
16 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Effects of the Wind Field on the Synthetic Measurement of the Aerodynamic Angles of an Aerial Vehicle / Brandl,
Alberto; Battipede, Manuela. - (2020), pp. 181-186. (Intervento presentato al  convegno IEEE 7th International Workshop
on Metrology for AeroSpace (MetroAeroSpace) nel 22-24 June, 2020) [10.1109/MetroAeroSpace48742.2020.9160024].

Original

Effects of the Wind Field on the Synthetic Measurement of the Aerodynamic Angles of an Aerial Vehicle

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MetroAeroSpace48742.2020.9160024

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2842606 since: 2020-08-07T17:31:57Z

IEEE



Effects of the Wind Field on the Synthetic
Measurement of the Aerodynamic Angles of an

Aerial Vehicle
Alberto Brandl

Politecnico di Torino
Turin, Italy

alberto.brandl@polito.it
0000-0002-6763-4070

Manuela Battipede
Politecnico di Torino

Turin, Italy
manuela.battipede@polito.it

0000-0002-3334-4817

Abstract—The estimation of the angle of attack and sideslip
angle is of fundamental importance for the situational awareness
of an aerial vehicle. Historically, several accidents occurred due to
failures of the traditional protruding probes applied to measure
these two angles. The MIDAS project aims to design and develop
a certifiable Air Data System capable of providing the entire set
of Air Data, integrating a synthetic estimation of the aerodynamic
angles. All operating conditions shall be taken into account,
even those related to atmospheric phenomena. The wind effects
(both steady and unsteady) represent a very challenging topic
when design a synthetic sensor because of its intrinsic nature. In
fact, the airflow surrounding the AC can be affected by several
phenomena with a very wide range of characteristics (e.g. speed
and direction range) that can be hardly simulated during the
design stage. It is clear that the atmosphere condition (both steady
and unsteady) can affect this particular kind of sensor, and it
must be analysed the error in the presence of the wind. The
paper shows the estimation error due to the steady wind field
and correction to be applied to previous synthetic sensors design
in order to be reliable both in still air and in presence of the
wind.

Index Terms—synthetic sensor, neural network, flight safety,
wind field, AOA vane, observers

GLOSSARY

AC Aircraft
ADAHRS Air Data, Attitude and Heading Reference System
ADM Air Data Module
ADS Air Data System
AOA Angle of Attack
AOS Angle of Sideslip

CS Certification Specifications

FBW Fly-by-Wire
FCS Flight Control System

GNSS Global Navigation Satellite System
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MIDAS Modular and Integrated Digital Probe for SAT
Aircraft Air Data System

MLP Multilayer Perceptron

NED North-East-Down
NN Neural Network

PAI Piaggio Aero Industries S.p.A.
PDF Probability Density Function

SAT Small Aircraft Transportation

TAT Total Air Temperature
TS Training Set

VS Virtual Sensor

I. INTRODUCTION

During flight, the measurement of the Air Data set is crucial.
Basically, there are 2 main reasons. First of all, the forces
and moments acting on the aircraft are generated depending
on the reciprocal relationship between the aircraft itself and
the control volume where the aircraft is flying. Second, Air
Data are used as basis to understand the flight condition.
For instance, the barometric altitude or the various airspeed
definitions. The system applied to measure the air data is
composed by a set of external and, generally, protruding
probes. Each of them has different requirements in terms
of position and power supply and a triplex redundancy is
a standard in commercial aviation to deal with the level of
criticality of the system.

During the last decades, technology and regulations brought
to the significant reduction of the aircraft incidents due to
technical reasons. However, the safety of flight still remains
an important topic and recent tragedies demonstrate how the
physical probes can suffer from the exposure to the external
agents. Although the standard was to connect probes and
vanes to ADM (Air Data Module) pneumatically, each one
connected in turn to the FCS (Flight Control System), this



solution has several drawbacks. More recently, digital solu-
tions have been applied to the ADS (Air Data System) to
ease the integration with the modern digital avionics. FBW
(Fly-by-Wire) paradigm and more electrical aircraft hence
drive a technological transition to achieve the goals defined
by the European Community, EC, within the FlightPath 2050
[1]. Moreover, many large AC (Aircraft) are equipped with
integrated probes which embed transducers within the probe
(or vane) itself [2].

In this framework, the MIDAS (Modular and Integrated
Digital Probe for SAT Aircraft Air Data System) project is
funded under Clean Sky 2 to design a modular and integrated
digital air data system for the SAT (Small Aircraft Transporta-
tion) segment. This innovative system provides the entire set of
air data, including AOA (Angle of Attack) and AOS (Angle
of Sideslip), with a limited number of 2 protruding probes,
thanks to the implementation of synthetic sensors. This paper
concentrates on the measurement of the aerodynamic angles
AOA (or α) and AOS (or β). Several research groups proposed
solutions to the problem of the estimation of the aerodynamic
angles. Some of them are based on explicit mathematical
models [3]–[5] that can be based on Kalman Filters [6], [7]
whereas others are based on machine learning techniques [8]–
[17]. The MIDAS is equipped with a synthetic sensor based
on the Smart-ADAHRS patent [10], based on a NN (Neural
Network) estimator.

As a result of the physical relationship between the wind
field and the aerodynamic angles, most of the estimation
algorithms for AOA/AOS are intrinsically affected by the
wind. Although some of them implements a model of the wind
field to improve the estimation accuracy, unfortunately the
direct measurement of the wind speed is usually unavailable.
Hence, the analysis of the wind effects on the final error
uncertainty of the system should be a part of the design
flow of every synthetic sensor for air data. This paper shows
an empirical analysis of the effect of a steady wind on the
synthetic sensor showed in [18]–[21]. Sec. II describes the
MIDAS synthetic estimator and the method followed in this
paper is described in Sec. III. The results have been reported
in Sec. IV and discussed in Sec. V.

II. STRUCTURE OF THE MIDAS SYNTHETIC ESTIMATION

The MIDAS ADS is shown in Fig. 1 and the current
configuration is shown in Fig. 2. It consists of two protruding
probes for pressures and temperature and a synthetic (or
virtual) sensor. The external probes are a Pitot-Static probe
and a TAT (Total Air Temperature) probe. The synthetic sensor
allows to complete the so-called air triplet with the evaluation
of AOA and AOS.

The synthetic sensor is based on the Smart-ADAHRS (Air
Data, Attitude and Heading Reference System) algorithm. It
is based on the correction of an initial estimation of the angle
α̂ (respectively β̂), calculated on the basis of classical flight
mechanics equations. The correction, ∆α (respectively ∆β)
is evaluated by a NN properly trained to conduct a sort of
calibration of the initial evaluation. The architecture selected is

Fig. 1. High-level schematic of the MIDAS ADS.

Fig. 2. External view of the MIDAS ADS. Courtesy of SELT A&D [22]

a fully-connected feed-forward MLP (Multilayer Perceptron)
corresponding to the map in Eq. 1.

[∆α,∆β]
T

= fV S (TAS, α̂, nx, ny, nz, θ, φ, p, q, r,
δe, δa, δr, δth,∆th, δhs)

(1)

where TAS is the true airspeed, nx, ny , nz are the accel-
erations measured by the accelerometers respectively in XB ,
YB and ZB axes, θ, φ are the pitch angle and the roll angle
respectively, p, q, r are the body angular rates, α̂ is the initial
estimation for the AOA, δe is the elevator deflection, δa is the
aileron deflection, δr is the rudder deflection, δth is the throttle
command, ∆th is the difference between the torque on the left
and right propellers and δhs is the horizontal stabilizer angle.

The initial estimation of α and β are listed in (3).

α̂ = θ − γ (2)

β̂ = Kβ
ny
qc

(3)

where Kβ is a tuning coefficient with an order of magnitude of
1000 kg m−2. The identified feed-forward MLP is composed



by a single hidden layer with 24 neurons which applies a
nonlinear activation function to a biased linear combination of
the input signals. The correction terms ∆α and ∆β given by
the NN are the biased linear combination of the outputs of the
24 neurons of the hidden layer. For additional details see [20],
[23]. The training procedure is the nonconvex optimization
process of finding the weights of the MLP in order to minimize
an overall metric of the error on the TS (Training Set). The
applied heuristic rule is Levenberg-Marquardt. Unfortunately,
the function obtained by an MLP is not known a priori and
a series of analysis must be conducted to understand the
behaviour of the function with points not included in the
TS. Besides the consolidated methods of data partitioning, the
analysis presented in this paper is one of the tests that the
authors suggest. In fact, the wind field can affect the input
signals of the NN in two different manners: 1) injection of
unforeseen values to the NN that, even perfectly analysed, may
respond with unpredictable estimation error; 2) injection of
apparently valid values to the NN, leading to higher estimation
error.

III. METHOD

The data used for training and test the MIDAS estimator
comes from an high-fidelity flight simulator developed by
the project leader Piaggio Aerospace. It considers the delays,
noises and nonlinearity of the sensors of the AC. A set
of manoeuvers has been simulated under the Consortium
requirements that identified, based on previous experience, the
most important flight conditions necessary to design and test
the NN.

From mathematical point of view, AOA/AOS are estimated
as the output of a mathematical function obtained by means
of a multivariate nonlinear regression. The regression is based
on the modification of the set of weights of the NN without
the prior definition of a model, where model stands for the
basic mathematical function applied for the regression. It is not
possible to know if the NN resulted in fitting a straight line, or
a parabola or some transcendental function, without a complete
study of the function. In this paper, the focus is on the study of
the results in case of non-still atmosphere with the VS (Virtual
Sensor) trained using data collected in still air. First of all,
the VS as obtained in [20] are tested using injected steady
wind. Further analysis will be based on gust and sinusoidal
wind. The wind vector is considered to be upper bounded by
the values prescribed by CS (Certification Specifications)-23 at
CS-23.333 [24]. This regulation considers 50 fps (15.24 m s−1)
at altitudes between sea level and 20 000 ft (6096 m). Based
on this, the VS has been tested under wind condition of
1m s−1, 5m s−1 and 15.24m s−1 on every direction on the
NED (North-East-Down) frame. Moreover, two cases have
been added, with the magnitude of the wind vector w equal
to 3.46 m s−1 (corresponding to w = (2, 2, 2)m s−1) and
15.24 m s−1 (about w = (8.8, 8.8, 8.8)m s−1). Before testing
the performance of the synthetic sensor, the tests that authors
have already defined in previous research are conducted (for

example, the hypercube coverage). The performance of the VS
are estimated in terms of:

1) error PDF (Probability Density Function)
2) timeseries analysis

The statistical analysis allows to understand if the VSs are
maintained into the specifications required by the project
leader PAI (Piaggio Aero Industries S.p.A.). The trend analysis
gives detailed information on particular flight conditions that
can be beneficial or disadvantageous for the VS performance.

IV. RESULTS

This section shows some preliminary results of the analy-
sis. Following the methodology described in Section III, the
synthetic sensor for AOA has been analysed.

Fig. 3. Distribution of the input and target data on the hypercube of definition
of the NN in case of strong Down wind component wD = 15.25m s−1

Fig. 3 shows that the injection of the wind does not affect
negatively the inclusion of the test set in the TS. For sake of
clarity, it must be recalled that the MLP can represent any
function inside the hypercube defined by the TS. However,
nothing can be said on the response of the network with input
values exceeding the training bounds. When training an MLP
for estimation, it is interesting to measure the inclusivity of the
TS or, better, if the available remaining data used for testing
is included in the hypercube. This is a preliminary analysis
and further research should be conducted from this point of
view. However, the injection of the steady wind field does not
act directly on the input of the NN. In fact, when the AC
is flying in a control volume moving with a constant speed
with respect to a reference frame on the surface of the Earth,
the signals used as input to the MLP do not measure any
difference, except for the GNSS (Global Navigation Satellite
System). The Down component of the AC ground velocity
brings to erroneous evaluation of α̂. However, this erroneous
value is included in the TS and hence, even if the inclusivity
test is passed as can be seen in Fig. 3, it is not sufficient to
understand the behaviour of the estimator.



In Fig. 4 it is shown the PDF of the estimation error due
to wind injection. As can be seen from Fig. 4 the error
mode is still bounded under some degree when the Down
component of the wind wD < 2 m s−1. In that case, a simple
scheduled correction would still be possible. However, when
wD > 2 m s−1 the error PDF tends to move further on the
right and, even worse, to spread.

Fig. 4. Wind effects on the estimation error PDF.

Fig. 5 shows an example of error trend on the time domain
for a single flight. The increase of the mean error is clearly
correlated with the Down component of the wind. Moreover,
it is shown that the flight condition becomes important in
terms of estimation error when the wD increases. It must be
stressed that the estimation error does not diverge, even if
the plot shown in Fig. 5 seems to suggest a divergence. In
fact, the estimation error is already increasing in time also in
the nominal trajectory, for reasons related to the regression.
The erroneous Down component simply scale the already
increasing trend so that it seems to diverge. If the trajectory
would be continued in regions of better fitting, the error will
return to small values.

V. DISCUSSION

From Sec. IV it is clear that the containment of the test set
into the TS is not enough to guarantee the uncertainty obtained
during the design process. This means that the variable of input
might not be suitable to catch the difference introduced by a
constant wind or an unsteady atmosphere. Due to the structure
of the synthetic sensor, some hypothesis can be done before
starting the tests. In fact, one of the input to the NN is the
initial estimation α̂ = θ − γ where

γ = atan
VD
TAS

(4)

Actually, Eq. 4 is valid only under the assumption of still
air. In fact, in case of wind there exist 2 different definition of
the flight path angle γ, one with respect to the local horizontal

Fig. 5. Example of the wind effects on the estimation error timeseries (Flight
# 1).

plane and another one with respect to the local control volume
in which the aircraft is flying. Eq. 4 neglects this difference and
for this reason is no more valid in case of nonzero wind, even
if ẇ = 0. This is the main reason of the direct link between
wD and the estimation error. The possible solution that this
analysis suggest is to re-design the synthetic sensor without
using the α̂ as input signal. The main benefit of the initial
design is the limited action left to the NN, that is the neural
correction is always bounded between few degrees. However,
once the design process is well-defined, it is possible to train
the NN to cover the entire flight envelope with the same degree
of confidence on the results.

Hence, the NN design has been changed from (1) to (5) and
the new NN has been trained with the same procedure of the
original NN.

[α, β]
T

= fV S (TAS, nx, ny, nz, θ, φ, p, q, r,
δe, δa, δr, δth,∆th, δhs)

(5)

To compare the performance of the 2 NNs, the same wind
field is injected to the new NN obtaining Fig. 6. As it can be
seen from the comparison of Fig. 6 with Fig. 4, the modifi-
cation of the input signals brought significant improvements
on the aspect of the sensitivity to the wind field. However, the
error PDF widened with a significant impact on the accuracy of
the estimator when evaluated on the test set. Fig. 7 compares
the error timeseries of the two NNs evaluated on the same
flight as Fig. 5. The comparison shows that the performance
of the re-trained NN at any wind speed are similar to the
performance of the initial NN at ‖w‖ = 15.24 m s−1.

From these observations, it seems that the availability of
a Down component of the AC velocity with respect to the
surrounding air would be the better choice. Unfortunately, this
measurement is generally not available on board. On the other
hand, it must be noticed that both NNs have been trained on



Fig. 6. Wind effects for the re-trained NN on the estimation error PDF.

Fig. 7. Comparison of the error timeseries obtained with initial and retrained
NN (Flight # 1).

the same training set. Although the application of the same
data-set for training allowed to compare the two nonlinear
functions at the same conditions, it is highly recommended to
try a different partition of the data set for training and test.
This aspect goes beyond the scope of the current work and
further research will focus also on this aspect. Once the NN
defined in (1) has been discarded, a complete and detailed
re-design of the NN will be conducted.

VI. CONCLUSIONS

The MIDAS project is funded under CleanSky 2 to design
and develop a modular, fully integrated and digital probe
capable of providing the entire set of Air Data. The outcome
of the project will be a probe certifiable for DO-254 and DO-
178 and it will provide the first case of certifiable synthetic
sensor. Although there is a large volume of published studies
on the design of a synthetic sensor for aerodynamic angle,

much of the current literature focuses on the demonstration
of the general validity of the solution. In fact, the design
process of this kind of estimator is still in definition. To allow
the implementation of a VS into a certifiable probe, a long
series of test and procedures must be defined, in order to
ensure reliability and repeatability of the results. One of the
proposed test is the analysis of the effects of the wind on
the final uncertainty and a defect coming from the utilization
of an initial estimation based on the GNSS measurement has
been highlighted in this study. Moreover, it is shown that this
problem cannot be detected by the inclusivity test. Actually,
the increase of the estimation error comes from the erroneous
implementation of the definition of γ. This paper shows some
preliminary results on this topic and it suggests a solution for
the arose problem. The results shows that a steady wind with
speed higher than 2 m s−1 injects a steep rise on the estimation
error. The modification of the NN input vector removing the
initial AOA estimation gives evidence of a possible solution
to the problem. Unfortunately, the error of the estimator on
the test set increased of several degrees. Further research will
be conducted on unsteady atmosphere, with the simulation of
gust and/or turbulence.
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