

the energy-release constraint equation. fT
ext denotes the global unit external force vector.

�� is the dissipation path parameter, �0 and u0 are the last converged load factor and

displacement vector, respectively. Given the best iteration value of each increment kopt,

the path parameter of the given increment i is [24]

�� i = �� i�1 kopt

ki�1
(33)

where kopt and ki�1 is the number of iterations required in the last converged loading

step.

4 Numerical results

4.1 Single cantilever beam

This section presents the numerical results concerning a single cantilever beam (SCB),

see Fig. 2. The load is introduced through a block bonded to the end of top facesheet

above the pre-crack. The bottom facesheet is clamped. The parameters of the materials

and cohesive layer can be found in Table 1. The numerical results from 1D CUF are

Figure 2: Schematic of the SCB

veri�ed via 3D FE solutions and validated with experimental results from the literature

[16]. In CUF, the mesh con�guration of the cross-section is 2 � 6 L9 elements for the

10



Table 1: Material properties of the constituents of the SCB [16]

Facesheet Load block
E [MPa] � E [MPa] �
86,593.9 0.311 72,000 0.3

Core
Ek [MPa] E? [MPa] �?k �? G? [MPa] G?k [MPa]

517.1* 0.1467 0.33 0.0001 0.03669 151.68*

Cohesive layer
Tmax [MPa] GIc [J/m2] K0 [MPa]
0.5 1,050 75

Table 2: Model information on the various numerical approaches used for the SCB

Methods Discretisation Total nodes DOF Time (hh:mm:ss)

CUF 12L9-2CS6-80B4 9,394 51,570 00:17:35
ABAQUS C3D20-COH3D8 67,372 202,158 03:26:47
H�ower [16] CPS4R-user elements 191,621 N/A N/A

composite part, 2 � 2 L9 for the loading block, and 2 CS6 cohesive elements, as shown

in Fig. 3. Along the length, 80 B4 cubic elements were used. In the ABAQUS analysis,

the full integration standard continuum quadratic elements were used for the facesheets,

core, and load introduction block. The comparison of the details between these two

methods and an FE model from the literature is shown in Table 2.

The SCB load-displacement curves are shown in Fig. 4. Various CUF cross-section

discretizations are shown. In Table 3, some of the load-displacement values are reported.

The comparison of deformation patterns in CUF and ABAQUS is given in Fig. 5 when

displacement of the load point, u, is 20mm and 30mm, respectively. The numerical

results show that

� The pre-peak portion of the equilibrium curves are identical for CUF and the

3D FE model. Some di�erences are visible, considering the FE results from the

literature and the experiment. The di�erences between the two sets of numerical

models may be due to the use of plane stress elements in [16].
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Cohesive layer

Face sheet

Load block

Figure 3: Mesh con�guration of cross-section in CUF
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Figure 4: Load-displacement curves of SCB, H�ower and experiment data from [16]
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(d) ABAQUS, U=30 mm

Figure 5: Deformation patterns of SCB

Table 3: Load-displacement values for the SCB

Displacements [mm] Loads [N] � [%]
CUF ABAQUS

Peak Load 67.768 66.596 1.76
5 34.977 35.973 0.64
10 56.112 55.666 0.80
20 65.026 62.733 3.65
30 52.997 51.104 3.70
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� The post-peak curves are all quite close with di�erences ranging from 1.7 to 3.7%.

For a given load value, the CUF result has higher displacements.

� The computational time of the CUF models is some 10% the one of 3D FE.

4.2 Double cantilever beam

In this section, the same cohesive parameters and geometry dimensions of SCB - Table

1 - but without the load block, were employed to simulate the double cantilever beam

model (DCB), see Fig. 6. The di�erences from SCB are the boundary conditions and

loading modes, namely, the clamping at the left end of the beam and symmetrical loads

at both right ends of top and bottom facesheets. 1D CUF and 3D FE were used, as

shown in Table 4.

The equilibrium curves are shown in Fig. 7 with numerical values in Table 5. The 3D

deformed con�gurations are in Fig. 8.

Figure 6: Schematic of the DCB

Table 4: Models used for the DCB
Methods Discratisations DOF Time (hh:mm:ss)

CUF 12L9-2CS6-80B4 49,980 01:33:14
ABAQUS C3D20-COH3D8 159,096 06:57:16

The numerical results suggest that

� As in the previous case, the pre-peak curves match perfectly.
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Table 5: Load-displacement values for the DCB
Displacements (mm) CUF (N) ABAQUS (N) � (%)

Peak load 44.776 43.870 2.07
15 42.378 42.051 0.78
20 43.577 41.896 4.01
25 38.472 37.009 3.95
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0
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20
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40

50
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Displacement (mm)

 CUF-2x6L9-2CS6
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Figure 7: Load-displacement curves for the DCB
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(d) ABAQUS, u=30 mm

Figure 8: Deformation patterns for the DCB

� Some di�erences are still visible in the post-peak curves. Such a result is consistent

with the �ndings in [20] in which a comprehensive analysis on the e�ect of 1D and

3D mesh re�nement was carried out to show how further 3D re�nements tend to

converge to the 1D solution. The 1D solution can enrich the kinematics over the

cross-section without aspect ratio constraints. Therefore, very re�ned transverse

stress �elds are obtainable without the DOF overhead of 3D.

� The computational costs of 1D CUF are some 20% of 3D.

4.3 Mixed-mode bending test

The last numerical case concerns the mixed-mode bending (MMB) test. This section

aims to verify the accuracy of the present formulation also for MMB. For the sake of

the numerical assessment, the fracture characterization was retrieved from unidirectional

composites as the authors struggled to �nd published literature with a complete dataset

to investigate the sandwich MMB model through cohesive element theory.

The geometry of this model is shown in Fig. 9. The ratios of cohesive tractions and the

energy release rates in di�erent directions adopted in the present work are hypothetical
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and listed in Table 6; the other material parameters are as in the previous sections. The

ratio of energy release rate is GII=GT = 0:5. Based on the rigid body motion assumption

for the loading arm, the load-point displacement is computed as [15]

u =
2c+ L

L
um �

2c

L
ue (34)

The cross-section mesh is 2�6L9 and 2CS6, and, along the longitudinal direction, 65

cubic elements (B4). Contact elements were added along the initial crack surface to avoid

the inter-penetration. In ABAQUS, quadratic brick elements (C3D20) were employed

with linear cohesive elements, see Table 7. Results are shown in Fig. 10 and Table 8

oôoÃoÐoÆoÇo³p�p�

oß oÐo³oÅoÃoÇo³p�p�

oãp�o¿o³p�p� oãoøo¿o³p�oøoãp�oøoÀoöp�oôoöoþ
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oÐoÅoÈoÁoÇo³p�p�

oûp�oÐoÄoÁoÅoÈo³p�p�

oÖp�oûoøp�oüp	oøo³
oøoÿoøp�oøp�p�p�
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oão¿o³p�

Figure 9: Schematic of sandwich MMB model

Table 6: Parameters of the sandwich MMB [20]

Cohesive
T3 [MPa] T2 [MPa] GIc [J/m2] GIIc [J/m2] K0 [MPa]
0.5 0.625 1,050 1,863 75

Table 7: Model information for the MMB
Method Discretisation Total element DOF Time (hh:mm:ss)

CUF 12L9-2CS6-65B4 910 41,160 01:14:35
ABAQUS C3D20R-COH3D8 20,797 171,888 09:10:20

and suggest that
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� There is a good match between the two models with some di�erences in the post-

peak regime. Such di�erences are similar to the previous cases.

� The computational cost of the CUF model is some 10% of the 3D FE.

Table 8: Load-displacement values for MMB
Displace (mm) Load P (N) � (%)

CUF ABAQUS

Peak load 85.962 84.965 1.16
Valley load 54.302 54.483 0.33
5 80.928 81.494 0.70
10 72.835 69.581 4.47
15 58.772 56.848 3.27
20 54.358 54.612 0.47
25 55.857 57.046 2.13
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Figure 10: Load-displacement curves for MMB
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5 Conclusions

This paper has presented numerical results concerning disbonding problems in sandwich

structures. The aim has been to verify the accuracy and computational e�ciency of

1D re�ned models; whereas, for veri�cation and validation purposes, 3D FE and ex-

perimental data were employed. The structural formulation stems from the CUF and

based on 1D FE with Lagrange polynomials to de�ne the cross-section kinematics. Al-

though 1D, the structural modelling provides the complete 3D stress �eld had has only

pure displacements as unknowns. The modelling of the disbonding exploits well-known

approaches from the literature. The most important �ndings are the following:

� There is a good match between the various models with maximum di�erences of

3-4%.

� The computational time of the present framework falls between 10-20% of 3D FE.

� The 1D approach can provide the 3D distribution of deformation and stress and

does not require any assumptions like plane stress �eld.

Due to the good computational e�ciency, future extensions could deal with more com-

plex structures and the introduction of multi�eld e�ects.
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