
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (32.th cycle)

Software Engineering in the IoT
Context

Characteristics, challenges, and enabling strategies

Juan Pablo Sáenz Moreno
* * * * * *

Supervisor
Prof. Fulvio Corno

Politecnico di Torino
July 15, 2020

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Juan Pablo Sáenz Moreno

Turin, July 15, 2020

www.creativecommons.org

Summary

The Internet of Things (IoT) paradigm has given rise to a programmable world.
The idea of embedding computing and communication capabilities into objects of
common use has led to the development of a broad range of solutions in several
domains. However, from a technical point of view, IoT systems are difficult to
implement. They are typically composed of four architectural elements (devices,
gateways, cloud services, and applications), and the implementation and orchestra-
tion of these architectural elements rely on several enabling technologies and spans
across multiple development and execution environments. Consequently, due to the
co-existence of various kinds of devices, protocols, architectures, and applications,
IoT developers are required to become proficient in various and disparate areas and
to consider several dimensions that are unfamiliar to most software developers.

The objective of this dissertation is to gain an understanding of the key char-
acteristics and the most challenging issues of IoT systems development and, con-
sequently, to propose strategies aimed at supporting the developers to overcome
the complexity inherent in the development of IoT systems, and in this manner,
harnessing the programmable world full potential. To that end, the first part of
this thesis presents the results of an IoT developers survey aimed at identifying
the most challenging development tasks, based on individual and group experience
of 40 novice developers that worked developing IoT systems for several years of a
university course. Besides, qualitative data about the causes of the identified issues
were collected and analyzed. Additionally, the thesis reports a quantitative analy-
sis of a broad set of some of the most popular publicly available IoT Open Source
Software (OSS) repositories to provide insights into the purpose and characteristics
of the code, the behavior of the contributors, and the maturity of the IoT software
development ecosystem.

Upon the findings of these approaches, in the second part of the thesis are
proposed: Code Recipes; a documentation strategy for the IoT aimed at overcoming
the lack of documentation understandable by inexperienced IoT developers, and IoT
Notebooks; an IoT-tailored literate computing approach to support the prototyping
of IoT systems by enabling developers to build and share a computational narrative
that may span across multiple developments and execution environments.

iii

Acknowledgements

I would like to thank my advisor, Fulvio Corno, for his guidance and constructive
criticism during these past three years. Many thanks to Luigi De Russis for his
dedicated help, his thoughtful comments, and valuable advice, both personally and
academically. I am also grateful to Alberto Monge for his friendship; I shared with
him this Ph.D. journey from beginning to end. Furthermore, I thank the three of
them most sincerely for having made me feel welcome in the group; I always felt
comfortable and motivated despite being far from home.

Special thanks to Darío Correal, my former advisor from my previous university,
who encouraged me to pursue a Ph.D. degree, and to do it in Italy. Looking back
now, I realize how valuable that advice was.

Le agradezco a mi familia: a mi papá, a mi tío, a mi abuelita, a mis tías y a mis
primos. Gracias por el cariño, las oraciones, los buenos deseos, y la buena energía
que siempre me estuvieron enviando desde Bogotá. Gracias también a mis amigos
que se mantuvieron en contacto y pendientes de mi.

Finalmente, el agradecimiento y el reconocimiento más especial es para mí mamá
que desde siempre se ha esmerado por darme lo mejor y por verme feliz: esta etapa
que estoy concluyendo es fruto de ese esmero y de su inagotable cariño. Desde un
principio, cuando opté por hacer el doctorado fuera de Colombia, ella fue la que
más me apoyó a pesar de lo mucho que le entristecía mi partida. Luego, a lo largo
de estos años, su cercanía ha sido fundamental para afrontar los retos que se han
ido presentando. Gracias de todo corazón: este logro es tan suyo como mío.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 3
1.3 Contribution . 4
1.4 Organization . 6

2 Related works 9
2.1 Identifying programmers issues . 10
2.2 Novice Programmers in the IoT . 13
2.3 IoT development in the OSS context 15
2.4 Easing the Development of IoT Systems 17
2.5 Characteristics and opportunities of Computational Notebooks . . . 19
2.6 IoT cloud platforms . 21

2.6.1 Comparison Criteria . 22
2.6.2 Results . 23

3 On the challenging issues faced by IoT novice developers 25
3.1 Motivation . 25
3.2 Survey design and methods . 27

3.2.1 Instrument development . 27
3.2.2 Initial generation of the questionnaire structure and content 30
3.2.3 Initial pilot survey . 31
3.2.4 Survey instrument . 33
3.2.5 Administration and population 33

3.3 Results . 36
3.3.1 Demographics . 36
3.3.2 Research questions . 38
3.3.3 RQ3.1. Rating of the sub-tasks 38

vi

3.3.4 RQ3.2. Ranking of the sub-tasks 44
3.3.5 RQ3.3. Qualitative perception of the survey respondents . . 48

3.4 Discussion . 53
3.4.1 Implications . 56

3.5 Validity of results . 57
3.5.1 Internal validity . 57
3.5.2 External validity . 58
3.5.3 Construct validity . 60
3.5.4 Conclusion validity . 60
3.5.5 Repeatability . 61

3.6 Conclusion . 62

4 IoT Development in the context of Open Source Software 63
4.1 Motivation . 63
4.2 Research Goal and Questions . 64

4.2.1 Research Questions . 64
4.2.2 Selection of the Analyzed Repositories 65

4.3 OSS Projects Analysis . 69
4.3.1 Projects Characterization 69
4.3.2 RQ4.1: Development Activities 73
4.3.3 RQ4.2: Maturity of the IoT Software Ecosystem 79

4.4 Discussion and Implications . 82
4.4.1 Discussion . 82
4.4.2 Implications . 83

4.5 Threats to Validity . 84
4.6 Conclusion . 85

5 Code Recipes: a documentation approach for easing IoT develop-
ment 87
5.1 Motivation . 87
5.2 Use Case . 88
5.3 Code Recipes . 90
5.4 Validation: The Fitbit OAuth Code Recipe 93
5.5 Conclusion . 94

6 A literate computing approach to support IoT prototyping 97
6.1 Motivation . 98
6.2 Literate computing . 98

6.2.1 Computational notebooks 99
6.2.2 Definitions . 99

6.3 Use Case . 100
6.3.1 Controlling Philips Hue Lamps from an Arduino 100

vii

6.3.2 Characteristics of an IoT system prototype 101
6.4 IoT notebook . 102

6.4.1 Features of an IoT notebook 102
6.4.2 IoT notebook Conceptual Model 105
6.4.3 IoT notebook Architecture 105

6.5 Validation . 109
6.5.1 IoT notebook Implementation 109
6.5.2 Use Case Implementation 110
6.5.3 Results and Limitations . 112

6.6 Conclusion . 114

7 Conclusion 115
7.1 IoT developers survey . 115
7.2 IoT Open Source Software mining 116
7.3 Code Recipes . 117
7.4 IoT Notebook . 117
7.5 Current State and Future Work . 118

A Publications 121
A.1 International Journals . 121
A.2 Proceedings . 121

Acronyms 123

Bibliography 125

viii

List of Tables

2.1 IoT cloud platforms . 21
2.2 Service Comparison for IoT Platforms 24
3.1 Survey structure . 30
3.2 Subsystems and tasks in the questionnaire 34
3.3 Comparison between the grades (over a scale of 18 to 30, or 31 for a

grade with honors) of the former students and the respondents . . . 35
3.4 Time spent completing the online survey by number of subsystems

on which they answered questions 35
3.5 Percentage of sub-tasks rated on each subsystem 35
3.6 Age and gender of the respondents 37
3.7 Technical skills of the AmI students before taking the course 37
3.8 End-user ratings . 39
3.9 Gateways ratings . 42
3.10 Back-end ratings . 43
3.11 Sub-tasks ranked as the most complex (ranking 1st-2nd-3rd) 46
4.1 IoT popular Open Source GitHub repositories 67
4.2 Non-IoT popular Open Source GitHub repositories 68
4.3 Most popular dependencies of IoT projects 81
4.4 Most popular dependencies of non-IoT projects 81
6.1 IoT notebook features . 104

ix

List of Figures

1.1 Architectural elements in IoT systems 2
1.2 Thesis main contributions . 5
3.1 Proposed IoT systems reference architecture 29
3.2 Example of a task decomposed in sub-tasks 32
3.3 Bachelor degree of the survey respondents when attending the course 37
4.1 Growth speed of the IoT repositories 71
4.2 Growth speed of the non-IoT repositories 72
4.3 Top primary programming languages in IoT and non-IoT repositories 74
4.4 Presence of programming languages in IoT and non-IoT projects . . 75
4.5 Percentage of contributors by file format 76
4.6 Commit history over time by file format 78
4.7 Distribution of dependencies present in one or more projects 80
5.1 Code Recipe visualized in a web interface 92
6.1 IoT architectural elements in the Use Case 101
6.2 IoT notebook Conceptual Model . 105
6.3 IoT notebook Architecture . 106
6.4 IoT notebook Validation use case architecture 111
6.5 Screenshots of the IoT notebook . 112

x

Chapter 1

Introduction

1.1 Context
Nowadays, the Internet of Things (IoT) is a well-established paradigm that has

gained prominence in several aspects of our everyday lives [91]. The idea of embed-
ding computing and communication capabilities into objects of common use [65]
has given rise to a programmable world, and has encouraged the development of a
broad range of solutions in several domains such as smart buildings, smart cities,
environmental monitoring, healthcare, logistics, smart business, smart agriculture,
and security and surveillance [41, 108, 49]. As illustrated in Figure 1.1, broadly
speaking, IoT systems can be characterized by four architectural elements: devices,
gateways, cloud services, and applications [94].

• Devices are hardware elements with built-in communication capabilities that
collect sensor data (sensing devices) or perform actions (acting devices). Sens-
ing devices provide information about the physical entities that they monitor.
This information may concern physical entity’s identification (tags) or mea-
surable qualities such as temperature, humidity, pressure, luminosity, sound
level, location, images, presence, and movement, among others. They might
be environmental sensors as well as wearable devices, in which case they tend
to measure phisiologycal quantities. Acting devices refer to smart devices that
cause or trigger changes in the physical environment, such as smart lights,
motors, displays, etc. These acting devices also encompass push notifications
through which end-users are informed about the occurrence of a given event.

• Gateways or ‘edge’ devices collect, preprocess, and forward the data com-
ing from the sensing devices to the cloud, and, conversely, route the requests
sent from the cloud to the acting devices. They may support tasks such as
intermediate sensor data storage and preprocessing, gathering the data com-
ing from the sensors and performing computation and reasoning tasks over

1

Introduction

Gateways

Device gateway

Sensing devices

Wearable
devices

Tags Environmental
sensors

Applications

Mobile
application

Web application

Acting devices

Smart devices Notifications

Cloud services

Integration with
third-party APIs

Custom business
logic

AnalyticsStorage

Figure 1.1: Architectural elements in IoT systems

it. If more computing or storage capacity is required, the gateways com-
municate with the cloud services and delegate the most demanding tasks.
Furthermore, gateways also interact with the actuators; they control the act-
ing devices based on the outputs from their computations or based on the
instructions that they receive from the cloud services. Additionally, gateways
support other tasks such as service discovery, geolocalization, and verification.

• Cloud services have three main responsibilities: acquiring and storing the
data coming from the sensing devices, providing real-time and/or offline data
analytics, and managing the acting devices. Data acquisition and storage
concerns harvesting and storing a large amount of data collected by sensing
devices for further processing and analysis. Providing real-time and offline
data analytics refers to examining, cross-connecting, and transforming ac-
quired sensor data to discover useful information, able to support decision
making. Machine learning and data mining technologies and algorithms are
important in this regard. Managing the acting devices refers to generating
and delivering remote notifications as well as interfacing with third-party
APIs through which certain acting devices can be reached and managed.

2

1.2 – Motivation

• Applications range from web-based dashboards to domain-specific web and
mobile applications [97], and represent the mean by which end-users can
visualize the device’s data and status, visualize the analysis’ results, and
interact with the system.

The implementation and orchestration of these architectural elements relies on
several enabling technologies and spans across multiple development and execu-
tion environments. These enabling technologies can be classified into identifica-
tion, sensing and communication technologies, middleware components, end-user
software applications, services composition, service management, and object ab-
straction [6]. While identification, sensing and communication technologies mainly
concern hardware components, the other enabling technologies rely on software to
address diverse features that IoT systems expose [65].

1.2 Motivation
Naturally, as IoT systems continue to gain prominence in several aspects of our

everyday lives [91], so does the interest of academia and industry towards the need
of supporting developers [71] and preparing different stakeholders1 [23] to shape
the future directions of IoT.

However, from the software point of view, the fact that each of the four archi-
tectural elements has a precise set of computing resources, technologies, and com-
munication protocols, makes the development of IoT systems complex and different
from the development of mobile and web applications. Indeed, two main character-
istics can be identified in IoT systems from a software engineering viewpoint: their
distribution over a large range of processing nodes, and the high heterogeneity of
the processing nodes and the protocols used between them [66].

Consequently, IoT developers are now required to consider several dimensions
that are unfamiliar to most software developers. Namely, the multi-device pro-
gramming, the reactive, always-on nature of the application, and the distributed,
highly dynamic, and potentially migratory nature of the software [94].

Similarly, the co-existence of various kinds of devices, protocols, architectures,
and programming languages requires knowledge of various and disparate areas.
Database design, mobile development, web development, embedded system de-
velopment, authentication mechanisms, Application Programming Interface (API)
design, and application-level protocols are some examples of the areas that are typ-
ically involved in the implementation of IoT systems. Additionally, since the im-
plementation of IoT systems involves an unusually broad spectrum of development

1defined as in software engineering, i.e., people who are involved in any phases of the software
development process.

3

Introduction

technologies [97] and spans across multiple developments and execution environ-
ments, IoT developers, besides focusing exclusively on the code, are also required
to deal with the hardware implementation and distributed computing concepts.

Linked to this IoT systems development inherent complexity, is the fact that
no consolidated set of software engineering best practices for the IoT has emerged
yet and, on the Larrucea et al. [60] words, “IoT landscape resembles the wild west,
with programmers putting together IoT systems in ad hoc fashion”. These authors,
in particular, remark the need for a new generation of development environments
and the training of the new generation of IoT software developers.

In the same line, Colakovic et al. [19] hold that IoT software architectures and
frameworks are necessary to overcome the inherent complexity of IoT systems and
to provide an environment for services composition. In their opinion, IoT software
platforms should be created as an Open Application Platform to enable modular
design as well as providing an open API that would easily integrate sensors and
other devices.

Furthermore, Patel et al. [71] draw attention to the lack of a software engi-
neering methodology to support the entire IoT application development life-cycle,
which results in highly difficult to maintain, reuse, and platform-dependent design.
Finally, on the basis that IoT applications have been based on fragmented software
implementations for specific systems and use cases, Weyrich et al. [103] propose
the use of reference architectures as a mean to facilitate interoperability, simplify
development, and ease implementation.

In this scenario, harnessing the programmable world full power requires to un-
derstand the peculiarities and the most challenging issues that the implementation
of IoT systems pose to the developers, and accordingly, envision new software en-
gineering and development technologies, processes, methodologies, and tools [94].

The goals of the research work presented in this thesis are:

1. Gaining a quantitative, as well as qualitative, understanding of the most
challenging issues that IoT programmers face, especially novice ones, as well
as the emerging characteristics and peculiarities of IoT systems development,
especially in the Open Source Software (OSS) domain.

2. Proposing documentation, programming, and prototyping tools, consistent
with the characteristics of IoT systems, and aimed at lowering the learning
curve and easing the development of IoT systems.

1.3 Contribution
An accurate understanding of the characteristics of IoT systems and the issues

faced by IoT developers is fundamental to envision strategies aimed at effectively
lowering the learning curve and easing the development of this kind of system. As

4

1.3 – Contribution

illustrated in Figure 1.2, the contribution of this thesis is structured according to
the research goals. The first phase is aimed at understanding and characterizing
the IoT software development from the developers’ experience perspective as well
as from the analysis publicly available code. The second phase concerns proposing
enabling strategies to support the development process of IoT applications based
on the findings of the first phase.

IoT developers survey

The most challenging issues faced by
novice IoT developers

IoT OSS mining

How developing IoT applications is
different from non-IoT applications?

Understanding...

Code Recipes

Documentation strategy independent
from programming languages and

runtime environments

IoT Notebook

Literate computing approach to
support the prototyping of IoT systems

Proposing...

Developer perspective Software perspective

Figure 1.2: Thesis main contributions

In more detail, the main contributions are:

IoT developers survey aimed at gaining an accurate understanding, from the
developers’ experience, regarding the most challenging issues faced by them
when developing IoT systems. This survey focused on novice developers (i.e.,
students or developers new to the IoT) because they are required to deal
with areas in which they do not have deep knowledge, and the complexity
of implementing an IoT system is even higher for them. Consequently, the
outcomes from the survey can inform the design and development of adequate
methodologies and improved tools to ease the development of IoT systems in
the academic scenario [26, 29] (Chapter 3).

Mining IoT Open Source Software repositories to identify and provide evi-
dence, from a practical point of view, about the IoT software development
peculiarities, in the context of the most popular open-source IoT projects
publicly available. This work provides insights into the purpose and charac-
teristics of the code, the behavior of the contributors, and the maturity of the
IoT software development ecosystem [28] (Chapter 4).

Code Recipes are a documentation strategy for the IoT, independent from pro-
gramming languages or run-time environments, and aimed at overcoming one

5

Introduction

of the challenging issues identified in the IoT developers survey: the lack of
documentation understandable by inexperienced developers from both con-
ceptual and technical perspectives [25] (Chapter 5).

IoT Notebook represent an IoT-tailored literate computing approach in the form
of a computational notebook to the prototyping of IoT systems. Given the
prominence that computational notebooks have been gaining due to their ca-
pability to consolidate text, executable code, and visualizations, this approach
aims at assessing to what extent they are suitable to support the prototyping
of IoT systems, even if it involves several steps and spans across multiple
development and execution environments [27] (Chapter 6).

1.4 Organization
The remainder of this thesis is structured as follows:
Chapter 2 describes prior work regarding, on the one hand, the challenging

issues that developers face in areas of software development that concern enabling
technologies in the implementation of IoT systems, and on the other hand, the re-
search efforts aimed at easing the development of IoT systems. Additionally, since
many contemporary IoT applications employ several cloud-based advanced services,
the last section of the chapter includes an overview of the services offered by some
popular IoT cloud platform providers currently available in the market. Neverthe-
less, it should be stressed that the research presented in this thesis addresses the
implementation and deployment of IoT systems as generically as possible, without
tying to specific services provided by a particular cloud provider.

Chapter 3 presents the design and execution of a survey aimed at gaining an
accurate understanding of the most challenging issues faced by non-experienced
developers implementing IoT systems during several years of a university course.
Based on their own experiences, the most challenging development tasks were iden-
tified and prioritized over a common architecture, in terms of difficulty level and
efforts. Additionally, qualitative data about the causes of these issues was collected
and analyzed

Chapter 4 presents a quantitative analysis aimed at understanding from a
practical point of view, how developing IoT applications is different from developing
non-IoT applications in the OSS context. To that end, the 60 most popular publicly
available IoT and non-IoT projects on GitHub were compared and characterized
according to the characteristics of the code, the behavior of the contributors, and
the maturity of the IoT software development ecosystem.

Chapter 5 presents Code Recipes, a proposal to overcome the lack of proper
documentation and examples identified in the previously described survey. It con-
sists of summarized and well-structured documentation modules, independent from

6

1.4 – Organization

programming languages or run-time environments, by which non-expert program-
mers can smoothly become familiar with source code, written by other developers
that faced similar issues.

In the light of the architectural elements present in IoT systems and the features
provided by current computational notebooks, Chapter 6 presents the design, im-
plementation and preliminary assessment of an IoT-tailored notebook aimed at
helping developers to build and share a computational narrative around the proto-
typing of IoT systems.

Chapter 7 concludes the thesis and provides insight into future research op-
portunities.

7

8

Chapter 2

Related works

In accordance with the two research goals outlined in the previous section, the
related works presented in this Chapter are structured in this manner:

• Section 2.1 provides context to the first research goal, and specifically to
the IoT developers survey presented in Chapter 3. The works described in
this section, on the one hand, aim at identifying the challenging issues that
developers face in those areas of software development that are commonly
involved as enabling technologies in the implementation of IoT systems, such
as mobile development and APIs development. On the other hand, the last
work evaluates the effects that the choice of programming language, problem-
solving training, and the use of formative assessment have on learning to
program, in general.

• Additionally, since the IoT developer survey relied on novice programmers to
identify the most challenging issues that IoT development poses, Section 2.2
encompasses existing research works regarding the experience of novice de-
velopers implementing IoT systems in academic settings.

• In line with the research presented in Chapter 4, intended to provide insights
into the peculiarities of IoT development in the OSS context, Section 2.3
describes research works related to the needs and challenges of software en-
gineering in the IoT context and Software Mining research in other fields
different from IoT.

• Section 2.4 provides context on the Code Recipes (Chapter 5) and IoT note-
book (Chapter 6) by presenting research works where the authors discuss the
issues and technical challenges that the software development of IoT systems
pose, and propose methodologies, frameworks, and architectures to address
them.

9

Related works

• Section 2.5 describes research works concerning the characteristics, current
use, and opportunities of Computational Notebooks.

• Finally, Section 2.5 provides an overview of some popular IoT cloud platform
providers currently available in the market, in terms of the computing, stor-
age, and communication services that they offer. Such overview corresponds
to part of the work that I published in [22].

2.1 Identifying programmers issues
This section presents a set of related works that relied on interviews, surveys,

and controlled studies with software developers to identify the challenging issues
present in mobile applications development, APIs usage, and learning to program.
These related works concern areas of software development that are commonly
involved in the implementation of IoT systems. For instance, mobile applications
are generally the means by which end users interact and configure the whole system;
similarly, the integration between subsystems is typically achieved through RESTful
APIs; and naturally, the implementation of the system may require programming
expertise in more than one programming language.

Ahmad et al. [4] aimed at identifying the challenges that can undermine the
successful development of native, web, and hybrid mobile applications. First, the
authors identified the challenges through a systematic literature review, and then
they validated the challenges through interviews with practitioners. From the sys-
tematic literature review, nine challenges emerged, and from the interviews, four
additional challenges were identified. In these interviews, 34 mobile developers
with 2-5 years of experience were recruited and instructed to rate each challenge
on a Likert scale. Interestingly, the distinction between the three types of mobile
applications (native, web, and hybrid), that I also considered in the survey that I
conducted (Chapter 3), enabled the authors to accurately identify the most critical
challenges on each type. Indeed, after comparing the development challenges of
these three types of mobile applications, the authors determined that there are sta-
tistically significant differences among them. Concretely, fragmentation and change
management are more critical in native, the user experience is more critical on the
web, and compatibility is more severe on the web. As will be described later in
Chapter 3, the results of my survey are consistent with the fact that challenges
vary according to the type of mobile application.

Joorabchi et al. [51] aimed at gaining an understanding of the main challenges
developers face in practice when they build apps for different mobile devices. To
that end, they first conducted a qualitative study consisting of interviews with 12
expert mobile developers, and then, they carried out a semi-structured survey with
188 respondents from the mobile development community at large. Authors identi-
fied the existence of multiple mobile platforms as a major challenge for developing

10

2.1 – Identifying programmers issues

mobile apps; developers are required to learn more languages and APIs for the var-
ious platforms and, at the same time, remain up to date with the frequent changes
of each Software Development Kit (SDK). Additionally, due to this fragmentation,
developers have to keep checking the correctness and consistency of the app across
different platforms. Developers also indicated that testing tools and emulators (at
the time in which this study was conducted) were not able to sufficiently support
important features and scenarios such as mobility (changing network connectivity),
location services, sensors, or various gestures and inputs. This lack of tools makes
analysis and testing even more challenging. Finally, concerning usability, the study
results suggested that the implementation of a reusable user interface is challenging
due to the trade-offs that developers are required to achieve between maintaining
consistency and adhering to each platform’s standards. In this respect, the results
obtained from the IoT developers survey (Chapter 3) confirm that the configura-
tion of the development environment (involving dependencies, SDKs, and run-time
platforms) is perceived as challenging in the mobile application development.

Sohan et al. [90] conducted a controlled study with 26 experienced software
engineers to understand the issues that REST API client developers face while
using an API without examples. To that end, participants were divided into two
groups and given the same set of 6 API tasks to complete. While one group was
given the official REST API documentation, the other group was given an enhanced
version of the official documentation where three usage examples were added. From
the analysis of 539 API calls, 385 from the first group and 152 from the second,
authors determined that, without examples, REST API client developers struggle
with using the right data types, data formats, and required HTTP requests headers.

Similarly, Robillard et al. [80] conducted a study aimed at identifying some of
the most severe obstacles faced by experienced developers, with an average of 9.8
years of professional experience, when learning new APIs. Such study involved 440
professional developers and was structured around: (i) an exploratory survey to
broadly identify what makes APIs hard to learn; (ii) a set of qualitative interviews
to understand API learning obstacles in detail; and (iii) follow-up survey to confirm
the general findings and collect additional demographic data that would help to ex-
plain API learning obstacles. The study identified inadequate API documentation
as the most severe obstacle facing developers learning a new API. For this reason,
based on the qualitative analysis, the authors elicited a set of important factors to
consider when designing API documentation. Among their various observations,
they stated that small examples that nevertheless demonstrate API usage patterns
involving more than one method call will be more useful than single-call examples.
Furthermore, they determined that a central challenge when learning APIs is dis-
covering how to match scenarios with the API elements that support this scenario.

Uddin et al. [100] conducted two surveys about API documentation quality in-
volving 323 software professionals. In the first survey (exploratory), authors aimed
at collecting good and bad examples of API documentation. The respondents were

11

Related works

asked to provide examples of good or bad documentation, based on the last develop-
ment task that they completed, in which they had to consult API documentation.
In the context of this exploratory study, there was no standard definition for an
API; it could be a library, a framework component, or even a Web API. In the
exploratory survey participants were asked to: (i) describe their last development
task they had completed that required them to consult API documentation; (ii)
provide up to three examples of API documentation that they found useful their
corresponding justification; (iii) provide up to three examples of API documenta-
tion that they did not find useful and their justification. From the analysis of the
results, ten common documentation problems emerged, and they were categorized
by the authors into content and presentation problems. Namely, content problems
comprised incompleteness, ambiguity, unexplained examples, obsoleteness, incon-
sistency, and incorrectness. Presentation problems, for their part, concerned bloat,
fragmentation, an excess of structural information, and tangled information. In
the second survey (validation), the authors assessed the frequency and severity of
the previously identified problems. This validation survey was conducted with a
different group of participants, and they were asked to (i) rate, for each one of
problems, how frequently they were experienced and how severe they were when
completing the participants’ development tasks; and (ii) to identify the three most
painful problems to be prioritized. In this manner the authors analyzed the prob-
lems’ frequency, their severity, and the necessity to solve them. Ambiguity and
incompleteness were identified as the most critical problems, and together with in-
correctness, they were into the top three priorities for improving documentation.
The major finding of the surveys was that the most frequent and common problems
had to do with content. In fact, all content problems were prioritized over presen-
tation problems. Additionally, the hardest problems with API documentation were
also the ones requiring the most technical expertise to solve. Completing, clari-
fying, and correcting documentation require deep, authoritative knowledge of the
API implementation. Finally, the authors envisioned recommendation systems as
a mean to reduce as much of the administrative overhead of documentation writing
as possible, enabling experts to focus exclusively on the value-producing parts of
the development tasks.

Koulouri et al. [59] assessed the effect of three factors on learning to program,
namely: choice of programming language, problem-solving training, and the use of
formative assessment. To that end, the authors conducted a study that adopted an
iterative approach and was carried out across four consecutive years involving four
experimental groups of CS1 students. These groups corresponded to distinct full
student cohorts and were organized in this manner: a control group that was taught
using Java (157 students), a group that was taught using Python (195 students), a
group that received formative feedback (193 students), and a group that received
initial problem-solving training (216 students). From the iterative process, the
following outcomes emerged: (i) the choice of programming language seems to

12

2.2 – Novice Programmers in the IoT

affect student learning, a simpler syntax could have a greater impact because it
makes loops easier to use, and the underlying concept easier to understand; (ii)
introducing problem-solving concepts before teaching more specific programming
aspects has an impact on how students learn to program, it helps students to
develop an ability to both break down complex problems into subtasks and produce
the correct sequence of actions while accelerating the consolidation of concepts,
such as data and control structures, introduced later in the course; (iii) Formative
feedback may not be necessarily and effective as expected unless students are ready
to have a proactive role in seeking and responding to feedback, it is advised that
for formative feedback to yield observable benefits on their performance, novice
programming students may need to be externally motivated and guided.

2.2 Novice Programmers in the IoT
Literature on novice programmers in the IoT mainly consists of experience re-

ports from college or university-level courses, in which teachers and instructors
recognize the needs and challenges brought by the IoT and intervene either with
new methodologies or with dedicated frameworks. However, a systematic collection
and description of pain points and issues encountered by these novice developers
was not performed in any of these works, to my knowledge. Four of the most
representative works are reported below.

To provide its students with the systems-level skills needed to understand and
develop complete IoT systems, in 2014 Politecnico di Torino, in Italy, initiated a
course named “Ambient Intelligence.” In this project-based course, a teamwork and
design-driven methodology is applied to teaching IoT system design [23]; core stu-
dent skills acquired in previous courses are exploited in a multidisciplinary project
work. The main topic of the course is the design and the implementation of proto-
type Ambient Intelligence (AmI) systems [20], a field closely related to the IoT. This
entails a strong focus on the application and on user needs. From the beginning of
the course, students form three- to four-people teams and are guided to define the
requirements for a system, and then to design and implement a limited but work-
ing prototype. Every year, a theme is chosen for the projects. The theme is wide
enough to generate around 20 projects, but sufficiently well-defined to determine
whether a project fits. After teacher’s approval, the teams develop their ideas ac-
cording to the proposed design methodology, which follows four main steps: vision
and goal definition; functional and nonfunctional requirements elicitation; system
architecture design and component selection; and practical realization of the pro-
totypical system. Projects cannot be mobile-only, software-only, or hardware-only
solutions. Instead, they must exploit different platforms and mix hardware with
software and user interaction, as typical IoT systems do. The resulting system and
the “deliverables” produced throughout the semester are the focus of the course

13

Related works

exam, which also includes a presentation and demo of the team projects and an
oral discussion. The authors, in their paper, provide positive qualitative and quan-
titative results about the students’ ability to understand and design IoT systems;
the usage of required languages, frameworks, and protocols; and employed commu-
nication, collaboration, and management skills. Moreover, they present a series of
“lessons learned” that may allow other instructors to design IoT-related courses by
following a similar methodology. Indeed, the subjects involved in the IoT devel-
opers survey that I conducted are a subset of students of the Ambient Intelligence
course.

In a similar way, Kortuem et al. [58] describe the experience of the Open Uni-
versity, in the United Kingdom, delivering an online course whose purpose was to
“place the IoT at the core of the first-year computing curriculum and to prime stu-
dents from the beginning to meet the coming changes in society and technology”.
Among the concepts that the course designers identified as fundamental for the IoT
and essential for the course, they list: the merging of the physical and digital realms;
the huge increase in the number of Internet-connected devices, objects, sensors, and
actuators; and the emergence of novel embedded-device platforms below the level
of personal mobile devices. A key goal of the course was to empower novices and to
make IoT technologies accessible to students with no prior programming skills. One
of the most challenging issues faced when designing and delivering the course was
that most embedded device technologies require an understanding of software and
hardware that cannot be expected from first-year undergraduates. To overcome
this issue, an embedded networked sensor was custom-designed for this course, as
well as a newly developed visual programming language and environment, and a
cloud infrastructure that connected the embedded networked sensors of all students
together. Authors determined, based on programming assignments and tests with
prospective users during the design stage of the course, that new users can produce
a working program in less than 20 minutes during their first session with the cus-
tom embedded networked sensor. Furthermore, after a few sessions, novices with
no exposure to programming before the course, could understand and modify given
programs and develop new ones on their own. Moreover, their proposed program-
ming language and environment help novices to quickly develop an understanding
of the principles of programming simple IoT applications. To gain an understand-
ing of the common issues that novices experience, authors conducted a preliminary
analysis based on the activity of the help forum. However, the article just provides
a very general description of the issues that concerned their proposed IoT teaching
infrastructure.

Dobrilovic et al. [37] built a platform to teach communication systems, and de-
signed a second one [36] to be used in university curricula for teaching IoT. The
first platform was built to be used within the curricula of Information Technol-
ogy and Software Engineering, where a strong background in electronics is not
expected. The basis of the platform was built upon an Arduino micro-controller

14

2.3 – IoT development in the OSS context

and includes Zigbee expansion shields, different types of sensors, and a packet snif-
fer specially developed for analyzing ZigBee, Bluetooth Low Energy, and IEEE
802.15.4 traffic. Moreover, the authors described three scenarios for the usage of
this platform: a system for temperature monitoring, a Radio-Frequency Identifica-
tion (RFID)/ZigBee network for tracking human resources, and a smart agriculture
and air pollution monitoring system. Starting from the architecture proposed for
each scenario, students were asked to deploy such scenarios from the beginning,
and develop applications on top of them. Specifically, the platform was used by
a group of three students that were able to deploy the temperature monitoring
scenario by adding more sensors and developing an application to gather real-time
data from an Arduino micro-controller. The second platform [36] is proposed upon
an open-source architecture for teaching IoT. It consists of a set of low-cost open-
source hardware components (IoT education kit), along with the list of software
components required to develop IoT custom applications, and the network proto-
cols required to establish the communication between the layers of the proposed
IoT teaching architecture. However, this platform was not used during laboratory
exercises. Instead, it was presented to students as a part of the lectures, aiming
at explaining the functionality and implementation of each layer of the architec-
ture. Therefore, students’ feedback was not collected in a formal questionnaire nor
analyzed. The platform acceptation and effectiveness was assessed based on the
positive comments that the students made. According to the authors, students
accepted the platform with good attention and interest to work with it.

2.3 IoT development in the OSS context
The study of IoT OSS, through the data analysis described in Chapter 4, lies

in the software engineering domain and is intended to provide insights into the
peculiarities of IoT development in the OSS context. Although various authors
have pointed out the need for research on software engineering for IoT systems,
given the several challenges that the development of such systems poses, to the
best of my knowledge, no other research aimed at exploring and analyzing how
developers work within several OSS IoT projects. In the following the related works
are approached from two areas: the needs and challenges of software engineering in
the IoT context, and Software Mining research in other fields different from IoT.

According to Morin et al. [66], IoT applications have two main characteristics
from a software engineering viewpoint. The first is their distribution over a large
range of processing nodes. The second is high heterogeneity of the processing nodes
and the protocols used between them. To deal with these characteristics, authors
introduce a modeling language aligned with UML, an advanced multiplatform code
generation framework, and a methodology specifying the development processes
and tools used by both IoT service developers and platform experts.

15

Related works

Similarly, Colakovic et al. [19] hold that IoT software architectures and frame-
works are necessary to overcome the inherent complexity of IoT systems and to
provide an environment for services composition. In their opinion, IoT software
platforms should be created as an Open Application Platform to enable modular
design as well as providing an open API that would easily integrate sensors and
other devices.

According to Larrucea et al. [60], no consolidated set of software engineering
best practices for the IoT has emerged yet. On the author’s words, “IoT land-
scape resembles the wild west, with programmers putting together IoT systems in
ad hoc fashion”. They consider that industry needs guidance to engineer the new
generation of scalable, highly reactive, often resource-constrained software systems
characteristic of the IoT. Among such guidance, authors remark the need for a new
generation of development environments and the training of the new generation of
IoT software developers.

Regarding IoT projects in OSS, Taivalsaari et al. [97] hold that nowadays nearly
all the component areas of a typical IoT cloud back-end architecture can be con-
structed from open source technologies. On their opinion, given the availability
and maturity of open source components, the role of back-end developers today
could be characterized more as software composition or orchestration instead of
traditional software development.

Concerning sotfware mining, as mentioned before, the methodology followed
in this work took inspiration from the work of Pascarella et al. [70], in the video
games OSS context. The authors conducted a study on 60 projects, and their re-
sults confirmed the existence of significant differences between game and non-game
development, in terms of how project resources are organized and in the diversity
of developers specializations. Another source of inspiration was the work of Ray et
al. [78]: they performed a large scale study on GitHub about the of programming
languages type and use on software quality. They examined the interactions of lan-
guage, domain, and defect type through a combination of regression modeling, text
analytics, and visualization. Their results suggested that strong typing is modestly
better than weak typing, and among functional languages, static typing is also
somewhat better than dynamic typing. However, authors point out that effects
arising from language design are overwhelmingly dominated by the process factors
such as project size, team size, and commit size. Additionally, they determined
that the defect proneness of languages, in general, is not associated with software
domains.

16

2.4 – Easing the Development of IoT Systems

2.4 Easing the Development of IoT Systems
Taivalsaari et al. [94] present a roadmap from today’s cloud-centric, data-centric

IoT systems to a world in which everyday use objects are connected and the net-
work’s edge is programmable. On the basis of the authors’ experience, they high-
light issues and technical challenges that the Programmable World poses to software
developers. In their opinion, the average mobile or client-side web application devel-
oper is not well equipped to cope with the challenges of IoT systems development.
Moreover, today’s development methods, languages, and tools are poorly suited to
the emergence of millions of programmable things. In particular, IoT developers
must consider several dimensions that are unfamiliar to mobile and client-side web
application developers, namely: multidevice programming; the reactive, always-on
nature of the system; heterogeneity and diversity; the distributed, highly dynamic,
and potentially migratory nature of software; and the need to write software in a
fault-tolerant and defensive manner. Among all the statements discussed in that
article, two of them are of special relevance:

• educating software developers to realize that IoT development truly differs
from mobile and client-side web application development;

• to harness the Programmable World’s full power, we will need new soft-
ware engineering and development technologies, processes, methodologies,
and tools.

Patel and Cassou [71] tackle the challenges brought by application develop-
ment in the IoT by proposing an “high-level” development methodology that sepa-
rates IoT application development into different concerns and provides a conceptual
framework to develop an application. They recognize that software development in
the IoT presents various challenges, and they list four of them: a) lack of division
of roles, b) heterogeneity (of devices), c) scale (of IoT systems), and d) different life
cycle phases. However, these challenges were formulated starting from the authors’
unstructured analysis of example applications and from related work in closely re-
lated fields like Wireless Sensor Networks and Ubiquitous Computing [101]. The
main goal of the work of Patel and Cassou is, indeed, to make IoT application devel-
opment easy for stakeholders by taking inspiration from the Model-Driven Design
(MDD) approach and building upon work in sensor network macroprogramming,
thus reducing development efforts.

Datta and Bonnet [34], similarly, start from their own experience (i.e., from the
IoT data cycle presented in [35]) to propose a list of the top 8 requirements for
building an IoT application framework: interoperability, open source framework,
strong security by design, etc. Then, they introduce DataTweet, a framework that
decouples application logic from common IoT functionalities. This allows IoT stake-
holders to focus on the application logic and use open source, standardized APIs for

17

Related works

the latter. An example with an automotive IoT application for an Advanced Driver
Assistance System was developed with the framework and its operational phases
were highlighted in the paper. The framework aimed at simplifying the develop-
ment process, hiding the complexities of programming and security mechanisms
from developers, and reducing time to market for industries.

According to Weyrich and Ebert [103], too, software engineering for the IoT
poses challenges in light of new applications, devices, and services. Moreover, such
new and diverse applications, devices, and services “pose specific challenges for spec-
ifying software requirements and developing reliable, safe software” [103]. Weyrich
and Ebert, in their paper, state that reference architectures may help developers
meet those challenges. They focus on two major architectures from an industry
standpoint: the Internet of Things - Architecture (IoT-A)1 and Industrial Internet
Reference Architecture (IIRA)2. IoT-A delivered a detailed architecture and model
from the functional and information perspectives, while IIRA was delivered by the
Industrial Internet Consortium (founded by AT&T, Cisco, General Electric, IBM,
and Intel) for a broad consideration and discussion. Such architectures can serve
as an overall and generic guideline, and not all domain applications will require
every component for real-life development. While such reference architectures are
not equal and a “standard” architecture did not yet prevail, they form a superset of
functions, information structures, and mechanisms that could provide developers
with a more complete view of the IoT system they will implement.

As will be described in Chapter 3, in the IoT developers survey respondents were
referred to a “generic architecture”, which shares most of the functionalities and
building blocks with the two aforementioned architectures and was simplified and
customized to the type of IoT projects they had experience on. Moreover, it includes
contributions coming from other IoT reference architectures, namely the Intel IoT
Platform Reference Architecture [48], the IBM IoT Reference Architecture3, and
the Microsoft Azure IoT Reference Architecture [64]. As already highlighted by
Weyrich and Ebert [103], all these architectures are not equal but they present
some common features. The purpose of using this generic architecture was to
provide respondents with a common understanding about the software components
involved in an IoT system.

1https://cordis.europa.eu/project/rcn/95713_en.html, last visited on May 24, 2019.
2https://www.iiconsortium.org/IIRA.htm, last visited on May 24, 2019.
3https://www.ibm.com/cloud/garage/architectures/iotArchitecture/

reference-architecture/, last visited on May 24, 2019.

18

https://cordis.europa.eu/project/rcn/95713_en.html
https://www.iiconsortium.org/IIRA.htm
https://www.ibm.com/cloud/garage/architectures/iotArchitecture/reference-architecture/
https://www.ibm.com/cloud/garage/architectures/iotArchitecture/reference-architecture/

2.5 – Characteristics and opportunities of Computational Notebooks

2.5 Characteristics and opportunities of Compu-
tational Notebooks

The computational notebook approach, described in Chapter 6, lies in the soft-
ware engineering domain and is intended to provide insights about the suitability
of a computational narrative approach to document, execute, and share the steps
involved in IoT prototyping, especially for novice programmers. In the following,
the related work is addessed from the perspective of (i) exploring and analyzing the
current use of notebooks, and (ii) customizing them to fit into a particular context.

Rule et al. [84] assessed the current use of computational notebooks through
quantitative analysis of over 1 million notebooks shared online, qualitative analysis
of over 200 academic computational notebooks, and interviews with 15 academic
data analysts. These analyses demonstrated a tension between exploration and ex-
planation that complicates construction and sharing of computational notebooks.
In the context of data analysis, the exploratory process tends to produce messy
notebooks. The authors determined that a key challenge concerns the development
of tools aimed at augmenting analysts’ workflows and facilitating organization and
annotation without much additional effort. Furthermore, they claim that a note-
book “clean up” tool that moves the imports to the beginning, as well as rewriting
reusable code as functions, would improve maintainability and legibility in the long
run.

Pimentel et al. [75] present an analysis of the notebook characteristics that im-
pact reproducibility. Authors propose a set of best practices that can improve the
rate of reproducibility and discuss open challenges that require further research
and development. Among these best practices authors suggest to declare the de-
pendencies in requirement files and pin the versions of all packages; use a clean
environment for testing the dependencies to check if all of them are declared; put
imports at the beginning of notebooks; use relative paths for accessing data in a
repository.

Head et al. [43] present a collection of code gathering tools, extensions to com-
putational notebooks that help analysts find, clean, recover, and compare versions
of code in cluttered inconsistent notebooks. Additionally, the authors conducted a
qualitative usability study with 12 professional analysts and found that this kind
of tools was considered useful for cleaning notebooks and generating personal doc-
umentation and light-weight versioning.

Yin et al. [106] describes CyberGIS-Jupyter, a framework for achieving data-
intensive, reproducible, and scalable geospatial analytics using the Jupyter Note-
book based on ROGER, the first CyberGIS supercomputer. With this proposal,
the authors aimed at achieving agility and reproducibility in the field of geospatial

19

Related works

analytics. On one hand, agility concerns the use of a Jupyter notebook as a Graph-
ical User Interface (GUI) development platform for CyberGIS instead of develop-
ing customized and web-based GUI interfaces that require professional skills that
geospatial researchers do not possess. To do so, they developed a set of utilities to
support common CyberGIS operations, using a Jupyter Interactive Widgets library.
On other hand, concerning the reproducibility, the authors relied on container vir-
tualization technologies to record and reproduce computational environments with
the exact versions of all external libraries. Hence, CyberGIS-Jupyter is deployed
inside cloud infrastructure and, for each user instance, their Jupyter notebooks are
hosted inside one dedicated container. In this manner, the framework enables re-
searchers to share and build on each other’s work to innovate large-scale geospatial
analytics cumulatively in a collaborative fashion for team-based development.

Merino et al. [63] developed a language parametric notebook generator for
Domain-Specific Languages (DSL) in the context of the Jupyter framework. Au-
thors aimed at enabling language engineers to easily implement Jupyter language
kernels for their DSLs by reusing, as much as possible, existing language compo-
nents, such as parsers, code generators, and Read-Eval-Print Loops (REPLs). Since
developing a language kernel from scratch requires a lot of effort and communica-
tion with Jupyter’s low-level wire protocol, authors aimed at hiding the low-level
complexity of Jupyter’s wire protocol by providing generic hooks for registering lan-
guage services. In this manner, obtaining a notebook interface for a DSL becomes
a matter of writing a few lines of code.

Azzara et al. [8] present PyoT, a macro-programming framework for the IoT
aimed at simplifying the development of IoT applications. PyoT manages IoT-
based Wireless Sensor Networks (WSN), letting programmers focus on the applica-
tion goal. This framework allows developers to (i) automatically discover available
resources; (ii) monitor sensor data; (iii) handle its storage; (iv) control actuators;
(v) define events and the actions to be performed when they are detected; and (vi)
interact with resources using a scripting language (macro-programming). PyoT
hides the complexity of the network by abstracting it as a set of software objects,
each of which represents a physical resource (actuators or sensors), its available op-
erations, and its location. Furthermore, since the macro-programming uses Python,
authors relied on the Jupyter computational notebook as the web-based user inter-
face through which users can interact with the resources executing basic operations
such as resource listing, sensor monitoring, actuator control, event detection and
reaction, and access to historical data.

The website [83] shows the setup and use of a custom kernel to run Circuit-
Python code directly from a Jupyter interactive notebook. CircuitPython is a
programming language designed to simplify experimenting and learning to code
on low-cost microcontroller boards [18]. Specifically, the CircuitPython kernel is a
wrapper that allows CircuitPython’s REPL to communicate with Jupyter’s code

20

2.6 – IoT cloud platforms

cells. Using this kernel enables the code to be developed and hosted in the web-
browser and executed on the CircuitPython hardware through a serial Universal
Serial Bus (USB) link.

2.6 IoT cloud platforms
Most of the contemporary IoT applications employ several advanced services,

typically cloud-based, that go beyond the communication requirements: e.g., dif-
ferent storage capabilities or notification and alerting functionality. Nowadays,
developers rely on such centralized cloud providers (over-the-top players) for their
IoT applications. In this context, given the relevance that IoT cloud platforms have
gained in the development of IoT applications, this section aims at presenting an
overview of the most popular ones, in terms of the computing, storage, and notifi-
cation services that they offer. Concretely, such services were compared according
to a vendor-neutral set of criteria.

The choice of the most widespread IoT platforms included in this overview was
made according to market and technology benchmarks. In particular, I selected the
leader platforms indicated by the IDC MarketScape report [30] and by the CXP
Group IoT Platforms vendor benchmark [32]; the 11 selected platforms are listed
in Table 2.1.

Table 2.1: IoT cloud platforms

Arrayent Arrayent IoT Cloud Services
Amazon AWS IoT Core
Bosch Bosch IoT Suite
General Electrics General Electrics Predix
Google Google Cloud IoT Platform
IBM IBM Watson IoT Platform
Microsoft Microsoft Azure IoT
Oracle Oracle IoT Cloud Service
SAP SAP IoT Platform
thinger.io thinger.io
Xively Xively

The first step of the overview was to define a set of macro-categories (criteria)
regarding the services, to enable a fair and transparent comparison of the platforms.
Then, for each platform, it was determined whether a given service is offered and
which product of the platform provides it. Among the identified criteria, three of
them (Data Storage, Push Notifications, and Virtual Devices) were decomposed
into smaller features so that the analysis could be more specific and accurate.

21

Related works

2.6.1 Comparison Criteria
Hereinafter are described the details of the comparison criteria, and the main

observations that emerged from the comparison itself. Eight criteria were derived
for the IoT services to perform a well-balanced comparison between the considered
IoT cloud platforms. They encompass a wide variety of domains, from data storage
to notification systems and Software Development Kit (SDK). The criteria are:

1. Data Storage. Whether and how the platform provides storage capabilities.
In IoT cloud platforms these services are managed differently depending on
the source, the format, and mainly, the purpose of the data. Most analyzed
platforms offer the following services: Disk storage for I/O-intensive appli-
cations with low latency and high throughput (e.g., Amazon Elastic Block
Store); NoSQL database storage for semi-structured data (e.g., Google Cloud
Datastore); BLOB storage that consists of massively-scalable object storage
for unstructured data like images, videos, and audio (e.g., Azure Blob Stor-
age); File storage, corresponding to cross-platform file system (e.g., Amazon
Elastic File System); Relational database management (e.g., Google Cloud
SQL).

2. Devices SDK. Whether the platform provides a SDK to connect and (re-
motely) manage IoT devices.

3. Mobile SDK. Whether the platform provides a SDK to enable the interac-
tion of mobile apps with IoT devices.

4. Push Notifications. Whether the platform provides a push notification
or real-time alert mechanism. Common features involve the management of
topics, which are communication channels to send messages and subscribe to
notifications. The features are: Register a device as an endpoint, meaning that
it will be receiving notifications; Creates a topic to which notifications can
be published; Delete a topic along with all the endpoints subscribed to that
topic; Subscribe an endpoint device to a topic so that the concerned endpoint
is enabled to receive all the messages published to that topic; Removing an
endpoint device from a topic to delete a subscription; Send a notification
to a single device using some specific identifier; Send a notification to all
the devices that have been subscribed to a given topic. Moreover, it is also
possible to Integrate with the custom notification service of various OS, i.e.,
send push notification messages to mobile devices by using their supported
push notification services (e.g., Apple Push Notification Service, or Google
Cloud Messaging).

5. REST APIs. Whether the platform provides REST APIs to enable the
integration with software applications.

22

2.6 – IoT cloud platforms

6. Supported protocols. Which protocols can be used to communicate be-
tween the IoT devices and the platform.

7. Virtual devices. Whether and how the state of a IoT device is stored in
the platform, so that the physical device can be remotely controlled. To this
end, a virtual representation of the physical device (also called device twin) is
registered and controlled through the platform. The set of features commonly
provided by the IoT platforms are: Create virtual devices; Retrieve virtual de-
vice by id; Update a virtual device; Replace the device properties, which means
to overwrite the properties of the device through its twin; Define the structure
of the device twins metadata according to the physical device capabilities, and
Remotely assign jobs to the virtual device executes the deployment of a given
function.

8. Analytics. Whether the platform provides a graphical interface (e.g., a dash-
board) through which users can visualize and manage the deployed IoT de-
vices.

2.6.2 Results
Table 2.2 shows the selected platforms (first column), along with the comparison

criteria (first row), where cells indicate whether the platform offers the given service
(✘), or even the name of the platform’s product providing it.

It can be noted that most cloud platforms overlap in the provided services. In
particular, AWS IoT Core, Google Cloud IoT, IBM Watson IoT, Microsoft Azure
IoT, Oracle IoT Cloud Service, and SAP IoT rely on a wide catalog of generic
cloud services, not strictly related to the IoT ecosystem. They provide, broadly
speaking, the same set of services. Furthermore, push notifications are mostly
managed through the MQTT publish-subscribe messaging protocol.

The Bosch IoT Suite and the Arrayent IoT Cloud Services, conversely, are the
most “limited” platforms. They do not provide any data storage support, SDK for
other applications, nor support for virtual devices. Additionally, a small separation
in the supported functionality could be observed: while “traditional” ICT vendors
(e.g., Google, Microsoft, Oracle) support different facets of the development and
deployment of IoT applications, vendors that come from other domains (e.g., Bosch,
General Electrics) expose a narrower and more focused set of functions. Finally,
most provided services are tuned for cloud-based applications, not specifically for
the IoT: long term data storage or analytics are two important examples.

23

Related works
Ta

bl
e

2.
2:

Se
rv

ic
e

C
om

pa
ris

on
fo

r
Io

T
Pl

at
fo

rm
s

P
la

tf
or

m
D

at
a

st
or

-
ag

e
D

ev
ic

es
SD

K
M

ob
ile

SD
K

P
us

h
no

ti
-

fic
at

io
ns

R
E

ST
A

P
Is

Su
pp

or
te

d
pr

ot
oc

ol
s

V
ir

tu
al

de
-

vi
ce

s
A

na
ly

ti
cs

A
rr

ay
en

t
A

nd
ro

id
,

iO
S

R
ea

lti
m

e
A

le
rt

s
Ec

oA
da

pt
or

fr
am

ew
or

k
H

T
T

PS
,

W
eb

So
ck

et
s

✘

A
m

az
on

S3
AW

S
G

re
en

-
gr

as
s

A
nd

ro
id

,
iO

S
A

m
az

on
SN

S
✘

H
T

T
P,

M
Q

T
T

,
W

eb
So

ck
et

✘
AW

S
C

on
-

so
le

B
os

ch
Io

T
R

em
ot

e
M

an
ag

er
R

em
ot

e
Ev

en
t

Pu
sh

Ja
va

cl
ie

nt
or

H
T

T
P

A
PI

H
T

T
P,

M
Q

T
T

,
LW

M
2M

,
m

PR
M

✘
Io

T
D

e-
ve

lo
pe

r
C

on
so

le

G
en

er
al

E
le

ct
ri

cs
B

lo
bs

to
re

(S
3)

Pr
ed

ix
M

a-
ch

in
e

Pr
ed

ix
SD

K
fo

r
H

yb
rid

A
ss

et
Se

r-
vi

ce
s

H
T

T
PS

,
W

eb
So

ck
et

s
M

ob
ile

ga
te

-
w

ay

G
oo

gl
e

C
lo

ud
St

or
-

ag
e

✘
✘

C
lo

ud
Pu

b/
-

Su
b

G
oo

gl
e

C
lo

ud
Io

T
A

PI

M
Q

T
T

,
H

T
T

P
C

lo
ud

Pu
b/

-
Su

b
(7

da
ys

)
G

oo
gl

e
D

at
a

St
ud

io

IB
M

B
lu

em
ix

St
or

ag
e

Ed
ge

A
na

-
ly

tic
s

SD
K

A
nd

ro
id

B
lu

em
ix

Pu
sh

N
ot

ifi
-

ca
tio

ns
✘

M
Q

T
T

,
H

T
T

P
M

Q
T

T
W

at
so

n
Io

T
da

sh
bo

ar
d

M
ic

ro
so

ft
A

zu
re

St
or

-
ag

e
D

ev
ic

e
Pr

o-
vi

sio
ni

ng
A

nd
ro

id
,

iO
S

N
ot

ifi
ca

tio
n

H
ub

s
✘

M
Q

T
T

,
H

T
T

PS
,

A
M

Q
P

Io
T

Ed
ge

✘

O
ra

cl
e

✘
En

dp
oi

nt
M

an
ag

e-
m

en
t

Ja
va

,i
O

S
✘

✘
M

Q
T

T
,

H
T

T
Ps

✘
✘

SA
P

✘
✘

C
lo

ud
Pl

at
-

fo
rm

,i
O

S

A
pp

le
Pu

sh
N

ot
ifi

ca
tio

n
Se

rv
ic

e
✘

T
hi

ng
R

eg
-

ist
ry

th
in

ge
r.

io
D

at
a

B
uc

ke
t

A
rd

ui
no

,
Si

gf
ox

or
Li

nu
x

A
nd

ro
id

ap
pp

lic
at

io
n

Se
rv

er
A

PI
H

T
T

Ps
✘

C
lo

ud
C

on
-

so
le

X
iv

el
y

✘
Te

m
pl

at
e

m
ob

ile
ap

ps
A

le
rt

in
g

an
d

m
on

ito
rin

g
✘

M
Q

T
T

,
H

T
T

P
M

Q
T

T
✘

Le
ge

nd
:

em
pt

y
=

no
t

su
pp

or
te

d;
✘

=
su

pp
or

te
d;

ot
he

r
=

su
pp

or
te

d
w

ith
pr

od
uc

t
na

m
e

24

Chapter 3

On the challenging issues faced by
IoT novice developers

This Chapter describes the design and application of a survey among 40 novice
developers that worked in groups developing IoT systems during several years of a
university course. Based on their own experiences, individually and as a group, the
most challenging development tasks were identified and prioritized over a common
architecture, in terms of difficulty level and efforts. Besides, qualitative data about
the causes of these issues was collected and analyzed.

Part of the work described in this chapter has been previously published in two
different papers. The initial pilot survey aimed at validating the pertinence and
completeness of the questionnaire through a preliminary study with a small group
of participants was describedin [26], while the application of the final survey was
presented in [29].

3.1 Motivation
As previously discussed, the co-existence of various kinds of devices, protocols,

architectures, and applications make IoT systems complex to develop, even for
experienced programmers. When novice programmers are learning to implement
these systems, they are required to deal conceptually and technically with areas
in which they do not have deep knowledge nor previous experience. Additionally,
besides becoming proficient in these areas separately, they should integrate them
and build a system whose components are heterogeneous from both software and
hardware perspectives. In sum, the inherent complexity of such IoT systems raises
particular concerns if we focus on novice programmers and how to effectively and
easily allow them to design and develop these systems. Indeed, although our survey
is not focused on them, these concerns are partially shared by programmers that
come from another background and are new to the IoT. For this reason, an accurate

25

On the challenging issues faced by IoT novice developers

understanding of the most challenging issues that novices experience is fundamental
to envision strategies to enable a smoother development of IoT systems. To my
knowledge, no previous work assessed which were these issues.

Prior work on the topic of easing the development of IoT systems has focused
on providing suitable methodologies and frameworks to professional developers [17,
34], starting from a few challenges extracted from unstructured analysis of IoT
applications, at best [71].

In an effort to understand which challenges novice developers face when building
IoT systems, in late 2017 I conducted a survey involving 40 novice programmers
coming from an engineering background. Such developers were recruited among the
former students of an undergraduate course, during which they worked in groups
to develop different IoT systems. Naturally, the systems taken into account in
this work are not large-scale systems but prototypes with didactic purposes. In
particular, the research questions addressed by the survey were:

RQ3.1: How complex, in terms of time spent and difficulty, are the software de-
velopment tasks needed to build an IoT system?

RQ3.2: Which are the software development tasks that are perceived as the most
challenging to complete?

RQ3.3: Why are these tasks perceived as the most challenging?

This survey contributes to the body of research on easing the development of
IoT systems, with a focus on novice programmers. Here, “IoT systems” is meant
broadly and encompasses several application domains (e.g., healthcare, smart home,
. . .) as well as different IoT devices and technologies. For this reason, in the sur-
vey, a generic architecture for IoT systems was used as a reference, for providing a
common vocabulary to the respondents. The survey results present insights about
novices’ experiences when working on IoT systems, and reveal that the integration
of those parts of an IoT system that require over-the-network communications is
one of the most challenging tasks. The outcomes also reveal that the interaction
and interfacing with third-party cloud services is perceived as an important issue
to be tackled, mainly for the lack of proper documentation and examples. Over-
all, the results can inform the design and development of adequate methodologies
and improved tools to ease the development of IoT systems in general, and for
novice programmers in particular. Furthermore, I consider that the results of this
survey, obtained from respondents belonging to the academic setting, might be
partially valid as well to software companies, in particular by considering the work
by Salman et al. [86], about how well students represent professionals in software
engineering experiments. According to this work, a major differentiating factor af-
fecting the results might be subject’s experience levels rather than the experiment
setting (classroom or industry).

26

3.2 – Survey design and methods

3.2 Survey design and methods
The goal of the survey was to identify, based on the personal experience of

novice developers, the most complex issues that they faced when developing an IoT
system as well as the principal causes of such complexity. It was advertised and
conducted online, and both quantitative and qualitative data were gathered. The
following is a detailed description of the survey methodology.

3.2.1 Instrument development
As already mentioned, the term “IoT systems” in the context of this study is

meant broadly and encompasses several application domains, as well as diverse IoT
devices and technologies. For this reason, in the development of the survey, it was
imperative to provide the respondents with a common understanding about the
software components involved in an IoT system. Hence, the survey was structured
around a generic IoT systems architecture proposed by me along with a predefined
set of software development tasks compatible with such architecture.

Such generic architecture was built, firstly, by taking into account the function-
alities and building blocks suggested in the IoT reference architectures mentioned
in the Related Works (Section 2.4), and secondly, by analyzing the architectures
used in the development of prototype IoT systems during several years of the Am-
bient Intelligence course (described in Section 2.2, concerning the work of Corno
et al. [23]), whose students were the subject of this study. In this manner, I made
sure that the resulting common architecture would be understandable and familiar
to the IoT novices participating in the study.

Consequently, five interconnected subsystems were characterized, as illustrated
in Fig. 3.1. The resulting subsystems are:
Sensors monitor the End-user activities and detect changes in the environment by

measuring variables such as temperature, humidity, and occupation, among
others. They generally refer to wearable devices and environmental sensors.

Gateways gather the data coming from the Sensors and perform computation and
reasoning tasks over it. If more computing or storage capacity is required,
the Gateways communicate with the Back-End subsystem and delegate the
most demanding tasks. Furthermore, Gateways also interact with the actu-
ators. They control the acting devices based on the outputs from their own
computations or based on the instructions that they receive from the Back-
End subsystem. In the projects developed by the novice IoT developers, this
subsystem typically consisted of single-board computers such as Raspberry
Pis.

Back-end groups third-party services APIs, the main application server, and the
persistence component. The functionalities provided by the application server

27

On the challenging issues faced by IoT novice developers

and the persistence component are typically exposed to the Gateways sub-
system through RESTful web services. Finally, third-party service APIs are
commonly used to interact with the wearable devices belonging to the Sensors
subsystem.

Actuators span actuating devices that trigger changes in the physical environ-
ment. However, they also encompass push notifications through which end-
users are informed about the occurrence of a given event. Acting devices are
generally controlled by gateway devices via Bluetooth or Wi-Fi, while push
notifications are commonly generated in the Back-End subsystem through the
Android and iOS push notifications platforms APIs.

End-user refers to the interfaces with which the End-users are enabled to interact
with the IoT system. These interfaces typically consist of mobile and web
applications through which user preferences can be configured, Actuators can
be activated or deactivated, and Sensors can be monitored and managed.

An important component that was decided not to represent in the generic ar-
chitecture is Security. This choice was mainly made because it was outside the
course syllabus. Therefore, survey respondents were not exposed to the issues and
possible pain points that could be generated from security-related operations.

28

3.2 – Survey design and methods

En
d-

us
er

3G
W

i-F
i

W
ea

ra
bl

e
de

vi
ce

s
Se

ns
or

s

Se
ns

or
s

Em
be

dd
ed

 s
ys

te
m

Sm
ar

tp
ho

ne

G
at

ew
ay

s

Ac
tu

at
or

s

N
ot

ifi
ca

tio
n

se
rv

ic
e

C
ha

ng
es

 in
en

vi
ro

nm
en

t

Pe
rs

is
te

nc
e

Ap
pl

ic
at

io
n

se
rv

er
Th

ird
-p

ar
ty

se
rv

ic
e

AP
I

Ba
ck

-e
nd

in
vo

ki
ng

 c
us

to
m

 A
PI

s

Reasoning

Reasoning

in
vo

ki
ng

 c
us

to
m

 A
PI

s

su
rro

un
de

d
by

aw
ar

e
of

R
ES

Tf
ul

w
eb

 s
er

vi
ce

s

co
ns

um
ed

 th
ro

ug
h

ex
po

se
d

th
ro

ug
h

O
Au

th

Sensing

Acting

En
d-

us
er

ap
pl

ic
at

io
n

in
te

ra
ct

s
th

ro
ug

h

co
m

m
un

ic
at

es
 w

ith

co
m

m
un

ic
at

es
w

ith

Fi
gu

re
3.

1:
Pr

op
os

ed
Io

T
sy

st
em

s
re

fe
re

nc
e

ar
ch

ite
ct

ur
e

29

On the challenging issues faced by IoT novice developers

However, since the proposed research questions concern the software develop-
ment perspective of IoT systems, only the subsystems whose implementation and
integration with other subsystems relied mainly on software development activi-
ties, were considered in this research. These software-intensive subsystems were:
End-user, Gateways, and Back-end (we therefore excluded sensors and actuators,
that were considered off-the-shelf or external resources). Next, these three subsys-
tems were “decomposed” into a list of software development tasks required for their
implementation (e.g.,Develop a native end-user mobile application). These tasks,
in turn, were decomposed into very punctual, unambiguous sub-tasks (e.g.,Become
familiar with the mobile application platform-specific programming language).

As Gateways and Back-end subsystems resulted in a quite large number of tasks,
these subsystems were split up in two: the first one for the subsystem development
tasks, and the second one for the subsystem integration tasks. As a result, the
survey was developed starting from the generic architecture and the set of tasks
and sub-tasks that emerged from each identified subsystem.

3.2.2 Initial generation of the questionnaire structure and
content

The survey was defined in line with the research questions. The subsystems
were mapped to a set of sections in the questionnaire, as shown in Table 3.1. Five
sections were therefore defined, namely: End-user subsystem (Section A), Gateways
subsystem development (Section B), Gateways subsystem integration (Section C),
Back-end subsystem development (Section D), and Back-end subsystem integration
(Section E). Since the sections belonging to the End-user subsystem were mutually
exclusive as they corresponded to the three types of mobile applications, the survey
was structured in 5 sections, with 24 tasks, and 67 sub-tasks.

Table 3.1: Survey structure

Subsystems Sections # Tasks # Sub-Tasks

End-user
Section A1: Native mobile application 9 10
Section A2: Hybrid mobile application 9 10
Section A3: Web responsive mobile application 9 9

Gateways Section B: Gateways development 5 10
Section C: Gateways integration 3 10

Back-end Section D: Back-end development 4 10
Section E: Back-end integration 3 8

Total 24 67

30

3.2 – Survey design and methods

As not all respondents participated in the development of every subsystem of
the IoT system, the research questions were addressed at the subsystem level of
detail. In fact, inside each subsection, they were instructed to skip the rating of the
sub-tasks in which they did not personally participate. Therefore, for each section
of the questionnaire, respondents were asked to:

• Rate the complexity of each sub-task in which they participated according to
their difficulty level and the time spent completing them. Two Likert scales
ranging from 1 to 5 were included in the questionnaire for each sub-task,
as shown in Figure 3.2. This rating aims at answering the RQ3.1: How
complex, in terms of time spent and difficulty, are the software development
tasks needed to build an IoT system?

• Rank the sub-tasks of the concerned subsystem identifying the ones perceived
as the most challenging to complete. In this case, such sub-tasks had to be
ranked as the first, second and third most difficult task in the subsystem.
In Figure 3.2, the field at the left of the sub-tasks is intended to the rank
the three most challenging sub-tasks. This ranking aims at answering the
RQ3.2: Which are the software development tasks that are perceived as the
most challenging to complete?

• Assess the perception of the respondents about the reasons behind the rank-
ing choice on each subsystem. This perception is captured through an open
question, where besides their justification, respondents could also mention
any other task that they found complex to achieve, even if it was not in the
set of suggested sub-tasks. The qualitative perceptions of the participants
are intended to answer the RQ3.3: Why are these tasks perceived as the
most challenging?

RQ3.1 (rate) was measured at the sub-task level, while RQ3.2 (rank) and RQ3.3
(perception) were measured at each section level.

3.2.3 Initial pilot survey
To validate the pertinence and completeness of the resulting survey, a prelimi-

nary study [26] was conducted and documented with a small group of participants
(6). These participants belonged to the 2016 cohort of the previously mentioned
Ambient Intelligence course. In this version of the course 18 projects related to
Health and Well-Being were developed. The participants chosen for the pilot survey
were the members of two groups whose final projects obtained outstanding grades,
and whose implementation relied mainly on software development activities. The
first group was composed by 4 students and the second group was composed by 3
students. However, one of the members of the second group was an international

31

On the challenging issues faced by IoT novice developers

Rank Section A: End-user Difficulty Time spent

Develop a native end-user mobile application

 Become familiar with the mobile application platform-specific programming
language 1 2 3 4 5 1 2 3 4 5

 Configure the development environment 1 2 3 4 5 1 2 3 4 5

 Develop the models' classes 1 2 3 4 5 1 2 3 4 5

 Develop the controllers' classes 1 2 3 4 5 1 2 3 4 5

 Develop the user interface (views) 1 2 3 4 5 1 2 3 4 5

 Connect the push notification module with the platform notification service 1 2 3 4 5 1 2 3 4 5

 Handle the notifications received in the end-user's smartphone 1 2 3 4 5 1 2 3 4 5

Figure 3.2: Example of a task decomposed in sub-tasks

student who returned to her home university, therefore a total of 6 students were
involved in the preliminary study.

The pilot was conducted by inviting the respondents to 2 interview sessions,
with one group invited per each session. Each session consisted of three phases:
an introduction, the questionnaire, and a discussion. The sessions were conducted
by two researchers, and were held in English. In the introduction, one researcher
briefly explained the objective of the study, the structure of the questionnaire and
the general organization of the session. It was clarified that the questionnaire had
to be filled individually from the personal point of view (each participant should
respond to those activities in which they were directly involved, only), while the
following discussion would involve their evaluation as a group.

The questionnaire was filled out on paper, and as described before, participants
were asked to rate the sub-tasks according to their difficulty level and the time
spent completing them, rank the three most difficult tasks per each section of the
questionnaire, and justify their ranking choice with an open question, where they
could also mention any other tasks that were not listed but resulted complex to
achieve.

After all participants completed the questionnaire, a final discussion was held
to identify, as a group, the most complex and painful tasks. The respondents
were free to discuss among themselves, and with the researchers. The completion
of the questionnaire took each participant, in average, approximately 30 minutes,
while the later discussion about the most painful issues and the feedback about the
completeness of the questionnaire took around 20 minutes.

Besides providing some preliminary insights about the most painful issues when
developing IoT systems, this study provided valuable feedback regarding the per-
tinence and completeness of the proposed generic architecture, the identified sub-
systems, and their tasks and sub-tasks. The participants of this preliminary study

32

3.2 – Survey design and methods

did not suggest any modification to the architecture nor the addition of sub-tasks
that the questionnaire could have overlooked.

3.2.4 Survey instrument
After the initial pilot survey, the design of the questionnaire was concluded.

The final structure in terms of sections and their tasks is shown in Table 3.2, which
also reports the number of sub-tasks defined per each task.

3.2.5 Administration and population
The survey was managed through the Lime Survey [61] platform, and invita-

tions were sent by email to former students of the three cohorts of the Ambient
Intelligence course between the years 2014 and 2016. Since some former students
of the course were in Erasmus, when possible, the invitations were sent to both
institutional and personal email addresses. Moreover, with the aim of motivat-
ing the participation, the draw of a Sonos wireless speaker among the people who
completed the survey was announced. Recipients were free to participate if they
chose and their ratings and opinions would be anonymous. Due to the draw of the
wireless speaker, the survey had an explicit closing date (April 23, 2017).

The first invitation was sent on February 8, 2017, and two reminders were sent
before the closing date. The number of potential recipients of the survey invitation
was 150: 45 of them partially completed the survey (they were not taken into
account in the survey results), while 40 completed the whole survey. Therefore, the
estimated response rate was approximately 27% (40/150). The platform enabled
participants to save partially finished surveys.

To make sure that there was not a substantial difference concerning the char-
acteristics of the survey respondents and the non-respondents former students of
the course (response bias), I decided to compare their final grades obtained at the
end of the course. Table 3.3 presents the main statistics about the grades obtained
by former students of the course that did not participate (Non-respondents) in the
survey and those who did participate (Respondents)1. As it may be observed, the
grades do not differ greatly between the two groups.

Another possible bias factor would be an item bias: some respondents might
have rushed through several sections of the questionnaire intentionally to quickly
complete the survey and participate in the draw. However, as shown in Table 3.4,
the time spent completing the online survey was generally consistent with the num-
ber of subsystems they worked on. On average, respondents who worked on one

1The survey was anonymous, and the responses could not be associated to each student.
However, the list of students who responded was available.

33

On the challenging issues faced by IoT novice developers

Table 3.2: Subsystems and tasks in the questionnaire

Section A: End-user subsystem # Sub-Tasks

Develop a native end-user mobile application 7
Develop a hybrid end-user mobile application 8
Develop a web responsive end-user mobile application 6
Develop the integration between the end-user application and the gateways
[computation node, smartphone] 2

Deploy the end-user mobile application into the smartphone 1

Section B: Gateways subsystem (Development)

Configure the development environment 2
Develop the business logic of the gateway device [computation node, smart-
phone] application 2

Configure the OAuth authentication between the gateway device [computa-
tion node, smartphone] and third-party services APIs 3

Develop the module for generating notifications to be displayed on the end-
user application 2

Deploy the software into the gateway devices [computation node, smartphone] 1

Section C: Gateways subsystem (Integration)

Develop the integration between the gateway device [computation node,
smartphone] and the sensors [wearable devices, static sensors] 4

Develop the integration between the gateway device [computation node,
smartphone] and the back-end [third-party service API, application server,
persistence] by consuming these last ones’ custom APIs

4

Develop the integration between the gateway device and the actuators re-
sponsible for changes in environment 2

Section D: Back-end subsystem (Development)

Configure the development environment 2
Design and develop the persistence component 3
Develop the business logic on the application server 2
Develop the RESTful web services 3

Section E: Back-end subsystem (Integration)

Develop the integration between the application server and third-party ser-
vices 2

Configure OAuth between the application server and third-party services 3
Develop the integration between the application server and the persistence
component 3

34

3.2 – Survey design and methods

Table 3.3: Comparison between the grades (over a scale of 18 to 30, or 31 for a
grade with honors) of the former students and the respondents

Non-respondents Respondents
(N=110) (N=40)

minimum 18.0 19.0
maximum 31.0 31.0

mean 26.3 28.3
SD 4.1 3.1

subsystem took 16 minutes, two subsystems 21 minutes, and three subsystems 25
minutes. Moreover, these data show that 16% of the respondents were involved in
the development all the subsystems.

Table 3.4: Time spent completing the online survey by number of subsystems on
which they answered questions

1 Subsystem 2 Subsystems 3 Subsystems

minimum 0:04:53 0:08:33 0:19:29
maximum 0:42:26 0:44:44 0:46:31

mean 0:16:37 0:21:27 0:25:56

respondents percentage 50.0% 34.0% 16.0%

As the respondents were asked to answer the survey just for the sub-tasks that
they completed in the development of their IoT systems, Table 3.5 shows the per-
centage of completion for each subsystem. The subsystem with a higher average
percentage of completeness was the End-user subsystem (79%), followed by the
Back-end (75%), and finally the Gateways (60%).

Table 3.5: Percentage of sub-tasks rated on each subsystem

End-user Gateways Back end

minimum 44.4% 15.0% 37.5%
maximum 100% 100% 100.0%

mean 78.9% 59.7% 75.2%

respondents percentage 63.2% 50.0% 50.0%

35

On the challenging issues faced by IoT novice developers

3.3 Results
This section presents the results from the survey according to the proposed

research questions. These results are described as detailed as possible in terms
of particular software development tasks. Concretely, Subsection 3.3.1 provides a
brief description of the demographics of the respondents of the survey, while Sub-
section 3.3.2 introduces the outcomes that emerged from the survey and their con-
nection to the research questions. Subsection 3.3.3 concerns the first research ques-
tion, Subsection 3.3.4 regards the second research question, and Subsection 3.3.5
addresses the third research question.

3.3.1 Demographics
At the beginning of the survey questionnaire, several questions were included

to characterize the demographics of the respondents. As shown in Table 3.6, a
vast majority of the respondents were male (87.5%), and their ages were mainly
from 22 to 24 years old (80%), which is consistent with the student population.
Furthermore, a marked majority of respondents belonged to Computer Engineering
(70%), followed by those that belonged to Electronic Engineering (20% of them),
as illustrated in Figure 3.3.

At the beginning of the course, students were asked to complete an online ques-
tionnaire concerning their prior knowledge on a set of technical skills and program-
ming languages. Specifically, they graded such skills and programming languages
on a 5-point Likert scale. This grading is reported in Table 3.7, where the ratings
in the Likert scale are categorized into low (1 and 2), medium (3), and high (4 and
5). It is observed that the prior knowledge declared by the students of the Ambient
Intelligence course was low in most of the topics and programming languages. The
only exceptions were programming (in general) and the C language, since nearly
all students had taken a basic programming course. Similarly, as briefly mentioned
in the Introduction, the respondents of the survey are considered to be, to some
extent, representative of novice professionals in the context of IoT systems develop-
ment. This idea is supported based on the observation made by Salman et al. [86],
according to which “in an academic setting, we can find students who already pos-
sess industrial experience or in a field experiment, we can face novice professionals
with regard to a particular technology”.

Moreover, when the respondents were developing their course projects, they
were not constrained or induced to use a specific Integrated Development Environ-
ment (IDE). In particular, regarding web development (typically in HTML, CSS,
and JavaScript) and the back-end development (commonly in Python and Java),
respondents had the freedom to choose the code editor that they liked the most.
However, when developing mobile applications, respondents were inevitably led to
the use of the development tool provided by the corresponding mobile operating

36

3.3 – Results

system (Android Studio, when implementing Android applications, and XCode,
when implementing iOS applications). Nevertheless, all the respondents (belong-
ing to different groups) implemented the code mostly from scratch, without code
generation tools or tools that could have hidden the inherent complexity of imple-
menting the IoT system. For this reason, the development tools are not a factor
of disparity; they are not considered to affect the results obtained by respondents
from different groups.

Table 3.6: Age and gender of the respondents

22-24 25-27 >28 Total

Female 5 1 - 5
Male 27 4 3 33

Total 32 5 3 40

Table 3.7: Technical skills of the AmI students before taking the course

Topic Low Average High

Programming (in general) 16.97% 44.85% 38.18%
Web architectures 69.09% 19.39% 11.52%
Mobile development 86.06% 9.09% 4.85%
Source control management 90.91% 4.85% 4.24%
Software requirements specification 75.15% 15.76% 9.09%

Python 92.12% 2.42% 5.45%
HTML/CSS 81.21% 9.09% 9.70%
JavaScript 89.09% 5.45% 5.45%
Java 79.39% 9.09% 11.52%
C 12.12% 27.27% 60.61%

Figure 3.3: Bachelor degree of the survey respondents when attending the course

0 5 10 15 20 25 30

Computing Engineering

Electronic Engineering

Other Engineering

28

8

4

37

On the challenging issues faced by IoT novice developers

3.3.2 Research questions
Three types of outcomes emerged for each of the subsystems in the survey:

1. The rating of each sub-task complexity in terms of its difficulty level and
completion time (i.e., to answer RQ3.1).

2. The set of sub-tasks that were ranked as the most challenging (i.e., to answer
RQ3.2).

3. The perception of each respondent about the most challenging tasks (i.e.,
to answer RQ3.3).

In this section, the three questions will be addressed for each subsystem. Since
the rating of the difficulty level and time spent on each sub-task was captured on an
ordinal scale, the results from this outcome were analyzed through the median and
the correlation between these variables. As shown in Tables 3.8 to 3.10, almost all
the development sub-tasks yielded positive correlations between the difficulty level
and the time spent. Next, for analyzing the ranking of the most complex sub-tasks,
they were prioritized according to the number of times they were included in the
ranking and their position. To do this prioritization, a weighted sum was calculated
for each sub-task and the three sub-tasks with the highest weights are presented
below. Lastly, the perception about the most complex tasks was analyzed through
the comments of the survey respondents, and three main categories were identified:
learning curve issues, integration between subsystems issues, and configuration and
deployment issues. At the end of this section, will be reported, for each of these
categories, some of the most representative comments made by the respondents
when they were asked to justify their ranking choice.

3.3.3 RQ3.1. Rating of the sub-tasks
Tables 3.8 to 3.10 present the development sub-tasks of each subsystem, along

with two box plot diagrams illustrating the ratings for the difficulty level and time
spent. Moreover, next to these diagrams are reported the correlation between the
ratings. When the p-value was less than 0.05, the correlation is flagged with a *,
meaning that the correlation of the concerned sub-task is statistically significant.

Section A: End-user subsystem

End-user native mobile application (Section A1) The sub-task of Becom-
ing familiar with the mobile application platform-specific programming language (eu-
nat-1), was rated as difficult and time-spending. Concretely, these programming
languages are: Java, when developing Android applications, or Swift, when devel-
oping iOS applications. On the contrary, although also statistically significant, the

38

3.3 – Results

Section A1: End-user native mobile application Difficulty Time spent Corr.

Develop a native end-user mobile application

eu-nat-1 Become familiar with the mobile application platform-specific programming
language

0.91*

eu-nat-2 Configure the development environment 0.93*

eu-nat-3 Develop the models' classes 0.59

eu-nat-4 Develop the controllers' classes 0.88

eu-nat-5 Develop the user interface (views) -0.19

eu-nat-6 Connect the push notification module with the platform notification service 0.77

eu-nat-7 Handle the notifications received in the end-user's smartphone 0.77

Develop the integration between the end-user application and the gateways

eu-nat-8
Implement the HTTP asynchronous requests through the RESTful web services
exposed by the gateways

0.82

eu-nat-9 Parse and handle the JSON- or XML-formatted response 0.41

Deploy the end-user mobile application into the smartphone

eu-nat-10
Package the application into a compatible format that might be deployed on the
smartphone

0.94*

Section A2: End-user hybrid mobile application Difficulty Time spent Corr.

Develop a hybrid end-user mobile application

eu-hyb-1 Become familiar with the scripting programming languages -0.08

eu-hyb-2 Configure the development environment 0.92*

eu-hyb-3
Incorporate into the project all the required plugins on their corresponding
versions

0.61

eu-hyb-4 Develop the controllers 0.32

eu-hyb-5 Develop the user interface through HTML and CSS files (views) 0.40

eu-hyb-6 Develop the user interaction through JavaScript files (views) 0.80

eu-hyb-7 Connect the push notification module with the platform notification service -

eu-hyb-8 Handle the notifications received in the end-user's smartphone -

Develop the integration between the end-user application and the gateways

eu-hyb-8 Implement the HTTP asynchronous requests through the RESTful web services
exposed by the gateways

0.43

eu-hyb-9 Parse and handle the JSON- or XML-formatted response 0.82

Deploy the end-user mobile application into the smartphone

eu-hyb-10 Package the application into a compatible format that might be deployed on the
smartphone

0.94

Section A3: End-user web responsive mobile application Difficulty Time spent Corr.

Develop a web responsive end-user mobile application

eu-web-1 Become familiar with the scripting programming languages 0.69*

eu-web-2 Configure the development environment 0.87*

eu-web-3 Develop the controllers 0.70*

eu-web-4 Develop the user interface through HTML and CSS files (views) 0.18

eu-web-5 Develop the user interaction through JavaScript files (views) 0.47

eu-web-6 Deploy the application on the web 1.00

Develop the integration between the end-user application and the gateways

eu-web-7
Implement the HTTP asynchronous requests through the RESTful web services
exposed by the gateways

0.88*

eu-web-8 Parse and handle the JSON- or XML-formatted response 0.75*

Deploy the end-user mobile application into the smartphone

eu-web-9
Package the application into a compatible format that might be deployed on the
smartphone

0.96*

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Table 3.8: End-user ratings

sub-tasks of Configuring the development environment (eu-nat-2) and Packaging
the application into a compatible format that might be deployed on the smartphone

39

On the challenging issues faced by IoT novice developers

(eu-nat-10) were rated as not difficult and not time-spending, plausibly because
the “official” IDEs provide the developers enough commands and visual interfaces
to do so intuitively. Developing the user interface (eu-nat-5) yields a negative cor-
relation, suggesting that it was considered to be more difficult than time spending.
Probably because once the first views are developed, the learning curve is overtaken
and the process becomes quicker. However, the magnitude (-0.19) and statistical
significance of this correlation are weak. Developing the controller’s classes (eu-
nat4) was rated as a very difficult sub-task, and significantly time spending, with a
high correlation (0.88) even if not statistically significant, according to the p-value.
Effectively, the development of the controllers is critical since they are the bound
between the models and the views, and they manage the interaction with external
data sources. Connecting the push notification module with the platform notifica-
tion service (eu-nat-6) was also rated as a complex sub-task. This can be due to
the parametrization and the functions that have to be properly implemented to
generate and manage the notifications.

End-user hybrid mobile application (Section A2) Configuring the devel-
opment environment (eu-hyb-2) was the only sub-task whose correlation between
difficulty and time spent was statistically significant. Notwithstanding, the ratings
of this task were scattered in both variables, most of them ranging from 1 to 4.
Therefore, based on these numbers, it is not possible to determine accurately if this
sub-task was perceived as complex or not. Unlike the development of the End-user
native application, Becoming familiar with the scripting programming languages
(eu-hyb-1) is not perceived as complex, and has a very weak, and negative, corre-
lation between difficulty and time spent (-0.08). These results would suggest that
an advantage for novice programmers of hybrid mobile applications over the native
ones, is the use of scripting languages, which are more common and widespread.
However, Developing the user interface through HTML and CSS files (eu-hyb-5)
appears to be more difficult and time spending in hybrid mobile applications than
in the native applications. Since the native applications IDEs are targeted at a
specific mobile operating system, they provide a better consistency between the
design, development, and deployment of the user interface. Finally, in the sub-task
of Connecting the push notification module with the platform service (eu-hyb-7), all
the respondents rated the time spent with 2, as well as in Handle the notifications
received in the end-user’s smartphone (eu-hyb-8), where all the respondents rated
the difficulty as 3. In both cases the low number of responses did not allow the
correlation to be computed.

End-user responsive mobile application (Section A3) The set of sub-
tasks with a significant correlation were rated as not particularly complex. Parsing
and handling the JSON- or XML-formatted responses (eu-web-8) had exactly the
same ratings in the difficulty and time spent variables as well as Packaging the
application into a compatible format that might be deployed on the smartphone (eu-
web-9). The difficulty when Developing the controllers (eu-web-3) had the same

40

3.3 – Results

value (3) for the first quartile, the median, and the third quartile. Implement
the HTTP asynchronous requests through the RESTful web services exposed by the
gateways (eu-web-7) was rated as considerably difficult and time spending (median
= 3, in both variables). This sub-task might be more complex in this kind of mobile
applications due to the lack of libraries or frameworks to manage the connection
and the HTTP requests and responses, such as the ones in the native or hybrid
mobile applications IDEs. Naturally, the Deployment of the application on the web
(eu-web-6) was rated as easy and quick. The Development of the user interface
through HTML and CSS files (eu-web-4) was rated as easy but considerably time
spending. Probably all the programmers were familiar with HTML and CSS, or
at least could easily become skilled in them. However, the absence of a tool to
graphically compose and link the views could affect negatively the time spent.

Sections B and C: Gateways subsystem

Gateways development (Section B) in almost all the sub-tasks the correla-
tion between difficulty and time spent was statistically significant. Configuring the
development environment (gw-dev-1 and gw-dev-2) was rated as easy and quick.
The ratings for Developing the business logic of the gateway device application (gw-
dev-3 and gw-dev-4) were mainly scattered from 2 to 4, meaning that while not
extremely difficult, neither they were extremely easy. In the context of the IoT
course projects, the concept of ‘business logic’ basically refers to the way in which
the data gathered from the sensors will be used to accomplish the overall system
functional requirements. Setting up the parameters needed to establish the connec-
tion with third-party services APIs using OAuth (gw-dev-5) was rated as very time
spending while moderately difficult. In fact, even if this sub-task doesn’t require a
significant programming effort, it requires a good conceptual and technical under-
standing of OAuth and the registration of the application in the third-party service
platform. Likewise, Developing the methods or functions required to establish the
connection with third-party services APIs using OAuth (gw-dev-7), was rated as a
difficult and time spending sub-task. It demands to consult several documentation
sources and devote a significant amount of time ensuring a successful connection.
Generating the notifications by invoking the platform notification service APIs (gw-
dev-9) had exactly the same ratings in the difficulty and time spent variables.

Gateways integration (Section C) the correlation of all the sub-tasks re-
garding the Integration between the gateway device and the sensors (gw-int-1 to
gw-int-4) were statistically significant. In particular, Developing the methods or
functions required to establish the Bluetooth connection with the sensors (gw-int-2)
was rated as easy and quick, and the Development of the methods or functions to
obtain data from the sensors (gw-int-3) was rated as time-spending. The difficulty
in the Development of a component for receiving real-time streaming data coming

41

On the challenging issues faced by IoT novice developers

Section B: Gateways development Difficulty Time spent Corr.

Configure the development environment

gw-dev-1 Install and deploy the operating system 0.64*

gw-dev-2
Install the libraries and dependencies needed to develop on the gateway's
controller 0.74*

Develop the business logic of the gateway device application

gw-dev-3 Define and implement the required set of models 0.82*

gw-dev-4 Develop the methods or functions where the business logic is implemented 0.80*

Configure the OAuth authentication between the gateway device and third-party
services APIs

gw-dev-5 Set up the parameters needed to establish the connection 0.43

gw-dev-6 Install the required set of libraries 0.88*

gw-dev-7 Develop the methods or functions required to establish the connection 0.82*

Develop the module for generating notifications to be displayed on the end-user
application

gw-dev-8
Set up the parameters needed to establish the connection with the platform
notification service

0.52

gw-dev-9 Generate the notifications by invoking the platform notification service APIs 0.80*

Deploy the software into the gateway devices

gw-dev-10
Package the application into a compatible format that might be deployed on the
gateway

0.87*

Section C: Gateways integration Difficulty Time spent Corr.

Develop the integration between the gateway device and the sensors

gw-int-1
Develop the methods or functions required to establish the Wi-Fi connection
with the sensors

0.85*

gw-int-2 Develop the methods or functions required to establish the Bluetooth
connection with the sensors

0.90*

gw-int-3 Develop the methods or functions required to obtain data from the sensors 0.78*

gw-int-4
Develop a component for receiving real-time streaming data coming from the
sensors

0.90*

Develop the integration between the gateway device and the back-end by
consuming these last ones’ custom APIs

gw-int-5
Implement the HTTP asynchronous requests through the RESTful web services
exposed by third-party services APIs

0.17

gw-int-6 Parse and handle the JSON- or XML-formatted response obtained from third-
party services APIs

0.78*

gw-int-7
Implement the HTTP asynchronous requests through the RESTful web services
exposed by the application server

0.28

gw-int-8
Parse and handle the JSON- or XML-formatted response obtained from the
application server

0.08

Develop the integration between the gateway device and the actuators responsible
for changes in environment

gw-int-9 Develop the methods or functions required to establish the connection 0.88*

gw-int-10 Develop the methods or functions required to handle the actuators behaviour 0.54

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Table 3.9: Gateways ratings

from the sensors (gw-int-4) had the first quartile, the median, and the third quar-
tile rated as 3. The rest of the sub-tasks in this subsection did not exhibit a clear
trend concerning their low or high complexity.

Sections D and E: Back-end subsystem

Back-end development (Section D) The sub-tasks corresponding to the
Configuration of the development environment (be-dev-1 and be-dev-2), and the
Design and development of the persistence component (be-dev-3 and be-dev-4) were
not rated as complex. On the contrary, the Development of the business logic on
the application server was rated as difficult and time spending. Especially the
Development of the methods or functions where the business logic is implemented

42

3.3 – Results

Section D: Back-end development Difficulty Time spent Corr.

Configure the development environment

be-dev-1 Install and deploy the application server 0.68*

be-dev-2
Install the libraries and dependencies needed for the application server
development 0.89*

Design and develop the persistence component

be-dev-3 Design the entity-relationship model or the corresponding data model, if NoSQL
is used

0.80*

be-dev-4 Install the database server 0.92*

be-dev-5 Deploy the database with the corresponding data model 0.49

Develop the business logic on the application server

be-dev-6 Define the required set of models 0.88*

be-dev-7 Develop the methods or functions where the business logic is implemented 0.86*

Develop the RESTful web services

be-dev-8 Define the HTTP methods along with their URI and associated operation 0.75*

be-dev-9 Set up the framework required to implement the RESTful web services 0.66*

be-dev-10 Implement the mapping between the business logic models and the exposed
RESTful web services

0.41

Section E: Back-end integration Difficulty Time spent Corr.

Develop the integration between the application server and third-party services

be-int-1
Implement the HTTP asynchronous requests through the RESTful web services
exposed by third-party service APIs 0.81*

be-int-2 Parse and handle the JSON- or XML-formatted response 0.74*

Configure the OAuth authentication between the application server and third-party
services

be-int-3 Set up the parameters needed to establish the connection 0.99*

be-int-4 Install the required set of libraries 0.77*

be-int-5 Develop the methods or functions required to establish the connection 0.90*

Develop the integration between the application server and the persistence
component

be-int-6 Set up the connection between the application server and the database 0.80*

be-int-7 Implement the queries to be performed over the database 0.70*

be-int-8 Parse and handle the database response 0.82*

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Table 3.10: Back-end ratings

(be-dev-7). Naturally, the complexity of this sub-task has to do with the fact that
each group had to program its business logic methods from scratch, and without the
guidance of previous implementations. The sub-tasks concerning the Development
of the RESTful web services (be-dev-8 to be-dev-10) were not rated as difficult but
as moderately time spending.

Back-end integration (Section E) Parsing and handling the JSON- or XML-
formatted response (be-int-2) was rated as easy and quick. When configuring the
OAuth authentication between the application server and third-party services, the
Installation of the required set of libraries (be-int-4) was rated as easy and quick.
Moreover, the set up of the parameters (be-int-3) and the development of the meth-
ods or functions to establish the connection (be-int-5), do not exhibit a clear trend
about how complex they resulted to the respondents. Lastly, all the sub-tasks con-
cerning the Development of the integration between the application server and the
persistence component (be-int-6, be-int-7, and be-int-8) were rated as easy and not
time spending.

43

On the challenging issues faced by IoT novice developers

Summary of RQ3.1

RQ3.1: How complex, in terms of time spent and difficulty, are the
software development tasks needed to build an IoT system?

Almost all the sub-tasks hold a positive correlation between the two variables
that were used to measure the complexity. It means that all the sub-tasks rated as
significantly difficult were also rated as considerably time spending. By comparing
the ratings of the sub-tasks and the correlation between their two variables, I could
preliminarily identify for each subsystem those sub-tasks that stand out as complex.
Hereafter is presented a summary of the main findings for each subsection of the
questionnaire.

In the End-user native mobile application, becoming familiar with the
platform-specific programming language (eu-nat-1), and developing the application
controllers (eu-nat-4) were rated as difficult and time-spending sub-tasks. In the
End-user hybrid mobile application, the rating of the sub-tasks and their sta-
tistical significance did not allow to identify a clear tendency about the correlation
between the difficulty and the time spent. In the End-user responsive mobile
application, the implementation of the HTTP asynchronous requests through the
RESTful web services exposed by the gateways (eu-web-7) was rated as considerably
difficult and time spending. On the contrary, the development of the user interface
through HTML and CSS files (eu-web-4) was rated as easy but time spending. In
the Gateways development, implementing the methods or functions to establish
the connection with third-party services APIs using OAuth (gw-dev-7), was rated
as difficult and time-spending. In the Gateways integration, the correlation of
the sub-tasks concerning the integration between the gateways and the sensors (gw-
int-1 to gw-int-4) were statistically significant. While the methods or functions to
establish the connection with the sensors was rated as easy and quick (gw-int-2),
the methods or functions to gather information from those sensors were rated as
time-spending (gw-int-3). In the Back-end development the implementation of
the business logic on the application server was rated as difficult and time spend-
ing (be-dev-7). On the contrary, the sub-tasks concerning the development of the
RESTful web services were not rated as difficult but as moderately time spending
(be-dev-8 to be-dev-10). In the Back-end integration subsystem no sub-task was
rated as particularly difficult or time spending.

3.3.4 RQ3.2. Ranking of the sub-tasks
Table 3.11 presents, for each subsystem, the three sub-tasks that the respondents

placed in the first position of the ranking they were asked to do in the survey, as
the most complex ones. In the End-user subsystem, these sub-tasks are listed
depending on the kind of End-user mobile application developed whether it was a
native, hybrid or web-responsive mobile application. Next to each sub-task there

44

3.3 – Results

is a triplet of numbers representing the number of times in which the concerned
sub-task was ranked in the first, second, and third place, respectively. As expected,
this ranking matches with the rating of the sub-tasks in terms of difficulty level
and time spent.

According to the sub-tasks ranked as the most complex, it can be observed that
despite the kind of End-user mobile application implemented (native, hybrid or
web-responsive), the development of the user interface was perceived as complex
(eu-nat-5, eu-hyb-5, eu-web-4). This observation is somehow surprising, particu-
larly concerning native mobile applications, where one may presume that the IDE
would ease the design of the user interface views and their connection with the
business logic of the application. Moreover, the configuration of the development
environment was perceived as complex both in the native mobile applications as
well as in the web responsive mobile application (eu-nat-2, eu-web-2). Once again,
it is striking that even with specialized IDEs as the ones used to develop native
mobile applications, the configuration of the development environment was ranked
as complex. Finally, concerning the End-user subsystem, the development of the
controllers (which can be understood as the binding between the views and the
business logic), was ranked as one of the most complex sub-task both in the hybrid
mobile applications and in the web-responsive mobile applications.

In the Gateways development and the Gateways integration subsystems there is
a clear correspondence between the development of the methods or functions to es-
tablish the connection between the gateway device and the third party services APIs
using OAuth, in the Gateways development (gw-dev-7), and the parsing and han-
dling the JSON or XML-formatted response obtained from the third-party services
APIs, in the Gateways integration (gw-int-6).

Similarly, in the Back-end subsystem, there is a clear mapping between the
deployment of the database with the corresponding data model, in the Back-end
development (be-dev-5), and the parsing and handling of the database response in
the application server, in the Back-end integration (be-int-8).

However, between Gateways and Back-end subsystems, there are also some
coincidences. For instance, the development of the functions or methods where the
business logic is implemented was ranked in both subsystems as a complex sub-task
(gw-dev-4 and be-dev-7). Furthermore, there is another correspondence between
the implementation of the HTTP asynchronous request through the RESTful web
services exposed by the application server, in the Gateways integration (gw-int-7),
and the implementation of the mapping between the business logic models and the
exposed RESTful web services, in the Back-end development (be-dev-10).

45

On the challenging issues faced by IoT novice developers

Table 3.11: Sub-tasks ranked as the most complex (ranking 1st-2nd-3rd)

Section A1: End-user native mobile application

eu-nat-1 Become familiar with the mobile application platform-specific programming language 3-3-0
eu-nat-2 Configure the development environment 1-1-1
eu-nat-5 Develop the user interface (views) 1-0-2

Section A2: End-user hybrid mobile application

eu-hyb-7 Connect the push notification module with the platform notification service 2-0-0
eu-hyb-5 Develop the user interface through HTML and CSS files (views) 1-1-0
eu-hyb-4 Develop the controllers 1-0-0

Section A3: End-user web responsive mobile application

eu-web-2 Configure the development environment 3-0-0
eu-web-3 Develop the controllers 2-1-1
eu-web-4 Develop the user interface through HTML and CSS files (views) 2-0-1

Section B: Gateways development

gw-dev-4 Develop the methods or functions where the business logic is implemented 5-2-1

gw-dev-7 Develop the methods or functions to establish the connection (between the gateway device
and third-party services APIs using OAuth) 5-0-1

gw-dev-5 Set up the OAuth parameters needed to establish the connection with the third-party
services APIs 2-3-1

Section C: Gateways integration

gw-int-3 Develop the methods or functions required to obtain data from the sensors 3-2-1

gw-int-6 Parse and handle the JSON- or XML-formatted response obtained from the third-party
services APIs 3-1-1

gw-int-7 Implement the HTTP asynchronous requests through the RESTful web services exposed
by the application server 2-3-1

Section D: Back-end development

be-dev-5 Deploy the database with the corresponding data model 2-4-1

be-dev-7 Develop the methods or functions where the business logic of the application server is
implemented 2-3-1

be-dev-10 Implement the mapping between the business logic models and the exposed RESTful web
services 2-2-2

Section E: Back-end integration

be-int-1 Implement the HTTP asynchronous requests through the RESTful web services exposed
by third-party service APIs 9-0-0

be-int-8 Parse and handle the database response (in the application server) 2-3-3

be-int-3 From the server application, set up the OAuth parameters needed to establish the connec-
tion with the third-party services 4-0-3

Summary of RQ3.2

RQ3.2: Which are the software development tasks that are perceived
as the most complex to complete?

The development tasks that are perceived as the most complex regard aspects

46

3.3 – Results

that are common to various subsystems, as might be the development of user in-
terfaces, the configuration of the development environments, and the development
of the business logic. Some other aspects, however, are split across various sub-
systems. Such is the case of the integration between the Gateway devices and the
third-party services, the implementation and integration with the persistence com-
ponent, and the implementation, exposure, and consumption of custom RESTful
web services.

Due to the above, besides determining the most complex sub-tasks on each
subsystem, the ranking section of the survey helped to identify, firstly, the set of
sub-tasks that are common to various subsystems, and secondly, a set of sub-tasks
that complement each other in the development of some portions of the IoT system.

In the first set of sub-tasks there are:

• Sub-tasks concerning the development of the user interfaces were ranked as
complex regardless the kind of End-User mobile application (eu-nat-5, eu-
hyb-5, and eu-web-4).

• The configuration of the development environment was also ranked as com-
plex both in the native mobile application and in the web responsive mobile
application.

• The development of the controllers (binding between models and views in the
Model-View-Controller [MVC] architecture) was ranked as complex in the
hybrid mobile applications and in the web responsive mobile applications.

In the second category there are:

• The development of the methods or functions to establish the connection
between the Gateway device and the third party service APIs using OAuth
(gw-dev-7), and the parsing and handling of the response obtained from the
third party service APIs, in the Gateways Integration subsystem (gw-int-6).

• The design, implementation, and integration of the persistence component,
which spans across the Back-end development (be-dev-5) and the Back-end
integration (be-int-8).

• The design, implementation and later consumption of the custom RESTful
web services. Their implementation and mapping between the business logic
and the exposed RESTful web services belong to the Back-end Development
subsystem (be-dev-10), while the consumption of those services belongs to
the Gateways Integration (gw-int-7).

47

On the challenging issues faced by IoT novice developers

3.3.5 RQ3.3. Qualitative perception of the survey respon-
dents

Below are presented and analyzed the comments given by the respondents when
asked about why did they perceive certain sub-tasks as the most challenging ones.
Such comments were analyzed through inductive thematic analysis, that involved
two researchers and followed the six-phase framework proposed by Braun and
Clarke’s [13]. The first step consisted in becoming familiar with the comments
of the respondents and was carried out by the two researchers. Secondly, the first
researcher categorized the material at the sentence level and generated the initial
codes. The second researcher, for his part, discussed and validated them. This dis-
cussion was in person and using hard copies of the respondents’ comments. Since
an open code approach was used, there were not preset codes. Instead, the codes
were being developed and modified while advancing through the coding process.
Thirdly, the first researcher identified produced a set of themes with their corre-
sponding codes; initially, 18 open codes were used, later grouped into three broader
themes. Further on, in the fourth step, the second researcher validated and ap-
proved the proposed themes under the rationale that they were supported by the
previously generated codes. In this manner, in the fifth step, the themes were jointly
analyzed, and in the last step, the researchers’ observations around these themes
were documented. The thematic analysis revealed three key themes, based also
on the commonalities of the comments across all the subsystems: Learning curve
issues, Integration between subsystems issues, and Configuration and deployment
issues.

Learning curve issues

In the End-user subsystem, comments about the Learning curve issues, high-
light that most of the survey respondents were developing for the first time a mobile
application. Those groups that decided to implement a native End-user mobile ap-
plication, faced the challenge of learning a new programming language and becom-
ing familiar with the concerned development environment. Respondents expressed:
“I knew almost nothing on Android when I started developing the app, I had to
learn everything from scratch”, “Becoming familiar with a new programming lan-
guage in a very little time is very difficult”. “I spent a lot of time researching how
to complete everything and make it work”.

In the Gateways subsystem development, Learning curve issues concerned
how to handle the data gathered from the End-user mobile application, as well as
from the sensing devices: “We worked with the Global Positioning System (GPS),
so we had to do some research about playing with coordinates and GPS accuracy.”
Moreover, since the communication with End-user and Back-end subsystems is typ-
ically achieved through RESTful web services, the understanding of these services

48

3.3 – Results

(both the ones that had to be implemented as well as the external ones that had
to be consumed), was perceived as challenging by some respondents: “I had never
heard about APIs, and there were tasks in which it was required to work with them.”

Similarly, the Gateways subsystem integration required the knowledge
about how to adequately implement the web services so that, through HTTP re-
quests coming from the other subsystems, the gateway is directed to perform some
given business logic function. “I was a very beginner with no background in ‘Imple-
ment the HTTP asynchronous requests through the RESTful web services exposed by
the third-party services APIs’ and ‘Parse and handle the JSON- or XML-formatted
response obtained from the third-party services APIs’.” Likewise, managing the in-
tegration through other transmission protocols was perceived as challenging due to
the lack of adequate documentation: “Bluetooth documentation for Android wasn’t
clear, and there were not enough examples of how to use it”, “There was no docu-
mentation for some smart home sensors, or sometimes we found very poorly written
documentation”.

Once again, as occurred in the Gateways subsystem, in the Back-end sub-
system development, the RESTful web services concept was also challenging to
apprehend. “It took me some time mostly because of the scarce knowledge of Flask,
but as I figured things out it all got easier (‘Set up the framework required to im-
plement the RESTful web services’ and ‘Develop the methods or functions where
the business logic is implemented’).” In the same way respondents expressed: “I
had to study a lot of things to understand how to implement my logical function
in HTTP”, “It took some research to understand how to implement it (‘Define the
HTTP methods along with their URI and associated operation’).” Finally, among
the Back-end subsystem integration, the learning curve issues concerned how
to deal with the data exchanged with the back-end: “Needed to learn how to ‘Parse
and handle the database response’ properly.”

Integration between subsystems issues

As noted before, across the three types of mobile applications, the integration
between the End-user subsystem and the Gateways subsystem was among the
most challenging issues. Respondents commented “Interaction between the server
and the mobile app was quite difficult for us because we decided to manage it in
a ‘custom’ way.” The integration between the End-user subsystem and the third-
party services was particularly challenging: “We had several problems interfacing
the Fitbit APIs with our application”.

The most painful integration among the Gateways subsystem development,
according to the respondent’s comments, regards the OAuth 2.0 authentication. In
fact, this authentication protocol consists of a flow, with a set of roles (resource
owner, resource server, client, and authorization server) interacting across various
steps (authorization request, access token request, and protected resource request),

49

On the challenging issues faced by IoT novice developers

and exchanging several resources (authorization grant, access token, refresh token,
redirect URI [Uniform Resource Identifier]). Respondents commented “OAuth 2.0
authentication, to gain access to the Fitbit API, was a mess. There were hardly any
tutorials for the method, and it took a lot of time to figure it out” and “Authenti-
cation is a nightmare.” Moreover, concerning the integration that did not required
OAuth, the main reason given by the respondents was the lack of experience: “I
had no experience on how to connect the devices.”

When working on the Gateways subsystem integration, dealing with the
data coming from the back-end resulted challenging, particularly when receiving
streaming data coming in real-time: “While receiving generic data was easily done,
when we stepped up to the real-time stream we spent an enormous amount of time
just to figure out how to access it and then how to handle it.” “Establishing the
connection between front and Back-end is not an easy task! I’d never worked with
JSON.”

The integration issues in the Back-end subsystem development regarded
the communication with the Persistence component, the Gateways, and even the
Sensing devices, for those groups that decided to communicate the Sensors sub-
system directly with the Back-end subsystem. Finding out how to handle incom-
ing data into the business logic that is implemented in the Application server is
perceived as the most challenging issue. Concerning the managing of Persistence
component, respondents commented: “It took a lot of time to develop an error-free
function in Python to manage the SQLite database.” When dealing with the data
gathered directly from the sensors, respondents commented: “It was hard to make
things run together (i.e. retrieve information from the sensors without stopping the
web-application).” Finally, when incorporating the incoming data into the business
logic of the Application server, respondents commented: “It was necessary to im-
plement a set of models that were compatible with hardware (Arduino) and the web
and application server (Flask). The link between these two architectures was not so
easy to design.”

According to the respondents comments, the most challenging issues in the
Back-end subsystem integration had to do with integrating third-party APIs:
“I spent a lot of time because it was the first time I dealt with it (‘Implement
the HTTP asynchronous requests through the RESTful web services exposed by the
third-party service APIs’). I had to change my implementation several times due
to the limitations of the commercial third-party APIs. Likewise, it took a while
to understand how to use them to achieve our goals. In the final implementation,
we used three external APIs’.” As already pointed out in the Gateways subsystem
issues, third-party APIs have their own specific protocols, formats, and authentica-
tion mechanisms. These specifics imply a higher level of complexity for the novices
when integrating third-party services in their projects.

50

3.3 – Results

Configuration and deployment issues

Configuration and deployment issues concerning the End-user subsystem
were mainly related to the development environment and the dependencies required
to develop the End-user mobile applications. “The development environment used
throughout the course (Eclipse) is quite simple to use but requires a lot of effort
to configure it for a given development project.” Depending whether the mobile
application was native, hybrid, or web-responsive, diverse development environ-
ments and their dependencies had to be configured: “I found very hard to configure
PhoneGap and Apache Cordova in Windows.” As part of the Gateways sub-
system development, various libraries have to be installed in order to ease and
manage the communication with the End-user and the Back-end subsystem: “The
libraries were always difficult to install, and also very time consuming” and “In my
personal experience, the OAuth authentication was very difficult to set up for its
first use.”

In the Back-end subsystem development the sub-tasks aimed at designing,
setting up and deploying the Persistence module, were perceived as time-consuming:
“While not difficult per se, these were the tasks that took most of my time. For ex-
ample, deploying the database, designing the Entity-relationship model, and setting
up the hardware.” Moreover, fixing technical details that may affect the develop-
ment of the Back-end had some minor impact in the development of the Back-end:
“It takes a while to deploy the system because of some port conflicts derived from
some issues in the configuration of the development environment.” Once imple-
menting the Back-end subsystem integration, and specifically its integration
with third-party services, OAuth requires configuring the Back-end from which
the authenticated request will be made. Commonly it involves installing libraries,
setting up various parameters, and configuring the third-party APIs in their corre-
sponding web platforms. “I had a lot of problems, and spent a lot of time, properly
configuring the OAuth authentication between our application server and the one of
Jawbone, it needed a lot of permissions.”

Summary of RQ3.3

RQ3.3: Why are these tasks perceived as the most complex?
By analyzing the comments of the respondents concerning their reasons behind

the ranking of the sub-tasks, there might be identified, on the one hand, the lack
of adequate documentation that might be understandable by the novices. And on
the other hand, the lack of knowledge and expertise required to deal with several
protocols, formats, authentication mechanisms, and real-time data. Concretely,
their feedback could be categorized into: Learning curve issues, Integration between
subsystems issues, or Configuration and deployment issues. Hereinafter I provide a

51

On the challenging issues faced by IoT novice developers

summary of the most common perceptions on each category.

Learning curve issues: In the End-user subsystem, these kinds of issues con-
cerned the fact that most of the survey respondents were developing for the
first time a mobile application. They faced the challenge of learning a new
programming language and becoming familiar with the concerned IDE. When
developing the Gateways, respondents struggled with understanding con-
ceptually the RESTful web services before dealing with their implementation
and consumption later (when implementing the Gateways integration sub-
system). Furthermore, also concerning Gateways integration, achieving the
integration with the End-user subsystem using other transmission protocols
such as Bluetooth was perceived challenging due to the lack of adequate doc-
umentation. In the Back-end subsystem, the RESTful web service concept
was mentioned once again as difficult to apprehend, particularly regarding
the mapping between business logic methods and the web service endpoints.

Integration between subsystems issues: Without a doubt, the issues regard-
ing the integration between subsystems were the most common according
to the respondent’s comments. The integration with both, self-implemented
software components as well as with third-party services APIs, was perceived
as complex. In the End-user subsystem, the integration with third-party ser-
vices was particularly challenging. In the Gateways subsystem development,
dealing with the OAuth authentication was perceived as complex given the
flow, roles, and steps of this authentication mechanism. According to respon-
dent’s comments, the inherent complexity of OAuth was worsened by the lack
of documentation understandable by novices. In the Gateways integration,
dealing with streaming data coming in real-time from the Back-end was per-
ceived both as extremely difficult and time-spending. In the Back-end, the
main issues have to do with appropriately handling the data coming from
the other subsystems into the application server business logic. As pointed
out in the Gateways subsystem issues, dealing with the particular protocols,
formats, and authentication mechanisms of each third-party service APIs was
perceived as very challenging when implementing the Back-end integration.

Configuration and deployment issues: In the End-user subsystem, these
kinds of issues concerned the proper configuration of the development en-
vironment and the dependencies required to implement the mobile applica-
tions. When developing the Gateways subsystem, the installation, and con-
figuration of several libraries to manage the communication with the other
subsystems were perceived as difficult and time spending, especially when the
communication involved OAuth. In the Back-end development, the design,

52

3.4 – Discussion

setting up, and deployment of the persistence component (typically a rela-
tional database) was perceived as time-consuming. Also, the deployment of
the Back-end itself (application server) was not trivial. Same as the Gateways
integration, in the Back-end integration, dealing with third-party services
requires several configuration and parametrizations so that authenticated re-
quest could be sent to the third-party services APIs.

Finally, from a system-level view, the sub-tasks that were perceived as the most
challenging, are concerned with the integration between the subsystems. Whether
classified as Learning curve issues, Integration between subsystems issues, or Con-
figuration and deployment issues, many of the comments stressed the complexity
inherent to the integration of heterogeneous subsystems. On the other hand, the
Learning curve issues may be explained basically with the lack of knowledge of
the respondents, or with the lack of adequate documentation that might be under-
standable for them.

3.4 Discussion
The rating of the sub-tasks provided a first perspective about how difficult did

IoT novice developers find the implementation of concrete development sub-tasks.
These sub-tasks were presented as detailed as possible without linking them to
a specific programming language, framework or run-time environment. Differen-
tiating difficulty level from time spent helped to understand which sub-tasks are
complex just from the practical point of view (such as the time spending sub-tasks)
and which other sub-tasks are also complex from the conceptual and learning curve
perspective (such as the difficult and also time spending sub-tasks).

Later, aiming at clearly identifying the most complex sub-tasks, it was necessary
to ask respondents to prioritize the three most complex sub-tasks they faced on
each subsystem. In this way, from the ranking of the sub-tasks, it was possible to
get a perspective of the most painful development issues. From this perspective,
there were identified complex sub-tasks common to many subsystems, and complex
sub-tasks that complement between them across various subsystems.

Thirdly, to understand the previous ranking, it was essential to capture qual-
itatively the perceptions of the respondents about the choice they made and their
reasons behind that selection. These impressions led to the identification and cate-
gorization of the sources of complexity present in the implementation of particular
software development tasks in the context of an IoT system. These categories were:
Learning curve issues, Integration between subsystems issues, and Configuration and
deployment issues.

53

On the challenging issues faced by IoT novice developers

By combining rating, the ranking and the perceptions, some specific program-
ming areas were recurrently mentioned as particularly hard and painful. In partic-
ular, the integration of different subsystems, that require over-the-network commu-
nication protocols, and their debugging resulted considerably difficult, due to the
diversity of client and server environments and the difficulty of tracing the remote
calls. This was worsened by the fact that some third-party services are proprietary,
give little visibility over their behavior, and each of them requires to follow different
approaches and programming patterns. The integration with third-party services
is particularly painful, whether it is the push notification service or the APIs that
require OAuth authentication.

From the ranking of the sub-tasks, the development of the user interfaces in
the End-user subsystem was among the most complex sub-tasks regardless of the
kind of mobile application implemented (native, hybrid or web-responsive). This
fact is somehow surprising if considering that the development of native mobile
applications relies on specialized IDEs that in theory would ease the implementa-
tion of the views. These IDEs typically provide drag and drop features through
which placing the user interaction components on the views should be easy enough.
Notwithstanding, based on the comments of the respondents in the last section of
the survey, I consider that the difficulties experienced by the novice IoT developers
concern the binding between the business logic and the events generated at the
user interface of the mobile application. In fact, the development of the controllers
was also ranked as a complex sub-task in the implementation of hybrid and web
responsive mobile applications. Relatively in line with the complexity experienced
in the views and controllers development, the configuration of the development en-
vironment was also ranked as complex in native and hybrid mobile applications
implementation. Once again, it is unexpected since the IDEs of such kind of ap-
plications usually have features to deal with external dependencies, as well as to
debug and simulate the application execution.

Furthermore, also concerning the ranking of the sub-tasks, it was observed that
sub-tasks aimed at integrating were among the most complex in several subsystems.
Moreover, a complementarity between these sub-tasks, even if belonging to different
subsystems, was identified. This complementarity involves:

• The design, implementation, and consumption of custom RESTful web ser-
vices, that span across Back-end Development and Gateways Integration sub-
system.

• The development of methods to achieve the connection between the Gate-
way devices and the third party services APIs, that spans across Gateways
Development and Gateways Integration subsystems.

• The design, implementation, and integration of the persistence component,
that spans across the Back-end development and the Back-end integration.

54

3.4 – Discussion

This observation emerged from the ranking and confirmed by the comments of the
respondents, reinforce my initial perception of the significant complexity around the
integration of heterogeneous software components. Both when consuming external
services as well as when implementing custom integrations based on each project
business logic. As outlined in the literature, dealing with the required level of
interoperability is considerably painful to novices when developing IoT systems.

Furthermore, the lack of proper documentation and examples about how to inte-
grate the subsystems is one of the main reasons why integration tasks are perceived
as challenging. The difficulty to find well-structured documentation that might be
understood by a novice was repeatedly mentioned by the respondents of the sur-
vey. For this reason, in all the subsystems the sub-tasks regarding integration were
ranked among the first three.

The results from the survey point to the need to support novice IoT developers
in dealing with several protocols, formats, authentication mechanisms, and stream-
ing data coming in real-time. However, this support must be addressed both from
the conceptual and technical perspectives. On the one hand, providing documen-
tation that may be easily comprehended by non-expert IoT developers, and on the
other, tools that would ease the configuration and development of certain software
components integration.

From my knowledge of the university course that the survey respondents at-
tended, I observed that the implementation of the integration between software
components is similar across different projects developed by the respondents (es-
pecially when third-party services are involved). For this reason, I envisioned that,
if documented, the code developed by the novices might provide some guidance to
other programmers that are in the process of overcoming the same learning issues.
In fact, being able to observe how someone else coded, what others paid attention
to, and how they solved problems all support learning better ways to code and
access to superior knowledge [33]. In this regard, from this observation emerged
the Code Recipes [25], i.e., summarized and well-defined documentation modules,
independent from programming languages or run-time environments. They are
specified through a set of metadata and consist of multiple code fragments along
with documentation and links to ease the understanding of such code, in order to
implement a given integration between subsystems of an IoT system. This proposal
is described in detail in Chapter 5.

Another possible approach might consider the automation of the sub-tasks that
were rated as the most time spending. Both code generation and its deployment
across several devices could be automated in such a way that novices just have to
specify some custom parameters. Software Product Lines [76][1] might be a viable
solution in this direction as long as it deals with the heterogeneity of IoT devices,
protocols, and programming languages. Finally, it would be worth focusing on the
lack of tools to debug the communication between devices and software components
across the subsystems, giving some insight to the novices about possible failures in

55

On the challenging issues faced by IoT novice developers

the data exchange process.
In this work a reference architecture as generic as possible was proposed, tak-

ing distance from any technological stack. For this reason, I consider that the
survey structured around this architecture could be useful to a wide range of IoT
developers. Nevertheless, it must be said that since the current research questions
concerned the software development perspective, my findings do not take into con-
sideration the physical configuration and deployment of IoT systems. Future work
could address the identification of the most complex issues concerning the Security
implementation from the software perspective.

3.4.1 Implications
The survey presented in this work aimed at gaining an understanding of the

challenges that novice programmers face when developing an IoT system. The
first research question enabled us to weight all development tasks, identifying their
difficulty level and the time that novices spent completing them. In the second
research question, it could be determined that some of the development tasks per-
ceived as complex concern aspects that are common across various subsystems.
Examples are: the development of user interfaces, the configuration of develop-
ment environments, and the development of the business logic. On the other hand,
there are development tasks that concern aspects that are split across various sub-
systems. Examples are: the methods or functions to integrate the Gateway with
the third-party service APIs, the implementation and integration of the persistence
component, and the design, implementation, and consumption of the RESTful web
services. The third research question provided insights about the causes behind the
challenging issues faced by the novices. Learning curve issues, integration between
subsystems issues, and configuration and deployment issues were identified. The
most frequently reported issues concerned: the difficulty to find well-structured
documentation that might be understood by a novice, the complexity inherent to
the integration of the subsystems, and the integration with third-party services.

I consider that identifying these challenges might have an impact both in aca-
demic and industrial contexts. The findings of this survey could be used to ease
the learning curve in the teaching scenario, and to make the IoT systems devel-
opment more efficient in the software industry by improving on-boarding time es-
timations, hiring criteria, and human resource management within the projects.
Special attention should be given to the integration of different subsystems, taking
into account the various protocols, formats, authentication mechanisms (specially
OAuth), and real-time data streaming. Among these integrations, the integration
with third-party services resulted particularly painful. Therefore I suggest that re-
search efforts should envision automation or debugging tools, as well as improved
documentation strategies. Finally, more empirical studies are required to validate
these findings with a diverse set of practitioners.

56

3.5 – Validity of results

To my knowledge, there were no previous works assessing which are the most
challenging issues faced by IoT novice programmers according to a concrete set of
software development activities. The reported related works base their approaches
on the authors’ expertise, mainly. Additionally, the majority of the frameworks
and toolkits for easing the development of IoT systems are constrained to a par-
ticular technological stack [17, 71, 34, 93, 31]. Instead, supported by my proposed
generic architecture, the IoT developers survey (Chapter 3) aimed at gaining a bet-
ter understanding of such issues independently from the projects, the architectural
decisions, and the technology stack. Moreover, these issues are expressed as con-
crete software development tasks that belong to a specific part of the architecture.

3.5 Validity of results
This section examines the threats to the validity according to the classification

schema proposed by Cook and Campbell [21]. In that schema are defined four
types of threats to validity: conclusion validity, internal validity, construct validity,
and external validity. The following is a detailed description of each type of threat
to validity, as well as some considerations about the repeatability of this work
(Subsection 3.5.5).

3.5.1 Internal validity
Threats to internal validity regard issues that may indicate a causal relationship,

although there is none [105]. In this survey, threats to internal validity concerned
the instrumentation, the subjects selection, and the maturation.

With regard to the instrumentation, the pilot survey (Section 3.3) enabled me to
inspect and determine to what extent the generic architecture, its subsystems, and
the corresponding sections, tasks, and sub-tasks were understandable, pertinent and
complete. In this preliminary study, the pilot students could give their impressions
on the questionnaire and point out any other tasks that were not listed but resulted
complex to achieve. This iteration with the initial pilot survey contributed to
avoid possible threats concerning the instrumentation due to poor question wording,
unclear documentation, or bad instrument layout.

Concerning the subjects selection, students took part in the survey voluntarily.
Nevertheless, the draw of a wireless speaker was used to motivate their participa-
tion. However, as already mentioned in the Survey Design and Methods section, the
consistency between the time spent and the number of sections answered, indicates
that respondents did not skip several sections or sub-tasks of the questionnaire
intentionally to participate in the draw. Consequently, it can be assumed that
the voluntary basis and the motivation draw did not influence the obtained results

57

On the challenging issues faced by IoT novice developers

significantly. Furthermore, as stated in Section 3.5 and shown in Table 3.3, the dis-
tribution of exam scores was checked to exclude the risk that only the best students
were motivated to participate.

Finally, to avoid the maturation threats due to the fatigue or boredom, the
participants were allowed to save partially finished surveys, so they had the chance
to complete it in different moments. Nevertheless, as shown in Table 3.4, all the
participants completed the survey answering it in their first attempt, and completed
it within 46 minutes.

3.5.2 External validity
Threats to external validity are conditions that limit the ability to generalize the

experiment results outside the experiment settings [105]. In this survey, external
threats to validity had to do with the representativeness of the subject population
and the representativeness of the experimental setting.

In what refers to the representativeness of the subject population, in the survey
what happened was that, although most of the respondents belonged to Computer
Engineering and Electronic Engineering, the invitations to participate in the survey
were addressed to students belonging to 7 different engineering degrees. Addition-
ally, as mentioned in Subsection 3.2.5, some of them were foreign students (Erasmus
or other student exchange programs). In fact, on average, the course hosts a co-
hort (20%-25%) of students from foreign universities [24]. This implies that they
received education at different universities and under a different curriculum. Ad-
ditionally, the ages of the participants ranged from 22 to 39 years old. Finally, no
participants were on the basis of their final grades.

Consequently, the subject population, given their heterogeneity regarding the
bachelor degree, the home university, the age, and the performance in the course,
although not statistically representative, is a mix that is frequently encountered
among IoT novice developers. However, it would be desirable to have had more
women participating, as well as a higher percentage of students from other disci-
plines, apart from Computing Engineering and Electronic Engineering. Neverthe-
less, given the demographics of the course itself, such a scenario was not likely in
the survey.

On the other hand, in pursuit of an experimental setting representative of the
studied context, I decided to design the survey based on the current IoT state of the
art, considering the industrial perspective and using it to analyze the academical
projects that the novices implemented. Concerning the industrial perspective, I
started from the analysis of various reference IoT architectures that were devel-
oped by some of the most influential industry actors in the IoT landscape. Later,
concerning the academical perspective, I faced the challenge to make the reference
IoT architectures understandable to the students based on the experience that they

58

3.5 – Validity of results

acquired when developing their projects. To that end, the architectures of the Am-
bient Intelligence course projects developed over the years were analyzed, identified
commonalities, and mapped their components to the building blocks of the industry
IoT reference architectures. Based on these analyses, from the reference architec-
tures and the course projects’ architectures, a generic architecture was developed
to structure the survey. The purpose of structuring the survey upon this generic
architecture was, on one hand, to provide respondents with a common understand-
ing about the software components involved in an IoT system, and on the other
hand, to be in line with the industry state of the art, notwithstanding the specifici-
ties of the projects that were developed in the course. Similarly, I tried to avoid as
much as possible to tie the generic architecture to a specific architectural pattern or
technology stack. In this manner, I wanted to guarantee that the proposed generic
architecture and the survey would be useful in other scenarios, independently from
the software stack, to assess the most painful issues that novices experience while
developing IoT projects.

However, it must be pointed out that, as already described in Section 3.2.1,
the Security component was not represented in the generic architecture because
it was outside the course syllabus. Therefore, if this survey would be applied in
an IoT-related course in which novice programmers are exposed to the security
issues that emerge from security-related operations, a new component must be
added to the generic architecture as well as its associated tasks and sub-tasks.
Nonetheless, according to the experience reports that were described in the Related
Works Chapter (Section 2.2), it is very unlikely to introduce security concerns in
a course targeted at IoT novice programmers. In the same vein, the focus of this
survey was on the software development perspective of IoT systems. If a later
study aims at getting understanding about the most painful issues concerning the
deployment of the hardware, I consider that the generic architecture is still valid,
but the Sensors and Actuators subsystems, which are already represented in the
generic architecture, must be defined in terms of a new set of tasks and subtasks.
Similarly, on every subsystem, new tasks and subtasks must be added to the ones
that were already defined in this work.

Additionally, I consider that the findings of this survey might be partially ex-
tended to more experienced developers. Nevertheless, it should be kept in mind
that the novice developers who participated in this survey were unfamiliar with
many of the software development tasks that they faced. Most of them were ap-
proaching for the first time to these tasks, and they were not using any advanced
IDE or development tool. For this reason, the perception of the challenging issues
that they faced was not biased by their expertise on a given software development
area nor by the mastery of a given software stack that would ease the completion
of those tasks. Experienced developers, on the contrary, are specialized on a given
software development area, and are proficient with a set of advanced development
tools. For instance, an experienced mobile developer would rate such development

59

On the challenging issues faced by IoT novice developers

tasks as simple and not time-spending, and his perception would not be compa-
rable with the rating of a non-expert mobile developer. Consequently, the main
obstacle of extending the findings of the survey to more experienced developers is
the disparity of expertise, development resources, and background skills.

3.5.3 Construct validity
Threats to construct validity refer to the extent to which the experiment setting

actually reflects the construct under study [105]. In this survey, construct threats
to validity concerned the inadequate preoperational explication of constructs, the
mono-method bias, and, in the field of social threats, the evaluation apprehension.

To avoid the inadequate preoperational explication of constructs, when formulat-
ing the first research question, it was decided to study the complexity, which is an
ambiguous concept by itself, in terms of well-defined constructs such as difficulty-
level and time-spent. This way, before translating these constructs into measures,
I made sure that the criteria to quantify the complexity was clear enough to the
respondents. Furthermore, to avoid confounding constructs and levels of constructs,
these difficulty-level and time-spent constructs were translated into a 5-point ordi-
nal scale, taking into account that more than their absence or presence, it was the
level of difficulty and time-spent which is of importance to the outcome.

Furthermore, to avoid mono-method bias, the research questions were addressed
using different kinds of measures. Namely, the rating of the sub-tasks (measured
using a Likert scale) was complemented with the ranking of the most complex ones
and cross-checked with the justification of the participants about their ranking
choice (captured through an open question). Thus, by including quantitative and
qualitative measures, the goal was to draw conclusions free from measurement bias.

Regarding the social threats, I opted to conduct the survey anonymously, and
only after the participants completed with success the course. In this manner, it was
attempted to avoid evaluation apprehension so that the participants were guaran-
teed that they could be sincere about all the issues that they may have experienced
without being afraid of some negative impact in their course grade, nor expecting
some bonus. Furthermore, it was also explained very clearly to the participants
that the study was not aimed at evaluating their skills or performance but to iden-
tify the most challenging issues that they experienced during the development of
their projects.

3.5.4 Conclusion validity
Threats to conclusion validity regard issues that affect the ability to draw the

correct conclusion about relations between the treatment and the outcome of an
experiment [105]. In this survey, conclusion threats to validity regarded the low

60

3.5 – Validity of results

statistical power, the reliability of measures, the reliability of treatment implemen-
tation, and the random heterogeneity of subjects.

Concerning the low statistical power, I would have liked to have a larger sample
size to achieve higher statistical power and afford better generalizability. Neverthe-
less, the length of the survey hampered higher participation (for every completed
survey, there were 1.12 abandoned surveys, i.e., students who started but did not
complete the survey) and, on the other hand, a shorter version would have covered
only a few topics. However, in this regard, it must be clarified that, more than at-
tempting to infer a property of a population, the survey was trying to explore the
variety of challenges that IoT novice developers face. Besides, the open questions
could contribute to detecting a mismatch between the interpretation of the data
and respondents’ experience.

The validity of an experiment is highly dependent on the reliability of the mea-
sures, and they can be negatively affected by factors such as poor question wording,
bad instrumentation, or bad instrument layout. In this sense, it can be assumed
that, as previously mentioned in the internal validity threats, the pilot study (Sec-
tion 3.3) enabled us to avoid these instrumentation-related factors. Furthermore,
the reliability of treatment implementation describes the risk that the implemen-
tation is not similar between different persons applying the treatment or across
different occasions. Since the survey was applied online with the same platform,
and under the same conditions for all the participants, I consider that the imple-
mentation is rather similar between the respondents. Finally, as previously stated
in the external validity threats, the subject population has a reasonable degree of
heterogeneity but framed in the context of novice IoT programmers. Hence, such
heterogeneity is not considered to lead to random heterogeneity of subjects, which is
the risk that the variation due to individual differences is larger than the variation
due to the treatment [105].

3.5.5 Repeatability
The generic architecture proposed in this work, all its tasks, and their sub-

tasks, as well as the structure of the survey, and the followed methodology are
available from the authors (Section 3.2). Therefore, concerning the artifacts used
for the survey execution, the repeatability of the results of this study is considered
to be good. Nevertheless, three limits to repeatability were identified: although
the architecture was proposed to be as generic as possible if it has to be used in
specific domains or contexts, new sections must be added; secondly, if the survey
is to be used in a different educational scenario, the course to be analyzed has
to be project-based, otherways the instrument cannot be applied; finally, if specific
technologies, tools or languages are imposed, the proposed set of tasks and subtasks
have to be redefined to match the technical specificities of the concerned technology
stack, instead of being technology-neutral as in this work.

61

On the challenging issues faced by IoT novice developers

3.6 Conclusion
In this work, a survey was conducted to identify the most complex issues ex-

perienced by novice programmers when developing IoT systems. The survey was
framed into a generic interpretation framework in which the architecture, subsys-
tems, and software development tasks of a significant subset of these kind of systems
were abstracted. This survey was conducted among 40 undergraduate students that
developed an IoT project during three editions of a university course. The most
complex issues were identified on the basis of the rating of software development
tasks according to their difficulty level and completion time; the ranking of the
most complex tasks; and the qualitative perception of each respondent about such
complexity. Through a generic interpretation framework, a system-level view of the
main issues was achieved and presented. To the best of my knowledge, this is the
first study to express the complex issues as concrete development tasks that are not
dependent on a particular kind of project, its architecture, or its technology stack.

The results that emerged from the application of the survey enabled to deter-
mine that the most challenging issues reported by unexperienced IoT developers
concerned: the difficulty to find well-structured documentation that might be un-
derstood by a novice, the complexity inherent to the integration of the subsystems,
and the integration with third-party services. Moreover, it could also be identified,
on the one hand, aspects that were perceived as complex across various subsystems
(development of user interfaces, the configuration of development environments,
and the development of the business logic), and on the other hand, aspects whose
complexity is split across various subsystems (integration between the Gateway and
the third-party service APIs, the implementation and integration of the persistence
component, and the design, implementation, and consumption of the RESTful web
services). I consider that the findings enable to ease the learning curve in the
teaching of IoT, and might help to improve on-boarding time estimations, hiring
criteria, and human resource management within the industry IoT projects. Fi-
nally, based on the obtained results, I consider that research efforts should envision
automation or debugging tools, as well as improved documentation strategies for
the development of IoT systems.

62

Chapter 4

IoT Development in the context
of Open Source Software

The outcomes from the research presented in the previous chapter provided in-
sights into the issues that were perceived as the most challenging ones, by novice
programmers, when implementing an IoT system. To complement the perception
of the novice developers with the analysis of currently developed IoT systems, and
to gain a deeper understanding of how experienced or professional developers con-
tribute to successful and complete IoT applications, a quantitative analysis was
conducted among a broad set of the 60 most popular publicly available IoT and
non-IoT projects. By comparing how developers contribute to these projects, this
quantitative analysis provides insight into the purpose and characteristics of the
code, the behavior of the contributors, and the maturity of the IoT software de-
velopment ecosystem. This chapter describes the differences that were identified
between IoT and non-IoT projects in terms of how applications are realized, devel-
opers’ specializations, and code reusing. Part of the work described in this chapter
has been previously published in [28].

4.1 Motivation
From a technical point of view, several definitions have been proposed for the

Internet of Things [42] and various enabling technologies are considered to char-
acterize IoT applications. As earlier stated, from the software point of view, the
implementation of IoT applications is particularly complex and differs from the de-
velopment of mobile and web applications. According to Taivalsaari et al. [94], for
instance, IoT development differs from mainstream mobile app and web application
development in several ways, summarized by the authors into a set of dimensions
that are unfamiliar to most software developers. Multi-device programming, the re-
active nature of the application, the distributed nature of the software, and the need

63

IoT Development in the context of Open Source Software

to write fault-tolerant software, are among these dimensions, which IoT developers
must consider.

Against this backdrop, the work presented in this chapter relied upon software
mining to gain an understanding of how developing IoT applications is different
from developing non-IoT applications in the OSS context. To that end, an empirical
study mining 60 OSS repositories publicly available on GitHub was conducted. 30
IoT OSS and 30 non-IoT OSS projects were mined to analyze a) the way developers
contribute to their projects, b) the files that they tend to modify the most, and c) the
specialization and the evolution of these modifications. Finally, the maturity of the
IoT software development ecosystem was assessed based on a dependency analysis
in the selected projects. Besides leveraging a characterization of IoT OSS projects
currently available for IoT developers, this work aimed at providing evidence from a
practical point of view about the IoT software development peculiarities that should
guide future research efforts to better understand and satisfy software engineering
needs in the IoT context.

The remainder of the chapter is structured as follows. Section 4.2 describes the
research goal and questions and outlines the selection process. Section 4.3 charac-
terizes the selected OSS projects and describes the quantitative analysis conducted
over them as well as the outcome of the analysis. Section 4.4 discusses the re-
sults and presents further implications, while threats to validity are outlined in
Section 4.5. Finally, section 4.6 presents the conclusion of this research work.

4.2 Research Goal and Questions
The overall goal of the research presented in this chapter was to explore the po-

tential differences between the development practices for IoT and non-IoT projects
in the OSS context. In particular, it aimed at identifying (a) the behavior of de-
velopers and the diversity of resources they manage, and (b) the reuse of features
through the adopted dependencies. These two criteria led to the research questions
set out below.

4.2.1 Research Questions
The first research goal was to investigate whether and how developers adopt

different programming languages and cover various specializations in IoT vs. non-
IoT OSS projects. In particular, concerning:

• how different programming languages are used in the two domains;

• whether IoT developers are more specialized in some programming languages
or certain types of files in their project;

• how the usage of such programming languages evolves over time.

64

4.2 – Research Goal and Questions

Therefore, the corresponding research question was:

RQ4.1: How developers of IoT vs. non-IoT OSS applications contribute to their
projects regarding the programming languages that they adopt?

Furthermore, this quantitative investigation exploited OSS repositories focus-
ing on the maturity of the IoT ecosystem. Such maturity was investigated in the
selected repositories by analyzing project dependencies, how many they were, and
which were the most popular ones. Additionally, focusing exclusively on the IoT
OSS projects, there were also investigated which aspects of IoT application de-
velopment these dependencies addressed and how often they were used by IoT
developers. This led to the second research question:

RQ4.2: How developers exploit dependencies to reuse features in IoT vs. non-IoT
OSS projects?

4.2.2 Selection of the Analyzed Repositories
To select a prominent widely-known and widely-used set of IoT OSS repositories

from GitHub, they were first filtered them by topic, choosing the ones that belong
to the iot or internet-of-things topics on GitHub. Topics are labels to classify
a repository based on its intended purpose, subject area, community, or language.
They appear on the main page of a repository and repository administrators can
add as many topics as they want to a repository.

Once the repositories belonging to the IoT topic were filtered, 4,696 of them
were retrieved. Therefore, to prioritize the most popular and well-evaluated ones,
they were sorted according to the decreasing number of stars. Stars enable GitHub
users to keep track of repositories they find interesting and to discover similar
repositories [11], as well as to show appreciation to the repository maintainers
for their work1. Lastly, the 30 top-starred repositories were taken, provided they
were open-source code repositories. In fact, since a large portion of repositories
on GitHub are not for software development [52], they were inspected manually
to exclude the ones that were not software related (i.e., tutorials, documentation
pages, icon-packs, fonts) or without an open-source license.

The same procedure was followed to select the non-IoT repositories. The only
difference was that the filter was modified to include repositories belonging to any
topic except iot and internet-of-things.

1https://help.github.com/articles/about-stars/, last visited on June 6, 2019

65

https://help.github.com/articles/about-stars/

IoT Development in the context of Open Source Software

The data used in the analyses reported in this study was mined from GitHub in
August 2018. Tables 4.1 and 4.2 list the selected IoT and non-IoT repositories along
with their salient characteristics. Most of the information about the repositories
was gathered through the GitHub GraphQL API v42.

2https://developer.github.com/v4/, last visited on June 6, 2019

66

https://developer.github.com/v4/

4.2 – Research Goal and Questions
Ta

bl
e

4.
1:

Io
T

po
pu

la
r

O
pe

n
So

ur
ce

G
itH

ub
re

po
sit

or
ie

s

R
ep

os
it

or
y

na
m

e
G

en
re

Si
ze

(k
B

)
L

O
C

P
ri

m
.

L
an

g.
#

L
an

gs
.

#
D

ep
en

d.
C

om
m

it
s

C
on

tr
ib

ut
or

s

ne
td

at
a

M
on

it
or

in
g

ag
en

t
24

,4
73

25
9k

C
14

18
7,

32
1

22
3

ko
ng

A
P

I
ga

te
w

ay
9,

80
2

15
1k

Lu
a

4
24

4,
11

8
14

1
ho

m
e-

as
si

st
an

t
H

om
e

au
to

m
at

io
n

85
,7

34
56

2k
P

yt
ho

n
4

45
6

14
,7

73
1,

21
1

jo
hn

ny
-fi

ve
R

ob
ot

ic
s

pr
og

ra
m

m
in

g
fr

am
ew

or
k

92
,8

68
13

6k
Ja

va
Sc

ri
pt

3
33

8
3,

21
5

15
2

gu
n

G
ra

ph
da

ta
ba

se
en

gi
ne

29
,6

83
12

4k
Ja

va
Sc

ri
pt

5
13

9
1,

53
2

66
ti

m
es

ca
le

db
T

im
e-

se
ri

es
da

ta
ba

se
2,

97
5

15
9k

C
9

0
83

3
33

go
bo

t
P

ro
gr

am
m

in
g

fr
am

ew
or

k
9,

66
8

17
9k

G
o

4
16

2,
50

7
10

9
no

de
-s

er
ia

lp
or

t
P

ac
ka

ge
to

ac
ce

ss
se

ri
al

po
rt

s
2,

68
8

19
k

Ja
va

Sc
ri

pt
5

18
1,

20
8

14
5

em
qx

M
Q

T
T

br
ok

er
11

,6
82

29
k

E
rl

an
g

2
4

3,
06

0
53

cy
lo

n
P

ro
gr

am
m

in
g

fr
am

ew
or

k
20

,0
46

7k
Ja

va
Sc

ri
pt

2
5

1,
32

3
26

ur
h

W
ir

el
es

s
pr

ot
oc

ol
s

m
on

it
or

in
g

43
,5

38
19

7k
P

yt
ho

n
4

4
2,

57
9

13
A

rd
ui

no
Js

on
A

rd
ui

no
lib

ra
ry

3,
24

2
34

k
C

+
+

6
0

98
4

10
pl

at
fo

rm
io

-c
or

e
C

ro
ss

-p
la

tf
or

m
ID

E
34

,7
04

10
k

P
yt

ho
n

5
6

3,
62

6
27

cr
at

e
D

is
tr

ib
ut

ed
SQ

L
da

ta
ba

se
86

,5
70

66
7k

Ja
va

6
15

8,
77

5
62

R
IO

T
O

pe
ra

ti
ng

sy
st

em
56

,0
65

2.
04

M
C

10
0

19
,3

68
28

7
th

in
gs

bo
ar

d
Io

T
pl

at
fo

rm
8,

78
5

25
7k

Ja
va

9
10

9
1,

51
0

59
rt

-t
hr

ea
d

O
pe

ra
ti

ng
sy

st
em

25
4,

37
8

13
.3

8M
C

24
0

6,
54

9
22

6
bl

yn
k-

lib
ra

ry
Io

T
pl

at
fo

rm
9,

31
8

33
k

C
+

+
7

0
1,

69
1

19
op

en
th

re
ad

T
hr

ea
d

ne
tw

or
ki

ng
pr

ot
oc

ol
50

,8
35

1.
5M

C
+

+
10

4
2,

44
3

85
m

on
go

os
e-

os
F

ir
m

w
ar

e
de

ve
lo

pm
en

t
fr

am
ew

or
k

44
,6

30
10

6k
C

10
0

4,
21

2
32

ve
rn

em
q

M
Q

T
T

br
ok

er
11

,4
26

67
k

E
rl

an
g

8
21

1,
71

3
22

B
er

ry
N

et
D

ee
p

le
ar

ni
ng

ga
te

w
ay

18
1

14
k

P
yt

ho
n

4
14

15
9

6
P

JO
N

N
et

w
or

k
pr

ot
oc

ol
4,

52
9

29
k

C
+

+
2

0
1,

99
9

34
ze

ph
yr

O
pe

ra
ti

ng
sy

st
em

12
3,

63
2

10
.0

5M
C

12
0

23
,2

31
42

0
bl

yn
k-

se
rv

er
Io

T
pl

at
fo

rm
29

,7
63

81
k

Ja
va

6
21

4,
54

5
14

pa
ho

.m
qt

t.
an

dr
oi

d
M

Q
T

T
cl

ie
nt

lib
ra

ry
2,

01
4

15
k

Ja
va

3
0

19
4

20
to

ck
O

pe
ra

ti
ng

sy
st

em
13

6,
16

3
79

k
R

us
t

8
0

4,
08

5
82

ka
a

Io
T

pl
at

fo
rm

18
0,

03
1

77
5k

Ja
va

16
3

6,
69

1
10

9
Sm

in
g

P
ro

gr
am

m
in

g
fr

am
ew

or
k

52
,0

66
19

5k
C

+
+

16
11

1,
23

6
97

ho
m

ie
-e

sp
82

66
M

Q
T

T
co

nv
en

ti
on

1,
30

5
10

k
H

T
M

L
5

14
2

1,
71

4
15

5

67

IoT Development in the context of Open Source Software
Ta

bl
e

4.
2:

N
on

-Io
T

po
pu

la
r

O
pe

n
So

ur
ce

G
itH

ub
re

po
sit

or
ie

s

R
ep

os
it

or
y

na
m

e
G

en
re

Si
ze

(k
B

)
L

O
C

P
ri

m
.

L
an

g.
#

L
an

gs
.

#
D

ep
en

d.
C

om
m

it
s

C
on

tr
ib

ut
or

s

bo
ot

st
ra

p
W

eb
U

I
fr

am
ew

or
k

12
4,

29
1

10
2k

C
SS

6
52

17
,9

50
1,

19
2

vu
e

W
eb

U
I

fr
am

ew
or

k
23

,7
84

16
4k

Ja
va

Sc
ri

pt
6

89
2,

62
0

20
9

re
ac

t
W

eb
U

I
fr

am
ew

or
k

13
7,

52
2

27
7k

Ja
va

Sc
ri

pt
10

78
10

,3
26

1,
37

9
te

ns
or

flo
w

M
ac

hi
ne

le
ar

ni
ng

fr
am

ew
or

k
18

9,
00

5
4.

5M
C

+
+

21
31

41
,2

73
1,

92
3

d3
D

at
a

vi
su

al
iz

at
io

n
lib

ra
ry

35
,9

63
55

k
Ja

va
Sc

ri
pt

1
39

4,
15

3
13

3
oh

-m
y-

zs
h

Zs
h

fr
am

ew
or

k
4,

73
0

60
k

Sh
el

l
6

0
4,

78
5

1,
47

2
re

ac
t-

na
ti

ve
N

at
iv

e
ap

ps
fr

am
ew

or
k

25
6,

12
3

60
2k

Ja
va

Sc
ri

pt
17

73
14

,7
43

2,
15

7
el

ec
tr

on
D

es
kt

op
ap

pl
ic

at
io

ns
fr

am
ew

or
k

40
,4

49
19

5k
C

+
+

11
82

9
20

,3
69

91
1

lin
ux

Li
nu

x
ke

rn
el

2,
19

2,
88

4
26

.5
M

C
19

3
78

2,
53

7
19

,1
20

an
gu

la
r.

js
M

V
C

w
eb

fr
am

ew
or

k
98

,7
88

55
4k

Ja
va

Sc
ri

pt
5

76
8,

88
3

18
09

vs
co

de
ID

E
14

9,
75

8
1.

12
M

T
yp

eS
cr

ip
t

33
10

2
40

,8
31

83
4

cr
ea

te
-r

ea
ct

-a
pp

R
ea

ct
ap

p
se

tu
p

co
m

m
an

d
5,

71
8

12
9k

Ja
va

Sc
ri

pt
5

18
1,

78
2

55
1

an
im

at
e.

cs
s

C
SS

an
im

at
io

ns
lib

ra
ry

71
3

6k
C

SS
2

57
2

42
3

10
1

no
de

Ja
va

Sc
ri

pt
ru

nt
im

e
en

gi
ne

39
9,

66
4

9M
Ja

va
Sc

ri
pt

13
12

23
,9

47
2,

48
0

m
ob

y
P

ro
gr

am
m

in
g

fr
am

ew
or

k
13

7,
52

5
1.

43
M

G
o

8
4

35
,8

41
2,

12
0

jq
ue

ry
Ja

va
Sc

ri
pt

lib
ra

ry
27

,9
10

93
k

Ja
va

Sc
ri

pt
4

39
6,

34
3

34
9

ax
io

s
P

ro
m

is
e

ba
se

d
H

T
T

P
cl

ie
nt

2,
76

2
10

k
Ja

va
Sc

ri
pt

3
37

83
3

17
1

at
om

Te
xt

ed
it

or
30

1,
06

9
22

3k
Ja

va
Sc

ri
pt

7
51

4
35

,6
84

51
6

go
G

o
pr

og
ra

m
m

in
g

la
ng

ua
ge

18
2,

27
3

2.
44

M
G

o
16

11
38

,0
51

1,
40

4
la

ra
ve

l
W

eb
fr

am
ew

or
k

9,
22

2
5k

P
H

P
3

8
5,

80
4

57
3

sw
ift

Sw
ift

pr
og

ra
m

m
in

g
la

ng
ua

ge
32

4,
17

5
2.

47
M

C
+

+
17

0
78

,4
63

77
9

th
re

e.
js

Ja
va

Sc
ri

pt
3D

lib
ra

ry
66

2,
91

0
1.

39
M

Ja
va

Sc
ri

pt
5

39
9

25
,2

50
1,

23
8

re
du

x
P

ro
gr

am
m

in
g

fr
am

ew
or

k
6,

56
2

18
4k

Ja
va

Sc
ri

pt
3

29
2,

68
4

66
6

so
ck

et
.io

R
ea

l-t
im

e
ap

pl
ic

at
io

n
fr

am
ew

or
k

12
,2

64
18

2k
Ja

va
Sc

ri
pt

1
11

1,
70

6
17

1
w

eb
pa

ck
M

od
ul

e
bu

nd
le

r
16

,4
78

12
4k

Ja
va

Sc
ri

pt
5

74
7,

25
9

55
2

Se
m

an
ti

c-
U

I
W

eb
U

I
fr

am
ew

or
k

11
0,

01
0

28
3k

Ja
va

Sc
ri

pt
3

50
8

6,
65

9
23

2
re

ve
al

.js
H

T
M

L
pr

es
en

ta
ti

on
s

fr
am

ew
or

k
8,

27
1

33
k

Ja
va

Sc
ri

pt
3

15
2,

20
0

26
4

ra
ils

W
eb

fr
am

ew
or

k
16

5,
15

1
52

4k
R

ub
y

7
62

70
,3

68
4,

49
0

m
et

eo
r

W
eb

fr
am

ew
or

k
76

,0
20

52
9k

Ja
va

Sc
ri

pt
9

12
21

,6
88

47
4

ku
be

rn
et

es
C

on
ta

in
er

-o
rc

he
st

ra
ti

on
sy

st
em

79
7,

67
4

4.
72

M
G

o
10

10
73

,5
12

1,
95

1

68

4.3 – OSS Projects Analysis

4.3 OSS Projects Analysis

4.3.1 Projects Characterization
Before diving into the research questions, a characterization of the selected

projects is reported to provide a brief but complete overview and to set the stage
for the subsequent analysis. Each project was examined individually to understand
its purpose and to assign it a genre. The genres aimed at describing the nature of
the projects. Then, through the GitHub API, several characteristics were gathered,
namely: the topics, their size (kB and lines of code), their primary language, and
their total number of programming languages.

As observed in Table 4.1, the genre of the IoT OSS projects, that was as-
signed by me after manually examining each repository, is heterogeneous. They
are scattered across operating systems, programming frameworks, libraries, net-
work protocols, databases, IoT platforms, and IDEs. At first glance, no clear trend
emerged concerning their purpose or application domain. On the contrary, when
analyzing non-IoT projects (Table 4.2), it can be noticed that most of them are
related to the web development area, with just 12 exceptions, such as a machine
learning framework, a Z shell (Zsh) framework, an operating system kernel, an IDE,
a text editor, and a couple of open source programming languages.

The fifteen most commonly used topics across the IoT projects (mqtt, raspberry-
pi, arduino, hardware, esp8266, esp32, embedded, robotics, javascript, java, iot-
platform, i2c, home-automation, gpio, docker) did not reveal a prevailing technol-
ogy or application domain. Instead, the 15 topics across the non-IoT projects
(javascript, nodejs, html, framework, electron, css, windows, web, ui, react, python,
macos, linux, go, frontend) were mostly about web development. This fact indi-
cates that neither in the clasification proposed in Tables 4.1 and 4.2, nor in the
labels assigned by the owners to their IoT projects, there is a strong focus towards
a particular domain or technology, thus further motivating the research questions.
Furthermore, the initial observations regarding the genre and the topics of the
projects seemed to be in line with various authors [42, 94, 60], who point out that
the development of IoT applications is more complex and requires programmers
with skills and expertise in several domains as might be, for instance, mobile and
cloud computing, embedded devices, database design, and web development.

Concerning the size of the projects (in kB), the average non-IoT project was
almost three times larger (4.56x) than a typical IoT project. However, when looking
at LOC (Lines Of Code), this difference decreased significantly: on average, non-
IoT projects contained 1.9M LOC, while IoT projects 1.0M (1.9x). The largest
IoT project, for both kB and LOC, corresponded to rt-thread, a real-time IoT
operating system for embedded devices. Similarly, the largest non-IoT project was
the Linux kernel followed far behind by kubernetes. The smallest IoT project,
in kB, was BerryNet, a project to turn edge devices such as Raspberry Pi 3 into

69

IoT Development in the context of Open Source Software

intelligent gateways with deep learning capabilities running locally, on the edge
device itself, without the need of an Internet connection. For what concerns LOCs,
instead, the smallest IoT project is cylon, a JavaScript framework for robots,
drones, and the IoT, developed for Arduino and similar boards. As may be observed
in these last two projects, achieving a small size is fundamental given the fact that
in most cases IoT software components are deployed on constrained devices with
low computational and/or storage resources. This same restriction holds for most of
the other IoT projects, especially those to be deployed on the gateway architectural
element.

Additionally, to put into perspective the comparison of the projects’ size, the
growth of the source code along the projects’ lifetime, is illustrated through the
heatmap graphs in Figure 4.1 (for IoT projects) and Figure 4.2 (for non-IoT projects).
In these heatmaps, the growth of the projects’ source code is expressed as the pro-
portion between the initial size of the programming files and their size along the
lifetime of the projects. Therefore, to build these graphs, the period between the
first commit in the project and the last commit before August 2018 (the date when
the repositories were mined for this analysis), was divided into 21 equally spaced
date intervals for each project. Then, on each of these dates, the corresponding
version of the project was checked out from GitHub; and the size of its program-
ming files was calculated relying on Linguist; the open-source library that GitHub
uses to determine file languages for syntax highlighting, and project statistics3.
Specifically, through the Ruby API provided by this library, that, given a directory,
returns a dictionary with the detected programming languages along with their
size.

3https://github.com/GitHub/linguist, last visited on November 26, 2019

70

https://github.com/GitHub/linguist

4.3 – OSS Projects Analysis

ne
td
at
a

ko
ng

ho
m
e-
as

si
st
an

t

jo
hn

ny
-fi
ve gu
n

tim
es

ca
le
db

go
bo

t

no
de

-s
er
ia
lp
or
t

em
qt
td

cy
lo
n

ur
h

A
rd
ui
no

Js
on

pl
at
fo
rm

io
-c
or
e

cr
at
e

R
IO

T

th
in
gs

bo
ar
d

rt-
th
re
ad

bl
yn

k-
lib
ra
ry

op
en

th
re
ad

m
on

go
os

e-
os

ve
rn
em

q

B
er
ry
N
et

P
JO

N

ze
ph

yr

bl
yn

k-
se

rv
er

pa
ho

.m
qt
t.a

nd
ro
id

to
ck ka
a

S
m
in
g

ho
m
ie
-e
sp

82
66

1.
0

1.
1

1.
1

22
.0

22
.0

22
.3

22
.4

44
.9

44
.9

53
.0

64
.6

87
.4

14
6.
3

16
9.
7

21
9.
2

25
7.
5

29
1.
9

31
5.
7

33
6.
1

35
0.
5

1.
0

1.
7

3.
0

4.
0

5.
1

5.
8

7.
7

8.
0

8.
2

9.
4

9.
9

11
.4

11
.9

12
.9

13
.4

14
.7

14
.9

16
.2

29
.4

29
.5

1.
0

1.
2

1.
6

1.
7

6.
9

9.
2

12
.6

14
.1

19
.9

26
.2

34
.9

38
.2

47
.5

56
.7

69
.6

81
.3

88
.1

81
.9

91
.1

10
1.
0

1.
0

1.
5

1.
6

1.
8

2.
4

2.
5

2.
7

3.
5

4.
0

4.
9

6.
7

7.
8

8.
6

9.
9

10
.8

11
.0

11
.1

11
.2

11
.3

11
.5

1.
0

1.
0

1.
2

1.
2

3.
3

4.
0

5.
0

2.
4

3.
2

3.
3

3.
5

3.
8

3.
8

4.
2

4.
2

4.
2

4.
9

4.
9

5.
4

5.
2

1.
0

1.
0

1.
0

0.
7

0.
8

1.
5

1.
9

3.
0

3.
4

3.
8

5.
1

5.
5

5.
7

5.
8

2.
2

2.
3

2.
3

2.
4

2.
4

2.
5

1.
0

1.
6

13
.3

63
.1

74
.3

77
.9

78
.5

82
.6

83
.7

58
.5

59
.8

62
.0

64
.3

68
.1

77
.0

92
.5

96
.3

98
.4

10
4.
4

10
8.
5

1.
0

1.
4

1.
3

1.
6

8.
6

9.
5

28
.4

28
.4

31
.2

31
.3

31
.4

32
.6

33
.3

33
.4

34
.6

37
.1

17
.3

17
.5

20
.6

21
.9

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
8

2.
0

2.
0

2.
2

2.
2

2.
2

2.
1

2.
1

2.
3

2.
2

2.
5

2.
5

2.
5

1.
0

1.
6

1.
5

1.
6

1.
6

1.
6

1.
6

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
0

1.
1

1.
1

1.
1

1.
1

1.
1

1.
1

1.
2

1.
2

1.
4

1.
5

1.
0

1.
1

1.
1

1.
1

1.
2

1.
2

1.
3

1.
3

1.
2

1.
0

1.
0

3.
4

4.
5

4.
8

5.
0

5.
5

7.
3

7.
4

7.
6

8.
2

8.
3

8.
7

10
.4

11
.3

11
.0

11
.0

10
.7

10
.6

12
.7

1.
0

1.
4

1.
9

2.
9

3.
9

5.
0

5.
5

6.
7

7.
2

7.
7

7.
8

7.
3

7.
5

8.
0

8.
2

8.
4

8.
5

8.
8

9.
4

9.
5

1.
0

75
.4

10
9.
6

91
.0

10
1.
4

12
2.
9

14
1.
7

15
9.
5

16
7.
7

17
8.
5

18
6.
0

18
9.
7

20
0.
3

21
0.
7

21
2.
2

21
5.
8

23
3.
9

24
6.
9

25
5.
6

26
1.
6

1.
0

1.
1

1.
2

2.
2

2.
6

6.
4

9.
7

11
.6

14
.5

19
.0

21
.9

23
.1

24
.0

26
.9

32
.0

8.
2

9.
1

9.
8

10
.1

10
.8

1.
0

1.
0

1.
1

1.
2

1.
2

1.
5

1.
7

1.
8

1.
8

1.
8

1.
8

1.
8

2.
0

2.
0

2.
0

2.
1

2.
3

2.
3

2.
2

2.
2

1.
0

1.
0

1.
0

1.
0

1.
0

1.
4

1.
5

1.
5

1.
5

1.
6

2.
9

3.
2

3.
2

3.
3

3.
3

3.
5

4.
4

5.
4

6.
3

6.
6

1.
0

1.
3

1.
4

1.
4

1.
5

1.
5

1.
7

1.
9

2.
1

2.
1

2.
3

2.
4

2.
5

2.
6

2.
6

2.
6

2.
7

2.
9

2.
9

3.
0

1.
0

1.
2

1.
5

2.
2

2.
8

3.
5

3.
6

3.
7

3.
9

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
4

4.
6

4.
7

4.
8

5.
1

1.
0

1.
0

1.
0

4.
9

4.
5

6.
6

18
.6

21
.4

26
.7

27
.7

28
.8

30
.2

30
.7

28
.6

29
.7

28
.8

29
.9

31
.9

19
.3

25
.2

1.
0

1.
1

0.
2

1.
2

1.
2

0.
1

1.
2

0.
3

1.
3

2.
0

0.
3

2.
7

2.
8

2.
8

2.
8

2.
8

2.
8

2.
9

3.
0

3.
5

1.
0

1.
1

1.
1

1.
2

1.
2

1.
2

1.
5

1.
7

1.
9

1.
9

2.
0

2.
2

2.
9

4.
6

4.
6

4.
6

4.
6

4.
7

4.
7

4.
7

1.
0

1.
0

1.
0

1.
0

0.
8

0.
9

1.
0

1.
4

1.
9

2.
3

4.
3

4.
6

6.
1

6.
4

6.
9

8.
0

8.
9

9.
2

10
.7

10
.7

1.
0

1.
2

1.
3

1.
3

6.
7

6.
8

8.
9

8.
9

10
.5

10
.9

11
.1

11
.0

11
.8

14
.7

15
.1

15
.5

15
.6

16
.8

17
.0

17
.2

1.
0

1.
2

1.
3

1.
6

1.
9

2.
2

2.
6

2.
8

3.
4

3.
9

4.
3

4.
8

5.
5

5.
8

6.
3

6.
8

7.
1

7.
0

7.
3

8.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
5

1.
6

1.
9

3.
6

4.
5

4.
6

5.
1

5.
6

7.
5

9.
0

11
.4

13
.7

17
.9

22
.5

24
.6

25
.0

26
.3

28
.4

31
.1

1.
0

1.
2

1.
3

1.
4

1.
5

1.
7

1.
6

1.
6

1.
9

2.
0

2.
0

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

1.
0

1.
1

1.
4

1.
4

1.
3

1.
4

1.
6

1.
6

1.
6

1.
6

1.
5

1.
5

1.
6

1.
6

1.
6

1.
5

1.
5

1.
5

1.
5

1.
5

1.
0

0.
3

0.
5

0.
5

0.
4

0.
6

0.
7

0.
7

0.
7

0.
7

0.
8

0.
9

0.
9

0.
9

0.
9

2.
1

2.
1

2.
1

2.
1

2.
1

60
12

0
18

0
24

0
30

0

(a
)

Io
T

re
po

sit
or

ie
s

ko
ng

jo
hn

ny
-fi
ve gu
n

tim
es

ca
le
db

no
de

-s
er
ia
lp
or
t

em
qt
td

cy
lo
n

ur
h

A
rd
ui
no

Js
on

pl
at
fo
rm

io
-c
or
e

R
IO

T

th
in
gs

bo
ar
d

rt-
th
re
ad

bl
yn

k-
lib
ra
ry

op
en

th
re
ad

m
on

go
os

e-
os

ve
rn
em

q

B
er
ry
N
et

P
JO

N

ze
ph

yr

bl
yn

k-
se

rv
er

pa
ho

.m
qt
t.a

nd
ro
id

to
ck ka
a

S
m
in
g

ho
m
ie
-e
sp

82
66

1.
0

1.
7

3.
0

4.
0

5.
1

5.
8

7.
7

8.
0

8.
2

9.
4

9.
9

11
.4

11
.9

12
.9

13
.4

14
.7

14
.9

16
.2

29
.4

29
.5

1.
0

1.
5

1.
6

1.
8

2.
4

2.
5

2.
7

3.
5

4.
0

4.
9

6.
7

7.
8

8.
6

9.
9

10
.8

11
.0

11
.1

11
.2

11
.3

11
.5

1.
0

1.
0

1.
2

1.
2

3.
3

4.
0

5.
0

2.
4

3.
2

3.
3

3.
5

3.
8

3.
8

4.
2

4.
2

4.
2

4.
9

4.
9

5.
4

5.
2

1.
0

1.
0

1.
0

0.
7

0.
8

1.
5

1.
9

3.
0

3.
4

3.
8

5.
1

5.
5

5.
7

5.
8

2.
2

2.
3

2.
3

2.
4

2.
4

2.
5

1.
0

1.
4

1.
3

1.
6

8.
6

9.
5

28
.4

28
.4

31
.2

31
.3

31
.4

32
.6

33
.3

33
.4

34
.6

37
.1

17
.3

17
.5

20
.6

21
.9

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
8

2.
0

2.
0

2.
2

2.
2

2.
2

2.
1

2.
1

2.
3

2.
2

2.
5

2.
5

2.
5

1.
0

1.
6

1.
5

1.
6

1.
6

1.
6

1.
6

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
8

1.
0

1.
1

1.
1

1.
1

1.
1

1.
1

1.
1

1.
2

1.
2

1.
4

1.
5

1.
0

1.
1

1.
1

1.
1

1.
2

1.
2

1.
3

1.
3

1.
2

1.
0

1.
0

3.
4

4.
5

4.
8

5.
0

5.
5

7.
3

7.
4

7.
6

8.
2

8.
3

8.
7

10
.4

11
.3

11
.0

11
.0

10
.7

10
.6

12
.7

1.
0

1.
4

1.
9

2.
9

3.
9

5.
0

5.
5

6.
7

7.
2

7.
7

7.
8

7.
3

7.
5

8.
0

8.
2

8.
4

8.
5

8.
8

9.
4

9.
5

1.
0

1.
1

1.
2

2.
2

2.
6

6.
4

9.
7

11
.6

14
.5

19
.0

21
.9

23
.1

24
.0

26
.9

32
.0

8.
2

9.
1

9.
8

10
.1

10
.8

1.
0

1.
0

1.
1

1.
2

1.
2

1.
5

1.
7

1.
8

1.
8

1.
8

1.
8

1.
8

2.
0

2.
0

2.
0

2.
1

2.
3

2.
3

2.
2

2.
2

1.
0

1.
0

1.
0

1.
0

1.
0

1.
4

1.
5

1.
5

1.
5

1.
6

2.
9

3.
2

3.
2

3.
3

3.
3

3.
5

4.
4

5.
4

6.
3

6.
6

1.
0

1.
3

1.
4

1.
4

1.
5

1.
5

1.
7

1.
9

2.
1

2.
1

2.
3

2.
4

2.
5

2.
6

2.
6

2.
6

2.
7

2.
9

2.
9

3.
0

1.
0

1.
2

1.
5

2.
2

2.
8

3.
5

3.
6

3.
7

3.
9

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
4

4.
6

4.
7

4.
8

5.
1

1.
0

1.
0

1.
0

4.
9

4.
5

6.
6

18
.6

21
.4

26
.7

27
.7

28
.8

30
.2

30
.7

28
.6

29
.7

28
.8

29
.9

31
.9

19
.3

25
.2

1.
0

1.
1

0.
2

1.
2

1.
2

0.
1

1.
2

0.
3

1.
3

2.
0

0.
3

2.
7

2.
8

2.
8

2.
8

2.
8

2.
8

2.
9

3.
0

3.
5

1.
0

1.
1

1.
1

1.
2

1.
2

1.
2

1.
5

1.
7

1.
9

1.
9

2.
0

2.
2

2.
9

4.
6

4.
6

4.
6

4.
6

4.
7

4.
7

4.
7

1.
0

1.
0

1.
0

1.
0

0.
8

0.
9

1.
0

1.
4

1.
9

2.
3

4.
3

4.
6

6.
1

6.
4

6.
9

8.
0

8.
9

9.
2

10
.7

10
.7

1.
0

1.
2

1.
3

1.
3

6.
7

6.
8

8.
9

8.
9

10
.5

10
.9

11
.1

11
.0

11
.8

14
.7

15
.1

15
.5

15
.6

16
.8

17
.0

17
.2

1.
0

1.
2

1.
3

1.
6

1.
9

2.
2

2.
6

2.
8

3.
4

3.
9

4.
3

4.
8

5.
5

5.
8

6.
3

6.
8

7.
1

7.
0

7.
3

8.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
5

1.
6

1.
9

3.
6

4.
5

4.
6

5.
1

5.
6

7.
5

9.
0

11
.4

13
.7

17
.9

22
.5

24
.6

25
.0

26
.3

28
.4

31
.1

1.
0

1.
2

1.
3

1.
4

1.
5

1.
7

1.
6

1.
6

1.
9

2.
0

2.
0

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

1.
0

1.
1

1.
4

1.
4

1.
3

1.
4

1.
6

1.
6

1.
6

1.
6

1.
5

1.
5

1.
6

1.
6

1.
6

1.
5

1.
5

1.
5

1.
5

1.
5

1.
0

0.
3

0.
5

0.
5

0.
4

0.
6

0.
7

0.
7

0.
7

0.
7

0.
8

0.
9

0.
9

0.
9

0.
9

2.
1

2.
1

2.
1

2.
1

2.
1

8
16

24
32

(b
)

Io
T

re
po

sit
or

ie
s

w
ith

a
fin

al
gr

ow
th

be
lo

w
th

e
m

ea
n

Fi
gu

re
4.

1:
G

ro
w

th
sp

ee
d

of
th

e
Io

T
re

po
sit

or
ie

s

71

IoT Development in the context of Open Source Software

bo
ot
st
ra
p

vu
e

re
ac

t

te
ns

or
flo

w d3

oh
-m

y-
zs
h

re
ac

t-n
at
iv
e

el
ec

tro
n

lin
ux

an
gu

la
r.j
s

vs
co

de

cr
ea

te
-r
ea

ct
-a
pp

an
im

at
e.
cs
s

no
de

m
ob

y

jq
ue

ry

ax
io
s

at
om go

la
ra
ve

l

sw
ift

th
re
e.
js

re
du

x

so
ck
et
.io

w
eb

pa
ck

S
em

an
tic
-U

I

re
ve

al
.js

ra
ils

m
et
eo

r

ku
be

rn
et
es

1.
0

1.
9

2.
8

3.
2

0.
6

9.
7

14
.7

5.
2

7.
2

8.
1

12
.3

11
.2

10
.9

11
.2

11
.2

12
.2

12
.9

13
.6

12
.9

13
.5

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
3

0.
3

0.
5

0.
6

0.
6

0.
7

0.
9

0.
9

0.
9

1.
0

1.
2

1.
4

1.
5

1.
6

1.
5

1.
7

1.
9

1.
8

2.
5

2.
6

2.
9

3.
3

3.
7

4.
2

4.
2

4.
4

1.
5

2.
1

2.
4

1.
0

1.
1

1.
5

1.
8

2.
1

2.
4

2.
9

3.
1

4.
0

4.
3

4.
8

5.
2

5.
4

5.
9

6.
3

6.
9

7.
8

8.
1

8.
6

9.
0

1.
0

8.
9

4.
5

4.
1

4.
4

4.
9

5.
5

6.
0

6.
1

6.
3

6.
3

6.
5

6.
5

6.
6

6.
6

0.
0

0.
0

0.
0

0.
0

0.
0

1.
0

1.
4

1.
7

3.
2

8.
0

9.
0

9.
5

17
.6

21
.7

23
.9

22
.1

29
.3

31
.7

38
.2

45
.1

47
.4

55
.3

57
.3

57
.5

59
.8

1.
0

1.
9

2.
2

3.
8

4.
3

5.
0

5.
9

6.
8

7.
4

7.
7

8.
7

11
.3

10
.6

11
.5

10
.8

10
.8

11
.1

11
.8

11
.9

12
.4

1.
0

1.
6

2.
0

2.
5

2.
5

0.
0

4.
1

4.
2

5.
2

6.
0

7.
1

7.
5

8.
3

8.
9

9.
6

10
.4

12
.2

12
.5

13
.1

13
.5

1.
0

1.
0

1.
1

1.
1

1.
1

1.
2

1.
2

1.
2

1.
3

1.
3

1.
3

1.
4

1.
4

1.
4

1.
5

1.
5

1.
5

1.
8

1.
8

1.
8

1.
0

1.
2

1.
8

2.
7

3.
2

3.
7

3.
6

5.
6

6.
4

7.
3

8.
7

10
.6

11
.6

11
.9

12
.5

13
.5

13
.9

14
.1

13
.8

13
.8

1.
0

0.
7

0.
7

0.
8

0.
8

0.
7

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
7

0.
7

0.
7

0.
7

0.
8

1.
0

0.
7

0.
7

0.
7

0.
8

1.
1

1.
4

1.
5

38
.9

39
.0

39
.0

39
.0

38
.9

39
.0

39
.0

39
.3

39
.3

39
.4

39
.4

39
.5

1.
0

1.
1

0.
9

0.
9

0.
9

0.
9

0.
3

0.
3

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

1.
0

0.
8

0.
7

0.
7

0.
7

0.
7

0.
8

0.
9

0.
9

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
4

1.
4

1.
2

1.
2

1.
3

1.
0

2.
0

3.
0

5.
1

6.
9

6.
6

8.
4

10
.1

11
.3

14
.5

18
.7

20
.5

23
.7

27
.1

30
.2

32
.6

29
.0

29
.6

29
.7

30
.1

1.
0

0.
9

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
0

1.
3

1.
3

1.
4

1.
3

1.
4

1.
7

1.
9

2.
1

2.
3

2.
7

2.
9

2.
9

3.
0

3.
0

3.
0

3.
0

3.
0

3.
1

3.
2

1.
0

2.
4

1.
8

1.
0

1.
0

0.
7

0.
7

0.
9

0.
9

1.
1

1.
3

1.
1

1.
3

1.
3

1.
3

1.
4

1.
5

1.
4

1.
8

1.
9

1.
0

1.
0

1.
0

1.
1

1.
1

1.
1

1.
2

1.
2

1.
3

1.
4

1.
5

1.
5

1.
5

1.
6

1.
6

1.
7

1.
7

1.
7

1.
8

1.
8

1.
0

1.
5

2.
6

3.
5

3.
7

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
3

0.
3

0.
3

0.
3

0.
3

0.
3

1.
0

1.
0

1.
1

1.
2

1.
2

1.
3

1.
3

1.
3

1.
4

1.
4

1.
5

1.
6

1.
6

1.
7

1.
7

1.
7

1.
8

1.
8

1.
9

1.
9

1.
0

5.
4

10
.6

12
.1

13
.3

14
.5

28
.2

30
.6

30
.4

30
.8

31
.9

36
.7

39
.7

50
.8

54
.6

55
.4

68
.3

66
.2

69
.0

71
.9

1.
0

1.
4

1.
5

1.
5

2.
1

2.
3

2.
3

2.
4

2.
4

2.
4

2.
4

2.
5

2.
5

2.
4

2.
5

2.
5

2.
7

3.
1

3.
1

3.
2

1.
0

1.
0

1.
9

3.
6

3.
6

3.
7

0.
4

0.
4

0.
4

0.
5

0.
6

0.
7

0.
8

0.
8

0.
9

0.
9

0.
9

0.
9

0.
9

1.
0

1.
0

1.
1

2.
2

1.
7

1.
9

1.
7

1.
9

2.
0

2.
1

2.
3

2.
4

2.
6

2.
8

3.
0

3.
3

3.
9

4.
4

4.
8

5.
1

5.
6

1.
0

1.
9

1.
9

1.
4

1.
5

0.
4

0.
4

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

1.
0

0.
9

1.
2

2.
2

3.
0

4.
2

6.
2

6.
8

7.
8

6.
8

8.
7

8.
8

8.
9

8.
9

9.
0

9.
0

9.
4

9.
7

9.
7

9.
7

1.
0

0.
3

0.
3

0.
3

0.
4

0.
4

0.
4

0.
4

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
6

0.
6

0.
6

0.
6

0.
7

0.
7

1.
0

1.
1

2.
9

3.
1

1.
7

2.
8

3.
3

6.
8

11
.0

13
.7

17
.8

23
.0

26
.9

29
.9

34
.0

39
.0

41
.7

44
.6

46
.2

47
.9

1.
0

1.
2

1.
6

2.
1

2.
5

2.
7

3.
6

4.
0

4.
8

6.
2

7.
2

7.
3

7.
4

7.
4

6.
7

6.
8

6.
9

7.
0

6.
7

7.
0

15
30

45
60

(a
)

N
on

-I
oT

re
po

sit
or

ie
s

vu
e

re
ac

t

te
ns

or
flo

w d3

lin
ux

vs
co

de

an
im

at
e.
cs
s

no
de

jq
ue

ry

ax
io
s

at
om go

la
ra
ve

l

sw
ift

re
du

x

so
ck
et
.io

w
eb

pa
ck

S
em

an
tic
-U

I

re
ve

al
.js

ra
ils

ku
be

rn
et
es

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
3

0.
3

0.
5

0.
6

0.
6

0.
7

0.
9

0.
9

0.
9

1.
0

1.
2

1.
4

1.
5

1.
6

1.
5

1.
7

1.
9

1.
8

2.
5

2.
6

2.
9

3.
3

3.
7

4.
2

4.
2

4.
4

1.
5

2.
1

2.
4

1.
0

1.
1

1.
5

1.
8

2.
1

2.
4

2.
9

3.
1

4.
0

4.
3

4.
8

5.
2

5.
4

5.
9

6.
3

6.
9

7.
8

8.
1

8.
6

9.
0

1.
0

8.
9

4.
5

4.
1

4.
4

4.
9

5.
5

6.
0

6.
1

6.
3

6.
3

6.
5

6.
5

6.
6

6.
6

0.
0

0.
0

0.
0

0.
0

0.
0

1.
0

1.
0

1.
1

1.
1

1.
1

1.
2

1.
2

1.
2

1.
3

1.
3

1.
3

1.
4

1.
4

1.
4

1.
5

1.
5

1.
5

1.
8

1.
8

1.
8

1.
0

0.
7

0.
7

0.
8

0.
8

0.
7

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
7

0.
7

0.
7

0.
7

0.
8

1.
0

1.
1

0.
9

0.
9

0.
9

0.
9

0.
3

0.
3

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

1.
0

0.
8

0.
7

0.
7

0.
7

0.
7

0.
8

0.
9

0.
9

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
4

1.
4

1.
2

1.
2

1.
3

1.
0

0.
9

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
3

1.
0

1.
3

1.
3

1.
4

1.
3

1.
4

1.
7

1.
9

2.
1

2.
3

2.
7

2.
9

2.
9

3.
0

3.
0

3.
0

3.
0

3.
0

3.
1

3.
2

1.
0

2.
4

1.
8

1.
0

1.
0

0.
7

0.
7

0.
9

0.
9

1.
1

1.
3

1.
1

1.
3

1.
3

1.
3

1.
4

1.
5

1.
4

1.
8

1.
9

1.
0

1.
0

1.
0

1.
1

1.
1

1.
1

1.
2

1.
2

1.
3

1.
4

1.
5

1.
5

1.
5

1.
6

1.
6

1.
7

1.
7

1.
7

1.
8

1.
8

1.
0

1.
5

2.
6

3.
5

3.
7

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
3

0.
3

0.
3

0.
3

0.
3

0.
3

1.
0

1.
0

1.
1

1.
2

1.
2

1.
3

1.
3

1.
3

1.
4

1.
4

1.
5

1.
6

1.
6

1.
7

1.
7

1.
7

1.
8

1.
8

1.
9

1.
9

1.
0

1.
4

1.
5

1.
5

2.
1

2.
3

2.
3

2.
4

2.
4

2.
4

2.
4

2.
5

2.
5

2.
4

2.
5

2.
5

2.
7

3.
1

3.
1

3.
2

1.
0

1.
0

1.
9

3.
6

3.
6

3.
7

0.
4

0.
4

0.
4

0.
5

0.
6

0.
7

0.
8

0.
8

0.
9

0.
9

0.
9

0.
9

0.
9

1.
0

1.
0

1.
1

2.
2

1.
7

1.
9

1.
7

1.
9

2.
0

2.
1

2.
3

2.
4

2.
6

2.
8

3.
0

3.
3

3.
9

4.
4

4.
8

5.
1

5.
6

1.
0

1.
9

1.
9

1.
4

1.
5

0.
4

0.
4

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

1.
0

0.
9

1.
2

2.
2

3.
0

4.
2

6.
2

6.
8

7.
8

6.
8

8.
7

8.
8

8.
9

8.
9

9.
0

9.
0

9.
4

9.
7

9.
7

9.
7

1.
0

0.
3

0.
3

0.
3

0.
4

0.
4

0.
4

0.
4

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
6

0.
6

0.
6

0.
6

0.
7

0.
7

1.
0

1.
2

1.
6

2.
1

2.
5

2.
7

3.
6

4.
0

4.
8

6.
2

7.
2

7.
3

7.
4

7.
4

6.
7

6.
8

6.
9

7.
0

6.
7

7.
0

2
4

6
8

(b
)N

on
-I

oT
re

po
sit

or
ie

sw
ith

a
fin

al
gr

ow
th

be
lo

w
th

e
m

ea
n

Fi
gu

re
4.

2:
G

ro
w

th
sp

ee
d

of
th

e
no

n-
Io

T
re

po
sit

or
ie

s

72

4.3 – OSS Projects Analysis

The growth of the project was calculated by dividing the size of each checked
out version of the project by the size of the second checked out version. In fact, to
avoid empty projects (without source code) that would have made the calculation
impossible or meaningless, the second version was taken instead of the first one. In
this manner, the first measure was always 1.0, and the following values represented
the variation regarding the initial size of the projects’ programming files. Hence,
the last measure represents how many times the source code grew in comparison
with respect to its initial size.

As can be observed in Figure 4.1a, a subset of four IoT projects grew up hugely.
Namely netdata (350 times, 24.4 MB, and 7.3k commits), home-assistant (101
times, 85.7 MB, and 14.7k commits), gobot (108 times, 9.6 MB, and 2.5k com-
mits), and crate (261 times, 86.5 MB, and 8.7k commits). Indeed, while the av-
erage growth is 35.15 times, the standard deviation is 78.83 times. To improve the
readability of the graph for project with less dramatic growth, a second heatmap
visualization was generated, considering only the projects whose final growth is
below the mean (Figure 4.1b).

Concerning non-IoT projects (Figure 4.2b), five of them grew up significantly,
although not as dramatically as the subset of IoT projects that grew above the
mean. These repositories were: oh-my-zsh (60 times, 4.7 MB, and 4.7k commits),
create-react-app (39 times, 5.7 MB, and 1.7k commits), moby (30 times, 137.5
MB, and 35.8k commits), three.js (72 times, 662.9 MB, and 25.2k commits), and
meteor (47.9 times, 76.0 MB, and 21.6k commits). The average growth in non-IoT
projects is 11.88 times, and the standard deviation 18.81 times. As with the IoT
projects, Figure 4.2b reports a second heatmap visualization with the IoT projects
whose final growth is below the mean.

Among the IoT projects, paho.mqtt.android is the one that has remained more
stable over time (1.0 times, 2.0 MB, and 194 commits), it consists of an MQTT
client library written in Java for developing applications on Android. Nevertheless,
the last of its 195 commits was 4ht October 2017, and it has just two releases.
After it, the project that remained more stable was urh (1.2 times, 43.5 MB, and
2.5k commits), it consists of a tool for analyzing unknown wireless protocols by
taking samples from Software Defined Radios and transforming them into binary
information. For its part, the non-IoT project whose code growth remained more
stable over time is socket.io (1.0 times, 12.2 MB, and 1.7k commits), a library
that enables real-time, bidirectional and event-based communication between the
browser and the server.

4.3.2 RQ4.1: Development Activities
An analysis of the commit history for all the OSS projects was performed to

answer RQ4.1. In particular, each repository was cloned locally so that its git

73

IoT Development in the context of Open Source Software

history could be saved into an external text file, and processed later by a custom-
developed text mining tool. This tool extracted from each commit the set of files
that were modified, the modification date, and the author name. Several classifi-
cations and cross-checking analyses over this information allowed us to determine
the most widely-modified file formats, and especially the commit history over time
of such resources. In addition, complementary information from the GitHub API,
was gathered when appropriate.

Distribution of programming languages: Among the information that Lin-
guist provides there is the primary language, which is the most used programming
language within a project (Figure 4.3). The most popular primary programming
language among non-IoT projects is JavaScript, which is the also the lead language
since 18 non-IoT projects use it (60%). It is followed far behind by C++ and C
(3 and 1 project, respectively). IoT projects, instead, exhibit a more balanced dis-
tribution of primary languages, with the most popular languages being C, C++,
Java, Python, and JavaScript. All of them are the primary language on almost the
same number of projects (from 4 to 6 projects, each).

0 5 10 15 20

JavaScript

Python

Java

C++

C

18

0

0

3

1

4

4

5

5

6

Number of repositories

IoT
Non-IoT

Figure 4.3: Top primary programming languages in IoT and non-IoT repositories

Besides the primary language, there are several other languages on each project:
on average, 7.4 different languages for non-IoT projects vs. 8.3 for IoT projects. To
gather additional insight on this comparison, since the averages’ difference is not
statistically significant due to the small size of the sample, the percentage of files
written in a given programming language was compared with the number of projects
in which that language is present and reported it in Figure 4.4. It illustrates, given
a programming language, the number of projects in which it is present, and the
average percentage of files on those projects. Regarding this graph, it can be
observed that no languages were present on a high number of IoT projects with a
significant percentage of files (right-upper quadrant). In most of the IoT projects,

74

4.3 – OSS Projects Analysis

the chart identifies programming languages that are present in many projects with
a marginal percentage (right-lower quadrant), as well as programming languages
that have a significant percentage of files but just on a few projects (left-upper
quadrant). In the first category, Java and Erlang have a significant percentage of
files on a few projects. In the second category, C++, C, and Python are present
in around half of the projects, with percentages of files ranging from 26% to 32%.
Furthermore, several IoT projects have a small portion of Shell scripts (on average,
0.96% of the files in 23 projects).

0 5 10 15 20 25 30

0

25

50

75

100

Sh
el

l

Ma
ke

fi
le

Py
th

onC
C+

+

HT
ML

Ja
va

Sc
ri

pt

Ba
tc

h

Ja
va

Lu
a

Go

Er
la

ng

Ja
va

Sc
ri

pt

HT
MLSh

el
lCS

S
Py

th
on

Ma
ke

fi
le

C

C+
+

Ty
pe

Sc
ri

pt
Go

PH
PSw

if
t

Number of repositories

Pe
rc

en
ta

ge
of

fil
es

(a
ve

ra
ge

) IoT
Non-IoT

Figure 4.4: Presence of programming languages in IoT and non-IoT projects

For non-IoT projects, JavaScript is still the only programming language with
a significant percentage of files on most projects (66.47% on 23 projects). This
results gives an initial indication that the programming languages IoT developers
deal with are observably different and more varied from those worked on by non-
IoT developers, and supports the idea that the development of IoT applications
requires programmers with skills and expertise in several domains.

Specialization of contributors by programming language: Figures 4.5a
and 4.5b illustrate the average percentage of contributors that modify the files
developed in a given programming language, among the projects where it is present.
Inside the IoT projects, the files modified by a higher proportion of the contributors
are Java, C, C++, Python, and JavaScript. As before, this result indicates that
programming languages used by IoT developers are more variegate and diverse than
other contexts, with a lower specialization towards a few lead languages. On the
contrary, shell executable files, batch files, and command files are manipulated by
a percentage that reaches, on average, 15% of the contributors. This percentage
suggests a higher level of specialization for shell-oriented languages.

75

IoT Development in the context of Open Source Software

0 25 50 75 100

makefile
cmd
bat

html
sh

hrl
lua
js
py

cpp
c

java

Percentage of contributors

Fi
le

s
fo

rm
at

(a) Percentage of contributors that modified certain files
formats in IoT repositories

0 25 50 75 100

makefile
c

sh
css
py

cpp
html

ts
php

swift
go
js

Percentage of contributors

Fi
le

s
fo

rm
at

(b) Percentage of contributors that modified certain files
formats in non-IoT repositories

Figure 4.5: Percentage of contributors by file format

For what concerns non-IoT projects, the files modified by a higher proportion
of the contributors are by far JavaScript and Go. The rest of the files are mod-
ified by a dramatically lower proportion of contributors. Moreover, shell-oriented
files (e.g., sh files) in non-IoT projects are modified by a significantly lower propor-
tion of contributors, in comparison with IoT projects. However, it must clarified
that Figure 4.5 does not represent an overall ranking of the most used program-
ming languages among IoT and non-IoT projects. Instead, it corresponds to the

76

4.3 – OSS Projects Analysis

programming language whose files are modified by a higher percentage of contrib-
utors, among the repositories that were analyzed. For instance, although Go is the
second programming language modified by a high percentage of contributors, it is
present in just three IoT projects and five non-IoT projects, in both cases with
around half of the files.

Evolution of files by programming languages: Figures 4.6a and 4.6b aim
at visualizing the files modified in the commits, grouped by their format. To facil-
itate the interpretation, the dates of the commits, from all the analyzed projects,
were normalized and placed on a common timeline since the first commit to the
data extraction date. Moreover, as the modifications to the files from the analyzed
projects sum up to approximately 0.6 million diffs in IoT projects, and 3 million in
non-IoT projects, and larger projects have a significantly higher number of commits,
it was decided to randomly sample 500 modifications, at most, per each project.
In this manner, it could be guaranteed that the graph was readable and balanced
concerning the represented number of modifications from each project. Otherwise,
there would be so many points that it would not be possible to identify the trends,
and most of them would belong to the larger projects.

This visualization of the modifications in the commits by files format (where the
formats are differentiated by random colors, and each point represents a modifica-
tion of a file in the given format) allows observable trends concerning the frequency
of the changes to be identified. This chart indicates that compiled and interpreted
programming languages are continually modified along the IoT projects lifetime,
while shell-oriented languages are rarely modified. Thus, the commits over time are
consistent with the specialization trends by language (Figure 4.5), the presence of
the programming languages and the primary programming languages (Figures 4.4
and 4.3). This shows that developers focus more on source code concerning the
business logic of the application rather than the execution scripts.

Regarding non-IoT projects, JavaScript files are evidently the most modified
over time, no matter in which project they were used (e.g., user interface frame-
works, general purpose libraries, MVC frameworks, runtime engines, programming
frameworks). Other types of files evolved equally, with no evident differences, across
the various development phases.

RQ4.1: How developers of IoT vs. non-IoT OSS applications contribute
to their projects regarding the programming languages that they adopt?
IoT projects present contributions in diverse programming languages, without a
unique widely used language. In IoT projects, in addition, the files modified by
a higher proportion of contributors are Java, C, C++, Python, and JavaScript.
Additionally, Shell executable files, Batch files, and Command files are manipulated
by a percentage that reaches, on average, 15% of the contributors. The above
indicates a more variegate usage of programming languages and a higher level of

77

IoT Development in the context of Open Source Software

1st. commit present

makefile

cmd

bat

html

sh

hrl

lua

js

py

cpp

c

java

Fi
le

s
fo

rm
at

(a) IoT repositories

1st. commit present

makefile

c

sh

css

py

cpp

html

ts

php

swift

go

js

Fi
le

s
fo

rm
at

(b) Non-IoT repositories

Figure 4.6: Commit history over time by file format

specialization in shell-oriented languages than in non-IoT projects. Concerning
files’ evolution over time, compiled and interpreted programming languages are
continually modified along the IoT projects lifetime, while shell-oriented languages
are rarely modified. This is less visible for non-IoT projects.

78

4.3 – OSS Projects Analysis

4.3.3 RQ4.2: Maturity of the IoT Software Ecosystem
The maturity of the IoT software ecosystem was investigated by exploring the

dependencies of each project and identifying how many they are and which ones
are present in the various projects. Initially, the GitHub API was used to extract
the data about dependencies. However, in this case, the data provided by the API
is not completely accurate because GitHub is not able to identify the dependencies
of a project if they are not defined in one of the supported manifest file types4.
Moreover, these manifests are limited to a reduced set of supported languages,
namely Java, JavaScript, .NET, Python, and Ruby. For this reason, each project
had to be manually explored looking for the files where dependencies are specified
along with their versions.

When manually looking for the dependencies, the first step was trying to find
the equivalent to the manifest file in the project root directory. If such a mani-
fest did not exist, the content of the files was examined using the GitHub search
engine, looking for keywords that could help us to identify the files in which
dependencies could have been declared. Concretely, the query keywords were:
dependencies, deps, dev-deps, import, include, require. Furthermore, the
substring “github.com/” was also used as a query keyword to identify the de-
pendency’s corresponding repository on GitHub. In that case, the search could
highlight the URL within GitHub of the declared dependencies. Unfortunately,
this strategy was not always effective, particularly in the largest projects where
the query retrieved thousands of source code files, most of which contained the
keywords inside documentation blocks. When it was possible to find one or more
dependencies, they were added to the data gathered with the GitHub API; oth-
erwise, it was assumed that the project under analysis did not have any explicit
dependency.

Afterwards, the API data and the data gathered manually were consolidated,
and the analysis was performed taking into account two conditions: (i) dependencies
had to correspond to open source software projects so that they could explored
and analyzed, (ii) the dependencies declared directly in the analyzed project, only,
were included: dependencies of the dependencies were excluded from the analysis.
Consequently, the number reported in the # Dependencies column in Tables 4.1 and
4.2, corresponds to the number of dependencies that could be correctly identified
either via the API or manually, and that satisfy the just described conditions. For
this reason, it must be clarified that zero dependencies reported in the table do
not necessarily imply that, in practice, the concerned project does not have any
dependencies at all.

Regarding the number of dependencies, it could be observed that developers

4https://help.github.com/articles/listing-the-packages-that-a-repository-depends-on/,
last visited on June 6, 2019

79

https://help.github.com/articles/listing-the-packages-that-a-repository-depends-on/

IoT Development in the context of Open Source Software

of non-IoT projects adopt more dependencies than those working on IoT projects.
Specifically, IoT projects exhibited 1,084 dependencies, compared to 1,868 depen-
dencies for non-IoT projects (1.7x). In addition, the number of dependencies shared
among different repositories is significantly higher in non-IoT projects. Accord-
ingly, Figure 4.7 shows the percentage of dependencies present in a given number
of projects. In both cases, the majority of the dependencies are not shared, but
while in the non-IoT projects the percentage of dependencies shared by 2 or more
projects is approximately 35%, in IoT projects is around 5%.

0 0.2 0.4 0.6 0.8 1

IoT

Non-IoT

1 2 3 4 5-10

Figure 4.7: Distribution of dependencies present in one or more projects

Finally, Tables 4.3 and 4.4 present the list of the top-15 most popular depen-
dencies among IoT and non-IoT projects, respectively. By analyzing the type of
the dependencies, it can be highlighted that most of the dependencies of non-IoT
projects correspond to utilities aimed at easing code development, such as parsers,
test frameworks, beautifiers, and algorithm implementations. In the IoT projects,
instead, some of the most popular dependencies concern network protocols client
libraries, HTTP requests libraries, a serial port access library, and a test framework.
A few dependencies were common across IoT and non-IoT projects, and they are
utilities mainly concerning code source code formatting, linting, and testing.

RQ4.2: How developers exploit dependencies to reuse features in IoT
vs. non-IoT OSS projects? Non-IoT projects have more dependencies than IoT
projects (1.7x). Moreover, the number of shared dependencies is significantly higher
for non-IoT projects. Although in both of them, IoT and non-IoT projects, most
of the dependencies were not shared among different projects, in non-IoT projects
the percentage of dependencies shared by 2 or more projects is approximately 35%,
while in IoT projects is around 5%. Finally, the most popular dependencies in
the analyzed IoT projects were shared at most by 5 projects, and among these
popular dependencies, there were network protocols client libraries, HTTP requests
libraries, a serial port access library, and a test framework. Among the most popular

80

4.3 – OSS Projects Analysis

Table 4.3: Most popular dependencies of IoT projects

Dependency # Repos. Description

mochajs/mocha 5 Test framework for nodejs
petkaantonov/bluebird 4 Promise library for nodejs
eslint/eslint 4 Linting utility for JavaScript
gruntjs/grunt 3 JavaScript task runner
substack/minimist 3 JavaScript argument parser
substack/node-mkdirp 3 Recursively mkdir for nodejs
kelektiv/node-uuid 3 RFC UUIDS generator
request/request 3 HTTP request client
sinonjs/sinon 3 Test framework for JavaScript
shama/gaze 2 File system watcher wrapper
jashkenas/underscore 2 Utility library for JavaScript
eclipse/paho.mqtt.python 2 MQTT Python client library
requests/requests 2 HTTP library for Python
pyserial/pyserial 2 Serial port access library
numpy/numpy 2 Scientific computing package

Table 4.4: Most popular dependencies of non-IoT projects

Dependency # Repos. Description

isaacs/node-glob 11 glob implementation in JavaScript
eslint/eslint 10 Linting utility for JavaScript
isaacs/rimraf 10 rm -rf utility for nodejs
chalk/chalk 9 Terminal string styling utility
lodash/lodash 9 JavaScript utility library
Microsoft/TypeScript 8 Superset of JavaScript
substack/minimist 8 JavaScript argument parser
substack/node-mkdirp 8 Recursively mkdir for nodejs
npm/node-semver 8 Semantic versioner for npm
acornjs/acorn 7 JavaScript parser
rollup/rollup 6 Module bundler for JavaScript
sinonjs/sinon 6 Test framework for JavaScript
mishoo/UglifyJS2 6 JavaScript beautifier toolkit
mathiasbynens/he 6 HTML entity encoder/decoder
browserify/resolve 6 require.resolve() implementation

81

IoT Development in the context of Open Source Software

non-IoT projects, instead, dependencies mainly concerned utilities aimed at easing
code development.

4.4 Discussion and Implications
After presenting the results of the analysis, this section focuses on (i) a discussion

of the results and on (ii) an analysis of the implication that the current research
work has both for researchers and practitioners.

4.4.1 Discussion
The results that emerged from the analysis showed some points to be further

highlighted and discussed, detailed below.
The development of IoT applications is different. While the knowledge

about an inherent complexity in developing IoT applications was already hinted in
the literature (e.g., [42, 94, 60]), in this research this complexity was evaluated in a
more quantitative way. It was observed that developers, involved in the creation of
IoT vs. non-IoT software applications, are less oriented towards the adoption of a
lead programming language, but they work with different programming languages,
according to the task at hand or to the specific capability of the infrastructure (e.g.,
a micro-controller or a cloud service) where the IoT application should be deployed.
Furthermore, this heterogeneity of languages is also reflected in the IoT projects’
topics, thus unveiling one of the main sources of complexity in IoT applications
development, i.e., the co-existence of various kinds of devices, protocols, and archi-
tectures within the same application. Therefore, the tools and methodologies to
support IoT developers can not be constrained to a given technological stack. They
should be language and platform agnostic, or at least open to support or integrate
different ecosystems.

Specialization of a few contributors towards command-line scripting.
The percentage of contributors that modified specific files and the tracking of the
commits over the lifetime of IoT projects showed that a strong majority of the
developers are frequently modifying the files written in compiled and interpreted
programming languages, where the business logic of the application reside, while a
few contributors specialize in shell-oriented languages (e.g., bash), generally related
to the configuration and deployment of the software components in a particular
execution environment. Indeed, differently from non-IoT projects, shell-oriented
languages are present in most of the IoT projects. This result reveals that, in
IoT projects, the execution environment is particularly relevant yet problematic for
what concerns the different (and often incompatible) target devices.

82

4.4 – Discussion and Implications

The way files evolve is different. By observing the evolution of the files
during the history of software projects, it could be determined that IoT develop-
ers focus more on compiled and interpreted programming languages (i.e., Java, C,
C++, Python, and JavaScript) able to fulfill the core business logic of the IoT
application. All these files evolved equally across the various development phases,
while shell-oriented files are scarcely modified. IoT developers seems not to fo-
cus on configuration and deployment scripts, probably immutable once the target
platform(s) is chosen. Conversely, non-IoT developers constantly and significantly
evolve the JavaScript files of their applications, only, being they user interface
frameworks, general purpose libraries, MVC frameworks, runtime engines, or pro-
gramming frameworks. Other types of files evolved equally, with no evident stops,
across the various development phases.

Dependencies are considered differently. Non-IoT projects have more de-
pendencies than IoT projects, and 35% of those dependencies are shared among 2 or
more non-IoT projects. IoT developers do not only use less dependencies, but such
dependencies are also shared among fewer projects, with only 5% of them shared
by two or more repositories. However, dependencies in non-IoT projects mainly
represent utilities, while dependencies in IoT projects are more varied and oriented
towards software integration tasks. The relatively high number of dependencies
used by IoT projects may entail a relatively good maturity of the IoT ecosystem,
but the analysis also highlight some issues in sharing the knowledge about the
existence of a given dependency.

4.4.2 Implications
The aforementioned findings have a number of implications for researchers and

practitioners. Researchers should acknowledge the specificity of this domain, and
explicitly consider IoT-oriented software engineering as a study branch. More
specifically:

IoT-oriented tools and methodologies. Given the wide heterogeneity of
IoT applications and adopted programming languages, stemming from both the
results and the literature, tools like IDEs and software methodologies to support
IoT developers should be language and platform agnostic, and not constrained to
any given technological stack. In addition, research could focus on ways to abstract
this heterogeneity, to allow developers to more easily share their IoT-related efforts,
code, and documentation.

Supporting automation for multiple and diverse deployment targets.
The specialization towards shell-oriented languages and their relative immutability,
generally related to the configuration and deployment of the software components
in a particular execution environment or embedded device, may indicate that execu-
tion environments are particularly relevant for IoT development. Research efforts

83

IoT Development in the context of Open Source Software

should consider approaches to deal with this devices heterogeneity and to auto-
mate the generation and execution of deployment commands across several, often
incompatible, devices.

IoT-specific dependencies sharing mechanisms. The obtained results
showed that developers exploit some existing dependencies in their projects, but
the same projects do not present common dependencies. Likely, this is due both to
the heterogeneity of the IoT projects and to the relatively new and not yet consol-
idated software community behind those projects. This represents an opportunity
for researchers for the definition of novel mechanisms that IoT developers can adopt
to make their code more extensible, modular, and reusable, given the peculiarities
of the deployment platforms.

Furthermore, practitioners need to find appropriate ways to handle and share
dependencies, as well as to create a more focused software community around these
topics. Finally, confirming previous insights in the literature (including those pre-
sented in Chapter 3), the results from this study suggest that IoT software develop-
ment requires skills and expertise in several and disparate domains, differently from
those required by the development of traditional software. Developers are indeed
called to be more creative and able to adapt to different contexts and programming
environments. Thus, it would be beneficial for students to have dedicated courses
(e.g., similar to the courses reported in [23]) where they could gather these skills
to approach the development of IoT applications.

4.5 Threats to Validity
Sample validity: The selection criteria of the analyzed projects aimed to be

as neutral as possible from the researchers’ appreciations. For this reason, their
number of stars was the only criteria to prioritize them and take the 60 top starred
ones. Additionally, their IoT and non-IoT nature were determined by the topics
that the project owners assigned them. Since tags are freely added by project
owners, this might have excluded some potentially interesting IoT projects from the
analysis. The only two interventions of my criteria consisted of excluding projects
that were not software related or without an open source license. Nevertheless
this selection procedure, unintentionally, resulted in a strong shift in the non-IoT
projects towards web-related frameworks. However, this selection criteria was kept
because, on the one hand, it was replicable and transparent, and on the other hand,
it reveals GitHub users trends about their interests.

On the other hand, the inclusion of the most starred projects spontaneously
resulted in a significant number of files, commits, and an active contributors com-
munity. According to Kalliamvakou et al. [52], these variables help to avoid perils
while performing software engineering research on GitHub. Moreover, inspiration
was strongly taken from the methodology adopted by Pascarella et al. [70]. Authors

84

4.6 – Conclusion

included the same number of projects in their comparative analysis of video games
and non-video games OSS projects.

File classification validity: The percentage of programming language on each
project was calculated relying on the statistics provided by the GitHub API. As
already mentioned, this measure is calculated by GitHub using the open-source
Linguist library, which was assumed to provide accurate statistics. However, the
accuracy of such statistics could be assessed later when computing the percent-
age of contributors working on a given programming language. Each project was
locally cloned and, with a text mining tool developed internally, all the commits
were processed to extract the files modified by each contributor. It emerged that
the results delivered by my text-mining tool were consistent with the percentages
retrieved through the API.

Dependencies identification: The GitHub API retrieves the number and
list of dependencies if they are defined in one of the supported manifest file types,
only. These types are only attached to Java, JavaScript, .NET, Python, and Ruby
projects. Therefore, to avoid inconsistencies in the analysis of ecosystem maturity,
each project had to be explored manually looking for the files where software depen-
dencies and their versions are specified. This manual process, given its complexity,
could have led to omissions or mistakes in the identification of the dependencies.

Finally, the higher number of dependencies in the non-IoT projects could de-
pend from the nature of these projects: they are homogeneously distributed in web
development and a large number of them have the same primary language (i.e.,
JavaScript). Given these conditions, it is logical that non-IoT projects share more
dependencies among them than IoT projects, which are more heterogeneous.

4.6 Conclusion
IoT software development is known to differ from the development of other kinds

of applications. It poses several challenges and requires expertise in various areas
due to the diverse features that IoT applications expose. The research presented in
this chapter provided empirical insights into the peculiarities of IoT software devel-
opment through the analysis of OSS projects. This analysis was structured around
two criteria: the behavior of the contributors, and the maturity of the IoT software
development ecosystem. Specifically, exploratory study was conducted mining 30
popular IoT OSS and 30 popular non-IoT OSS projects available on GitHub. The
obtained results are intended to provide evidence about IoT development charac-
teristics (such as the distribution of programming languages, the specialization of
contributors, the evolution of the files, and the adopted dependencies), that should
be considered by future research efforts aimed at better satisfying software engi-
neering needs in the IoT scenario.

85

86

Chapter 5

Code Recipes: a documentation
approach for easing IoT
development

The IoT developers survey, presented in Chapter 3, focused on identifying the
most challenging issues that novice programmers experience when developing IoT
systems. The results suggested that the integration of heterogeneous software com-
ponents resulted one of the most painful issues, mainly due to the lack of docu-
mentation understandable by inexperienced developers, from both conceptual and
technical perspectives. In fact, novice programmers devote a significant effort look-
ing for documentation and code samples willing to understand them conceptually,
or in the worst case, at least to make them work. Driven by the research question:
“How do the lessons learned by IoT novice programmers can be captured, so they
become an asset for other novice developers?”, this Chapter presents the proposal
of Code Recipes. They consist of summarized and well-defined documentation mod-
ules, independent from programming languages or run-time environments, by which
non-expert programmers can smoothly become familiar with source code, written
by other developers that faced similar issues. Furthermore, a use case is presented
to illustrate how Code Recipes are a feasible mechanism to support novice IoT pro-
grammers in building their IoT systems. Part of the work described in this chapter
has been previously published in [25].

5.1 Motivation
As described in Chapter 3, an exploratory study was conducted among Elec-

tronic and Computer Engineering undergraduate students of a university course.
The goal of the study was to identify the pain points that novice programmers
experienced when developing IoT systems [26]

87

Code Recipes: a documentation approach for easing IoT development

The obtained results from this exploratory study suggested that the integration
of heterogeneous software components is one of the most painful issues. It com-
monly implies dealing with several protocols, formats, and authentication mecha-
nisms, that are usually unknown to the students. Moreover, the lack of clear and
complete documentation, or merely, the absence of documentation that can be un-
derstood by a novice developer, make this integration issue even more difficult to
overcome.

In view of this issue, and looking for solutions to support novice IoT developers
in overcoming these integration issues, it was noticed that despite the specificity
of each project, implementations of the integration between software components
were similar across most of them, especially when third-party services were involved.
However, although the source code of the projects from the past years’ courses was
on GitHub, it was not being reused among groups in later versions of the course.
Therefore, the lessons learned by a group when implementing its project was not
useful for the next year’s groups.

Taking into account the results of the exploratory study and the lack of code
reuse between the course groups, it was envisioned that the the solutions found by
the students, that were finally included in the working prototype built at the end
of the course, could become a valuable asset for the novices that are about to start
implementing their projects. The source code of these prototypes reveals architec-
tural decisions and strategies adopted by other groups to achieve the integration of
diverse software components. This code should, therefore, provide some guidance
to other programmers that are in the process of overcoming the same learning curve
issues. Moreover, if documented, this code would be a solution to the reported lack
of documentation understandable by inexperienced developers [102]. In fact, being
able to observe how someone else coded, what others paid attention to, and how
they solved problems all support learning better ways to code and access to superior
knowledge [33].

Driven by the research question: “How do the lessons learned by IoT novice pro-
grammers can be captured, so they become an asset for other novice developers?”,
the current proposal aimed at easing the learning curve to IoT novice developers,
not by automating code reusing and hiding the code from the developers, but in-
stead, by enabling non-expert programmers to easily become familiar with source
code, written by other developers that faced similar issues.

5.2 Use Case
To illustrate my proposed solution, I selected a use case representative of the

difficulties identified in the IoT developers survey (Chapter 3). The survey sug-
gested that among the most challenging issues novices face when developing IoT
systems, the integration with other software components was perceived by many

88

5.2 – Use Case

students as the most painful issue. In particular, the integration with third-party
APIs that require OAuth 2.0 authentication was a time-consuming and difficult
task. The OAuth 2.0 authorization framework enables a third-party application to
obtain limited access to an HTTP service, either on behalf of a resource owner by
orchestrating an approval interaction between the resource owner and the HTTP
service, or by allowing the third-party application to obtain access on its own be-
half. Broadly speaking, this authentication protocol consists of a flow, with a set of
roles (resource owner, resource server, client, and authorization server) interacting
across various steps (authorization request, access token request, and protected re-
source request), and exchanging several resources (authorization grant, access token,
refresh token, redirect URI).

In the development of IoT systems, OAuth authentication protocol becomes
fundamental since most of the third party service APIs use it. The integration
with the Fitbit activity tracker1 is a concrete example of the OAuth protocol us-
age. In order to gather the data captured by this wearable device, the third party
application (i.e., the one developed by the novices) must obtain users authorization
through the OAuth protocol.

However, due to the roles, steps, and resources that the protocol comprises, the
adoption of the OAuth authentication is not trivial. The appropriate implemen-
tation of this protocol requires a clear understanding of the various steps, both
from the conceptual and the technical perspective. Novice programmers struggle
considerably with the adoption of OAuth, mainly due to the lack of documentation
that might be understandable by non-expert programmers.

Fitbit, for instance, has a documentation website2 that provides guidance about
the Web API for accessing data from Fitbit activity trackers. Although the devel-
oper’s site has an API explorer built in Swagger, and an API debug tool, it does not
provide a fully implemented functional source code sample. Moreover, despite the
clarity, readability and good overall structure of the documentation, it is targeted
at experienced programmers, as with most of the developer’s documentation.

In this scenario, novice programmers are required to search code samples, willing
to understand them conceptually, or in the worst case, at least to make them work.
Typically, this involves the reference of the Google OAuth Client Library documen-
tation, the Fitbit developers website, several posts published in Stack Overflow, and
various code samples available on GitHub. Hence, from the experience of the novice
programmers adopting the OAuth protocol, it could be observed that: (i) a signif-
icant amount of effort is devoted looking for documentation and samples; (ii) just
through the source code it is not possible to understand the whole learning process

1Fitbit, accessed October 6, 2017, https://www.fitbit.com
2Fitbit Web API, accessed October 6, 2017, https://dev.fitbit.com/reference/web-api/

quickstart/

89

https://www.fitbit.com
https://dev.fitbit.com/reference/web-api/quickstart/
https://dev.fitbit.com/reference/web-api/quickstart/

Code Recipes: a documentation approach for easing IoT development

behind it; (iii) the code fragments must be surrounded by summarized, structured
and well-defined documentation modules, so they become an asset for other IoT
novice programmers.

5.3 Code Recipes
Code Recipes aim at capturing the most important information and documen-

tation about one or more code fragments. They are specified through a set of
metadata and consist of multiple code fragments along with documentation and
links to ease the understanding of such code, in order to implement a given inte-
gration between subsystems of an IoT system. The joint presence of metadata and
links allows novice developers to explore alternative solutions and, at their will,
deepen their knowledge about a specific IoT subsystem, thus contributing to their
learning process.

The current approach lies in the fact that code examples, when used effectively,
can be a powerful learning resource [46]. However, while examples are a valuable
resource for programmers, the rich context surrounding them is often crucial for
adaptation and integration [67]. This proposal enables the integration of several
software components through code fragments that might belong to different pro-
gramming languages and might be deployed across various run-time environments,
as it is common in IoT systems. The decoupling between the recipes and the tech-
nological stack is fundamental given the heterogeneity of the software components
that are involved in an IoT system. Code Recipes, therefore, are defined as sum-
marized and well-defined documentation modules, independent from programming
languages or run-time environments.

By defining Code Recipes as documentation modules structured around code
fragments, they can be incorporated in various kinds of tools that might handle
them in the learning process, e.g., a wiki-style web application or an IDE extension.

Code Recipes, therefore, expose four features:

• Although the Recipes are structured around source code fragments, they are
much more than just code. They encompass information that, besides provid-
ing technical solutions, includes comments and documentation sources that
account for the learning process that other novice IoT developers followed
and the decisions they made to reach a solution.

• Recipes are not constrained to a specific architecture, programming language
or run-time environment. This means, first, that this proposal is aware of the
heterogeneous nature of IoT environments, and second, that is suitable to be
used in multiple scenarios with IoT novice developers.

• Recipes are not isolated from each other, they are cross-linked on the basis
of three criteria: alternative versions, other language versions, and related

90

5.3 – Code Recipes

recipes. This feature enables the sharing of diverse learning experiences with
their commonalities and their divergences.

• Technical speaking, a structured representation (e.g., in JSON or XML) of
the Code Recipes enables the implementation of various kinds of tools that
might handle them. For instance, a web application (as shown in Figure 5.1),
a web browser extension, or an IDE plugin.

1 {
2 "id": "1506954092" ,
3 " author ": [{
4 "name": "Juan Saenz "
5 }],
6 "date": "21.9.2017" ,
7 "name": " Integration between Fitbit and Java",
8 " description ": " Recipe to consume the Fitbit API using OAuth 2.0",
9 "tags": [" fitbit ", "java", " oauth 2.0", "api"],

10 " running_environment ": " Server application built in Java",
11 " endpoints ": [" Fitbit API"],
12 " ingredients " : [{
13 "name": " Fitbit account ",
14 " description ": " Fitbit accounts set up for read/ write API access ",
15 "url": " https :// dev. fitbit .com /"}],
16 " dependencies " : [{
17 "name": " Maven ",
18 " description ": " Maven plugin for Eclipse installed ",
19 "url": "http:// www. eclipse .org/m2e /"}],
20 " code_fragments ": [{
21 " programming_language ": "Java",
22 " description ": "This is the main class ",
23 " documentation_urls ": [" https :// github .com/google -oauth - client "],
24 "name": " FitbitSample ",
25 " source_code_url ": "./1506954092/ FitbitSample .java",
26 "ide": " Eclipse Neon",
27 " parameters ": [{
28 "name": " SCOPE ",
29 " description ": " OAuth 2.0 permission for resources ",
30 " data_type ": " String ",
31 " sample_value ": " activity , heartrate , location , nutrition "
32 }]
33 }],
34 " documentation_urls ": [" https :// stackoverflow .com/ quest /9863836"],
35 " rating ": "4.6" ,
36 " alternative_versions ": ["1506957773" , "1507562564"],
37 " other_languages_versions ": ["1496761597"],
38 " related_recipes ": ["1507302404"]
39 }

Listing 5.1: Code Recipe Sample

Listing 5.1 describes a possible structure of a Code Recipe in JSON format.
First, each recipe is described through an id (timestamp), its author name, pub-
lication date, name, description, and tags (lines 2 to 9). Then, the subsystems
that the recipe integrates are specified in the endpoints fields (lines 10 and 11).
Ingredients (line 12) correspond to the requirements of the recipe. They can be
technical requirements, such as the deployment of a specific kind of web server, or

91

Code Recipes: a documentation approach for easing IoT development

data requirements, such as creating a developer account and issuing API client cre-
dentials. Dependencies (line 16) refers to requirements associated with the source
code, which are fundamentally libraries and packages that must be installed.

Most importantly, Code Recipes include one or more code fragments that
can be implemented in different programming languages and IDEs (lines 20
to 33). Each fragment has a set of parameters, which are values specific to
each implementation of the recipe. Besides the source code, recipes include the
documentation that their authors consulted, both for the whole recipe as well as
for its fragments. They can be specified in the documentation URLs fields (lines
23 and 34). Finally, Code Recipes can be linked to each other in three ways (lines 36
to 38): alternative versions, that point to other recipes targeted at implementing
the same integration; other language versions, that point to implementations
of the same recipe in other programming languages; and related recipes, that
correspond to other recipes that can be used as intermediate steps to implement
the concerned recipe.

Figure 5.1: Code Recipe visualized in a web interface

92

5.4 – Validation: The Fitbit OAuth Code Recipe

5.4 Validation: The Fitbit OAuth Code Recipe
With the use case described in Section 5.2 in mind, a Code Recipe was developed

to illustrate how this approach might help novices to overcome integration issues
through a collaborative approach. To develop this recipe, a simple Java application
to gather data from a Fitbit bracelet had to be implemented.

As mentioned before, no sample projects are provided in the Fitbit developers’
website. Therefore, the first endeavor was to find a sample project in which the
OAuth authentication was implemented using Java. After googling “OAuth 2.0
Java Sample Code”, the second result took us to the documentation of the Google
OAuth Client Library for Java (in the Code Recipes, this website would be included
in the documentation_urls field). This website had setup instructions for Maven,
the list of libraries that were required (in the Code Recipes would correspond to the
dependencies field), the release notes of these libraries, and one sample code of
the integration between a Java application and the Dailymotion API3, using OAuth
2.0.

Once the sample code is downloaded and imported into the IDE, the next step
was to install and configure Maven, including the Project Object Model (POM) in
which the dependencies of the project were defined. Later, when the Java project
was already compilable, the next task was to identify which pieces of the code should
be modified to achieve the integration with the Fitbit API (in the Code Recipes,
these pieces are specified in the parameters field). Among the new data that had
to be inserted into the code as parameters, there were the API key, the API secret,
the Callback URL and the Scope. All of this data was obtained after completing
the registration as a Fitbit developer (in the Code Recipes this registration accounts
as an ingredient)

Afterwards, there was the source code itself. It consisted of three Java classes,
two of which had to be parameterized. The explanation of the meaning of every
parameter was available in the Fitbit developers website, along with their possi-
ble values (in the Code Recipes, these parameters can be documented through a
description, their data_type, and a set of sample_values). Since this was the
first Recipe that was developed, there were no other Recipes to link.

Across the whole implementation process, several documentation sources were
consulted. The Google OAuth Client Library documentation, the Fitbit developers
website, several posts published in Stack Overflow, and various code samples avail-
able in GitHub. Notwithstanding the fact that the Code Recipe was developed by
an experienced programmer, its implementation was not trivial, and many of the
issues expressed by the novices in our previous research were highlighted.

3Dailymotion Developers - API, accessed October 6, 2017, https://developer.dailymotion.
com/

93

https://developer.dailymotion.com/
https://developer.dailymotion.com/

Code Recipes: a documentation approach for easing IoT development

Regarding the first research goal of this dissertation, the Code Recipes are a
strategy targeted at helping IoT developers to overcome the lack of documentation
understandable by novices, especially concerning the integration of heterogeneous
subsystems. This research work focused on proposing a mechanism through which
source code written by inexperienced developers could become an asset for other
novices facing the same issues. To that end, the code fragments were surrounded
by a set of metadata fields that allow such code to be explained thoroughly, linked
to the documentation sources that account for the learning process, and linked to
alternative or related versions of the concerned fragment.

Nevertheless, while the Code Recipes were proposed mainly as a conceptual
model, it is critical as a future research work to integrate these documentation
modules into a development tool. To some extent, the research that will be pre-
sented in the following Chapter (that relies on computational notebooks to satisfy
the lack of documentation, and is not tied to a specific architecture, programming
language, or run-time environment), represent a viable alternative. However, given
that technically speaking, the recipes are a structured representation, they can also
be incorporated in various kinds of tools that might handle them.

5.5 Conclusion
In view of the complexity that the development of IoT systems poses, particu-

larly concerning the integration of heterogeneous software components, and taking
into account the lack of documentation reported by novice programmers in my
previous research, this chapter presented Code Recipes. They are summarized and
well-defined documentation modules, non-dependent from programming languages
or run-time environments, and structured around the code fragments that are re-
quired to implement some portions of an IoT system. This approach was aimed at
supporting novice IoT programmers, enabling them to easily become familiar with
source code written by other developers that faced similar issues.

Since Code Recipes were proposed mainly as a conceptual model, future work
will concern (i) the development (or adaptation of a currently available) tool, by
which novice programmers can deal with the creation of a Code Recipes catalog;
and (ii) the subsequent validation in the context of the course. In this regard, as
computational notebooks create narratives that consolidate text, executable code,
and visualizations in a single document, they represent, as a tool, a feasible alter-
native to support the Code Recipes conceptual model. Indeed, the research that
will be presented in the following Chapter partially constitutes a viable alternative
to represent and validate the Recipes approach. In particular, the Code Recipes
catalog might correspond to a set of notebook documents, and the computational
notebook might be the web tool through which novice IoT programmers can easily

94

5.5 – Conclusion

manage those documentation modules created by and for themselves, and struc-
tured around executable code fragments.

95

96

Chapter 6

A literate computing approach to
support IoT prototyping

Computational notebooks create narratives that consolidate text, executable
code, and visualizations in a single document. They are widely used in data sci-
ence, enabling data scientists to accurately document and execute the steps of their
analyses in an exploratory and iterative manner. Prototyping IoT systems is com-
plex as well, because of IoT heterogeneous and interconnected nature. Indeed, IoT
system prototyping spans across multiple development and execution environments
and developers, besides focusing on the code, are required to configure diverse de-
vices.

With the goal of ascertaining if and how computational notebooks’ capabilities
might be useful in the IoT scenario, this chapter presents an IoT-tailored notebook
approach aimed at helping developers to build and share a computational narrative
around the prototyping of IoT systems. Specifically, in this work I propose the
concept of “IoT notebook”, for which were analyzed its required features and was
developed a prototype implementation. Finally, the proposal was evaluated by
describing a use case in which a preliminary version of the IoT notebook was used
for prototyping a realistic IoT system.

Part of the work described in this chapter has been previously published in [27],
where a preliminary assessment of the idea, suitability, and limitations of current
computational notebooks to support the development of an IoT system, is pre-
sented. Furthermore, an article providing an accurate definition and prioritization
of the features, the design of the architecture, and the description of a clean imple-
mentation of the top-prioritized features, is ready for submission.

97

A literate computing approach to support IoT prototyping

6.1 Motivation
Since the development of IoT systems requires an unusually broad spectrum

of design and development technologies and skills [97] that span across multiple
development and execution environments, besides focusing exclusively on the code,
IoT developers are also required to deal with the hardware implementation and
distributed computing concepts. Consequently, due to this inherent complexity, it
is common to prototype parts of the IoT system, to explore and validate possible
strategies useful to configure, develop, and integrate hardware and software arti-
facts. However, this prototyping process comprises several steps along which the
IoT developer gradually overcomes a learning curve, while iteratively exploring and
assessing various alternatives.

In addition, IoT developers struggle with three challenges: first, the program-
ming tools for IoT development are largely the same ones used for mobile and web
application development [94], and there is a shortage of software development en-
vironments that would allow an IoT developer to write a single IoT application
capable of running on various type of devices [88]; second, the absence of documen-
tation written and shared by and for non-expert developers [29, 26]; and finally,
among the currently available documentation, the lack of contextual information,
such as a textual description of how the code works, crucial for understanding how
to configure or adapt this code to the developers’ specific needs [67]. Against these
three challenges, it was envisioned that IoT developers would greatly benefit from an
interactive computing tool to document, execute, and share the configuration and
programming steps over diverse execution and development environments, which
according to the results of described in Chapter 3, would represent an alternative
to the reported lack of documentation understandable by novice IoT developers.

In this regard, computational notebooks are interactive computing tools de-
signed to support the construction and sharing of computational narratives by con-
solidating text, executable code, and visualizations in a single document [54, 84].
In the light of the architectural elements present in IoT systems and the features
provided by current computational notebooks, this work aimed at designing and
prototyping an IoT-tailored notebook that would represent a feasible environment
to support IoT systems prototyping.

6.2 Literate computing
This section briefly introduces literate programming, a paradigm in which a

computer program is given an explanation of its logic in a natural language inter-
spersed with snippets of macros and traditional source code. Later, some basic
concepts about computational notebooks are defined.

98

6.2 – Literate computing

6.2.1 Computational notebooks
Literate programming originates in 1984 from a paper by Donald Knuth [55].

He suggests software developers that “instead of imagining that our main task is to
instruct a computer what to do, let us concentrate rather on explaining to human
beings what we want a computer to do” [55]. In line with this proposal, literate
computing tools such as computational notebooks have emerged as a mean to sup-
port the construction and sharing of computational narratives by enabling data
analysts to arrange code, visualizations, and text in a computational narrative [54,
84]. These cells are linearly arranged but can be reorganized, reshuffled, and exe-
cuted in any order. Moreover, programmers can pick and choose which code cells
they would like to edit and run [53].

These literate computing tools are based on cells containing rich text or exe-
cutable code that generates results or visualizations. Notwithstanding, notebooks
also have limitations: (i) saving application states is difficult, limiting the abil-
ity to develop applications from within a notebook, (ii) real-time collaboration is,
at best, limited to text editing, and (iii) the behavior of a notebook cannot be
reprogrammed or extended from within, limiting its expressive power [53].

Among the currently available computational notebooks, Project Jupyter is one
of the most widely used platforms [84], it is a popular open-source computational
notebook that relies on open standards and enables users to combine code, visual-
izations, and text in a single document (a .ipynb file) whose underlying structure
is JSON [84]. Jupyter Notebook originated from IPython [73] and, in addition to
Python, it natively supports a variety of programming languages, such as Julia, R,
Javascript, and C [75]. The popularity of Jupyter Notebooks increased since 2015
when GitHub began to natively render them, presenting the .ipynb files as fully
rendered notebook documents, rather than displaying the underlying JSON1.

6.2.2 Definitions
Computational notebooks commonly refer at the same time to the interactive lit-

erate programming documents and to the software application to execute them [75].
For the sake of clarity, throughout this chapter, they will be referred as notebook
documents and computational notebooks, respectively.

Notebook documents are based on cells, each of which contains rich text or code
that can be executed to compute results or generate visualizations. These cells are
linearly arranged but can be reorganized, reshuffled, and executed multiple times
in any order. Moreover, programmers can choose which code cells they would like
to edit and run [53], and their execution does not require cleaning the outputs of

1Given its wide adoption and open standards it was taken as a reference upon which to build
the current proposal

99

A literate computing approach to support IoT prototyping

previous executions. Thus, an executed notebook may contain retrospective data
of multiple executions.

Computational notebooks typically consists of a kernel that executes the code
cells in a particular programming language and returns the corresponding output to
the user, and an interactive computing protocol that standardizes and manages the
communication between the notebook documents and the kernels. A kernel for its
part, is a “computational engine” that executes the code contained in the code cells
of a Notebook document. When the notebook document is executed, the kernel
performs the computation and produces the results [47]. Each kernel executes a
given programming language.

6.3 Use Case
This section describes a use case concerning a maker-level IoT system, aimed

at providing a common understanding of the four architectural elements present
in IoT systems (devices, gateways, cloud services, and applications), as well as at
identifying the characteristics of IoT systems.

6.3.1 Controlling Philips Hue Lamps from an Arduino
The use case concerns an IoT system that warns the occupants of a room when a

harmful level of carbon dioxide (CO2) is reached by turning on a Philips Hue lamp.
As illustrated in Figure 6.1, this system comprises an air quality sensor, an Arduino
single-board microcontroller, a Back-end application, a Philips Hue bridge, and a
Philips Hue lamp.

Specifically, the Arduino gathers and evaluates the readings from the air quality
sensor. If these measures exceed a certain threshold, meaning that the level of CO2
has become harmful, the Arduino communicates it to the Back-end application
deployed on the cloud, through an HTTP request. For its part, the Back-end
application communicates, through an HTTP request, with the Philips Hue Bridge,
that sets the lighting color and intensity of the Philips Hue Bulb to red. The
communication between the sensing and acting devices with the Application and
cloud services is achieved through a set of RESTful web services that the latter
expose.

Technically speaking, from the perspective of the architectural elements involved
in the system, the air quality sensor is physically attached to the Arduino, and it
represents the sensing devices of the system. The application architectural element
is represented by the Back-End application, which mediates the communication
between the sensing and the acting device, that in this project is represented by
the Philips Hue bulb, whose lighting color and intensity can be programmed. Fi-
nally, the gateway architectural element corresponds to the Philips Hue bridge that,

100

6.3 – Use Case

Figure 6.1: IoT architectural elements in the Use Case

through a Zigbee protocol, controls the bulb according to the requests received from
the Back-end application.

Regarding the programming and deployment of the system, two heterogeneous
software artifacts are present: (i) an Arduino sketch running on the microcontroller,
and (ii) the Back-end application, written in Python and deployed on the cloud.
Furthermore, the integration between the Arduino and the Back-end is achieved
by invoking a set of web services exposed by the latter. These web services were
implemented using Flask, a Python web micro-framework.

6.3.2 Characteristics of an IoT system prototype
Regarding the software artifacts, the following characteristics can be identified:

1. They remain in background execution. The Arduino script keeps gath-
ering and monitoring the readings from the temperature sensor, the Back-End
application keeps mediating the communication and interacting with the sens-
ing and acting devices, and the RESTful web services keep forwarding the
requests sent from the Arduino.

2. They are deployed once, and then they keep running in the background si-
multaneously, while exchanging data and requests among them.

101

A literate computing approach to support IoT prototyping

3. They are deployed over heterogeneous run-time environments. Specifi-
cally, while an Arduino script is executed on a computing-resource constrained
device without an operating system, the Back-End application and its web
services are deployed on the cloud.

4. They involve multiple devices, therefore the prototyping of this system re-
quires to manage the available devices, and for each one of them, con-
figure the proper run-time environment, and deploy the executable files on
it.

6.4 IoT notebook
This section presents the concept of an IoT-tailored notebook (hereinafter, re-

ferred to as IoT notebook) as a tool to support IoT systems prototyping. The first
step was to list the set of features that an IoT notebook should offer (Section 6.4.1)
based on the characteristics specified in Section 6.3.2. Then, the current IoT note-
book proposal was introduced from two perspectives: first, conceptually, outlining
which concepts from the identified features should be incorporated into the cur-
rently available computational notebooks (Section 6.4.2); and lastly, technically,
describing the architecture that supports the implementation of the IoT notebook
(Section 6.4.3).

It should be emphasized here that the IoT notebook approach is meant for
prototyping, not production. It aims at enabling IoT developers to build and share
a computational narrative around the process that they follow when they prototype
an IoT system. Hence, IoT notebooks are not intended to support the production
deployment of a fully implemented IoT application. For this reason, aspects such
as the scalability and testability are out of the scope of the current proposal.

6.4.1 Features of an IoT notebook
The following is a recap of 7 features (FT-1 through FT-7) that emerge from

the previously identified characteristics.

1. Several software artifacts remain on simultaneous background execution.

• FT-1: Various code fragments within the code cells might be
able to remain running in background simultaneously, without
blocking the execution of other code cells (as occurs in the currently
available computational notebooks).

2. Software artifacts keep exchanging data and requests among them while run-
ning simultaneously

102

6.4 – IoT notebook

• FT-2: Being able to control and monitor the embedded devices is crit-
ical in IoT systems. For this reason, the IoT notebook must support
real-time communication with the devices. It means that, just as
commands and data are sent from the IoT notebook to be executed on
the devices, conversely, the results of such executions should be gathered
and displayed in real time in the notebook.

3. Software artifacts are deployed over heterogeneous run-time environments

• FT-3: Additionally, in connection with the previous feature, the note-
book should be able to detect and identify the devices automat-
ically, in a plug and play manner, once they are connected, physically
or over a network, to the terminal where the notebook is running.

4. Before executing the code, several run-time environments must be con-
figured according to the specificities of the available devices.

• FT-4: In the context of IoT prototyping, software configuration steps
such as the installation of packages, the setup of a given device or the
definition of the imported libraries are executed before the software pro-
gramming steps that concern the development of the system’s business
logic. Accordingly, the IoT notebook must allow separating the con-
figuration steps from the development ones. Besides clearly dif-
ferentiating the nature of these steps, it would provide consistency to
the notebooks.

Other than the features that emerge from the technical characteristics of IoT
systems prototyping, three more features concerning the presentation of the note-
book documents were identified from the literature. These features are aimed at
making notebook documents more understandable and consistent with the struc-
ture of IoT systems.

• FT-5: To adequately structure and support the heterogeneity of IoT systems,
typically involving various devices as well as back-end and end-user services
and applications [60, 94, 97], the IoT notebook should enable the grouping
of various notebook documents, depending on the architectural element
to which they belong. For instance, to clearly define and represent such ar-
chitectural elements, a group of notebook documents concerning the setup
and development of an Arduino should be categorized as sensing devices doc-
uments, while the group of documents regarding the setup and development
of the Flask RESTful web server, should be categorized as cloud service doc-
uments.

103

A literate computing approach to support IoT prototyping

• FT-6: As mentioned before, while current computational notebooks present
the cells in a linear top-bottom narrative, a user may choose to execute the
cells in a non-linear, arbitrary order [75]. This feature can be useful in the
field of data science when checking if changes to a prior analytical step impact
later computations [84]. However, hidden states, out-of-order cells, hardcoded
paths, and other bad practices also prevent the reproduction of notebooks [75].
Furthermore, if cells appearing at the beginning of notebooks depend on cells
that appear later, it would cause several issues to users that try to execute
them in the default order [57]. On the contrary, managing the dependencies
of notebooks and guaranteeing the linear execution order could improve the
reproducibility rate [75].
When prototyping IoT systems, several imports may be required to link ex-
ternal dependencies. Unlike the iterative nature of data analysis, the IoT
development process tends to be incremental. The execution of the initial
steps must satisfy the conditions that are required to guarantee the successful
completion of the later steps. Consequently, the IoT notebook must enable
the definition of execution order constraints among the cells within a
document, if needed.

• FT-7: Notebooks evolve and grow and they often become difficult to navigate
or understand, discouraging sharing and reuse [85]. Since the prototyping of
IoT systems might comprise large fragments of code in specific architectural
components, an IoT notebook should allow this code to be split across
various cells, so that small pieces or even single lines of code can be accu-
rately documented while maintaining their execution as a single block. This
feature would enable the elaboration of accurate and clear narratives, even in
the presence of large fragments of code.

Table 6.1: IoT notebook features

ID Features Jupyter Priority

FT-1 Keep executing code cells simultaneously Ø Medium
FT-2 Support real-time communication Ø Low
FT-3 Detect and identify the devices Ø Medium
FT-4 Differentiate configuration and business logic steps ¸ Medium
FT-5 Group several notebook documents Ø Low
FT-6 Enable the definition of execution order constraints Ø Top
FT-7 Split code across various cells ¸ Low

Table 6.1 summarizes the just described IoT notebook features. The third
column represents whether the Jupyter notebook and its available plugins partially

104

6.4 – IoT notebook

satisfy (¸) or do not satisfy (Ø) the given features. Finally, each feature was
assigned a priority based on the importance of the IoT prototyping feature that
they support.

6.4.2 IoT notebook Conceptual Model
Figure 6.2 depicts the conceptual model of the IoT notebook. With respect to

the concepts involved in the Jupyter notebook, there were introduced the concepts
of Architectural element and Section. The concept of Architectural element enables
to categorize the Notebook documents depending on whether they belong to the
devices, gateways, cloud services, or applications. The concept of Section, on his
part, enables to distinguish the cells in the Notebook document concerning the con-
figuration of the given architectural element from the ones concerning the business
logic development. However, apart from these two categories, the users can define
any other custom category to structure their Notebook documents.

Figure 6.2: IoT notebook Conceptual Model

6.4.3 IoT notebook Architecture
As stated before, the hereby proposed architecture was studied and inspired

from the architecture of Jupyter. Figure 6.3 depicts this proposed architecture, the
main idea behind it is to integrate the components of a computational notebook
with the concept of IoT nodes, that aim at representing and supporting the archi-
tectural elements that characterize IoT systems [94]. To that end, it was structured

105

A literate computing approach to support IoT prototyping

around five blocks, listed below.

«device»

Gateway
«device»

Sensing
devices

«file»
Notebook document

«application»

Cloud
service

IoT nodes

 «execution environment»
Virtualized container

«component»

IoT notebook

 «execution environment»
Virtualized container

«component»

Kernel

ZeroMQ (JSON messages)

«device»

Acting
devices

 «execution environment»
Browser

«component»

Notebook
front-end

HTTP &
WebSockets

reads/writes

Figure 6.3: IoT notebook Architecture

Notebook documents

A Notebook document, technically speaking, consists of a JSON document con-
taining text, source code, rich media output, and metadata. As shown in Listing 6.1,
at the highest level, a notebook is a dictionary with a few keys: metadata (dict),
nbformat (int), nbformat_minor (int), and cells (list). There are two types of cell
types; markdown cells and code cells. The former ones contain source code in the
language of the document’s associated kernel, and a list of outputs associated with
executing that code. They also have an execution_count, which must be an in-
teger or null. In short, a Notebook document consists of a file with descriptive text
cells interleaved with executable code cells.

106

6.4 – IoT notebook

Aiming at satisfying the previously identified features, the following modifi-
cations (highlighted with red text in Listing 6.1) are proposed over the current
Notebook documents structure:

• Add the architectural_element field to enable the grouping of the Note-
book documents depending on the architectural element to which they belong
(FT-5). The four possible string values for this field are: devices, gateways,
cloud services or applications.

• Introduce the sections list concept. Each section is characterized by its name
and encompasses a list of cells. In this manner, the cells within a Notebook
document can be separated into configuration and development steps (FT-
4). Furthermore, since the name of the section can be freely assigned by the
user, several sections may be defined within a Notebook document according
to his particular needs.

• Add the id field to uniquely identify each cell and enable them to be refer-
enced.

• Include the background_execution field to determine if the given cell must
run in background or if the user should execute it and wait for the output
(FT-1). The values that this field may take are true or false.

• Insert the is_prerequisite field to indicate if the given cell must be executed
before all the subsequent cells in the Notebook document (FT 6). The values
that this field may take are true or false.

• Include the field linked_group_id to enable the grouping and execution of
the code split across several code cells (FT-7). In this manner, several cells
are identified as belonging to a given group, and consequently, executed to-
gether.

Notebook front-end

The Notebook document is visualized, edited, and executed through the Note-
book front-end, a web application that is accessed by the IoT developers over a
browser. Apart from the features that the Jupyter front-end currently provides,
the proposed IoT notebook front-end should include new user interface elements
aimed at (i) Enabling users to edit and visualize the new fields of the Notebook doc-
ument previously described; (ii) displaying in real-time the data coming from the
connected devices via the custom IoT-tailored kernels (FT-2); and (iii) displaying
the available devices identified by the IoT-tailored kernels, enabling the users to
determine in which device they execute a given code cell (FT-3).

107

A literate computing approach to support IoT prototyping

1 {
2 " metadata ": {
3 " kernel_info ": {
4 "name": "the name of the kernel "
5 },
6 " language_info ": {
7 "name": "the programming language of the kernel ",
8 " version ": "the version of the language ",
9 " codemirror_mode ": "the name of the codemirror mode to use [optional]"

10 }
11 },
12 " nbformat ": 4,
13 " nbformat_minor ": 0,
14 " architectural_element ": " devices , gateways , cloud services or applications ",
15 " sections ": [
16 {
17 "name": "the name of the section ",
18 " cells ": [
19 {
20 "id": " unique id for each cell",
21 " cell_type ": "code",
22 " execution_count ": 1,
23 " metadata ": {},
24 " source ": "[some multi -line code]",
25 " outputs ": [{}],
26 " background_execution ": "true or false ",
27 " is_prerequisite ": "true or false ",
28 " linked_group_id ": " unique id for each group "
29 }
30]
31 }
32]
33 }

Listing 6.1: Notebook document JSON top structure, where the proposed
modifications and additions to support IoT requirements are shown in red

108

6.5 – Validation

IoT notebook

The proposed architecture follows a client-server pattern [9] in which the note-
book back-end is deployed remotely in the server execution environment. As shown
in Figure 6.3, the IoT notebook component exchanges messages with the notebook
front-end. Besides satisfying the presentation client requests, the function of the
IoT notebook component is to receive the code execution requests and forward
them to the corresponding kernel according to the programming language of the
given cell.

Kernel

In the proposed IoT notebook architecture, the IoT-tailored kernel is required
to support two of the previously identified features: (i) support the real-time and
bi-directional communication between the IoT notebook and the IoT nodes, partic-
ularly with the sensing and acting devices (FT-2); and (ii) detect the IoT notebook
the available sensing and acting devices on which the code cells may be executed
(FT-3). Additionally, the IoT-tailored kernel is also required to read and execute
accordingly the new fields added to the Notebook documents.

IoT nodes

IoT nodes correspond to three of the four architectural elements that were
previously mentioned (cloud services, gateways, sensing and acting devices).

6.5 Validation
This section reports the description of a prototype implementation of the top-

priority and some of the medium-priority features from Table 6.1 (Section 6.5.1).
Furthermore, the implementation was validated by showing how this resulting ver-
sion of the IoT notebook may support the prototyping of the maker-level IoT system
that was described in Section 6.3 (Section 6.5.3).

6.5.1 IoT notebook Implementation
Based on the previous architecture, a prototype version of the IoT notebook was

implemented, including the top prioritized (FT-6), and two medium prioritized
features (FT-3 and FT-4). In the following are described the implementation of
the selected features from the technical point of view.

109

A literate computing approach to support IoT prototyping

FT-6: Define compulsory execution order

The development of this feature involves the Notebook document, the Notebook
front-end, and the IoT notebook component. Concerning the Notebook document,
as described in the previous section (Listing 6.1), the field is_prerequisite was
introduced to indicate if the current cell should be executed before all the subse-
quent cells. This way, every time a code cell is to be executed, the IoT notebook
component performs a search from the top of the document until the given cell,
looking for cells marked as is_prerequisite that have not yet been executed, and
executes them first.

Regarding the Notebook front-end, it was developed a custom plugin that places
a checkbox below each cell so that the users can indicate if this cell has to be
compulsorily executed before the cells further down in the Notebook document.
The value field is_prerequisite is assigned according to whether the checkbox
was clicked or not.

FT-3: Detect and identify the devices

The communication between the IoT notebook component and the IoT nodes
requires the implementation of custom Kernels, able to support the execution of
the code cells, whether in Cloud services, Gateway devices, or Sensing and Acting
devices. As explained below, for the use case implementation, a custom IoT-tailored
kernel was implemented to enable the communication of the IoT notebook com-
ponent with an Arduino single-board microcontroller (called Kernelino). Other
than supporting the execution of the code cells in the single-board microcontroller,
Kernelino allows the detection of the devices physically connected to the computer
where the IoT notebook executes (FT-6), as shown in Figure 6.5.

FT-4: Differentiate configuration and business logic steps

This feature was fully implemented within the Notebook front-end. Since in the
proposed structure for the Notebook documents, the cells are grouped into sections,
as shown in Listing 6.1, a custom widget was developed to display the sections and
their contents inside a tabbed sidebar. In this manner, the user can decide on which
tab to place the text and code cells, and even to add new sections.

The implementation of the preliminary IoT notebook with the top-priority and
some of the medium-priority features enabled to “translate” and to consolidate the
steps that are required to prototype an IoT system.

6.5.2 Use Case Implementation
Figure 6.4 presents the deployment architecture of the IoT notebook that has

been designed to satisfy this use case. First of all, concerning the IoT notebook

110

6.5 – Validation

documents, the prototyping of the IoT system described in the use case comprised
three notebook documents. The first of them contains the configuration and devel-
opment steps involved in the deployment of RESTful web services using Flask, a
lightweight web application framework [69]. This first notebook document belongs
to the application architectural element and, since the programming language is
Python, it uses the default IPython kernel to execute the code cells. The second
notebook document corresponds to the implementation of the Arduino, responsible
for gathering the reads from the temperature sensor and forwarding them to the
Flask application. This notebook document belongs to the gateway architectural
element, and to support the execution of the code cells in the Arduino program-
ming language it uses the custom-developed Arduino kernel, Kernelino. Similarly,
the third notebook document corresponds to the integration of the Back-end appli-
cation with the Philips Hue bridge. It also belongs to the gateway architectural
element, is developed with Python, and is supported upon the IPython kernel.

Figure 6.4: IoT notebook Validation use case architecture

The implementation of Kernelino required to integrate the messaging proto-
cols of Jupyter with the Arduino command-line interface [5]. However, since the

111

A literate computing approach to support IoT prototyping

messaging protocols are complex, writing a new kernel from scratch is not straight-
forward [82]. For this reason, an interface provided by Jupyter was used to wrap
kernel languages in Python. Specifically, the class ipykernel.kernelbase.Kernel
was subclassed, implementing the methods and attributes that forward the code
from the IoT notebook to the Arduino command-line interface and retrieve the
corresponding response [98]. In short, the interface provided by Jupyter handles all
the ZeroMQ (a high-performance asynchronous messaging library [7]) sockets and
communication mechanisms, making sure that the messages are correctly created
and parsed for each type of request between the IoT notebook component and the
Kernelino. Additionally, wrapper kernels can implement optional methods, notably
for code completion and code inspection.

As illustrated in Figure 6.5, the Kernelino enables the execution of code cells,
written in the Arduino programming language, directly from the notebook into
the device, which is physically connected to the computer where the notebook is
running.

Figure 6.5: Screenshots of the IoT notebook

6.5.3 Results and Limitations
In the validation of the use case, it was possible to create and execute three note-

book documents on top of the first implementation of the IoT notebook. These
documents concerned two different architectural elements of an IoT system. While
the first document regarded the business logic of the application element, the
second and the third document concerned the gateway element and described
the integration with a sensing and an acting device, respectively. The notebook

112

6.5 – Validation

documents corresponding to the implementation of the RESTful web services and
the integration of the Back-end application with the Philips Hue bridge were devel-
oped in Python and supported by the default IPython kernel. The first one of them
was composed of nine code cells and twelve markdown cells, while the second was
composed of seven code cells and nine markdown cells. In both of them, the first
two cells concerned configuration steps and were prerequisites of all the subsequent
cells as they regarded the installation of packages (through console commands sup-
ported by Jupyter by default) and the importation of the required modules. The
third notebook document, corresponding to the configuration and execution of the
Arduino gateway, required the implementation of a custom kernel to support the
communication between the IoT notebook and the single-board microcontroller. In
all the three documents it was necessary to execute the cells in order. Through
the execution of the three notebook documents, the proposed maker-level use case
could successfully be developed and deployed.

Two main limitations emerged from this work. On the one hand, to effectively
implement the IoT notebook approach, future research efforts have to envision
mechanisms to ease the integration between the notebook and several diverse IoT
platforms. Although Arduino is a well-known and widely-used prototyping platform
among IoT systems, the IoT platforms’ and devices’ landscape is huge, and the
development effort to support just that integration was significant. On the other
hand, although the IoT notebook approach was partially inspired by the findings of
the previous research work presented in chapters 3 and in this article, it has been
validated against a realistic use case, it is still necessary to conduct an evaluation
involving IoT developers.

The first stage of such evaluation consists of determining how useful do novice
developers find the IoT notebook as a resource to prototype IoT systems, by follow-
ing the documentation and executing the code of pre-existing notebook documents.
To that end, several use cases like the one presented in the previous section must
be implemented. The second stage of the evaluation will assess how easy it is for
IoT developers to document and share their prototyping process through the IoT
notebook. In both stages, a user study must be conducted.

Finally, regarding the IoT OSS repositories analyzed in Chapter 4, just one of
them corresponds to a cross-platform IDE: plataformio-core. It is a Command-
Line Tool upon which is built the Plataformio IDE, a toolset for embedded C and
C++ development that has pre-configured settings for the most popular embedded
boards, and integration with numerous cloud platforms and web services feeds. The
main difference of this toolset with the IoT notebook is the lack of documentation
accompanying the source code, and the impossibility to capture and share the steps
followed during the development process.

113

A literate computing approach to support IoT prototyping

6.6 Conclusion
In this work, I identified the features that, based on a use case, an IoT-tailored

literate computing approach should satisfy to support the prototyping of IoT sys-
tems. Among the set of identified features, there were prioritized a subset of them
and implemented a preliminary version of what was called IoT notebook that was
validated by prototyping a realistic maker-level IoT system. I consider that the
characteristics of the computational notebooks are suitable to support IoT devel-
opers in the prototyping and documentation of their IoT systems. However, in line
with the specificities of the architectural elements involved in such kind of systems,
current computational notebooks have to be adapted. Future research should focus
on the implementation of the IoT notebook with all the features and its assessment
based on the feedback provided by the developers.

114

Chapter 7

Conclusion

The previous chapters have outlined the research activity encompassed in the
analysis and identification of the characteristics and the most challenging issues
of IoT systems development; and the proposition of documentation, programming,
and prototyping tools, consistent with those characteristics and aimed at helping
the developers to overcome the identified challenging issues. To conclude this thesis
now are summarized the key contributions and possible future works.

7.1 IoT developers survey
In this work, a survey was conducted to identify the most complex issues ex-

perienced by novice programmers when developing IoT systems. The first con-
tribution of this work is the generic interpretation framework in which the
survey was framed. In this interpretation framework, the architecture, subsystems,
and software development tasks of a significant subset of this kind of system were
abstracted. This abstraction, on the one hand, gives the developers a common un-
derstanding of the software components involved in IoT systems, even if they work
in different projects, with diverse architectures and IoT devices and technologies.
On the other hand, it enables the rating and evaluation of the most challenging
issues at a software task level of detail while, at the same time, locates them into
a system-level view.

The second contribution regards the identification of the most complex is-
sues based on the rating of software development tasks according to their difficulty
level and completion time; the ranking of the most complex tasks; and the qualita-
tive perception of each respondent about such complexity. The results that emerged
from the survey indicated that the most challenging issues reported by unexperi-
enced IoT developers concerned: the difficulty to find well-structured documenta-
tion that might be understood by a novice, the complexity inherent to the integra-
tion of the subsystems, and the integration with third-party services. Additionally,

115

Conclusion

there were identified aspects perceived as complex across various subsystems (de-
velopment of user interfaces, the configuration of development environments, and
the development of the business logic), as well as aspects whose complexity is split
across various subsystems (integration between the Gateway and the third-party
service APIs, the implementation and integration of the persistence component,
and the design, implementation, and consumption of the RESTful web services).

To the best of my knowledge, this is the first study to express the complex
issues as concrete development tasks that are not dependent on a particular kind of
project, its architecture, or its technology stack. Furthermore, these findings might
guide future research efforts to ease the learning curve in the teaching of IoT and
might help to improve on-boarding time estimations, hiring criteria, and human
resource management within the industry IoT projects.

7.2 IoT Open Source Software mining
In this work, an exploratory study was conducted mining and analyzing 30

popular IoT OSS and 30 popular non-IoT OSS projects available on GitHub, to
provide empirical insights into the peculiarities of IoT software development. The
contributions of this work are: (i) providing evidence about IoT development
characteristics (the distribution of programming languages, the specialization of
contributors, the evolution of the files, and the adopted dependencies); and (ii)
suggesting future research efforts to satisfy software engineering needs in the
IoT scenario.

Concerning the IoT development characteristics, it could be determined, among
others, that: (i) IoT developers are less oriented towards the adoption of a lead pro-
gramming language, but they work with different programming languages, depend-
ing on the capability of deployment environment; (ii) a strong majority of the IoT
developers are frequently modifying the files written in compiled and interpreted
programming languages (where the business logic of the application typically re-
sides), while a few of them specialize in shell-oriented languages (generally used for
configuration and deployment tasks); (iii) the files corresponding to compiled and
interpreted programming languages evolved equally across the various development
phases, while shell-oriented files are scarcely modified; and (iv) IoT projects have
significantly fewer dependencies than non-IoT projects and they are also shared
among fewer projects, with only 5% of them shared by two or more repositories.

In line with these findings, future research efforts should consider that tools like
IDEs and software methodologies to support IoT developers should be language and
platform agnostic, and not constrained to any given technological stack. Similarly,
research efforts should be targeted at dealing with the devices heterogeneity by
automating the generation and execution of deployment commands across several,
often incompatible, devices. Additionally, there could be defined novel mechanisms

116

7.3 – Code Recipes

that IoT developers can adopt to make their code more extensible, modular, and
reusable, given the peculiarities of the deployment platforms.

7.3 Code Recipes
In line with the outcomes of the IoT developers survey, this work represented a

possible solution to the reported lack of documentation understandable by novice
programmers. In particular, documentation concerning the integration of heteroge-
neous software components. The main contribution of this work was the proposition
of Code Recipes. They are summarized and well-defined documentation modules,
non-dependent from programming languages or run-time environments, and struc-
tured around the code fragments that are required to implement some portions of
an IoT system. This approach was aimed at supporting novice IoT programmers,
enabling them to easily become familiar with source code written by other devel-
opers that faced similar issues. This approach is considered to support novice IoT
programmers, enabling them to easily become familiar with source code written
by other developers that faced similar issues. While the Code Recipes were pro-
posed mainly as a conceptual model, the IoT notebook outlined in Chapter 6, is
considered to be a feasible alternative to implement them.

7.4 IoT Notebook
An-IoT tailored notebook approach was proposed to help developers to build

and share a computational narrative around the prototyping of IoT systems. The
contributions of this work were: (i) identifying the set of features that an IoT
notebook should offer based on the characteristics of a maker-level IoT system;
(ii) outlining which concepts of the identified features should be incorporated into
the currently available computational notebooks; (iii) proposing an architecture
and a conceptual model to support the implementation of the IoT notebook; and
(iv) implementing and validating a preliminary version of the IoT notebook with a
set of top-prioritized features. Specifically, the validation consisted of prototyping
a realistic maker-level IoT system; three notebook documents were created and
executed on top of the first implementation of the IoT notebook.

Future research efforts should be targeted at overcoming the two main limita-
tions of the current implementation. The first limitation has to do with the huge
size of the IoT device landscape. The development effort to support the integration
with Arduino was significant. However, and despite the popularity of Arduino as
prototyping platform among IoT systems, the IoT platforms’ and devices’ land-
scape is huge. Consequently, to effectively implement the IoT notebook approach,
future research efforts have to envision mechanisms to ease the integration between
the notebook and several diverse IoT platforms. The second limitation concerns

117

Conclusion

the limited experimental evaluation. Although the IoT notebook approach was par-
tially inspired by the findings of our previous research work [29] and it was validated
against a realistic use case, it is still necessary to assess developers’ perspective on
using it. Therefore, the current IoT notebook approach has to be expanded and
validated by conducting further studies with IoT developers.

7.5 Current State and Future Work
The research works presented in this dissertation have followed a logical path.

The first research efforts were aimed at understanding software development in the
context of IoT systems. Such understanding was addressed from two perspectives:
the rating and perceptions of novice IoT programmers concerning a generic archi-
tecture and a set of specific development tasks, and the quantitative analysis of
the most popular open-source IoT applications publicly available. The results from
these first research efforts were the identification of the most challenging issues that
non-experienced programmers face and their perceptions behind such complexity,
and the characteristics of IoT development in terms of the distribution of program-
ming languages, the specialization of contributors, the evolution of the files, and
the adopted dependencies.

From the first research efforts, I could determine that novice programmers strug-
gle to find well-structured documentation that might guide them effectively to im-
plement the most complex software development tasks, namely, the integration
of heterogeneous subsystems and third-party services. Furthermore, the quantita-
tive analysis provides evidence that IoT developers are less oriented towards the
adoption of a lead programming language, just a few developers specialize in shell-
oriented languages, and IoT projects have significantly fewer dependencies than
non-IoT projects.

Upon the findings of these first research efforts, two correlated proposals emerged.
At first, the Code Recipes, as a possible solution to the reported lack of documen-
tation understandable by novice programmers, in which the source code written by
novice developers is structured around well-defined documentation modules non-
dependent from programming languages or run-time environments. The second pro-
posal, the IoT notebook, in line with the identified lack of documentation and also
with the heterogeneous set of development and deployment environments present
in IoT systems, rely on computational notebooks to help developers to build and
share a computational narrative around the prototyping of IoT systems.

The findings that emerge from the IoT developers survey, and the IoT OSS
mining, point out the need for IDEs and software methodologies tailored to the
particularities of IoT systems. Therefore, a promising area of future work consists in
extending the integration between the notebook and several diverse IoT platforms
and conducting further studies to assess the developers’ perceptions of using it.

118

7.5 – Current State and Future Work

Additionally, it is necessary to evaluate how effective it is this approach to improve
the documentation of IoT software artifacts and to prototype IoT systems that
span across various development and execution environments.

119

120

Appendix A

Publications

Updated: February, 2020.

A.1 International Journals
1. Fulvio Corno, Luigi De Russis, Juan Pablo Sáenz (2020) How is Open

Source Software Development Different in Popular IoT Projects?
in: IEEE Access, IEEE, pages: 12, Volume 8
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2020.2972364

2. Fulvio Corno, Luigi De Russis, Juan Pablo Sáenz (2019) On the Challenges
Novice Programmers Experience in Developing IoT Systems: A
Survey in: Journal of Systems and Software, Elsevier, pages: 21, Volume
157
ISSN: 0164-1212
DOI: 10.1016/j.jss.2019.07.101

3. Juan Pablo Sáenz, Mónica Paola Novoa, Darío Correal, Bell Raj Eapen (2018)
On Using a Mobile Application to Support Teledermatology: A
Case Study in an Underprivileged Area in Colombia in: International
Journal of Telemedicine and Applications, Hindawi, pages: 8, Volume 2018
ISSN: 1687-6415
DOI: 10.1155/2018/1496941

A.2 Proceedings
1. Fulvio Corno, Luigi De Russis, Juan Pablo Sáenz (2019) Towards Com-

putational Notebooks for IoT Development in: Extended Abstracts of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI EA

121

Publications

’19), ACM, Glasgow (UK), May 4-9, 2019, pages: 6
DOI: 10.1145/3290607.3312963

2. Fulvio Corno, Luigi De Russis, Juan Pablo Sáenz (2018) On The Advanced
Services That 5G May Provide To IoT Applications in: Proceedings
of the 2018 IEEE 1st 5G World Forum, IEEE, Santa Clara, CA (USA), July
9-11, 2018, pages: 4
DOI: 10.1109/5GWF.2018.8517038

3. Fulvio Corno, Luigi De Russis, Juan Pablo Sáenz (2018) Easing IoT Devel-
opment for Novice Programmers Through Code Recipes in: Proceed-
ings of the 40th International Conference on Software Engineering: Software
Engineering Education and Training, ACM, Gothenburg (Sweden), May 27-
June 3, 2018, pages: 4
DOI: 10.1109/5GWF.2018.8517038

4. Fulvio Corno, Luigi De Russis, Juan Pablo Sáenz (2017) On the Design of
an Energy and User Aware Study Room in: 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, Turin
(Italy), September 26-29, 2017, pages: 6
DOI: 10.1109/ISGTEurope.2017.8260192

5. Fulvio Corno, Luigi De Russis, Juan Pablo Sáenz (2017) Pain Points for
Novice Programmers of Ambient Intelligence Systems: An Ex-
ploratory Study in: 2017 IEEE 41st Annual Computer Software and Appli-
cations Conference (COMPSAC), IEEE, Turin (Italy), July 4-8, 2017, pages:
6
DOI: 10.1109/COMPSAC.2017.186

122

Acronyms

AmI Ambient Intelligence.

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

AWS Amazon Web Services.

BLOB Binary Large Object.

CSS Cascading Style Sheets.

DSL Domain-Specific Languages.

GPS Global Positioning System.

GUI Graphical User Interface.

HTML Hypertext Markup Language.

HTTP The Hypertext Transfer Protocol.

I/O Input/Output.

IDE Integrated Development Environments.

IIRA Industrial Internet Reference Architecture.

IoT Internet of Things.

IoT-A Internet of Things - Architecture.

JSON JavaScript Object Notation.

LWM2M Lightweight Machine to Machine Protocol.

123

Acronyms

MDD Model-Driven Design.

mPRM mPower Remote Manager.

MQTT Message Queuing Telemetry Transport.

MVC Model-View-Controller.

OSS Open Source Software.

POM Project Object Model.

REPLs Read-Eval-Print Loops.

RESTful Web services that conform to the Representational state transfer (REST)
architectural style.

RFID Radio-Frequency Identification.

S3 Amazon Simple Cloud Storage Service.

SDK Software Development Kit.

SNS Amazon Simple Notification Service.

SQL Structured Query Language.

URI Uniform Resource Identifier.

USB Universal Serial Bus.

WSN Wireless Sensor Networks.

XML Extensible Markup Language.

Zsh Zeta shell.

124

Bibliography

[1] A. Abbas et al. “Binary Pattern for Nested Cardinality Constraints for Soft-
ware Product Line of IoT-Based Feature Models”. In: IEEE Access 5 (2017),
pp. 3971–3980. issn: 2169-3536. doi: 10.1109/ACCESS.2017.2680470.

[2] Rabe Abdalkareem et al. “Why Do Developers Use Trivial Packages? An
Empirical Case Study on Npm”. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE 2017. Pader-
born, Germany: ACM, 2017, pp. 385–395. isbn: 978-1-4503-5105-8. doi:
10 . 1145 / 3106237 . 3106267. url: http : / / doi . acm . org / 10 . 1145 /
3106237.3106267.

[3] Alireza Ahadi et al. “Students’ Syntactic Mistakes in Writing Seven Differ-
ent Types of SQL Queries and Its Application to Predicting Students’ Suc-
cess”. In: Proceedings of the 47th ACM Technical Symposium on Computing
Science Education. SIGCSE ’16. Memphis, Tennessee, USA: ACM, 2016,
pp. 401–406. isbn: 978-1-4503-3685-7. doi: 10.1145/2839509.2844640.

[4] A. Ahmad et al. “An Empirical Study of Investigating Mobile Applications
Development Challenges”. In: IEEE Access 6 (2018), pp. 17711–17728. issn:
2169-3536. doi: 10.1109/ACCESS.2018.2818724.

[5] Arduino. GitHub - arduino/arduino-cli: Arduino command line interface.
https://github.com/arduino/arduino-cli. Online; last accessed Septem-
ber 23, 2019. 2019.

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things:
A Survey”. In: Comput. Netw. 54.15 (Oct. 2010), pp. 2787–2805. issn: 1389-
1286. doi: 10.1016/j.comnet.2010.05.010.

[7] The ZeroMQ authors. ZeroMQ. https://https://zeromq.org/. Online;
last accessed September 23, 2019. 2019.

[8] A. Azzarà et al. “PyoT, a macroprogramming framework for the Internet
of Things”. In: Proceedings of the 9th IEEE International Symposium on
Industrial Embedded Systems (SIES 2014). June 2014, pp. 96–103. doi: 10.
1109/SIES.2014.6871193.

125

https://doi.org/10.1109/ACCESS.2017.2680470
https://doi.org/10.1145/3106237.3106267
http://doi.acm.org/10.1145/3106237.3106267
http://doi.acm.org/10.1145/3106237.3106267
https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1109/ACCESS.2018.2818724
https://github.com/arduino/arduino-cli
https://doi.org/10.1016/j.comnet.2010.05.010
https://https://zeromq.org/
https://doi.org/10.1109/SIES.2014.6871193
https://doi.org/10.1109/SIES.2014.6871193

BIBLIOGRAPHY

[9] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Prac-
tice. 3rd. Addison-Wesley Professional, 2012. isbn: 0321815734, 9780321815736.

[10] J. Beal, D. Pianini, and M. Viroli. “Aggregate Programming for the Internet
of Things”. In: Computer 48.9 (Sept. 2015), pp. 22–30. issn: 0018-9162. doi:
10.1109/MC.2015.261.

[11] Hudson Borges and Marco Tulio Valente. “What’s in a GitHub Star? Un-
derstanding Repository Starring Practices in a Social Coding Platform”. In:
Journal of Systems and Software 146 (2018), pp. 112–129. issn: 0164-1212.
doi: https://doi.org/10.1016/j.jss.2018.09.016.

[12] Eleonora Borgia. “The Internet of Things vision: Key features, applica-
tions and open issues”. In: Computer Communications 54 (2014), pp. 1–
31. issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.2014.
09.008. url: http://www.sciencedirect.com/science/article/pii/
S0140366414003168.

[13] Virginia Braun and Victoria Clarke. “Using thematic analysis in psychol-
ogy”. In: Qualitative Research in Psychology 3.2 (2006), pp. 77–101. doi:
10.1191/1478088706qp063oa.

[14] John Seely Brown, Allan Collins, and Paul Duguid. “Situated Cognition and
the Culture of Learning”. In: Educational Researcher 18.1 (1989), pp. 32–42.
doi: 10.3102/0013189X018001032. eprint: https://doi.org/10.3102/
0013189X018001032.

[15] Nathan Cassee et al. “How Swift Developers Handle Errors”. In: Proceedings
of the 15th International Conference on Mining Software Repositories. MSR
’18. Gothenburg, Sweden: ACM, 2018, pp. 292–302. isbn: 978-1-4503-5716-
6. doi: 10.1145/3196398.3196428. url: http://doi.acm.org/10.1145/
3196398.3196428.

[16] Vint Cerf and Max Senges. “Taking the Internet to the Next Physical Level”.
In: IEEE Computer 49.2 (Feb. 2016), pp. 80–86. issn: 0018-9162. doi: 10.
1109/MC.2016.51.

[17] S. Chauhan et al. “A Development Framework for Programming Cyber-
Physical Systems”. In: 2016 IEEE/ACM 2nd International Workshop on
Software Engineering for Smart Cyber-Physical Systems (SEsCPS). May
2016, pp. 47–53. doi: 10.1109/SEsCPS.2016.016.

[18] CircuitPython. CircuitPython. https://circuitpython.org/. Online; last
accessed September 23, 2019. 2019.

[19] Alem Čolaković and Mesud Hadžialić. “Internet of Things (IoT): A review
of enabling technologies, challenges, and open research issues”. In: Computer
Networks 144 (2018), pp. 17–39. issn: 1389-1286. doi: https://doi.org/
10.1016/j.comnet.2018.07.017.

126

https://doi.org/10.1109/MC.2015.261
https://doi.org/https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/https://doi.org/10.1016/j.comcom.2014.09.008
https://doi.org/https://doi.org/10.1016/j.comcom.2014.09.008
http://www.sciencedirect.com/science/article/pii/S0140366414003168
http://www.sciencedirect.com/science/article/pii/S0140366414003168
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.3102/0013189X018001032
https://doi.org/10.3102/0013189X018001032
https://doi.org/10.3102/0013189X018001032
https://doi.org/10.1145/3196398.3196428
http://doi.acm.org/10.1145/3196398.3196428
http://doi.acm.org/10.1145/3196398.3196428
https://doi.org/10.1109/MC.2016.51
https://doi.org/10.1109/MC.2016.51
https://doi.org/10.1109/SEsCPS.2016.016
https://circuitpython.org/
https://doi.org/https://doi.org/10.1016/j.comnet.2018.07.017
https://doi.org/https://doi.org/10.1016/j.comnet.2018.07.017

BIBLIOGRAPHY

[20] Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula. “Ambient
intelligence: Technologies, applications, and opportunities”. In: Pervasive
and Mobile Computing 5.4 (2009), pp. 277–298. issn: 1574-1192. doi: 10.
1016/j.pmcj.2009.04.001.

[21] Thomas D. Cook and D.T. Campbell. Quasi-Experimentation: Design and
Analysis Issues for Field Settings. Houghton Mifflin, 1979.

[22] F. Corno, L. De Russis, and J. Pablo Sáenz. “On The Advanced Services
That 5G May Provide To IoT Applications”. In: 2018 IEEE 5G World Forum
(5GWF). 2018, pp. 528–531.

[23] Fulvio Corno and Luigi De Russis. “Training Engineers for the Ambient In-
telligence Challenge”. In: IEEE Transactions on Education 60.1 (Feb. 2017),
pp. 40–49. issn: 0018-9359. doi: 10.1109/TE.2016.2608785.

[24] Fulvio Corno, Luigi De Russis, and Dario Bonino. “Educating Internet of
Things Professionals: The Ambient Intelligence Course”. In: IT Professional
18.6 (Nov. 2016), pp. 50–57. issn: 1520-9202. doi: 10.1109/MITP.2016.100.

[25] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. “Easing IoT Develop-
ment for Novice Programmers Through Code Recipes”. In: Proceedings of the
40th International Conference on Software Engineering: Software Engineer-
ing Education and Training. ICSE-SEET ’18. Gothenburg, Sweden: ACM,
2018, pp. 13–16. isbn: 978-1-4503-5660-2. doi: 10.1145/3183377.3183385.

[26] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. “Pain Points for
Novice Programmers of Ambient Intelligence Systems: An Exploratory Study”.
In: 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC). Vol. 01. July 2017, pp. 250–255. doi: 10.1109/COMPSAC.
2017.186.

[27] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. “Towards Computa-
tional Notebooks for IoT Development”. In: Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems. CHI EA ’19.
Glasgow, Scotland Uk: ACM, 2019, LBW0154:1–LBW0154:6. isbn: 978-1-
4503-5971-9. doi: 10.1145/3290607.3312963. url: http://doi.acm.org/
10.1145/3290607.3312963.

[28] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. “How is Open Source
Software Development Different in Popular IoT Projects?” In: IEEE Access
8 (2020), pp. 28337–28348. issn: 2169-3536. doi: 10.1109/ACCESS.2020.
2972364.

127

https://doi.org/10.1016/j.pmcj.2009.04.001
https://doi.org/10.1016/j.pmcj.2009.04.001
https://doi.org/10.1109/TE.2016.2608785
https://doi.org/10.1109/MITP.2016.100
https://doi.org/10.1145/3183377.3183385
https://doi.org/10.1109/COMPSAC.2017.186
https://doi.org/10.1109/COMPSAC.2017.186
https://doi.org/10.1145/3290607.3312963
http://doi.acm.org/10.1145/3290607.3312963
http://doi.acm.org/10.1145/3290607.3312963
https://doi.org/10.1109/ACCESS.2020.2972364
https://doi.org/10.1109/ACCESS.2020.2972364

BIBLIOGRAPHY

[29] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. “On the challenges
novice programmers experience in developing IoT systems: A Survey”. In:
Journal of Systems and Software 157 (2019), p. 110389. issn: 0164-1212.
doi: https : / / doi . org / 10 . 1016 / j . jss . 2019 . 07 . 101. url: http :
//www.sciencedirect.com/science/article/pii/S0164121219301566.

[30] Stacy Crook, Carrie MacGillivray, and Vernon Turner. IDC MarketScape:
Worldwide IoT Platforms (Software Vendors) 2017 Vendor Assessment. Tech.
rep. US42033517. IDC, 2017. url: https://www.idc.com/getdoc.jsp?
containerId=US42033517.

[31] Irena Pletikosa Cvijikj and Florian Michahelles. “The Toolkit Approach for
End-user Participation in the Internet of Things”. In: Architecting the In-
ternet of Things. Ed. by Dieter Uckelmann, Mark Harrison, and Florian
Michahelles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 65–
96. isbn: 978-3-642-19157-2. doi: 10.1007/978-3-642-19157-2_4.

[32] CXP Group. PAC INNOVATION RADAR - IoT Platforms in Europe 2017.
https://www.pac- online.com/iot- platforms- europe- 2017- pac-
innovation-radar. 2017.

[33] Laura Dabbish et al. “Social Coding in GitHub: Transparency and Collab-
oration in an Open Software Repository”. In: Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work. CSCW ’12. Seat-
tle, Washington, USA: ACM, 2012, pp. 1277–1286. isbn: 978-1-4503-1086-4.
doi: 10.1145/2145204.2145396. url: http://doi.acm.org/10.1145/
2145204.2145396.

[34] S. K. Datta and C. Bonnet. “Easing IoT application development through
DataTweet framework”. In: 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT). Dec. 2016, pp. 430–435. doi: 10.1109/WF-IoT.2016.
7845390.

[35] S. K. Datta et al. “DataTweet: An architecture enabling data-centric IoT
services”. In: 2016 IEEE Region 10 Symposium (TENSYMP). May 2016,
pp. 343–348. doi: 10.1109/TENCONSpring.2016.7519430.

[36] D. Dobrilovic and S. Zeljko. “Design of open-source platform for introducing
Internet of Things in university curricula”. In: 2016 IEEE 11th International
Symposium on Applied Computational Intelligence and Informatics (SACI).
May 2016, pp. 273–276. doi: 10.1109/SACI.2016.7507384.

[37] D. Dobrilovic et al. “Platform for teaching communication systems based
on open-source hardware”. In: 2015 IEEE Global Engineering Education
Conference (EDUCON). Mar. 2015, pp. 737–741. doi: 10.1109/EDUCON.
2015.7096051.

128

https://doi.org/https://doi.org/10.1016/j.jss.2019.07.101
http://www.sciencedirect.com/science/article/pii/S0164121219301566
http://www.sciencedirect.com/science/article/pii/S0164121219301566
https://www.idc.com/getdoc.jsp?containerId=US42033517
https://www.idc.com/getdoc.jsp?containerId=US42033517
https://doi.org/10.1007/978-3-642-19157-2_4
https://www.pac-online.com/iot-platforms-europe-2017-pac-innovation-radar
https://www.pac-online.com/iot-platforms-europe-2017-pac-innovation-radar
https://doi.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396
https://doi.org/10.1109/WF-IoT.2016.7845390
https://doi.org/10.1109/WF-IoT.2016.7845390
https://doi.org/10.1109/TENCONSpring.2016.7519430
https://doi.org/10.1109/SACI.2016.7507384
https://doi.org/10.1109/EDUCON.2015.7096051
https://doi.org/10.1109/EDUCON.2015.7096051

BIBLIOGRAPHY

[38] Stefan Endrikat et al. “How Do API Documentation and Static Typing Af-
fect API Usability?” In: Proceedings of the 36th International Conference on
Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014, pp. 632–
642. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568299.

[39] Dave Evans. The Internet of Things: How the Next Evolution of the Internet
Is Changing Everything. Tech. rep. Cisco Internet Business Solutions Group,
2011.

[40] G. Fortino et al. “Towards a Development Methodology for Smart Object-
Oriented IoT Systems: A Metamodel Approach”. In: 2015 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics. Oct. 2015, pp. 1297–
1302. doi: 10.1109/SMC.2015.231.

[41] A. Al-Fuqaha et al. “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications”. In: IEEE Communications Surveys Tutorials
17.4 (Fourthquarter 2015), pp. 2347–2376. issn: 1553-877X. doi: 10.1109/
COMST.2015.2444095.

[42] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural
elements, and future directions”. In: Future Generation Computer Systems
29.7 (2013), pp. 1645–1660. issn: 0167-739X. doi: https://doi.org/10.
1016/j.future.2013.01.010.

[43] Andrew Head et al. “Managing Messes in Computational Notebooks”. In:
Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. CHI ’19. Glasgow, Scotland Uk: ACM, 2019, 270:1–270:12. isbn:
978-1-4503-5970-2. doi: 10.1145/3290605.3300500. url: http://doi.
acm.org/10.1145/3290605.3300500.

[44] S. Hodges et al. “A New Era for Ubicomp Development”. In: IEEE Pervasive
Computing 11.1 (Jan. 2012), pp. 5–9. issn: 1536-1268. doi: 10.1109/MPRV.
2012.1.

[45] H. Hsieh et al. “ScriptIoT: A Script Framework for and Internet-of-Things
Applications”. In: IEEE Internet of Things Journal 3.4 (Aug. 2016), pp. 628–
636. issn: 2327-4662. doi: 10.1109/JIOT.2015.2483023.

[46] Michelle Ichinco and Caitlin Kelleher. “Exploring novice programmer ex-
ample use”. In: 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). Oct. 2015, pp. 63–71. doi: 10.1109/VLHCC.
2015.7357199.

[47] Antonino Ingargiola. 1. What is the Jupyter Notebook? - Jupyter/IPython
Notebook Quick Start Guide 0.1 documentation. https://jupyter-notebook-
beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#
kernel. Online; last accessed September 23, 2019. 2019.

129

https://doi.org/10.1145/2568225.2568299
https://doi.org/10.1109/SMC.2015.231
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1145/3290605.3300500
http://doi.acm.org/10.1145/3290605.3300500
http://doi.acm.org/10.1145/3290605.3300500
https://doi.org/10.1109/MPRV.2012.1
https://doi.org/10.1109/MPRV.2012.1
https://doi.org/10.1109/JIOT.2015.2483023
https://doi.org/10.1109/VLHCC.2015.7357199
https://doi.org/10.1109/VLHCC.2015.7357199
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel

BIBLIOGRAPHY

[48] Intel. The Intel IoT Platform. white paper. 2015. url: https://www.intel.
com/content/www/us/en/internet- of- things/white- papers/iot-
platform-reference-architecture-paper.html.

[49] S. M. R. Islam et al. “The Internet of Things for Health Care: A Compre-
hensive Survey”. In: IEEE Access 3 (2015), pp. 678–708. issn: 2169-3536.
doi: 10.1109/ACCESS.2015.2437951.

[50] Ivar Jacobson, Ian Spence, and Pan-Wei Ng. “Is There a Single Method
for the Internet of Things?” In: Queue 15.3 (June 2017), 20:25–20:51. issn:
1542-7730. doi: 10.1145/3121437.3123501. url: http://doi.acm.org/
10.1145/3121437.3123501.

[51] M. E. Joorabchi, A. Mesbah, and P. Kruchten. “Real Challenges in Mobile
App Development”. In: 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement. Oct. 2013, pp. 15–24.
doi: 10.1109/ESEM.2013.9.

[52] Eirini Kalliamvakou et al. “The Promises and Perils of Mining GitHub”. In:
Proceedings of the 11th Working Conference on Mining Software Reposito-
ries. MSR 2014. Hyderabad, India: ACM, 2014, pp. 92–101. isbn: 978-1-
4503-2863-0. doi: 10.1145/2597073.2597074.

[53] Mary Beth Kery et al. “The Story in the Notebook: Exploratory Data Sci-
ence Using a Literate Programming Tool”. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18. Montreal
QC, Canada: ACM, 2018, 174:1–174:11. isbn: 978-1-4503-5620-6. doi: 10.
1145/3173574.3173748. url: http://doi.acm.org/10.1145/3173574.
3173748.

[54] Thomas Kluyver et al. “Jupyter Notebooks - a publishing format for repro-
ducible computational workflows”. In: Positioning and Power in Academic
Publishing: Players, Agents and Agendas. IOS Press, 2016, pp. 87–90. url:
https://eprints.soton.ac.uk/403913/.

[55] Donald E. Knuth. “Literate Programming”. In: Comput. J. 27.2 (May 1984),
pp. 97–111. issn: 0010-4620. doi: 10.1093/comjnl/27.2.97. url: http:
//dx.doi.org/10.1093/comjnl/27.2.97.

[56] Michael Kölling and Fraser McKay. “Heuristic Evaluation for Novice Pro-
gramming Systems”. In: Trans. Comput. Educ. 16.3 (June 2016), 12:1–12:30.
issn: 1946-6226. doi: 10.1145/2872521.

[57] David Koop and Jay Patel. “Dataflow Notebooks: Encoding and Tracking
Dependencies of Cells”. In: 9th USENIX Workshop on the Theory and Prac-
tice of Provenance (TaPP 2017). Seattle, WA: USENIX Association, June
2017.

130

https://www.intel.com/content/www/us/en/internet-of-things/white-papers/iot-platform-reference-architecture-paper.html
https://www.intel.com/content/www/us/en/internet-of-things/white-papers/iot-platform-reference-architecture-paper.html
https://www.intel.com/content/www/us/en/internet-of-things/white-papers/iot-platform-reference-architecture-paper.html
https://doi.org/10.1109/ACCESS.2015.2437951
https://doi.org/10.1145/3121437.3123501
http://doi.acm.org/10.1145/3121437.3123501
http://doi.acm.org/10.1145/3121437.3123501
https://doi.org/10.1109/ESEM.2013.9
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
http://doi.acm.org/10.1145/3173574.3173748
http://doi.acm.org/10.1145/3173574.3173748
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/2872521

BIBLIOGRAPHY

[58] G. Kortuem et al. “Educating the Internet-of-Things Generation”. In: Com-
puter 46.2 (Feb. 2013), pp. 53–61. issn: 0018-9162. doi: 10.1109/MC.2012.
390.

[59] Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. “Teach-
ing Introductory Programming: A Quantitative Evaluation of Different Ap-
proaches”. In: Trans. Comput. Educ. 14.4 (Dec. 2014), 26:1–26:28. issn:
1946-6226. doi: 10.1145/2662412.

[60] X. Larrucea et al. “Software Engineering for the Internet of Things”. In:
IEEE Software 34.1 (Jan. 2017), pp. 24–28. issn: 0740-7459. doi: 10.1109/
MS.2017.28.

[61] LimeSurvey: the online survey tool - open source surveys. https://www.
limesurvey.org. Accessed: 2018-12-11.

[62] H. Mäenpää et al. “Assessing IOT Projects in University Education - A
Framework for Problem-Based Learning”. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering: Software Engineering Edu-
cation and Training Track (ICSE-SEET). May 2017, pp. 37–46. doi: 10.
1109/ICSE-SEET.2017.6.

[63] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. “Bacatá:
A Language Parametric Notebook Generator (Tool Demo)”. In: Proceedings
of the 11th ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2018. Boston, MA, USA: ACM, 2018, pp. 210–214. isbn:
978-1-4503-6029-6. doi: 10.1145/3276604.3276981. url: http://doi.
acm.org/10.1145/3276604.3276981.

[64] Microsoft. Microsoft Azure IoT Reference Architecture. white paper. 2018.
url: http://aka.ms/iotrefarchitecture.

[65] Daniele Miorandi et al. “Internet of things: Vision, applications and research
challenges”. In: Ad Hoc Networks 10.7 (2012), pp. 1497–1516. issn: 1570-
8705. doi: 10.1016/j.adhoc.2012.02.016.

[66] B. Morin, N. Harrand, and F. Fleurey. “Model-Based Software Engineering
to Tame the IoT Jungle”. In: IEEE Software 34.1 (Jan. 2017), pp. 30–36.
issn: 0740-7459. doi: 10.1109/MS.2017.11.

[67] Stephen Oney and Joel Brandt. “Codelets: Linking Interactive Documenta-
tion and Example Code in the Editor”. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. CHI ’12. Austin, Texas,
USA: ACM, 2012, pp. 2697–2706. isbn: 978-1-4503-1015-4. doi: 10.1145/
2207676.2208664.

[68] E. Osipov and L. Riliskis. “Educating innovators of future Internet of Things”.
In: 2013 IEEE Frontiers in Education Conference (FIE). Oct. 2013, pp. 1352–
1358. doi: 10.1109/FIE.2013.6685053.

131

https://doi.org/10.1109/MC.2012.390
https://doi.org/10.1109/MC.2012.390
https://doi.org/10.1145/2662412
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1109/MS.2017.28
https://www.limesurvey.org
https://www.limesurvey.org
https://doi.org/10.1109/ICSE-SEET.2017.6
https://doi.org/10.1109/ICSE-SEET.2017.6
https://doi.org/10.1145/3276604.3276981
http://doi.acm.org/10.1145/3276604.3276981
http://doi.acm.org/10.1145/3276604.3276981
http://aka.ms/iotrefarchitecture
https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1109/MS.2017.11
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1109/FIE.2013.6685053

BIBLIOGRAPHY

[69] Pallets. Welcome to Flask — Flask Documentation (1.1.x). https://flask.
palletsprojects.com/en/1.1.x/. Online; last accessed February 26, 2019.
2019.

[70] Luca Pascarella et al. “How is Video Game Development Different from
Software Development in Open Source?” In: Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories. MSR ’18. Gothenburg,
Sweden: ACM, 2018, pp. 392–402. isbn: 978-1-4503-5716-6. doi: 10.1145/
3196398.3196418.

[71] Pankesh Patel and Damien Cassou. “Enabling high-level application devel-
opment for the Internet of Things”. In: Journal of Systems and Software 103
(2015), pp. 62–84. issn: 0164-1212. doi: 10.1016/j.jss.2015.01.027.

[72] Arnold Pears et al. “A Survey of Literature on the Teaching of Introductory
Programming”. In: SIGCSE Bull. 39.4 (Dec. 2007), pp. 204–223. issn: 0097-
8418. doi: 10.1145/1345375.1345441.

[73] F. Perez and B. E. Granger. “IPython: A System for Interactive Scientific
Computing”. In: Computing in Science Engineering 9.3 (May 2007), pp. 21–
29. doi: 10.1109/MCSE.2007.53.

[74] M. Piccioni, C. A. Furia, and B. Meyer. “An Empirical Study of API Usabil-
ity”. In: 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement. Oct. 2013, pp. 5–14. doi: 10.1109/ESEM.
2013.14.

[75] João Felipe Pimentel et al. “A Large-scale Study About Quality and Repro-
ducibility of Jupyter Notebooks”. In: Proceedings of the 16th International
Conference on Mining Software Repositories. MSR ’19. Montreal, Quebec,
Canada: IEEE Press, 2019, pp. 507–517. doi: 10.1109/MSR.2019.00077.

[76] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Berlin, Heidel-
berg: Springer-Verlag, 2005. isbn: 3540243720.

[77] M. M. Raikar, P. Desai, and J. G. Naragund. “Active Learning Explored
in Open Elective Course: Internet of Things (IoT)”. In: 2016 IEEE Eighth
International Conference on Technology for Education (T4E). Dec. 2016,
pp. 15–18. doi: 10.1109/T4E.2016.012.

[78] Baishakhi Ray et al. “A Large Scale Study of Programming Languages and
Code Quality in Github”. In: Proceedings of the 22Nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering. FSE 2014.
Hong Kong, China: ACM, 2014, pp. 155–165. isbn: 978-1-4503-3056-5. doi:
10 . 1145 / 2635868 . 2635922. url: http : / / doi . acm . org / 10 . 1145 /
2635868.2635922.

132

https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://doi.org/10.1145/3196398.3196418
https://doi.org/10.1145/3196398.3196418
https://doi.org/10.1016/j.jss.2015.01.027
https://doi.org/10.1145/1345375.1345441
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/ESEM.2013.14
https://doi.org/10.1109/ESEM.2013.14
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/T4E.2016.012
https://doi.org/10.1145/2635868.2635922
http://doi.acm.org/10.1145/2635868.2635922
http://doi.acm.org/10.1145/2635868.2635922

BIBLIOGRAPHY

[79] Baishakhi Ray et al. “A Large-scale Study of Programming Languages and
Code Quality in GitHub”. In: Commun. ACM 60.10 (Sept. 2017), pp. 91–
100. issn: 0001-0782. doi: 10.1145/3126905.

[80] Martin P. Robillard and Robert DeLine. “A field study of API learning
obstacles”. In: Empirical Software Engineering 16.6 (Dec. 2011), pp. 703–
732. issn: 1573-7616. doi: 10.1007/s10664-010-9150-8.

[81] Christoffer Rosen and Emad Shihab. “What Are Mobile Developers Asking
About? A Large Scale Study Using Stack Overflow”. In: Empirical Softw.
Engg. 21.3 (June 2016), pp. 1192–1223. issn: 1382-3256. doi: 10.1007/
s10664-015-9379-3.

[82] Cyrille Rossant. IPython Interactive Computing and Visualization Cookbook.
Packt Publishing, 2014.

[83] Brent Rubell. Overview. CircuitPython with Jupyter Notebooks. Adafruit
Learning System. https://learn.adafruit.com/circuitpython-with-
jupyter-notebooks. Online; last accessed September 23, 2019. 2018.

[84] Adam Rule, Aurélien Tabard, and James D. Hollan. “Exploration and Ex-
planation in Computational Notebooks”. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18. Montreal
QC, Canada: ACM, 2018, 32:1–32:12. isbn: 978-1-4503-5620-6. doi: 10.
1145/3173574.3173606. url: http://doi.acm.org/10.1145/3173574.
3173606.

[85] Adam Rule et al. “Aiding Collaborative Reuse of Computational Note-
books with Annotated Cell Folding”. In: Proc. ACM Hum.-Comput. Inter-
act. 2.CSCW (Nov. 2018), 150:1–150:12. issn: 2573-0142. doi: 10.1145/
3274419. url: http://doi.acm.org/10.1145/3274419.

[86] I. Salman, A. T. Misirli, and N. Juristo. “Are Students Representatives of
Professionals in Software Engineering Experiments?” In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. Vol. 1. May
2015, pp. 666–676. doi: 10.1109/ICSE.2015.82.

[87] John R. Savery. “Overview of Problem-based Learning: Definitions and Dis-
tinctions”. In: The Interdisciplinary Journal of Problem-based Learning (2006),
pp. 9–20. doi: 10.7771/1541-5015.1002.

[88] P. Selonen and A. Taivalsaari. “Kiuas – IoT Cloud Environment for Enabling
the Programmable World”. In: 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). Aug. 2016, pp. 250–257.
doi: 10.1109/SEAA.2016.10.

[89] Janet Siegmund et al. “Measuring and modeling programming experience”.
In: Empirical Software Engineering 19.5 (Oct. 2014), pp. 1299–1334. issn:
1573-7616. doi: 10.1007/s10664-013-9286-4.

133

https://doi.org/10.1145/3126905
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1007/s10664-015-9379-3
https://learn.adafruit.com/circuitpython-with-jupyter-notebooks
https://learn.adafruit.com/circuitpython-with-jupyter-notebooks
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
http://doi.acm.org/10.1145/3173574.3173606
http://doi.acm.org/10.1145/3173574.3173606
https://doi.org/10.1145/3274419
https://doi.org/10.1145/3274419
http://doi.acm.org/10.1145/3274419
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.7771/1541-5015.1002
https://doi.org/10.1109/SEAA.2016.10
https://doi.org/10.1007/s10664-013-9286-4

BIBLIOGRAPHY

[90] S. M. Sohan et al. “A study of the effectiveness of usage examples in REST
API documentation”. In: 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). Oct. 2017, pp. 53–61. doi: 10 .
1109/VLHCC.2017.8103450.

[91] J. A. Stankovic. “Research Directions for the Internet of Things”. In: IEEE
Internet of Things Journal 1.1 (Feb. 2014), pp. 3–9. issn: 2327-4662. doi:
10.1109/JIOT.2014.2312291.

[92] Andreas Stefik and Susanna Siebert. “An Empirical Investigation into Pro-
gramming Language Syntax”. In: Trans. Comput. Educ. 13.4 (Nov. 2013),
19:1–19:40. issn: 1946-6226. doi: 10.1145/2534973.

[93] Gary Stubbings and Simon Polovina. “Levering object-oriented knowledge
for service-oriented proficiency”. In: Computing 95.9 (2013), pp. 817–835.
issn: 1436-5057. doi: 10.1007/s00607-013-0304-6.

[94] A. Taivalsaari and T. Mikkonen. “A Roadmap to the Programmable World:
Software Challenges in the IoT Era”. In: IEEE Software 34.1 (Jan. 2017),
pp. 72–80. issn: 0740-7459. doi: 10.1109/MS.2017.26.

[95] A. Taivalsaari and T. Mikkonen. “A Taxonomy of IoT Client Architectures”.
In: IEEE Software 35.3 (May 2018), pp. 83–88. issn: 0740-7459. doi: 10.
1109/MS.2018.2141019.

[96] A. Taivalsaari and T. Mikkonen. “Beyond the next 700 lot platforms”. In:
2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). Oct. 2017, pp. 3529–3534. doi: 10.1109/SMC.2017.8123178.

[97] A. Taivalsaari and T. Mikkonen. “On the development of IoT systems”. In:
2018 Third International Conference on Fog and Mobile Edge Computing
(FMEC). Apr. 2018, pp. 13–19. doi: 10.1109/FMEC.2018.8364039.

[98] Jupyter Development Team. Making simple Python wrapper kernels. https:
//jupyter-client.readthedocs.io/en/stable/wrapperkernels.html.
Online; last accessed September 23, 2019. 2015.

[99] Chun-Wei Tsai, Chin-Feng Lai, and Athanasios V. Vasilakos. “Future In-
ternet of Things: Open Issues and Challenges”. In: Wirel. Netw. 20.8 (Nov.
2014), pp. 2201–2217. issn: 1022-0038. doi: 10.1007/s11276-014-0731-0.

[100] G. Uddin and M. P. Robillard. “How API Documentation Fails”. In: IEEE
Software 32.4 (July 2015), pp. 68–75. issn: 0740-7459. doi: 10.1109/MS.
2014.80.

[101] Jean-Philippe Vasseur and Adam Dunkels. Interconnecting Smart Objects
with IP: The Next Internet. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010. isbn: 0123751659, 9780123751652.

134

https://doi.org/10.1109/VLHCC.2017.8103450
https://doi.org/10.1109/VLHCC.2017.8103450
https://doi.org/10.1109/JIOT.2014.2312291
https://doi.org/10.1145/2534973
https://doi.org/10.1007/s00607-013-0304-6
https://doi.org/10.1109/MS.2017.26
https://doi.org/10.1109/MS.2018.2141019
https://doi.org/10.1109/MS.2018.2141019
https://doi.org/10.1109/SMC.2017.8123178
https://doi.org/10.1109/FMEC.2018.8364039
https://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html
https://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html
https://doi.org/10.1007/s11276-014-0731-0
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/MS.2014.80

BIBLIOGRAPHY

[102] Camilo Vieira et al. “Writing In-Code Comments to Self-Explain in Com-
putational Science and Engineering Education”. In: ACM Trans. Comput.
Educ. 17.4 (Aug. 2017), 17:1–17:21. issn: 1946-6226. doi: 10.1145/3058751.
url: http://doi.acm.org/10.1145/3058751.

[103] M. Weyrich and C. Ebert. “Reference Architectures for the Internet of
Things”. In: IEEE Software 33.1 (Jan. 2016), pp. 112–116. issn: 0740-7459.
doi: 10.1109/MS.2016.20.

[104] Michael Weyrich and Christof Ebert. “Reference Architectures for the In-
ternet of Things”. In: IEEE Software 33.1 (Jan. 2016), pp. 112–116. issn:
0740-7459. doi: 10.1109/MS.2016.20.

[105] Claes Wohlin et al. Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012. isbn: 3642290434, 9783642290435.

[106] Dandong Yin et al. “A CyberGIS-Jupyter Framework for Geospatial Ana-
lytics at Scale”. In: Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact. PEARC17.
New Orleans, LA, USA: ACM, 2017, 18:1–18:8. isbn: 978-1-4503-5272-7.
doi: 10.1145/3093338.3093378. url: http://doi.acm.org/10.1145/
3093338.3093378.

[107] F. Zambonelli. “Key Abstractions for IoT-Oriented Software Engineering”.
In: IEEE Software 34.1 (Jan. 2017), pp. 38–45. issn: 0740-7459. doi: 10.
1109/MS.2017.3.

[108] A. Zanella et al. “Internet of Things for Smart Cities”. In: IEEE Internet of
Things Journal 1.1 (Feb. 2014), pp. 22–32. issn: 2327-4662. doi: 10.1109/
JIOT.2014.2306328.

135

https://doi.org/10.1145/3058751
http://doi.acm.org/10.1145/3058751
https://doi.org/10.1109/MS.2016.20
https://doi.org/10.1109/MS.2016.20
https://doi.org/10.1145/3093338.3093378
http://doi.acm.org/10.1145/3093338.3093378
http://doi.acm.org/10.1145/3093338.3093378
https://doi.org/10.1109/MS.2017.3
https://doi.org/10.1109/MS.2017.3
https://doi.org/10.1109/JIOT.2014.2306328
https://doi.org/10.1109/JIOT.2014.2306328

BIBLIOGRAPHY

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

136

	List of Tables
	List of Figures
	Introduction
	Context
	Motivation
	Contribution
	Organization

	Related works
	Identifying programmers issues
	Novice Programmers in the IoT
	IoT development in the OSS context
	Easing the Development of IoT Systems
	Characteristics and opportunities of Computational Notebooks
	IoT cloud platforms
	Comparison Criteria
	Results

	On the challenging issues faced by IoT novice developers
	Motivation
	Survey design and methods
	Instrument development
	Initial generation of the questionnaire structure and content
	Initial pilot survey
	Survey instrument
	Administration and population

	Results
	Demographics
	Research questions
	RQ3.1. Rating of the sub-tasks
	RQ3.2. Ranking of the sub-tasks
	RQ3.3. Qualitative perception of the survey respondents

	Discussion
	Implications

	Validity of results
	Internal validity
	External validity
	Construct validity
	Conclusion validity
	Repeatability

	Conclusion

	IoT Development in the context of Open Source Software
	Motivation
	Research Goal and Questions
	Research Questions
	Selection of the Analyzed Repositories

	OSS Projects Analysis
	Projects Characterization
	RQ4.1: Development Activities
	RQ4.2: Maturity of the IoT Software Ecosystem

	Discussion and Implications
	Discussion
	Implications

	Threats to Validity
	Conclusion

	Code Recipes: a documentation approach for easing IoT development
	Motivation
	Use Case
	Code Recipes
	Validation: The Fitbit OAuth Code Recipe
	Conclusion

	A literate computing approach to support IoT prototyping
	Motivation
	Literate computing
	Computational notebooks
	Definitions

	Use Case
	Controlling Philips Hue Lamps from an Arduino
	Characteristics of an IoT system prototype

	IoT notebook
	Features of an IoT notebook
	IoT notebook Conceptual Model
	IoT notebook Architecture

	Validation
	IoT notebook Implementation
	Use Case Implementation
	Results and Limitations

	Conclusion

	Conclusion
	IoT developers survey
	IoT Open Source Software mining
	Code Recipes
	IoT Notebook
	Current State and Future Work

	Publications
	International Journals
	Proceedings

	Acronyms
	Bibliography

