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Summary

Between 2018 and 2019, two accidents with fatal results happened due to tech-
nical reasons on the Boeing 737 MAX 8. Although the catastrophes were related
to multiple causes, the core was a fault on the sensor with the task of measure the
angle of attack. Several alternatives have been studied during the last 50 years but,
though a huge literature exists on the subject, most of the technological solutions
proposed by researchers didn’t go further Technology Readiness Level (TRL) 5.
These alternatives can be found in literature as virtual sensors or synthetic sensors
and they are studied to be applied in the analytical redundancy framework or as
primary sensor in a more forward-thinking design.

At the time of writing this dissertation, another revolution is happening in the
aeronautical industry related to inhabited and autonomous vehicles. This phenom-
ena worth 19.3 billion $ in 2019 with a Compound Annual Growth Rate of 15.5 %
between 2019 and 2025, resulting in 45.8 billion $ in 2025. The design of this kind
of platform has some peculiarities, such as the high demand of innovative avionics
involving autonomy and usage of Commercial Off-The-Shelf (COTS) components
driven by the fast development of the market itself. These aspects result in diffi-
culty in fulfilling the Size, Weight and Power (SWaP) requirements. An example
of critical system that introduces an high number of components is the Air Data
System (ADS). Unfortunately, a method able to meet the redundancy required by
aeronautical regulations for the ADS is still not ready at the time of writing this
dissertation. In fact, nevertheless of the number of studies on the topic of virtual
sensors, the hardware redundancy is the unique solution for the above-mentioned
safety-critical systems. However, the hardware redundancy might be not suitable
for the Unmanned Aerial Vehicle (UAV) and Urban Air Mobility (UAM) fields.

The main reasons behind this slow transition between research and industrial
application of synthetic estimation must be searched in the approach used to design
the synthetic alternatives of the physical probes. The ideal estimator does not exist
and the available alternatives cannot be compared between each other. To respond
to the market needs, a basis for comparison must be provided. The approach
proposed by this dissertation is inspired by the one followed in the case of traditional
sensors: the definition of a design process based on a shared definition of the
uncertainty of the sensor. Unfortunately, those metrics have never been proposed
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in the past so this dissertation sets a first case of common definition. In fact,
the results showed in literature focus on the analysis of the error timeseries and
sometimes on some other global metrics as the mean error. This approach has some
flaws that are described in this work.

At the beginning of this project, the main aim was the practical implementation
of the virtual sensor called Smart-Air Data, Attitude and Heading Reference System
(Smart-ADAHRS), which showed higher uncertainty when working with flight data
than with simulated data. This dissertation hence proposes a set of techniques to
design and optimize the performance of a synthetic sensor. In this particular case
the core is a neural network, hence some of the proposed methods focus on the
training of the network. Moreover, the findings in the neural network field given in
this dissertation, as the Training Set (TS) analysis or the derivation of the Jacobian
and Hessian matrices, are general and they are not limited to the case of Air Data
estimation.

The dissertation starts with a detailed definition of the air data, followed by the
literature review of the field of synthetic estimation. The mathematical aspects of
the problem of estimation of the aerodynamic angles are described together with
the description of the ill-posedness of the problem. A chapter is dedicated to the
theoretical aspects that can help to move from the preliminary design of the virtual
sensor to the tuning of the results. In the same chapter, the formulations for the
Jacobian and Hessian matrices of a feed-forward Multilayer Perceptron (MLP) are
derived. The experimental setup is described in a dedicated chapter followed by the
proposed method of analysis and data augmentation. The final comparison shows
the improved homogeneity of the uncertainty, which can be lowered to some degree
for the angle of attack. The sideslip angle is also discussed, although the uncertainty
due to the experimental setup reduces the confidentiality of the reference.
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Chapter 1

Introduction

Some of the analysis shown in this chapter have already been published in [1].

1.1 Definition and importance of the Air Data
set

The term Air Data collects the entire set of flight parameters related to the
reciprocal interaction of a flying body with the surrounding air. Its importance
grounds on the well-known fact that this interaction is one of the sources of gener-
ation of the forces and moments acting on the aircraft.

The set includes:

• static pressure ps

• impact and dynamic pressure qc

• aerodynamic angles α (or AOA) and β (or AOS)

• airspeed V (with its various forms Indicated Airspeed (IAS), Calibrated Air-
speed (CAS), Equivalent Airspeed (EAS), TAS)

• Mach number M

• static temperature T (or Outside Air Temperature (OAT))

• total temperature T ◦ (or Total Air Temperature (TAT))

Based on these data, the application of basic flight mechanics and aerodynamics
equations allows to obtain a second set of flight parameters. This second set could
include the barometric altitude (with its several definitions), the speed of sound,
the type of aerodynamic field (subsonic, transonic, supersonic, hypersonic), etc...
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1 – Introduction

This work focuses on the determination of the aerodynamic angles. They are
defined as the relative orientation between the Body axes reference frame and the
Air Trajectory or Wind axes reference frame. Geometrically, β is the angle between
the aircraft velocity vector V∞ with respect to the surrounding control volume and
the plane of symmetry of the AC. α is the angle between the projection of V∞
on the plane of symmetry of the AC and the X Body axis. Figure 1.1 shows the
definition of AOA and AOS.

XBody

YBody

ZBody

XW ind

YW ind

ZW ind

CG
V

u

v

w

�

�

Figure 1.1: Aerodynamic angles definition

The choice of the X Body axis is not unique, however this does not affect
the definition of α. In fact, taking as a reference a principal axis or the thrust
axis the difference will result in a rotation that, under some slight assumptions,
corresponds to a constant angle in the definition of α. The assumptions are as
follows: the AC does not change significantly in mass or geometry and the thrust
belongs to a constant thrust axis. AOA and AOS correspond to the Bryant angles
in the rotation between the Wind axes and the Body axes (Ψ,Θ,Φ) = (−β, α, 0)
(Rotation ZYX of the Wind reference frame to the Body reference frame).

The subset composed by TAS, AOA and AOS is also referred as the air triplet.
Generally, force F and moment M acting on an AC can be written as:

F = qcSCF (1.1)
M = qccSCM (1.2)

where S is a reference surface (usually the wing area) and c is a reference length
(usually the mean aerodynamic chord or the wing span b). Applying the Bryan’s
method to the nondimensional coefficients CF and CM , they result heavily depen-
dent on α and β [2]. For this reason, some control systems uses these two angles as
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1.1 – Definition and importance of the Air Data set

feedback signals [3]. In fact, they represent a direct information on the dynamics
of the aircraft itself. It must be noticed that CF and CM are nonlinear in α and β.

The application as feedback signals is not the only reason why it is important
to measure the aerodynamic angles. The intrinsic nonlinearity of the functions
CF = CF (α, β) and CM = CM (α, β) makes the flight unsafe and unpracticable
when AOA approaches the stall region, which reduces the flight envelope in highly
maneuverable vehicle [4]. Several phenomena arise from these non-linearities, for
instance the aerodynamic stall or the spin. It is possible however to reduce the
occurrence probability of these dangerous phenomena measuring AOA and AOS
and providing a certain degree of Situational Awareness to the pilot, with traditional
systems as an AOA indicator or a Stall Warning device.

Actually, several systems can benefit from the availability of these data:

• The fuel consumption can be optimized

• Autopilot systems can be improved not only in terms of fuel consumption,
but also in passenger comfort, tracking error and precision landing capabilities
thanks to gain scheduling based on AOA/AOS

• The pilot can be informed about the stability and control characteristics of
the aircraft [5]

• Adaptive control systems can be employed

• Vehicle and structure health monitoring systems [6] can be implemented

The list could be extended. [7] reports possible applications in dropping objects,
target tracking, geolocation, energy harvesting, trajectory optimization, and air
traffic control. [8] adds gust suppression, aerial refueling, and localization of a
ground target.

Now that the importance of an accurate measurement of the air data is clear,
the vulnerability of the related physical sensors must be stressed. The system re-
sponsible to collect this set of data is the ADS. It is composed by several probes
and vanes connected by pneumatic or electrical connections depending on the ar-
chitecture. The implementation of a subset of the previously mentioned system
brought to a series of accidents that sadly remember the concept of safety critical
systems. The most recent example is the Boeing 737 MAX 8. In that case, a com-
bination of events brought to the death of 346 people in two separated accidents.
According to the report [9], there were 2 independent AOA sensors, one on each
side of the fuselage. Boeing provides an alert called AOA DISAGREE, however it
has not been considered a safety feature and not necessary to safely operate the
AC. Being an optional feature, selected by approximately the 20 % of airlines, it
was not selected by Lion Air. The Safety System Assessment (SSA) reports that
all parameters based on corrected static pressure are impacted if the AOA vane
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1 – Introduction

fails. The left AOA vane had a bias of 21° and the erroneous signal in input to the
control system resulted in the fatal crashes. The FR of the AOA functional group
as reported in [9] is shown in Table 1.1.

Table 1.1: AOA FR as reported in [9]

Item Loss of function Misleading Data

AOA
Left < 10−3 < 10−5

Right < 10−3 < 10−5

All < 10−7 < 10−9

Apart from the exposure to the external agents, physical probes have also sev-
eral design requirements that must be considered during the design of an ADS.
Protruding probes must be positioned in a clean aerodynamic area, they are sub-
jected to ice accumulation and hence they must be heated. Moreover, in some cases
their weight is not negligible. The so-called SWaP requirements limit their applica-
bility in innovative platforms like UAVs. This aspect will be thoroughly discussed
in Sec. 1.2.

The ADS is also applied in the study of the atmosphere. In fact, it provides the
measurements for the wind estimation, that is the estimation of the wind velocity
vector. This field of study has recently gained more attention in terms of research
impact than the Air Data estimation field. However, there exist a tight connection
with the AOA and AOS estimation. This relation will be covered in the dedicated
Sec. 1.5.

An alternative to the application of external protruding probes is the virtual or
synthetic estimation of AOA/AOS.

The subject of Air Data estimation without external physical sensors can be
found in academic and industrial literature under different reference names such
as Virtual Air Data (VAD), Synthetic Air Data System (SADS) or Sensor Fusion
Filter (SFF), if strictly based on sensor fusion. Other keywords can be Com-
putational Alpha-Beta System (CABS) from Boeing, Aerodynamics Derived Air
Data (AeroDAD) from National Aeronautics and Space Administration (NASA)
and Smart-ADAHRS.

1.2 Comparison of traditional ADS systems with
synthetic estimation

The past 25 years have shown a rapid grown in the interest for UAV. According
to [10] and [11] nearly 80000 UAVs have been produced between 1994 and 2003,
worth $3.9 billion. In 2019, the UAV market worth 19.3 billion $ and a significant
growth of the UAV market up to 12% per year is expected in the next decade [12].
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This phenomena pushed the debate about safe integration of UAV into national
airspace [13, 14]. The problem arises from the necessity to guarantee the safety of
the flight keeping the peculiarities of the UAV. Their atypical architecture requires
advanced control systems and it implies strong SWaP limitations. As previously
mentioned, the ADS traditionally adopted the hardware redundancy with voting
system in order to increase the fault tolerance. However, a recent study by Freeman
et al. [15] recalled how ADS can lead to catastrophic failure even in case of hardware
redundancy combined with voting systems. At the same time, an increasing number
of study developed an evolution in Fault Detection and Isolation (FDI) systems.
A recent systematic literature review could be found in [16]. Current research
projects show an evolution of the FDI with sensor fault accommodation named
Sensor Fault Detection, Isolation and Accommodation (SFDIA) system [17, 18,
19]. Some applications specific for ADS can be found in [20, 21, 22, 23]. Innovative
design frameworks can be found in literature, considering also the simulation of the
fault injection, see for instance [24, 25, 26, 27]

At the time of writing this dissertation, various architectures of Air Data ex-
ternal physical sensors exist [28, 29, 30]. Current state-of-the-art air data sensors
are made of several physical units, each of them requiring power supply, a de-
icing system when needed and a certain number of conditioning and computing
modules. Furthermore, the external sensors should be positioned in a clear aero-
dynamic area, avoiding or reducing the mutual interference with other external
sensors. For instance, propeller will produce a turbulent aerodynamic field that
will induce oscillations on both the AOA vane and the multi-hole AOA probe. In
addition, in small UAV applications where a camera constitutes the most common
payload, the position of the external parts should not interfere or obstruct the Field
Of View (FOV) of the camera itself. For these reasons, a number of authors have
considered the analytical redundancy and synthetic estimation as useful solution
to the problem [15, 31].

In Table 1.2 a list of commercial sensors for AOA is shown. However, as men-
tioned above, size and weight requirements may not be easy to meet during the
design phase of unconventional architecture vehicle such as the majority of mi-
cro, small and medium size UAV. As the analysis of Table 1.2 suggest, the ADS
architecture and size can vary substantially [32]. The lightest sensors are very sim-
ple but often they are not provided with an anti-ice or de-icing system. Current
state-of-the-art ADS may be divided in two main groups:

1. Conventional probes: a different external unit for AOA, AOS, static and
dynamic pressure (usually combined in the well-known Pitot-Static probe),
temperature, recently analitically integrated by multi-sensor data fusion tech-
niques [33];

2. Multi-Function probes: several multi-hole probes placed in particular position
of the aircraft, usually the nose, integrated with a complex algorithm based
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1 – Introduction

on curve calibration

In 2001, Tranchero and Latorre introduced their work stating that the approach
for flight-critical systems was generally based on the definition of a proper level of
hardware redundancy [34]. After 19 years, the strategy is quite similar, although
a lot of effort has been put on the research and development of virtual sensors [35,
36, 37].

As anticipated, a VS is a software module able to provide a system with a given
quantity without actually employing the physical sensors (or at least reducing the
number of sensors) that would be needed to measure that quantity. This software
implements an estimator that can be based on state observers, analytic formula-
tions, Machine Learning (ML) techniques, or other types of algorithms. In research,
the VS term usually stands for the core estimator, neglecting the interfaces or the
other internal operations that must be implemented in a real application. It does
not have the same significance of analytical redundancy because a VS is imple-
mented in an analytical redundancy scheme but, in theory, it could be the unique
source of the quantity.

In this framework, it is possible to understand one of the main advantages of
using a virtual sensor. In fact, implementing a software solution brings to reduce
the number of external physical sensors. This attenuate the inevitable and direct
impact on the affordability of the system due to the high level of replication of
equipment, as reported by Tranchero and Latorre.

Current research in UAV revealed additional limitations for designers. The
restriction of available space and weight may be a question on system design, es-
pecially when talking about sensors.

In both cases, the classical hardware redundancy will multiply the number of
units and connections by at least three, for a triplex physical redundancy, or even
four. Moreover, in some cases the increased number of external units might not
avoid reliability issues. As reported in [38], an investigation conducted by Airbus
and Thales showed that an incorrect removal of machining oil during the man-
ufacturing process of AOA resolver can bring to delayed or reduced AOA vane
movement. This kind of fault could affect more than one sensor and hence could
lead to delayed activation or non-activation of the AOA protection system. Even-
tually, the AC could exhibit a reduced controllability. In [39] the blockage of two
AOA probes during climb led to the activation of a protection system on Airbus
A321. In a worst case scenario, pilots could become not able to oppose to a nose
down command if the Mach number increases. In the same Airworthiness Directive
[39] the AOA sensors is claimed as necessary to maintain the required safety level
of the aircraft.

Sensors based on moving parts might be preferred to multi-hole probe depend-
ing on the accuracy of the angle determination. Current state-of-the-art solutions
involves potentiometers, Rotary Variable Differential Transformers (RVDTs) and
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1.2 – Comparison of traditional ADS systems with synthetic estimation

Table 1.2: Examples of Commercial Air Data Probes

Manufacturer Model Weight [g] Heater Power [W]
UTC Aerospace 0012 AOA Transmitter 567 425

SpaceAge Control 4239-01 454 100
SpaceAge Control 101100 (micro air data

boom)
142 unheated

SpaceAge Control 100900 5440 not available
AMETEK Total Air Probe 900 not available
AMETEK AOA transducer 25147A 816 270
AMETEK AOA transducer 2568A 1814 270
Aerosonic AOA 1360 150
Aerosonic SWT 1360 190
Aerosonic SWT 1360 450

Ack Emma LLC CYA-100 56 unheated

synchro. Permanent magnet solution is presented in [40]. However, as reported in
previously cited European Aviation Safety Agency (EASA) Airworthiness Directive
([38], [39]) moving parts might be subjected to delayed motion or even blockage. Al-
ternative solutions have been discussed in the past literature as can be seen in [41],
where moving vane and fixed fin equipped with strain gauge have been analysed.
Another patent related to a multi-hole probe can be seen in [42]. The exposed part
of the sensor must comply with safety regulations about de-icing, as could be the
MIL-STD-810. Where possible, the external structure could be aerodynamically
designed to passively avoid the ice build-up without heating (see [43]). As seen in
Table 1.2 values between 150 W and 400 W per probe could be considered valid for
the electrical heater consumption (see [44]-[45]). Hardware redundancy will multi-
ply the power requirements. Hence, a reduction on the number of external probes
might be considered a possible alternative to the current state-of-the-art solutions.

Table 1.3: Examples of Commercial ADAHRS

Manufacturer Model Provides AOA/AOS
Cobham ADAHRS no

Northropp-Grumman LCR-300 yes
Honeywell KSG 7200 no
Archangel AHR300A no

In some cases, the ADS is integrated with the AHRS to form the ADAHRS.
Due to the high number of combinations between sensors and processing unit,
comparing the ADAHRS architectures is not easy. Some examples of ADAHRS
units are reported in Table 1.3. To the best of our knowledge, only one is able to
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provide AOA or AOS signal among the ones listed. Often an additional equipment
is required. RAMS performance of the entire ADS architecture must be taken into
account as well. Table 1.4 shows related to FR and Mean Time Between Failures
(MTBF) taken from [46], [47].

Table 1.4: ADS and AHRS RAMS Performance

Item FR [10−6h−1] MTBF [h]
AOA sensor 50 20000

Air Data Probe 20 50000
Electrical Connector 0.0163 61.35·106

Pneumatic Tube 0.1104 9.05·106

Air Data Computer 130 7692
Gyroscope or accelerometer 64 15625

GPS Antenna 20 50000
GPS Receiver 20 50000
Power Supply 31 32000

Another aspect that must be highlighted is the effort of system integration
that the AC manufacturer undergoes when installing a new probe. Usually, the
allocation of the probes comes after a series of decision on the AC design, further
limiting the positioning aspect of the ADS. Frequently, the nose is the most desired
place for the ADS probes but, even if it sounds strange, often there is no possibility
to mount them. Moreover, a certain number of flight hours must be considered to
characterize and calibrate the probe [48, 49]. Sometimes, unexpected aerodynamic
phenomena appears such as quick condensations or shock interactions.

The analytical redundancy/VS solution is hence particularly useful when there
is a control system which needs a reliable AOA/AOS signal and it is difficult to
meet redundancy requirements or, in the worst case scenario, it is not even possible
to place the traditional sensor in the right position.

1.3 State-of-the-Art of the estimation of Air Data
The concept of the measurement of the Air Data avoiding physical sensors is

definitely not new. The possibility of a fault on a external physical sensor that is
subjected to several environmental agents, objects and maintenance related issues,
was already known in the 80s. With the advent of advanced flight control system
and the application of Air Data as direct or indirect feedback, to find an alternative
to the physical sensors became necessary, to avoid the failure of the mission, or even
catastrophic events with human losses.

It must be noticed that there is no agreement in the documents of the major
regulatory agencies on the definition of fault and failure. The most simple and
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broad defintion is given by EASA. In the document CS-Definition Definitions and
abbreviations used in Certification Specifications for products, parts and appliances
[50] the two terms are considered with the same meaning.

Fault (or) Failure means an occurrence which affects the operation of a
component, part, or element such that it can no longer function as intended.

In this definition it is clearly indicated that both terms refer to a malfunctioning
of some element of the aircraft. It is not specified if the effects of this occurrence
are visible or detectable.

One of the most reported definition can be found in the MIL-STD-721C Defi-
nitions of Terms for Reliability and Maintainability [51]. This standard has been
canceled without replacement the December 5, 1995 with the MIL-STD-721C No-
tice 2. However, several other MIL-STD and MIL-HDBK, which are active at
the time of writing this thesis, keep the reference to it as vocabulary. The same
definition that are reported here have been adopted by other agencies. It is written:

Failure: The event, or inoperable state, in which any item or part of
an item does not, or would not, perform as previously specified. Fault:
Immediate cause of failure (e.g. maladjustment, misalignment, defect, etc.).

The main difference between these two definitions is the distinction and rela-
tionship applied by the Department of Defense (US government) (DoD) between
fault and failure, reporting that the failure is caused by a fault. This implies the
fact that a fault cannot be detected simply looking at the malfunctioning of an
item, because it cannot be excluded that different kinds of fault could bring to
the same effect (failure). As said before, this definition has been used in other
vocabulary and the NASA-STD 8709.22 with Change 1 Safety and Mission Assur-
ance Acronyms, Abbreviations, and Definitions [52] by NASA is a clear example.
It extends the definitions reporting two alternative explanations. It is quoted:

Failure: [1] Inability of a system, subsystem, component, or part to per-
form its required function within specified limits. [2] Non-performance or
incorrect performance of an intended function of a product. A failure is of-
ten the manifestation of one or more faults (in [53] is added the important
note "and is permanent.")

Fault: [1] An undesired system state and/or the immediate cause of fail-
ure (e.g., maladjustment, misalignment, defect, or other). The definition of
the term “fault” envelopes the word “failure” since faults include other un-
desired events such as software anomalies and operational anomalies. [2] An
inherent defect in a product which may or may not ever manifest, such as a
bug in software code.

9



1 – Introduction

The important step done by NASA is the specification that a fault may not
manifest, so that the detection of the fault itself could be impossible. At the same
time, it is stressed that a failure could be the result of simultaneous different faults.
It is interesting to notice that in another NASA document, the NASA Reliability
and Maintainability (R&M) Standard for Spaceflight and Support Systems [53] an
important detail is added, stating that a failure is permanent. The ISO13372-2012
Condition monitoring and diagnostics of machines - Vocabulary [54] (paragraph
1.7, 1.8) defines as follows:

Failure (1.7): termination of the ability of an item to perform a required
function (1.9) Note 1 to entry: Failure is an event as distinguished from fault
(1.8), which is a state. Note 2 to entry: Failure is the manifestation of a fault.
Note 3 to entry: A complete failure of the main capability of a machine is a
catastrophic failure (as defined by the end user)

Fault (1.8): condition of a machine that occurs when one of its compo-
nents or assemblies degrades or exhibits abnormal behaviour, which may lead
to the failure (1.7) of the machine (1.10) Note 1 to entry: A fault can be the
result of a failure, but can exist without a failure. Note 2 to entry: Planned
actions or lack of external resources are not a fault.

Here, the definitions share several details with the previous ones, even if slightly
more detailed. This document does not consider a simple malfunctioning as a failure
but it relates the term to a complete termination of the function, differently to the
permanent concept found in [53]. It is interesting to notice the Note 1 of the comma
1.8 explaining that a failure can cause a fault.

In literature, a definition can be found in [16]

A fault is an unpermitted deviation of at least one characteristic property
or parameter of the system from acceptable/usual/standard conditions. A
fault may lead to a failure, which is a permanent interruption of the system
ability to perform a required function under specified operating conditions.

Marzat et al again refer the failure to a permanent interruption.
This introduction is needed in order to anticipate one of the final statements of

this thesis, the necessity of a common basis to permit the comparison of the several
valuable works found in literature.

1.3.1 Taxonomy of synthetic ADS
In the last 45 years, researchers developed several solutions to the Air Data

Estimation problem. In this dissertation, a total amount of 62 articles encompassing
both air data estimation and wind estimation have been analyzed. The following
classification can be proposed:
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• solution based on classical aerodynamic coefficients: the flight parameters are
evaluated by inversion of the classical dynamic model of the aircraft. Unfor-
tunately, the dynamic identification of an aircraft hardly matches perfectly
with the actual vehicle. When tested with sensor noise these methods showed
clear degradation of performance [55]

• model-based data fusion: in this category fall every solutions for which the Air
Data parameters are obtained with a Kalman filter, usually based on dynamic
identification of the aircraft. Although the problem of the dynamic coefficient
is not completely solved, these techniques can be properly designed to manage
sensor noise [56, 57]. Moreover, kinematic models are often applied in place
of the dynamic one.

• model-learned estimation: a method falls in this category if the dynamic
model is not manually estimated but it is determined through an algorithm.
In brief, every data-driven method based on ML that learns to estimate the
desired flight parameters is collected in this class.

The last category is usually found in literature as model-free estimation. In this
work, model-learned is preferred for two main reasons: the first one is functional and
the latter is semantical. As a result of the theoretical relationship that grounds this
problem, if an estimator evaluates the flight parameters from other measurements
taken on board, depending on the architecture, it is likely based on a dynamic
model of the aircraft. The second aspects is based on scientific nomenclature. In
aeronautical engineering, the term model is usually applied to the dynamic model
in a state-space formulation ẋ = f (t,x,u, ...). On the contrary, a statistical model
is a mathematical relationship between one or more random variables or, more
formally, a set of probability distributions on the sample space [58]. Because ML
comes from statistics, it might be useful to use some of the nomenclature of the
field. The author’s opinion is that the term model-learned might be more advisable
to model-free, because it moves the attention to the important step of finding the
model. As black-box, the term model-free can hide in part the design phase without
stressing the interest on how the model (the statistical one) has been obtained and
which aircraft model can describe the result.

1.3.2 Historical remarks
Historically, the first methods of AOA estimation were described in 1969, though

referring that the idea of an AOA estimator was already 20 years old at that
time [55]. One of the methods described in this report was later implemented
and discussed in [59], earning the right to be referred as the Freeman’s method.
It applies a dynamical model to the acceleration measured onboard and, given
the Flight Control System (FCS) state and the flight condition, it evaluates the
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AOA. Figure 1.2 shows some of the most important steps in the evolution of the
AOA/AOS estimators.

Figure 1.2: Historical development of the synthetic estimation of ADS

One of the first cited publication in 1988 regarding the estimation of the AOA
is by Zeis, Jr. et al. [60] with further details on the Master’s thesis [61]. The author
proposes a regression based on an estimation of the CL, the altitude and the Mach
number. It is hence classifiable in the dynamical model method, even if a Kalman
filter was not considered at that time. As an historical remark, Kalman published
[62] in 1960 and the first flight test by NASA took place in 1972 [63]. The analysis
begins with a first approximation of AOA considering β = 0 and neglecting the wind
vector. Then, the load factor and the AOA are estimated using the aerodynamic
coefficients of the aircraft. The author refers to the difficulty to judge the accuracy
of the mechanical probes, reporting that it could reach the order of 1.5 to 2 times
the actual value of AOA. The algorithm has been tested on a F15-A obtaining an
uncertainty between 0.5° and 1.5° (depending on the test) through a range of 17°
of AOA.

In 1998, Innocenti et al. proposes an analytic relationship, valid for missiles,
between the turn rate and the AOA [4]. This research is conducted to design a pro-
portional control system capable of pursuing highly maneuverable target, thanks to
the possibility of flying at high AOA. The results showed an uncertainty of 4° when
the turn rate is lower than 50 ° s−1 and 7° otherwise. The analysis was conducted
on nonlinear simulation of two different maneuvers: an off-boresight manoeuver
against a maneuverable target and a second one with the target conducting a Co-
bra maneuver. In this case, only the AOA is considered and it is evaluated starting
from the turn rate, the maximum attainable AOA and the maximum attainable
turn rate.

In the same year, Rohloff et al. publish one of the first model-learned method
for ADS [64]. An Artificial Neural Network (ANN) is applied to estimate static
pressure, dynamic pressure, AOA and AOS from a Flush Air Data System (FADS)
with 11 pressure port. The method flew on the NASA F/A-18B of the NASA
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Dryden Flight Research Center. The declared uncertainty is 1 % on static pressure,
2 % on dynamic pressure. No information have been given regarding the uncertainty
on the aerodynamic angles, but the authors state that they should be comparable
with the results previously obtained by the same group (0.4° for AOA and AOS).

Since 1999, Colgren et al. started publishing a relevant series of works where
the set of onboard sensors of the aircraft is applied to estimate AOA and AOS. The
motivation were the fulfillment of SWaP requirements, the correction of the angles
measured using vanes and probes and the substitution of the physical probes in case
of failure. The estimator was still an analytic formulation based on aerodynamic
force evaluation and decomposition able to reach a declared uncertainty of 1° in
[65] and a maximum error of 5° in [66]. Kalman filter is cited but reported as
not mandatory. From the Inertial Navigation System (INS), Global Positioning
System (GPS), altitude, mass, Center of Gravity (CG) position, angular velocity,
qc, Power Lever Angle (PLA), FCS and gear positions, both angles can be evaluated.
The test was conducted on simulations and flight test data of an U2-S. The flight
manoeuvers applied are: turn during wind turbulence, wing level sideslips and yaw
doublets. Results were compared with a reference boom. Both method and system
was patented in [67].

One important branch of the air data estimation, although represented by a
lower number of works, is the application for space reentry operation. Due to the
extreme conditions at which a vehicle is subjected during reentry, it is not possible
to mount protruding sensors to measure air data. The first article is from NASA
[68]. In this article, an estimator called AeroDAD has been applied as backup
ADS for the International Space Station (ISS) Crew Return Vehicle (CRV) (at
that time the X-38) which was equipped with FADS. For this kind of vehicle, there
is the useful opportunity to take advantage of a known reference trajectory. In
fact, this work proposes a deterministic algorithm using the ratio of the specific
force measurements and an aerodynamic model to obtain aerodynamic angles, qc

and the Mach number. The ratio of the accelerations is directly related to an
affine approximation of the AOA. The authors relate the perturbation from the
reference trajectory to a change in AOA. qc and AOS have been reconstructed by the
aerodynamic derivatives disentanglement, neglecting flap and ailerons respectively
for qc and AOS. A consideration can be made on the fact that the size of ailerons and
flaps for this particular kind of vehicle can be considered relatively small. Finally,
the Mach number is minimized in an optimization loop considering the temperature
value and the speed of sound. The velocity estimation has been found sensitive to
error on air density. AeroDAD has been tested in simulated environment in two
different test cases: nominal trajectory and off-nominal trajectory. Authors declare
2° of uncertainty on AOA, which spans a range from −5° to 40°, and 1° on AOS,
ranging between −5° and 5°. 10 % uncertainty on the estimated airspeed in a range
between 60 m s−1 and 1067 m s−1.

In [69, 70], an NN has been implemented to identify the aerodynamic coefficient
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of an AC.
Wise in 2005 sets the estimation process in a filtering framework. The patent for

method and system [71] specifically refers to the application of Extended Kalman
Filter (EKF) to solve the estimation problem. This solution, named CABS, was
initially developed by Boeing to support advanced missile program in 1986, however
the limited computational capability at that time made impossible the application.
The recent aim in [71] was to furnish an hot backup to the nose boom of the X-
45A, on which the algorithm was demonstrated, to fulfill SWaP requirements and
to improve reliability and survivability performance. CABS is composed by two
separated EKFs, one for the longitudinal and one for the lateral-directional plane,
though a coupled solution was not excluded. The declared performance are 0.5°
for AOA. An initial bias of 4°, further reduced to 2° was found for what concern
the AOS. This bias has been directly correlated to the AC thrust. An important
note is that they state that no degradation in stability margin or command track-
ing was observed in closed-loop analysis using the virtual sensor as primary ADS.
The planned flight test activity considered Real-Time Stability Margins (RTSM)
to measure pitch, roll and yaw stability margins on the AC during flight and dou-
blet commands to demonstrate AOA/AOS tracking. The estimated signals have
actually been compared with the one measured by the simplex mechanical (dual
electric) nose boom with different AC configuration: gear up/down, weapon bay
opened/closed. The input were the Inertial Measurement Unit (IMU) measure-
ments, qc from a Pitot tube and the FCS signals, considering also the thrust vec-
toring peculiarity of the X-45A.

One of the first direct application of neural techniques to the design of SADS
can be found in [72] where a Functional Pooling Nonlinear AutoRegressive with
eXogenous excitation (FP-NARX) network has been implemented and tested on a
nonlinear 6 Degree Of Freedom (DOF) simulator, considering also wind and Dryden
turbulence model. The input were vertical and longitudinal accelerations, qc, TAS,
elevator deflection, stabilizer position and pitch angle. AOS was not considered.
The declared uncertainty on AOA is lower than 1.1°. This value has been obtained
in 28 flights lasting 100 s in a range of 15.2° of AOA. AC configuration is not fixed,
both landing, take-off and clean configurations have been tested. It is notable that
three virtual sensors have been designed, one for each AC configuration.

In 2009, Nebula et al. published an article in which both EKF and ANN are
applied on the estimation of AOA, AOS, Mach number and other variables. In
this case, the application was a space autonomous vehicle called Flying Test Bed
1 (FTB-1) in atmospherical reentry. With respect to the work of Westhelle, this
estimator has been tested also on real flight test data, obtained during the first
Dropped Transonic Flight Test (DTFT)-1. Simulations have been conducted for
the DTFT-2. Moreover, they have weather forecast available on board, uploaded
before the beginning of the mission or at least before the deorbiting operation. The
knowledge of the wind can greatly helps the final estimation performance. This
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system showed a maximum error of 1° in a direct comparison with the timeseries
lasting 20 s measured by physical probes. The input vector in this case is made
by accelerometers, rate gyros and atmospheric forecast data. The ANN is used
for the interpolation of the aerodynamic coefficient and not directly for the output
elaboration, whereas the EKF is applied as state observer. DTFT-1 consists in a
drop from 20 km altitude, controlled flight with constant AOA to reach Mach 1.05
before slowing down. DTFT-2 considered a drop from 24 km with constant AOA,
followed by a AOA sweep at constant Mach in the transonic region before slowing
down. As Nebula et al. [73] observes:

The plain estimation of the air data quantities using only inertial mea-
surements (zero-wind estimation) can be extremely inaccurate when inertial
velocity and wind velocity are comparable.

In [74] an Radial Basis Function (RBF) is used instead of MLP for the aerody-
namic model inversion of a civil AC.

Another implementation of a cascaded EKF architecture can be found in [75].
In this work, the estimation is also conducted to enhance the FDI system capabili-
ties using low-graded inertial and radio-navigation sensors. However, this solution
called SADS could be classified with the model-based data fusion, because the first
EKF is applied to obtain attitude and AC velocity from GNSS and IMU. The sec-
ond EKF is actually the core of the air data estimation and it allows to observe for
the first time the entire triplet TAS, AOA and AOS using an AC dynamic model
and the FCS signals. Declared uncertainties are 2.5 m s−1 on TAS, 2° for AOA,
1° for AOS. These results have been obtained using both flight test data from the
Ultrastick 120 testbed, a fixed-wing model, and from simulation of a Cessna 172.
The simulated manoeuvers are level flight with 30° bank turns and steep 50° bank
turns. The important step conducted in this research is the demonstration of the
simultaneous non-observability of the airspeed and heading if the 2D horizontal
problem and straight flight are considered. In fact, small heading changes (S-turn)
are necessary in case of long straight-and-level flight. Unfortunately, it is not always
possible to ask the pilot to maneuver in order to measure a flight parameter. One
of the unknown variable was the throttle setting during flight tests, hence they have
applied the value coming from the straight-and-level flight estimation. This was
pointed as the major source of error during transients. [76] is a follow-up where the
federated EKF architecture is again applied with a detailed observability analysis
of the problem. Declared performance obtained in real environment with Ultrastick
120 are 2 m s−1 on TAS, 3° on AOA and 5° on AOS when bank angle is lower than
30°. The flight test points were doubles applied to the elevator, ailerons and rud-
der. Wind is considered and modeled as a First Order Gauss-Markov process. The
algorithm resulted to be very sensitive to off-trim velocity but relatively insensitive
to off-trim attitudes. Another aspects that Lie and Gebre-Egziabher reported is
the possibility for a small UAV to experience a significant amount of wear during
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a normal operation. This brings to the fact that it is not possible to obtain an
accurate AC model. However, possible improvements proposed in the same article
are the following:

• avoid the approximations φ̇ = p and θ̇ = q, use the nonlinear kinematic
equation

• consider the current gravity projection instead the one at the trim point

• use First Order Gauss-Markov model for the process noise

• apply nonlinear dynamic model or model scheduling

Because the dynamic model is linear, the approximation of constant airspeed in
the definition of the coefficient of the state matrix brings the error to increase. The
increased sensitivity at low airspeed in the estimation of the aerodynamic angles is
not new and it also affects the classical sensors. Figure 1.3 is taken from [77]. The
effect of the derivative dV

dα
relects on the SADS because the a priori estimates is

corrected using the Ground Speed (GS) innovation. However, if the GS innovation
changes only a little because dV

dα
is low, there is a little correction on α and β. It

must be noticed that the SADS is very important at low speed.

Figure 1.3: Airspeed - AOA relationship (from [77])

In this kind of state observer, it is important how the wind is considered. The
wind model is actually the main difference in a lot of papers.

A series of publication can be found on the Pitot-free analytical redundancy.
An example can be [78] where the velocity and wind vectors are estimated using
Least Squares modeling (LS) and EKF with a final error about 1 m s−1 and 2 m s−1.
In [79] an analytical redundancy approach for Pitot tube failure has been proposed
using nonlinear Kalman Filter (KF). The wind state vector has been modeled as
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a random walk process. A comparison between the performance of EKF and Un-
scented Kalman Filter (UKF) is also conducted. The algorithms have been tested
on flight data coming from 2 different UAVs. In this case, the wind vane is installed
and the final performance on the airspeed estimation is about 1 m s−1 and 2 m s−1.

In [80] the estimation is conducted with the aim of estimation, online calibration
and fault diagnosis for ADS. They have implemented a cascaded estimator with an
EKF for the AHRS data fusion, a wind velocity observer considering slowly-time
varying wind and the AOA/AOS computation as final step. The authors refer
that adverse conditions can influence the aerodynamic coefficients of the UAV and
that the aerodynamic model can become inaccurate during agile manoeuvers with
high AOA/AOS. Moreover, the application of the kinematic model in place of the
dynamic model makes this solution aircraft-independent. In this work, there wasn’t
any direct measurement of the parameters and hence the comparison with classical
sensors was not possible. However, in this case there is an analysis of the impact
of the aircraft mass and architecture. In fact, the algorithm has been tested with
flight test data coming from 3 different UAVs with a mass of 4 kg, 20 kg and 200 kg
respectively, as demonstration of the independence from the aircraft. It is worth
noticing that the article showed that maneuvers with variations in attitude can
bring to the Global Exponential Stability (GES) of the estimator error dynamics.
In fact, the rank of the observability Grammain matrix rises to 4 in case of flight
with variation in pitch and yaw, whereas the flight at constant attitude makes the
rank equal to 2. This analysis has been conducted with both fixed Pitot probe and
self-aligning probe. The flight tests are made by loops at different altitudes, also
depending on the UAV. The manoeuvers are: 8 loops at 500 ft and 30 m s−1 with
20 m of altitude oscillation or airspeed variation, and 10 loops between 1000 ft and
600 ft.

Several version of Adaptive Extended Kalman Filter (AEKF) are also demon-
strated in [81], in case of fault injection. This paper compares the performance
of the proposed algorithms in both simulated and flight scenarios. Two simulated
fault scenarios are considered, respectively with multiple and simultaneous faults,
with 3-2-1-1 aileron command. In case of operative scenario, the flight test data
coming from Cessna Citation II aircraft have been enriched with simulated fault
injection. Despite for the complete analysis, the duration of the timeseries is quite
low, 50 s for simulation and 60 s for flight test.

In 2016, an AEKF has been presented for high performance AC to estimate
the air triplet and pressures in high load factor manoeuvers. The algorithm is
based on GPS, IMU and a self-aligning probe and it implements the assumption of
slow-varying wind Ẇ = 0. It has been tested on data coming from a light-military
training simulator. To improve the significance of the simulation, the ADS has been
modeled in 2 parts: the first one simulates the ADS measurements. This part is
composed by Computational Fluid Dynamics (CFD)-derived functions to consider
the point of installation, the self-aligning dynamics based on a II order system and
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the noise model. The second part models the Air Data Module (ADM), which
evaluates the Air Data parameter using the simulated probe measurements and
using Least Mean Squares (LMS) polynomials. In this way, both the measurement
error and the algorithmic error are simulated. This is important, because the more
the error are accurately modeled, the more it it would reduce the gap between a
flight test and the simulation. The flown manoeuvers are the following:

• fast nose-up manoeuver (elevator pulse deflection 20° lasting 2 s) with con-
stant vertical wind (10 m s−1)

• fast yaw manoeuvre (pulse rudder deflection of 10° lasting 2 s) with constant
lateral wind (10 m s−1),

• robustness test: fast vertical gust disturbance (as Certification Specifications
(CS)-25 recommends, see paper for formulas), no command variation

Please consider that the robustness test violates the basic assumptions of the
model, as the same authors wrote, in which the time-variation of the wind com-
ponents has been considered negligible. The uncertainty is declared lower than 1°,
increasing up to 5° in case of vertical gust. This last result is also interesting be-
cause the presence of a vertical gust violates the model. In this paper, the wind is
evaluated during steady-state flight and then kept constant during high load factor
segments by the KF implemented.

Recently, [83] applied an AEKF for the estimation of AOA and CAS. This work
is more focused on fault detection because, as Alcalay et al. observes, Even if very
improbable, simultaneous and consistent faults of two or three sources are difficult
to detect. The method has been tested on 50 min of flight data.

One of the most recent work is [84]. This article has been published in 2019
and it proposed the estimation of AOA and AOS for reducing the calibration costs
of the ADS of an advanced AC. In fact, as they underline in this article, the AOA
calibration can be conducted with relevant long flight test and, moreover, the AOS
is more difficult to calibrate because it is more sensitive to the lateral winds. The
state observer is a Linear Kalman Filter (LKF) for the wind, using CAS and INS
whereas AOA/AOS are analytically evaluated once the velocity vector components
are available. The following assumptions have been implemented:

• In this case, WD has been considered negligible

• Slow wind time-variation (∂WN

∂t
= ∂WE

∂t
= 0)

These assumptions are mostly related to neglect the ground effects and they
can be considered valid at sufficient high altitude. However, being the wind vector
estimated in a KF, the second assumption does not mean that the time derivatives of
the horizontal wind components will be zero, because they are propagated according
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to the White Noise (WN) implemented as plant noise. This solution has been tested
on P1HH and M346 data and it has been compared with an high-accuracy nose-
boom vanes in 1600 s of levelled flight, climb and descent. These flight phases
have been selected because they constitute the common procedure for flow angle
calibration. The declared difference between the reference and the estimation is
always lower than 2° for the aerodynamic angles and 2 m s−1 for the wind estimation.

1.4 Aerodynamic Angles estimation
The estimation of AOA/AOS has been heavily studied in literature. A strong

similarity has been found in the proposed methods and the solution to the problem
seems to remain an open question in this field.

Define the kinematic problem of AOA/AOS estimation as the inverse problem
of estimation of the aerodynamic angles based only on kinematic quantities and
reasoning. This problem is generally ill-posed and the following brief analysis can
identify the source of ill-posedness.

Figure 1.4 shows a vector representation of the problem. If ∥ V∞ ∥, a, ωB

could be measured, α and β can not be determined instantaneously. In fact, atras

is obtained from Eq. 1.3

Figure 1.4: Vector representation of the problem of estimation of AOA/AOS. The
same measurements of TAS, n, ωB and Vtot brings to infinite V vector and hence
the ill-posedness of the problem.

atras = ωB ×V (1.3)
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Cross product is a Lie algebra and hence it does not have an inverse operator. In
brief, there are infinite velocity vector V with the given measured module ∥ V∞ ∥
that composed with the angular velocity vector close the problem with the right
acceleration a. A possibility is to consider also the time derivative of ∥ V∞ ∥ which
gives some constraints on V̇. In that case, some solution could be found and the
ill-posedness comes from the fact that it is not possible to discriminate between ẇ
and V̇ using an accelerometer.

The ill-posedness of the kinematic problem results in the fact that the system
is globally unobservable. The observability analysis can be seen in [76].

However, a possibility to determine the aerodynamic angles could be solve the
dynamic problem instead of the kinematic one. This avoid the fact that the kine-
matic problem is ill-posed. In fact, the a vector is generated by the aerodynamics
and the propulsion system. An estimation of the acceleration can relate α and β
to a so that the ambiguity is somehow reduced. Unfortunately, the knowledge of
the dynamic model is needed to relate the aerodynamic angles to the accelerations.
This means that the sensor will be strongly AC dependent. Moreover, once the
model is known with a certain degree of accuracy, also the input variables to the
model itself are needed, which means the knowledge of the state variables related
to the FCS and to the engine. Sometimes the input variables of the AC are not
available or the designer prefers to avoid relying on a high number of signals that
could be suggested to a failure.

1.5 Wind estimation
As before mentioned, the research on the estimation of the wind vector W is

strictly related to the estimation of AOA/AOS. This connection is so tight that
the major part of the recent works belongs to the both field of study. In fact, the
knowledge of the air triplet, which can be seen as the knowledge of the velocity
vector V, together with a measurement of the speed with respect to the ground
allows to close the problem using the well known Eq. 1.4.

Vground = V + W (1.4)
As stated by Rhudy et al. in [7], the inevitable presence of the wind is one

of the major problem in the estimation of the AC states and parameters. More-
over, the same author recently refers that the validation of these techniques is very
challenging because it is difficult to directly measure the wind experienced by an
aircraft.

Most of these works applies KF using the assumptions similar to the one de-
scribed in Sec. 1.3. [7] integrates a set of kinematic equations using a UKF assum-
ing Vpitot = u. Results have been compared with the measurement coming from a
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ground weather station (with 6° of resolution) corrected with a power law to con-
sider ground friction effects. Constant wind direction estimation error: 16.7°. [85]
applies a variant of the EKF called Three-step EKF.

Although the estimation of AOA/AOS finds more interests in fixed-wing AC,
the wind estimation can also be conducted on rotorcraft and multicopter. In this
case, the difficulty arise from the flux related to the rotor. In [86] a variational
technique is applied. In [87] the estimation takes advantage of a link between
propeller power measurement and wind velocity.

One of the most interesting works is [8]. Authors classify the methods in two
classes: the first class is based on the wind triangle relationship (as Eq. 1.4), whereas
the latter comprises approaches using the aircraft dynamics. They show 4 methods
using Eq 1.4:

• estimation of the horizontal planar wind using Pitot-Static and planar GPS
velocity estimates

• as the previous method but including the Down component of the wind

• estimation using IMU measurements

• extension of the previous formulations using also the wind vanes

An influential work is [88], when the wind estimation itself has been identified as
possible important application of the UAV. In this work, an EKF is designed model-
ing the wind shear as first-order Markov process with 32 km of correlation distance.
This method has been validated through simulation and flight test using data from
Automatic Weather Station (AWS) of the Korea Meteorological Administration (at
ground level, 15 km far) with usual power law correction.

One of the problems of the estimation W in small UAV applications, is that the
frozen wind field approximation is not applicable. In other words, the wind velocity
variations are similar to the vehicle speed [89]. Nevertheless, the knowledge of the
wind field is crucial for the autonomous energy harvesting research by means of
gust soaring.

Recently, vision-based systems have also been implemented [90].
An important theoretical result can be found in [91]. In this work, the condition

number of the observability Gramian is used to measure the observability of the
problem. The result is that the problem is globally unobservable. However, it is
conditionally observable. They apply Lie derivatives and F-norm of the observabil-
ity matrix. Authors write and prove a theorem regarding the observability of the
matrix related to the slow-varying wind assumption.

A 2 stage estimation is implemented in [92]. The preliminary result obtained
with Levenberg-Marquardt is then corrected with a Three-step EKF. This method
showed an error between 0.1° to 0.3° on simulation.

A frequency separation method is implemented in [93].
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1.6 Absence of a shared metrology
As can be clearly understood from Section 1.3, the solutions found in literature

are not comparable between each other. Each relevant work hides some details or
some others are simply not considered so that it is quite impossible to define which
solution is the best one. Actually, once the similarities among the various algorithms
have been highlighted, declared uncertainty should be more homogeneous.

The first analysis that can be conducted on this topic is a comparison between
the architectures studied in literature. Hence, the selection of which parameters
must be examined is very important. In this thesis, the following list has been
considered:

• The study led to the estimation of the entire air data triplet {V, α, β} or to a
subset of it. This choice can bring to analysis that are restricted to a limited
part of the flight envelope. For instance, neglecting the estimation of β limit
the study to the longitudinal plane and the demonstration can be incomplete

• The analysis is based or not on inertial measurements. The error injected
by the sensor noise might not be neglected in some cases, especially if data
fusion isn’t conducted

• Filtering process. The estimation is conducted using a state observer (e.g.
Kalman filter) or complementary filters are applied. The design of the KF
can be simplified assuming restrictions on the problem as linearity or clean
atmosphere environment

• The algorithm is based on machine learning techniques.

• The origin of the data is numerical simulation or flight test data. In the first
case, the characteristics of the simulator can deeply affect the final significance
of the data. In the second case, several limitations can bring to an uncomplete
coverage of the flight envelope. This aspect will be discussed in Chapter 3.

• The aircraft configuration. The air data estimator is of particular inter-
est during take-off and landing procedures, when usually flaps and/or slats
are extracted. The demonstration of the results sometimes is carried out
in every flight configuration, such as landing gear up/down or weapon bay
opened/closed, and some other works prefer to concentrate on a single situa-
tion at a time.

• FCS values are used in the estimation or not. Due to the theoretical reasons
that have been discussed Sec. 1.4, the control surface position can affect
the final uncertainty obtained by the estimator. However, the availability of
those signal is often put into discussion and hence some researchers preferred
to avoid the implementation of the FCS in the algorithm.
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The results of the analysis of the state-of-the-art are collected from Table 1.5
to Table 1.10. It is worth noticing that the absence of metrological procedures
significantly reduces the reliability of the values reported in Table 1.10.

Table 1.5: Classification of the methods for estimation of Air Data, in terms of
final aim

Scope Frequency Percentage
Estimation 19 34.55 %

Estimation for Situational Awareness 2 3.64 %
Estimation for SWaP 2 3.64 %

Estimation for AP, Model Tuning or
performance improvement

5 9.09 %

FDI 6 10.91 %

Table 1.6: Classification of the methods for estimation of Air Data, in terms of
architecture

Architecture Frequency Percentage
Classical 11 20 %

Model-based 15 27.27 %
EKF 9 16.36 %

AEKF 3 5.45 %
Other* 3 5.45 %

Model-Learned 3 5.45 %
Other 3 5.45 %

* Other collects any architecture that applies
different physical phenomena than the ones
studied in this dissertation (Light Detection
And Ranging (LIDAR), Optical flow) or FADS

This long introduction is hence needed to define the framework in which this
work is integrated. Since Air Data VSs have been already proposed, the second step
is to optimize the design and the performance of the sensor itself. The main aim
of this dissertation is to provide a set of methods that can help to design VS. The
term design in engineering often traduces in comparison of the obtained solutions.
Actually, the design starts from the specifications, which in turn are defined based
on consolidated reference metrics. For this reason, except for a training procedure,
most of the proposals are based on metrics that can be used to compare Air Data
VS. At the end of this dissertation, it will be shown that the reliable and repeatable
uncertainty for this kind of VS can be defined.
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Table 1.7: Classification of the methods for estimation of Air Data, in terms of
estimated flight parameters

Parameters Frequency Percentage
AOA 3 5.45 %

AOA+AOS 3 5.45 %
AOA, AOS, pressures 3 5.45 %

AOA, AOS, other 4 7.27 %
AOS 1 1.82 %

Air Triplet 2 3.64 %
AOA + TAS + Wind (no AOS) 1 1.82 %

Air data + Wind 1 1.82 %
AOA + Other 1 1.82 %

Entire set of Air Data 1 1.82 %

Table 1.8: Classification of the methods for estimation of Air Data, in terms of
applied sensors

Sensors Frequency Percentage
INS 21 38.18 %

GNSS 7 12.73 %
ADS 11 20 %
FADS 2 3.64 %
FCS 9 16.36 %

Model (any kind) 5 9.09 %
Other 12 21.82 %

1.7 Focus and scope of this study
Previous sections described the problem and how it is currently faced in litera-

ture. A gap has been identified from a metrological point of view that impedes to
actually compare the solutions available. As it will be better detailed in Sec. 1.8,
this study starts from a patented method that was at the beginning of the first flight
test campaign when this PhD project has begun. Historically, the Smart-ADAHRS
patent has been published in 2013 and reached TRL 4 after the demonstration in
simulated environment. Although some research on the effect of the noise has been
conducted in [95], the performance dropped once Smart-ADAHRS was installed
on-board. The main question at the time of starting this PhD project was related
to possible alternative ways to train the MLP in order to improve the performance
of the estimator. Moreover, the possibility to certify this kind of system based on
NN was an open question in this field and it still remains an open question at the
time of writing this dissertation. In this framework, a comparison with the other
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Table 1.9: Classification of the methods for estimation of Air Data, in terms of
data origin

Data origin Frequency Percentage
Simulation 8 14.55 %
Flight test 12 21.82 %

Simulation and Flight Test 9 16.36 %
Wind Tunnel 2 3.64 %

Table 1.10: Classification of the methods for estimation of Air Data, in terms of
uncertainty

Target Uncertainty Class [°] Frequency
0.2 - 0.4 2
0.4 - 0.6 8
1 - 1.2 7AOA

>1.2 7
0.2 - 0.4 2
0.4 - 0.6 4
1 - 1.2 6

1.4 - 1.6 1
AOS

>1.8 10

methods that can be found in literature is surely interesting. However, it is not the
main scope of this dissertation. In fact, the identification of the gap at the basis of
this problem was considered a priority, such that the attempt of establish an uncer-
tainty associated to the various estimators could lead to a systematic comparison.
This dissertation proposes several ideas, some of them are design methods, some
others are more related to the design itself. For sake of clarity, a similarity with
the polynomial fitting can be observed. Indeed, the final aim of polynomial fitting
is to define the coefficients of a polynomial. Once the degree of the polynomial is
given, the final polynomials are usually not indicated as different methods, as it is
commonly done with applied NNs. In fact, moving the attention from terms like
model-free to model-learned and considering two estimators different methods only
when there is a structural difference (i.e. in the architecture) could focus the study
on the actual procedure applied to find the final estimator. This lead to the prob-
lem of finding the best design flow to be followed to design a NN-based estimator.
To follow this path, it is necessary 1) to associate an uncertainty to the estimator,
such that it is possible to compare the method with the other available in literature
and 2) to try several training and data analysis methods and to compare them.

This dissertation provides a set of methods and their mathematical background,
with the chance of starting a path directed to the definition of a certified design
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flow. In Chap. 6 a comparison of the results obtained following the proposed
methods is conducted. The comparison starts from the definition of a Baseline
NN. The Baseline NN is an example of how the design of a NN-based estimator
was conducted and it works as a reference model. Finally, Chap. 7 suggests a
procedure that could be the base for a certified design flow.

1.8 The case study: the Smart-ADAHRS algo-
rithm

This dissertation shows some methods that can be applied to the design of
synthetic sensor of aerodynamic angles. To demonstrate their advantages and
disadvantages, they have been applied to the Smart-ADAHRS algorithm. The
Smart-ADAHRS is a patented technology that has been developed by Politecnico
di Torino for the estimation of the aerodynamic angles using NN [94]. The patent
is now property of Aerosmart srl and it is implemented as VS in the European
Union (EU) project Modular and Integrated Digital Probe for SAT Aircraft Air
Data System (MIDAS) [96]. To the best of the author knowledge, this is the first
case of synthetic estimation of aerodynamic angles on a certifiable ADS, developed
following the design process in accordance with the aeronautical regulations. Usu-
ally, the TRL of the other algorithms is low, generally they have not been tested
in operative environment. On the contrary, this algorithm has reached a stable
design and the knowledge of its peculiarities allows the author to be confident in
the application of the proposed methods. In this algorithm, the AOA and AOS are
obtained by sum of an initial estimation α̂ (or β̂) to a correction term ∆α (or ∆β)
evaluated by a NN, as in Eq. 1.5. These estimations are based on data coming from
conventional pressure probes and GPS/INS. In this way, only one external sensor
is required. An high-level schematic is shown in Figure 1.5.

α ≈ α̃ = α̂ + ∆αNN

β ≈ β̃ = β̂ + ∆βNN

(1.5)

The patent does not give strict indications on the architecture of the NN or
how the NN must be trained. However, in recent works a main structure has
been maintained. The most tested NN is a feed-forward fully connected MLP.
The number of neurons and layers is limited, usually 1-2 layers with 10-20 neurons
each. Although static, its simplicity should be a great advantage. In fact, even
if deep learning is very common [97] at the time of writing this dissertation and
interesting theoretical results have been discovered [98], the aeronautical industry
still have some hesitation in the application of such untamable systems. In base to
the classification given in Sec. 1.3, Smart-ADAHRS belongs to the model-learned
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Figure 1.5: General schematic of the Smart-ADAHRS

category. One of the advantages of this category is that the application of a learning
procedure able to autonomously define a model avoids the amount of computation
needed to manually fulfill the same scope.

At the beginning, the Levenberg-Marquardt (LM) method was applied as heuris-
tic rule during training (see [99], [100]), which adapt a parameter λ to pass from a
standard gradient descent approach for large value of λ to a Gauss-Newton formula
for small value of λ. It represents an example of trust region approach applied
to Gauss-Newton method. The main mathematical description for this method is
reported in Eq. 1.6, where Z is the Jacobian matrix of the error function with
respect to the weights whereas wold and wnew represents respectively the old and
new weight vectors expressed in the weight space. ϵ (wold) is the residual error
applying wold.

wnew = wold −
(︂
ZT Z + λI

)︂−1
ZT ϵ (wold) (1.6)

Although LM method avoids the calculation of the Hessian matrix, it is quite
heavy in terms of memory and computational cost due to the evaluation of the Ja-
cobian matrix. Moreover, there are some implications using the partial derivative
of the error function for the direct modification of the weight matrix. The unfore-
seeable behaviour of the derivative itself could indeed bring to very slow learning or
disturbances in the training procedure. To address this problem, the optimization
algorithm has been changed with the Resilient Propagation (RPROP) in which the
weight update step is function only of the sign of the derivative. For a complete
description of the method please see [101]. General weight update step is reported
in Eq. 1.7.

w
(t+1)
ij = w

(t)
ij + ∆w(t)

ij (1.7)

where
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∆w(t)
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆(t)

ij , if ∂E(t)

∂wij
> 0

+∆(t)
ij , if ∂E(t)

∂wij
< 0

0 , else
(1.8)

and

∆(t)
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η+∆(t−1)

ij , if ∂E(t−1)

∂wij

∂E(t)

∂wij
> 0

η−∆(t−1)
ij , if ∂E(t−1)

∂wij

∂E(t)

∂wij
< 0

∆(t−1)
ij , else

where 0 < η− < 1 < η+

(1.9)

Findings show that the LM algorithm is usually the best one in terms of speed
convergence and training error but, at the same time, RPROP allows to manage
large amount of data. See [102] for further optimization algorithm comparison.

The selection of the input signal has been described in previous research [103,
104, 95, 1, 105, 106, 107, 108, 109, 110]. The current design is the one reported in
Eq. 1.10.

∆α = fα (α̂, qc, q̇c, ax, ay, az, θ, φ, p, q, r) (1.10)
∆β = fβ

(︂
β̂, qc, q̇c, ax, ay, az, θ, φ, ψ, p, q, r

)︂
(1.11)

where α̂ (or β̂) is the initial estimation of the AOA (or AOS), qc and q̇c are the
dynamic pressure and its time derivative, ai is the coordinate acceleration measured
along i-th Body Axis, p, q, r are the angular speed respectively around the XBody,
YBody and ZBody axes, φ is the roll angle, θ is the pitch angle, ψ is the yaw angle.

Ideally, an infinite TS would be needed to train the NN and ensure that there
are no peaks in the estimation error. However, an infinite TS is obviously not
available in a realistic application. The selection of a suitable set of input-target
pair is one of the most difficult part of the NN design, together with the definition of
which signals apply for the input pattern. Smart-ADAHRS learns from data logging
coming from real flight tests, when the number of possible maneuvers is limited by
fuel consumption, pilot experience, available time and flight test purpose. In fact,
the analysis of the TS is one of the most described aspect of this work.

Table 1.11 collocates the Smart-ADAHRS algorithm in the classification given
in Sec. 1.6.
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Table 1.11: Smart-ADAHRS classification

Description Parameter
Estimated quantities α, β

Inertial measurements in input Yes
Filtering process No

ML Yes (MLP)
Data origin Simulation and flight data

AC configuration Clean
FCS in input Generally no. Added in the MIDAS project

1.8.1 Fault injection and real system noise simulation
The Smart-ADAHRS algorithm has already been tested under several condi-

tions. An accurate flight simulation is an important tool in aeronautical engineering
for several applications [111]. In this case, the simulations have been exploited in
order to define the performance of the VS also in case of degraded conditions. This
has been analyzed in [107]. At the time of writing the article, the simulator of the
G70 that will be shown in Chap. 5 was not completed. Moreover, the analysis has
been conducted in order to preliminary define the behaviour of the output signal
in case of fault injection. To obtain realistic results, each sensor in input to the
Smart-ADAHRS has been modeled in order to reproduce its dynamic, noise and
fault behaviour according to the standards [112]. The resulting blocks have been
collected in a library that can be used with any Simulink AC model. In Figure 1.6
and Figure 1.7 the general schematics of the inertial and pressure sensors and GNSS
receiver are shown. In Table 1.12 the list of parameters that can be configured for
inertial and pressure sensors is reported. In Table 1.13 it is reported the list of
faults that can be injected in the simulation.

Figure 1.6: General schematic of the sensor subsystem.

Results showed in [107] provide some hints on which are the most influencing
faults that can happen on the preceding sensors. The GNSS faults seems to be
well-faced if applied for a limited time. However, the estimation error become
unacceptable in case of null output of the inertial sensors. Moreover, the effect of the
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Figure 1.7: General schematic of the GNSS receiver subsystem.

Table 1.12: List of the model parameters (inertial and pressure sensor). UM stands
for the unit of measurement of the quantity of interest

Full scale [UM] Dynamic model equivalent mass [-]
Threshold [UM] Dynamic model equivalent damping

coefficient [-]
Fixed bias [UM] Dynamic model equivalent third degree

stiffness [-]
Bias stability from turn-on to

turn-on [UM]
Dynamic model equivalent fifth degree

stiffness [-]
Bias temperature stability

[UM/K]
Natural frequency (phase = −90 deg)

[rad/s]
White noise input process power

[UM2]
Damping factor [-]

AR model parameters Misalignment matrix [-]
Scale factor temperature

sensibility [%/K]
Floating point precision of ADC [UM]

Operating temperature range [K] Bias compensation (added to the input)
Bias reference temperature [K] Misalignment and sensitivity

compensation matrix (left multiplied by
(input + bias))

Reference temperature [K]

temperature on the inertial sensors can also be detrimental only if the temperature
sensitivity is higher than the values typically reported on datasheets of COTS
sensors. An example of results is shown in Figure 1.8.
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Table 1.13: List of faults for the GNSS sensor

GNSS Receiver faults Description
KF fault KF stops to update

Phase-Lock Loop (PLL) fault Zero satellites in view
Satellite fault Satellites in view randomly loss

Mask angle change Change the minimum elevation angle (it
can be defined depending also on the

azimuth angle)
ADAHRS faults Description

Null output Output signal set to 0
Temperature fault Temperature increasing with given slope
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Figure 1.8: Smart-ADAHRS response in case of a temperature increase on the ac-
celerometers of 2 K/s with an high temperature sensitivity of 0.02 K−1 (subscripts
V S, T and in stand respectively for Virtual Sensor, True angle and initial estima-
tion)

1.8.2 Study of the most influential variables using genetic
programming

In order to understand which are the most influencing variables in the estimation
of AOA/AOS, the genetic programming method has been implemented. Actually,
a complete study of the math behind the problem defined in Sec. 1.4 would be
necessary but it is still unavailable in literature.

The genetic programming consists in a heuristic search of the nonlinear function
that fits the data given in input. Once the function is obtained, it is possible to
understand which are the unused variable and the most effective one. The applied
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dataset has been normalized with the same procedure used for training the NN.
Two tests have been executed, the first one using the entire dataset and the second
one using only the TS that allows to obtain the best performance of the NN. The
description of this TS can be seen at the end of this dissertation in Chap. 6. The
results of the genetic programming can be seen in Table 1.14 and Figure 1.9.

Table 1.14: Results of the genetic programming algorithm

Using the entire dataset Using only the TS
Function ∆α = 0.23757θ +

0.027312φ +
0.08094q̇caz + 0.13559 ∗
0.27425qc − 0.11023 +
−0.22356az − 1.3746α̂ +
−0.18109φ2

∆α = 0.12544 ∗ 0.25117qc +
0.10618θ ∗ 0.25117qc − 0.07588 +
− sin(sin(sin(0.14322α̂0.25117qc)))+
−0.317az − 1.088α̂− 0.22746φ2

R2 coefficient 0.99655505 0.99636089
Unused
variables

ay, q, r q̇c, ay, p, r

The nonlinear functions obtained with this method are very similar and they
show a strong dependence on the φ angle and on the impact pressure qc. Moreover,
ay and r are unused in both cases and q̇c is used only in the first case multiplied by
az and with a low correlation coefficient. In both cases, the R2 coefficient is higher
than 0.996, as confirmed by Figure 1.9. The computational time required by the
two tests has been 5.5 hours with a total amount of 1.1× 1012 function evaluations
when the entire database was applied, and 3 hours and 11 minutes for the second
test, with 5.7× 1011 function evaluations. For this reason, even if compelling results
are obtained in terms of R2 coefficient, this method is considered computationally
more expensive then the NN training.
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Figure 1.9: Observed vs Predicted plot obtained with Genetic Programming

33



34



Chapter 2

Theoretical aspects of neural
networks

In line with the philosophy of providing a follow-up to the previous research on
Smart-ADAHRS, some mathematical and, in particular, statistical theory about
NN is given in this chapter. Taking advantage of the aspects shown in this chapter,
it is possible to improve the performance of the estimator, or to understand the
origin of localized high uncertainty that might be difficult to reduce. Sec. 2.1
defines the structure of the NN considered in this dissertation. Sec. 2.2 shows
the point of view of multivariate nonlinear regression and UAT is introduced as
justification for the approach in Sec. 2.3. Because of the fact that the error results
in the sensor uncertainty, Sec. 2.4 reports some of the known limits of the statistical
approximation using NN and it introduces the CV method. Part of this chapter
has been already submitted in [113].

2.1 Neural Network structure definition
In this section, a brief definition of the quantities that will be appied in this

thesis is conducted. The convention is similar to the one applied in [114, 115] but
some symbols have been re-defined to adapt to the formulation.

Henceforth, it is assumed the following convention. Given f : R → R and a
matrix A ∈ Rnm it is possible to write:

f (A) = B (2.1)
such that
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B ∈ Rnm with B =

⎛⎜⎜⎜⎜⎝
f (a11) f (a12) · · · f (a1m)
f (a21) f (a22) · · · f (a2m)

... ... . . . ...
f (an1) f (an2) · · · f (anm)

⎞⎟⎟⎟⎟⎠ (2.2)

ANN is a broad term referring to a lot of different architectures with a common
topology. A neural network is a sorted triple (N, V, w) with two sets N , V and a
function w, where N is the set of neurons (also called nodes or hidden units) and
V a set {(i, j) | i, j ∈ N} whose elements are called connections between neuron i
and neuron j. The function w : V → R defines the weights, where w ((i, j)), the
weight of the connection between neuron i and neuron j, is shortened to wi,j. As
convention, it is assumed that j = 0 (wi,0) can be used to point the bias of the i-th
neuron. Depending on the point of view, wij can be 0 or even undefined for the
connections that do not exist in the network [116]. Briefly, an ANN consists of a
set of neurons with weighted interconnections among them. This thesis is focused
on MLP, a kind of ANN described by a directed graph from a set of inputs to a
set of outputs, where neurons are organized in ordered layers. The first layer is the
input layer, the last one is the output layer and the other ones are referred to the
hidden layers. Although this definition can slightly vary in literature, in this thesis
it is assumed that the connection can exist only between consecutive layers in a
fully-connected and feed-forward architecture.

Each neuron computes a value called activation from the biased linear combi-
nation of the output values of the preceding neurons. The weights constitutes the
coefficients of the linear combination and the bias itself. For convenience, the result
of the biased linear combination of the input of the i-th neuron of the k-th layer
is called s

(k)
i . Figure 2.1 shows a general schematic and notation of the quantities

involved in a layer.
The activation value a ∈ R is the image of the activation function φ : R → R,

which can be linear or nonlinear. This composition brings to the recursive formula
in Eq. 2.3.

a
(k)
i = φ

⎛⎝∑︂
j

(︂
w

(k)
i,j a

(k−1)
j + v

(k)
i

)︂⎞⎠ = φ
(︂
s

(k)
i

)︂
= φ

(k)
i (2.3)

where the superscript (k) is the index of the considered layer, w(k)
i,j is the weight of

the connection from neuron j to neuron i at the k-th layer. k ∈ 0, 1, · · · , l, l+1 with
0 representing the input layer, 1 representing the first hidden layer, l the number
of hidden layer, l + 1 the output layer. nk is the number of neurons contained in
the k-th layer. Because the previous convention for the bias value of a neuron can
bring to some indexing problem, it has been preferred to collect the biases of the
k-th layer in a new vector v(k). Subscript f is also applied to point out the output
layer for sake of clarity. The last member of the equation is simply a short form to
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Figure 2.1: General schematic and notation of a layer of a MLP. The red area
collects the weights of the layer whereas the green one collects the operations.

relieve the formulation. Moreover, in this thesis is assumed that the same function
φ is applied to every neurons belonging to the hidden layers and it is considered
sigmoidal. Two implementations are considered, the logistic function as in Eq. 2.4
and the hyperbolic tangent as in Eq. 2.5.

φ (s) = 1
1 + e−s

(2.4)

φ (s) = tanh s (2.5)
There is the possibility for the input and output neurons to have the identity

function as activation function, for instance y = s(f), in addition to the sigmoidal
function.

This description allows to write the equation of a single hidden layer MLP with
linear input and output node. The matrix form can be seen in Eq. 2.6, where the
size of the matrices have been highlighted.

ỹ = w(f),T

1×n1

φ
(︂
s(1)

)︂
n1×1

+ v(f) = w(f),T φ(1) + v(f) =

= w(f),Tφ
(︂
W (1)x + v(1)

)︂
+ v(f)

where W (1) ∈ Rn1×n0 ,v(1) ∈ Rn1 , v(f) ∈ R

(2.6)

Henceforth, it is assumed that the studied NNs have only one output node and
that the input and output nodes are linear.

37



2 – Theoretical aspects of neural networks

2.2 Multivariate nonlinear regression framework
Similarly to [114], it is possible to define regression as follows:

Definition Regression is the problem of infer the value of one or more continous
target variables tk, given the value of a D-dimensional vector x of input variables. In
a probabilistic framework, regression consists in modelling the distribution p (tk|x)
minimizing the value of a chosen loss function.

Henceforth, the subset of the set T of tuples Ti = (xi, ti) applied to model the
p (tk|x) distributions is called TS whereas the subset applied for testing is called
Test Set, with no abbreviation to avoid misunderstandings. The set X includes the
sample observed from the input space, T the sample from the target space. The TS
and the Test Set are drawn from X and T. Both the input space and target space
can assume the structure of vector spaces and it is common to refer to dimensions
of X and T as they would be vector spaces, even if they are not. The direct sum of
the input space and the target space is generally called the hypercube. Please note
that X and T are actually multisets because it is assumed here that the multiplicity
of identical elements affects the training. However, the multiset notation is dropped
here, also in view of the typical ML notation.

As a recall, the MLP asymptotic solution for training with minimization of the
Mean Squared Error (MSE) is the following:

yk (x|w∗) =
∫︂
tkp (tk|x) dtk (2.7)

where yk is the k-th output of the MLP, k ∈ 1 . . . K and K is the dimension of the
target space. w stands for the weight vector of the MLP and p(.) represents the
PDF [114].

Eq. 2.7 can be interpreted as follows: given the set of weights w∗ that minimize
the MSE with respect to the TS and given the input vector x, the output of an
MLP is the expected value of the distribution of the given target. This means that
MLP actually gives the regression of tk conditioned on x and that MLP is a valid
application for the proposed method. Figure 2.2 shows an example based on linear
fitting.

2.3 The UAT
This section shows the results from [117] by Cybenko. This theorem is reported

with the name of UAT. Several authors worked on the universality of approximation
of the NNs, for instance see also [118, 119, 120].

First of all, some definitions are needed. Let In be the n-dimensional unit cube,
the so-called hypercube. C (In) is the space of continuous functions on In while
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Figure 2.2: Example showing the relationship between regression and conditional
PDF of the target on the input value.

M (In) is the space of finite, signed regular Borel measures on In. the definition of
discriminatory function is needed.

Definition A function σ is discriminatory if for a measure µ ∈M (In)∫︂
In

σ (W x + v) dµ (x) = 0 (2.8)

for all W ∈ R1×n0 and v ∈ R implies that µ = 0.

The definition of sigmoidal in [117] is slightly more general than the one given
in Eq. 2.4 and 2.5. However, a lemma is proven [117] stating that any continuous
sigmoidal function is discriminatory.

Theorem. Let σ be any continuous discriminatory function. Then finite sums of
the form

ỹ (x) =
nf∑︂

j=1
w

(f)
j σ

(︂
W (1)x + v(1)

)︂
(2.9)

are dense in C (In). In other words, given any y (x) ∈ C (In) and ϵ > 0, there is a
sum, ỹ (x), of the above form, for which

|ỹ (x)− y (x) | < ϵ for all x ∈ In. (2.10)
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2 – Theoretical aspects of neural networks

This theorem proves that a NN can actually represent any function on the n-
dimensional hypercube. Refer to [117] for additional details on how UAT can be
applied to a single hidden layer NN. However, as stated by the author itself, they
focused on existence. The number of neurons is unknown and the statistical risk
must be anayzed separately as in Sec. 2.4.

2.4 Approximation and Estimation error bounds
This section gives the statistical definitions of approximation error and estima-

tion error as in [121]. They will be used as introduction to the CV method and to
provide an introduction to some of the most important results from Barron. Given
a set of random variables (the observations) ξi ∈ Ξ with common distribution P ,
the aim of regression is to estimate the regression function y from Eq. 2.7, where
subscript k has been dropped for convenience.

Please note the difference between the target values t, the regression function
y and the approximation of the regression function ỹ. The target t consists of
the measured values, its uncertainty depends on the measurement equipment and
on the followed measurement process. y is actually the ideal solution that can be
obtained once a criterion is adopted, for instance the least-squares analysis. ỹ ∈ Y
is the proposed approximation. It is possible to define the excess loss as in Eq. 2.11.

l (y, ỹ) = LP (ỹ)− LP (y) ≥ 0 (2.11)
where LP : Y→ R is called the loss function and it is defined as follows:

LP (ỹ) = Eξ∼P [γ (ỹ; ξ)] (2.12)
The loss function measures the quality of the approximation of y using ỹ. It

depends on the choice of the contrast function γ : Y × Ξ → [0,∞). A common
choice in regression is the least-squares contrast γ (ỹ; ξ) = (ỹ (x)− t)2.

It is interesting to introduce the model selection problem. Let (Ym)m∈Mn
be

a family of candidate models from which the final one will be chosen. From an
operative point of view, this family can be composed by the various NN obtained
during the trial-and-error design of the VS. The minimum contrast estimator can
be written as ŷm (Dn). However, the following considerations can be made. When
Ym is small, there is a lower bound on the excess loss that can be achieved.

l (y, Ym) = inf
ỹ∈Ym

{l (y, ỹ)} ≤ l (y, ŷm (Dn)) (2.13)

l (y, Ym) is called approximation error and it is the lower bound for l (y, ŷm (Dn)).
The approximation error depends on the size of Ym, so that the number of candidate
models. This situation results in underfitting the dataset. On the other hand, if

40



2.4 – Approximation and Estimation error bounds

Ym is large, ŷm (Dn) will likely overfit the data. In fact, it can be proven that the
risk of the estimator follows Eq. 2.14.

E [l (y, ŷm (Dn))] ≈ l (y, Ym) + αnDm = approximation error + estimation error
(2.14)

where αn > 0 does not depend on m and αn = σ2

n
when the least-squares contrast

function is used and var (t|x) = σ2. On the contrary, Dm = dim Ym. Hence, too
many possibilities introduce an higher expectation on the excess loss. αnDm is
called estimation error and the trade-off resulting from this analysis is the famous
bias-variance dilemma.

A class of methods that can be used to reduce the risk is based on CV. CV
procedures start from splitting the data and then averaging or voting the estimator
of the risk corresponding to different data splits. This definition is very general
and it is necessary to specify it for the aim of this dissertation. In this work, the
first step consists in the partition of the dataset. The second step is selecting how
many TS are desired from the obtained partitions and then the generation of the
various TSs is conducted. Once the various TSs are obtained, the training phase of
the NN is conducted iteratively on the various TSs, measuring the error metric on
the part of the dataset excluded by the TS. At the end of the process, a set of NN
is obtained, each one associated with a test error and the NN with the minimum
test error is chosen.

According to [123] the Mean Integral Squared Error (MISE) between a neural
network and the target function y is bounded by Eq. 2.15

O
(︄
C2

y

n

)︄
+O

(︄
nd

N
logN

)︄
(2.15)

where n is the number of neurons, d is the input dimension of the function, N is
the number of training observations. Cy is the first absolute moment of the Fourier
magnitude distribution of y defined in Eq. 2.16.

Cy =
∫︂
| ω || F (y) | dω (2.16)

Unfortunately, the term Cy is not known a priori in this case study. In fact, at
the time of writing this dissertation, the expression of the functions α and β given
with respect to the aircraft state vector is still unknown, except for rare cases.
However, this section rigorously define the situation faced in this dissertation. The
measured values cannot be interpolated due to measurement error, but an unknown
function exist behind them. This function can be represented by a NN and this
can be proven by the UAT. It is hence possible to find some candidate models with
a double search, the first on the network architecture and the second one from
data. The final excess loss has a lower bound. The last question is if the function
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2 – Theoretical aspects of neural networks

actually exist, however this is still an open question. Analysis of NN that differs
from this framework can exist. However, at the time of writing this dissertation,
those analyses should be firstly supported by a mathematical foundation that could
encourage the study.

2.5 Derivatives of a neural approximation
In this section, the derivatives of a neural approximation are obtained. They

are useful because numerical differentiation would be subjected to the unknown
regularity of the function in the neighborhood of calculation. On the other hand,
the formulations derived here allow to evaluate the exact gradient and the Hessian
matrix of an MLP in a given point, but the result can be strongly local.

2.5.1 Gradient of an MLP with 1 hidden layer
In this subsection, the partial derivative of the function represented by a single

hidden layer MLP with respect to one of its variable is obtained.
Deriving Eq. 2.6 with respect to the input variables

∂ỹ

∂xi

=
k=n1∑︂
k=1

w
(f)
k

dφ(1)
k

ds(1)
k

∂s
(1)
k

∂xi

(2.17)

where

∂s
(1)
k

∂xi

= w
(1)
k,1 (2.18)

and considering sigmoidal activation function it is possible to write

dφ(1)
k

ds(1)
k

= φ
(︂
s

(1)
k

)︂ (︂
1− φ

(︂
s

(1)
k

)︂)︂
if φ follows Eq. 2.4

dφ(1)
k

ds(1)
k

= 1− φ2
(︂
s

(1)
k

)︂
if φ follows Eq. 2.5

(2.19)

Hence, Eq. 2.17 can be rewritten considering, for instance, the logistic function:

∂ỹ

∂xi

= w
(f)
1 φ

(︂
s

(1)
1

)︂ (︂
1− φ

(︂
s

(1)
1

)︂)︂
w

(1)
1,i +

+ w
(f)
2 φ

(︂
s

(1)
2

)︂ (︂
1− φ

(︂
s

(1)
2

)︂)︂
w

(1)
2,i + · · · =

= w(f),T ⊙ φ
(︂
s(1),T

)︂
⊙
(︂
1− φ

(︂
s(1),T

)︂)︂
W

(1)
∗,i

(2.20)
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2.5 – Derivatives of a neural approximation

where ⊙ stands for the Hadamard or entrywise product. Although the second and
the third factors of Eq. 2.20 implicitly depends on the variable of differentiation,
they do not change if the derivative is taken with respect to a different variable and
hence they can be collected in a row vector named b(1),T . This vector represents
the derivatives of the activation functions at a given layer. It is hence possible to
write the gradient of the single hidden layer MLP as in Eq. 2.21.

∇T ỹ =
(︂
w(f) ⊙ b(1)

)︂T
W (1) or ∇y = W (1),T

(︂
w(f) ⊙ b(1)

)︂
(2.21)

where

b(1) = φ
(︂
s(1)

)︂
⊙
(︂
1− φ

(︂
s(1)

)︂)︂
if φ follows Eq. 2.4

b(1) = 1− φ2
(︂
s(1)

)︂
if φ follows Eq. 2.5

(2.22)

2.5.2 Gradient of an MLP with 2 hidden layers
In case of 2 hidden layers, Eq. 2.6 modifies in Eq. 2.23.

ỹ = w(f),T

1×nl

φ
(︂
s(2)

)︂
nl×1

+ v(f) = w(f),Tφ
(︂
W (2)φ

(︂
s(1)

)︂
+ v(1)

)︂
+ v(f)

where W (2) ∈ Rn2×n1 ,v(2) ∈ Rn2

(2.23)

whereas Eq. 2.17 can be generalized as follows:

∂ỹ

∂xi

=
k=nl∑︂
k=1

w
(f)
k

dφ(l)
k

ds(l)
k

∂s
(l)
k

∂xi

(2.24)

It is possible to write

∂s
(2)
1

∂x1
= w

(2)
11

dφ(1)
1

ds(1)
1

∂s
(1)
1

∂x1
+ w

(2)
12

dφ(1)
2

ds(1)
2

∂s
(1)
2

∂x1
+ · · ·+ w

(2)
1,n2

dφ(1)
n2

ds(1)
n2

∂s(1)
n2

∂x1
(2.25)

It is possible to generalize Eq. 2.19. For instance, for the logistic sigmoidal
function Eq. 2.19 becomes Eq. 2.26

dφ(j)
k

ds(j)
k

= φ
(︂
s

(j)
k

)︂ (︂
1− φ

(︂
s

(j)
k

)︂)︂
(2.26)

and remembering Eq. 2.18 it is possible to write
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂s
(2)
1

∂x1
= W

(2)
1,∗ ⊙ φ

(︂
s(1),T

)︂
⊙
(︂
1− φ

(︂
s(1),T

)︂)︂
W

(1)
∗,1

∂s
(2)
2

∂x1
= W

(2)
2,∗ ⊙ φ

(︂
s(1),T

)︂
⊙
(︂
1− φ

(︂
s(1),T

)︂)︂
W

(1)
∗,1

· · ·

(2.27)

Eq. 2.27 can be arranged in matrix form as

∂s(2)

∂xi

= W (2)diag
(︂
b(1)

)︂
W

(1)
∗,i (2.28)

It is hence possible to write the Jacobian matrix of the input of the activation
function with respect to the input of the MLP as in Eq. 2.29

Js(2) = W (2)diag
(︂
b(1)

)︂
W (1) (2.29)

Analogously to what has been done for a single hidden layer MLP, It is finally
possible to rearrange Eq. 2.24

∂ỹ

∂xi

= w
(f)
1 φ

(︂
s

(2)
1

)︂ (︂
1− φ

(︂
s

(2)
1

)︂)︂ ∂s(1)
1

∂xi

+

+ w
(f)
2 φ

(︂
s

(2)
2

)︂ (︂
1− φ

(︂
s

(2)
2

)︂)︂ ∂s(1)
2

∂xi

+ · · · =

= w(f),T ⊙ φ
(︂
s(2),T

)︂
⊙
(︂
1− φ

(︂
s(2),T

)︂)︂ ∂s(1)

∂xi

(2.30)

Collecting the derivatives of the activation function of any layer, as previously
done for the first layer in 2.22, as in Eq. 2.31,

b(i) = φ
(︂
s(i)

)︂
⊙
(︂
1− φ

(︂
s(i)

)︂)︂
if φ follows Eq. 2.4

b(i) = 1− φ2
(︂
s(i)

)︂
if φ follows Eq. 2.5

(2.31)

the gradient of the 2 hidden layers MLP can be hence written as in Eq. 2.32

∇T ỹ =
(︂
w(f) ⊙ b(2)

)︂T
Js(2) or ∇ỹ = Js(2),T

(︂
w(f) ⊙ b(2)

)︂
(2.32)

2.5.3 Gradient of an MLP with n hidden layers
Previous analysis can be generalized to any number of hidden layers simply

recognizing the recursive pattern in the equations. Here, the results are reported.
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∇ỹ = Js(l),T
(︂
w(f) ⊙ b(l)

)︂
(2.33)

with

Js(i) = W (i)diag
(︂
b(i−1)

)︂
Js(i−1) and Js(1) = W (1) (2.34)

2.5.4 Hessian matrix of an MLP with n hidden layers
The Hessian matrix collects the second partial derivatives of a scalar field.

Eq. 2.24 can be derived again to obtain the second partial derivative with respect
to xi and xj.

∂2ỹ

∂xj∂xi

=
k=nl∑︂
k=1

w
(f)
k

∂

∂xj

⎛⎝dφ(l)
k

ds(l)
k

∂s
(l)
k

∂xi

⎞⎠ (2.35)

The chain rule can be applied noticing that the output of a neuron is the com-
position of the activation function with s.

∂

∂xj

⎛⎝dφ(l)
k

ds(l)
k

⎞⎠ = d2φ
(l)
k

ds(l),2
k

∂s
(l)
k

∂xj

(2.36)

∂2ỹ

∂xj∂xi

=
k=nl∑︂
k=1

w
(f)
k

⎛⎝d2φ
(l)
k

ds(l),2
k

∂s
(l)
k

∂xj

∂s
(l)
k

∂xi

+ dφ(l)
k

ds(l)
k

∂2s
(l)
k

∂xj∂xi

⎞⎠ (2.37)

The second derivative of the activation function with respect to its variable is
shown in Eq. 2.38.

if φ follows Eq. 2.4:
d2φ

(j)
k

ds(j),2
k

= φ
(︂
s

(j)
k

)︂ (︂
1− φ

(︂
s

(j)
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)︂)︂ (︂
1− 2φ

(︂
s
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)︂)︂
= dφ(j)

k

ds(j)
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(︂
1− 2φ

(︂
s

(j)
k

)︂)︂
,

if φ follows Eq. 2.5:
d2φ

(j)
k

ds(j),2
k

= −2φ
(︂
s

(j)
k

)︂ (︂
1− φ2

(︂
s

(j)
k

)︂)︂
= −2φ

(︂
s

(j)
k

)︂ dφ(j)
k

ds(j)
k

,

(2.38)

As it has been done for the Jacobian matrix, it is possible to recognize that the
output of this kind of MLP is simply a biased linear combination of the preceding
activation values. Because of the fact that this holds true also for the input value
of any neuron, it is possible to directly write down the recursive Eq. 2.39.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂2s(m)

n

∂xj∂xi
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⎛⎝d2φ
(m−1)
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ds(m−1),2
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∂s
(m−1)
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∂xj

∂s
(m−1)
k

∂xi

+ dφ(m−1)
k

ds(m−1)
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∂2s
(m−1)
k

∂xj∂xi

⎞⎠
∂2s(1)

n

∂xj∂xi

= 0 ∀i, j
(2.39)

The last step is rearranging Eq. 2.39 with the last form of Eq. 2.38
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∂2s(m)
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∂xj∂xi
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k=nm−1∑︂

k=1
w

(m)
nk

dφ(m−1)
k

ds(m−1)
k

⎛⎝(︂1− 2φ(m−1)
k

)︂ ∂s(m−1)
k

∂xj

∂s
(m−1)
k

∂xi

+

+∂
2s

(m−1)
k

∂xj∂xi

⎞⎠
∂2s(1)

n

∂xj∂xi

= 0 ∀i, j

(2.40)

Although a generalization of the Hessian matrix for vector-valued function ex-
ists, the matrix form is defined for scalar-valued functions. Because Eq. 2.40 shows
the second-order partial derivative with respect to the MLP input variables of the
s(m)

n function, which is defined for each neuron as the biased linear combination
applied to the activation function, it is immediate to understand that an Hessian
matrix will be defined for each neuron. This could bring to some problems if the
computational power is limited. However, for a 13 inputs MLP with 200 neurons
there are a total number of 13× 13× 200 = 33800 values to be stored. Hence, this
limitation does not apply for the typical application in this dissertation.

A compact form of Eq. 2.40 might be obtained using the Einstein notation.
However, it is preferred here a matrix notation based on the expansion to block
matrices of the various elements. In addition, it is possible to define a new vector
c(i) as done for b(i) for simplify the notation, as shown in Eq. 2.41.

c(i) =
(︂
1− 2φ

(︂
s(i)

)︂)︂
if φ follows Eq. 2.4

c(i) = −2φ
(︂
s(i)

)︂
if φ follows Eq. 2.5

(2.41)

In particular, vectors b(i), c(i) and each n-th row of the weight matrix W (m)
n,∗

can be expanded in a block diagonal matrix, where each block is again a diagonal
matrix with repeated elements from the original vector. This can be seen from
Eq. 2.42 to Eq. 2.44 in both expanded form and using the Kronecker product ⊗.
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B2
(m) =

⎛⎜⎜⎜⎜⎜⎝
b

(m)
1 In0

b
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2 In0

. . .
b(m)

nm
In0
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)︂
⊗ In0 (2.42)

C2
(m) =

⎛⎜⎜⎜⎜⎜⎝
c

(m)
1 In0
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. . .
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)︂
⊗ In0 (2.43)

W2
(m)
n =
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n1 In0
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. . .
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n,∗

)︂
⊗ In0 (2.44)

A similar operation must be conducted on the Jacobian matrix Js(m−1)
n,∗ . In

this case, to ease the computational form, it is useful to expand the Jacobian ma-
trix in a block diagonal matrix where each block is a row of the original Jacobian,
transposed to become a column. In this way, the product between the first or-
der partial derivative in Eq. 2.40 becomes the following compact matrix product
J2

(m)J2
(m),T = ∂s

(m−1)
k

∂xj

∂s
(m−1)
k

∂xi
.

J2
(m)
n =

⎛⎜⎜⎜⎜⎜⎝
Js

(m),T
1,∗

Js
(m),T
2,∗

. . .
Js(m),T

nm,∗

⎞⎟⎟⎟⎟⎟⎠ (2.45)

As previously mentioned, the Hessian matrix of a vector-valued function is usu-
ally written as a tensor. Here, on the contrary, it is assumed that the Hessian
matrices of the activation functions at a given layer can be collected in a block
diagonal matrix, where each block refers to a neuron as follows:

Hs(m) =

⎛⎜⎜⎝
Hs

(m)
1

. . .
Hs(m)

nm

⎞⎟⎟⎠ (2.46)

where the subscript n has been dropped and the s has been written in bold text,
to distinguish with the classical Hessian of a single activation function of a neuron
sn.
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It is hence possible to re-arrange the addends of the summation expressed in
Eq. 2.40 as the blocks of a block diagonal matrix H̃s(m)

n . Eq. 2.48 and Eq. 2.49 are
obtained where blocks have been generally expressed as H i to avoid subscript and
superscript repetition.

H̃s(m)
n = W2

(m)
n B2

(m−1)
(︂
C2

(m−1)J2
(m−1)J2

(m−1),T + Hs(m−1)
)︂

= (2.47)

=

⎛⎜⎜⎜⎜⎝
H1

H2
. . .

Hnm−1

⎞⎟⎟⎟⎟⎠ (2.48)

The sum of the blocks H i that constitutes H̃s(m)
n finally gets the Hessian matrix

of the input to the activation function of a neuron n at a given layer (m).

Hs(m)
n =

nm−1∑︂
k=1

Hk (2.49)

As a side note, the second partial derivatives of the function represented by the
MLP are continuous and hence the order of differentiation does not matter as a
consequence of the Schwarz’s Theorem.

Finally, the Hessian matrix of the overall MLP Hy can be written as follows:

Hỹ = W2
(f)B2

(l)
(︂
C2

(l)J2
(l)J2

(l),T + Hs(l)
)︂
. (2.50)

2.5.5 Generalization in case of data mapping layers
In some cases, it is useful to add some mapping layers to an MLP. In details,

instead of conducting a pre-processing operation to map data into another set, it
is possible to insert the map directly inside the MLP. In this thesis, data is scaled
and shifted to fit the [−1; 1]d hypercube with the common operation also called
data normalization.

This kind of function can be written as in Eq. 2.51.

x = m (x) = xmax − xmin

xmax − xmin

(x− xmin) + xmin = ax (x− xmin) + xmin

t = n (t) = tmax − tmin

tmax − tmin

(t− tmin) + tmin = at (t− tmin) + tmin

(2.51)

If the MLP is modified as in Figure 2.3, so that the input and the output of
the network are indicated with overlined symbols, previous relations are modified
as follow.
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Figure 2.3: MLP with mapping functions for the input and output variables

∂ỹ

∂xi

= ∂ỹ
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∂y

∂xi

∂xi

∂2y

∂xj∂xi

= ∂ỹ
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Hence, in case of mapping function as in Eq. 2.51, from Eq. 2.52 and Eq. 2.53
it is clear that the previous formulations for ∇ỹ and Hỹ can be simply generalized
with some scalar coefficients coming from the mapping functions themselves.

2.5.6 Example with analytical function
In this section, the previous formulations are applied to a known function in

order to check the validity of the derivation. An MLP has been trained to map a
paraboloid function as in Eq. 2.54.

z = f (x1, x2) = x2
1 + x2

2; ∇f = (2x1, 2x2) ; Hf =
(︄

2 0
0 2

)︄
(2.54)

The result of the training of a 10-hidden layers MLP on a training set constituted
by 50× 103 points distributed as N (0, 8) can be seen in Figure 2.4.

Figure 2.5 and Figure 2.6 shows the results.
The deviation from the numerical differentiation and from the theoretical value

are very small. The source of the difference between the dotted lines and the black
lines is on the accuracy of the neural approximation, whereas the deviation from the
red line and the black line comes from the accuracy of the numerical differentiation.
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2 – Theoretical aspects of neural networks

Figure 2.4: Plot of the neural approximation fMLP (x) and of the deviation from
f (x)

Figure 2.5: ∇fMLP plot. (The dotted line is the theoretical trend as in Eq. 2.54,
the black line is the derivative evaluated using numerical differentiation, the red
line is the result of the formulation)
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2.5 – Derivatives of a neural approximation

Figure 2.6: HfMLP plot. (The dotted line is the theoretical value as in Eq. 2.54,
the black line is the derivative evaluated using numerical differentiation, the red
line is the result of the formulation)
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Chapter 3

Experimental setup and flight
data description

This chapter has been partially published in [106].

3.1 Experimental setup
This dissertation focuses on the definition and demonstration of a set of method-

ologies that can be applied during the design of a virtual sensor. An important step
of the development of a technology is the demonstration in operative environment,
that is moving from TRL 4 (Technology validated in lab) to 5 (Technology vali-
dated in relevant environment) and higher [124]. As before mentioned, this step
is not always conducted in literature and this aspect has been taken as one of the
classification rules to define a taxonomy of the methods found in literature. Smart-
ADAHRS has been extensively tested with flight data and this chapter briefly
describes the experimental setup, the flight tests and the resulting dataset. Four
different entities worked together to take mutual advantage of their experience and
capabilities: AeroSmart srl, a startup owning the patent of Smart-ADAHRS; two
academic research groups, one at Politecnico di Torino and the other at Politecnico
di Milano; and Ing. Nando Groppo srl, a small aircraft manufacturing company.

3.2 The G70 aircraft
The test aircraft is an Ultra Light Machine (ULM) named G70, manufactured

by the Italian company Ing. Nando Groppo srl. G70 is shown in Figure 3.1 and it
is an high-wing, single engine aircraft with fixed tricycle landing gear. The main
structure is made of steel, with panels in aluminium. It received the type certificate
from Deutsche Ultraleichtflugverband e. V. (DULV) for a Maximum Takeoff Weight
(MTOW) of 600 kg. The engine is a Rotax 912ULS with a maximum power of

53



3 – Experimental setup and flight data description

74.5 kW whereas the propeller is an Helix H50F 1.75 R-S-19-2 with three blades,
fixed pitch. Two fuel tanks are located inside the wings, with a maximum capacity
of 50 L each. Table 3.1 collects the main characteristics of the G70.

Table 3.1: Test aircraft main characteristics

Parameter Symbol Value
Wingspan b 8.9 m

Length - 6.22 m
Wing surface S 10.95 m2

MTOW m 600 kg

Figure 3.1: Picture of the test vehicle G70 with the AOA/AOS boom mounted
under the right half-wing

The G70 has been used during a Master of Science course at Politecnico di Mi-
lano entitled "Flight testing" [125] and it was analysed in several Master of Science
(MS) thesis from the same university [126, 127]. The test AC has been equipped
by a FTI suite named Mnemosine and a technological demonstrator of the Smart-
ADAHRS. The final experimental setup can be seen in Figure 3.2. The subsystems
are listed in Table 3.2.
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3.3 – The FTI Mnemosine

Figure 3.2: High-level schematic of the experimental setup on the top view of the
G70 aircraft.

Table 3.2: Subsystems of the test equipment

System Model (Producer) Role Usage
ADAHRS Spatial (Advanced

Navigation)
Main Input to

Smart-ADAHRS
ADS Spatial (Advanced

Navigation)
Main Input to

Smart-ADAHRS
Air Data Boom - (Aerosonic) Main Target for

Smart-ADAHRS
AHRS MTi (Xsens) Redundancy Input to

Mnemosine
GPS LEA-6R (ublox) Redundancy Input to

Mnemosine

3.3 The FTI Mnemosine
The Mnemosine FTI suite development started in 2005 at Politecnico di Milano.

Its design has been tailored for ULM and it consists of a low cost, low intrusive and
flexible solution for flight testing [128]. This system has been demonstrated capable
of supporting certification procedures [129] It is composed by a Mnemosine Main
Unit (MMU) that groups the main nodes of the system, including the GPS unit, a
card manager to store data and the galvanically-isolated electrical power supply for
the entire FTI. On-ground operations can be performed using an auxiliary external
battery. Only the Air Data Unit (ADU) has been maintained independent, to keep
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the installation as close as possible to two air data booms mounted under each
wing, at mid-span. The right wing boom has been equipped with two vanes for
AOA and AOS measurements and the left one with a Pitot-static system. The ADU
is composed by a micro-controller Olimex STM32-5107 board, transducers and a
signal conditioning module. Moreover, thanks to two omnidirectional antennae
and a WiFi Telemetry Unit complying with 802.11n wireless protocol, Mnemosine
provides on the fly data monitoring on a ground station. To monitor relevant
acquired quantities in real time and mark specific events during the tests, the
Flight Test Engineer (FTE) is equipped with the FTE Electronic Kneepad (FEK)
equipped with a Top Switch lever and an Event Marker button. See Table 3.3 for
the list of the acquired parameters list. Additional information is found in [128].

Table 3.3: Mnemosine acquired parameters list (from [128])

Parameter Group Rate [Hz]
Earth Centred Earth Fixed position GPS 4
Earth Centred Earth Fixed velocity GPS 4

Time reference GPS 4
Body-axis acceleration Inertial 50
Body-axis angular rate Inertial 50

Body-axis magnetic field Magnetic 50
Static Pressure Air Data 10

Dynamic Pressure Air Data 10
Angle Of Attack Air Data 10
Side Slip Angle Air Data 10

Outside Air Temperature Air Data 10
Flight Controls Flight Controls 10
Position Stick Flight Controls 10
Force Engine Power Plant 10

RPM Top State Utility 10
Top Counter Utility 10

Event Counter Utility 10

3.4 Smart-ADAHRS technological demonstrator
A technological demonstrator of the Smart-ADAHRS has been developed with

the initial aim of recording the set of signals that would be applied as input to
the ANN. The demonstrator is not completely independent from Mnemosine. In
fact, Mnemosine is the only one system that record the data coming from the
AOA/AOS boom. This system is based on two programmable electronic platforms,
namely Arduino and Raspberry. The final version of the system will embed the
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3.4 – Smart-ADAHRS technological demonstrator

inertial and air data sensors in the same box. However, at this design phase,
a commercial ADAHRS (Spatial from Advanced Navigation) has been mounted
externally the demonstrator. It consists of two different units, an ADU and an
integrated Micro-ElectroMechanical Systems (MEMS)-based GNSS/IMU platform
[130, 131]. Pneumatic signals coming from the pressure probes are divided and
simultaneously measured by Mnemosine and Advanced Navigation ADU. Three
serial ports for the connection of the Spatial, Air Data and Data acquisition (DAQ)
units are available, together with the power connector, a RJ45 and a safety ground
link. The specifications are described in Table 3.4. The list of acquired parameters
is reported in Table 3.5.

Table 3.4: Demonstrator description

Size (l x w x h) [mm] 232 x 128 x 55
Weight [kg] 0.89

Power Supply [VDC] 7 – 30
Power consumption [W] <5 (typical)

Table 3.5: List of parameters acquired by the technological demonstrator. Acqui-
sition rate 50 Hz

Parameter
Time

Latitude
Longitude

Height
North East Down reference frame (NED) velocity vector

Body acceleration vector
GForce

Roll angle
Pitch angle
Yaw angle

Angular velocity vector
Absolute Pressure

Differential Pressure
Airspeed

Barometric altitude

The inertial unit has been carefully placed in direct contact with the structure
in a position near the average CG of the aircraft, according to the instruction given
by the manufacturer. GNSS antennae, both for Mnemosine and Smart-ADAHRS,
have been placed on the airframe structure near the windshield to avoid limitations
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on the antenna field of view. The raw output of the magnetometers has been
analysed to check the presence of dynamic magnetic interference, measuring only
very slight effects in engine-on conditions. For this reason, magnetometers in the
Spatial unit have been kept active, considering their important role for the final
accuracy and precision. The output fusion algorithm of the Spatial is not known
and the manufacturer reports only that is a Kalman-like method.

Figure 3.3: Installation of the AHRS (Spatial by Advanced Navigation)

Figure 3.1 shows the G70 from the right side, displaying the air data boom with
AOA and AOS vanes. In Figure 3.4 Smart-ADAHRS and Mnemosine control unit
installation are shown. See Figure 3.3 for the positioning of the Spatial unit.

From the analysis of previous flight tests, since the campaign of June 2017, a
modification on the air data boom mounting the AOA and AOS vanes has been
carried out. Indeed, the dynamic characteristics of the previous equipment were
not suitable for the training procedure. A new boom, less subjected to oscillation,
has been mounted. Its dynamical features have been estimated and reported in
Table 3.6.

Table 3.6: Air Data-boom dynamic properties

Natural frequency [rad/s] 62.83
Damped frequency [rad/s] 62.83

Damping ratio [-] 0.0053
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Figure 3.4: Installation of Mnemosine (on the left) and Smart-ADAHRS (on the
right)

3.5 Flight test procedure and selection
Several flight test campaigns have been conducted by Politecnico di Milano

since 2016. Most of them were related to the certification of the G70. The role of
Politecnico di Torino was limited to provide suggestions and requests of test points
to define a rich dataset for the test of the Smart-ADAHRS algorithm. As before
mentioned, in several case the FTE role has been covered by MS student of the
Flight Testing course. Unfortunately, most of them have to be excluded during the
first data selection. In fact, the partial dependence of the Smart-ADAHRS from the
Mnemosine made impossible to retrieve the data recorded by the AOA/AOS boom
in several test points. Moreover, the analysis of the results brought the definition
of a set of necessary test points but none of them have never been flown. For these
reasons, the most complete flight campaign and the only considered valid to the
aim of this dissertation is the one flown in June 2017. Figure 3.5 to 3.8 show some
segments of the flight campaign conducted on June 10th, 2017, where it is possible
to observe the typical correlations between the flight parameters and the position
of the flight control surfaces [2].
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After the Flight Test (FT) campaign has been concluded, the selection of proper
time windows and manoeuvers has been carried out. As first decision, the sections
with extracted flap have been discarded. This is because, in deflected flap con-
ditions, the underlying aircraft model parameters change, therefore considering
take-off and landing conditions with respect to the same model would have implied
possible gross approximations. However, this should not be seen as a limitation on
the application of Smart-ADAHRS, because the validity of the method is general.
In fact, with a proper training, the ANN should learn a generic underlying model
for deflected and un-deflected flap conditions. The trajectories on the phase space
for those two configurations should be in fact separable and it is only a matter
of amount of data and proper selection of the training set to learn the generic
model. Further investigations on the training operation to evaluate this aspect will
be conducted.

Table 3.7: Composition of the selected dataset

Flight ID Manoeuvers Duration
1 Sawtooth glides, Dutch-Roll 2320 s
2 Sawtooth glides, Dutch-Roll 1970 s
3 Phugoid 420 s
4 SHSS 480 s
5 Sawtooth glides 580 s
6 Sawtooth glides, Phugoid 1900 s
7 Sawtooth glides 900 s

Table 3.7 shows the test points contained in the selected dataset. During a
sawtooth glide the AC follows a series of glide segments, increasing and decreasing
the altitude between predefined bounds at constant vertical speed. Another test is
the phugoid (stick-fixed) excitation. In this case, several techniques exist to excite
the phugoid mode. Generally, the pilot commands an elevator doublet and then
keeps the stick fixed. During an SHSS, the pilots increases the AOS in both positive
and negative direction using rudder and ailerons. To excite the Dutch-Roll, the pilot
applies an alternating rudder command and then tries to sustain the Dutch-Roll
mode so that a clear oscillatory motion is generated. In this test, the pilot should
find the right input frequency before stopping the rudder command. It must be
noticed that the Dutch-Roll mode of the G70 appeared so damped that it has never
been observed during flight tests.
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Figure 3.5: Dutch-roll test executed on June 10th, 2017

Figure 3.6: SHSS test executed on June 10th, 2017
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Figure 3.7: Phugoid test (stick-fixed) executed on June 10th, 2017

Figure 3.8: Sawtooth glides executed on June 10th, 2017
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Chapter 4

Statistical methods and data
mining possibilities

The analysis that are shown in this section, together with some of the results,
have been partially submitted for publication in [113].

ML is applied is several engineering problems [132, 133, 134, 135]. The problem
of using an MLP to estimate a flight parameter reduces to two main aspects: data
collection and data exploitation. It is not a surprise, because it comes from the
application of a ML technique to learn a model from data. This chapter describes
statistical methods to exploit the maximum amount of information from those data.
Some of them require the concept of data mining, that is the extraction of relevant
information from large datasets. Chapter 5 will focus on the collection of more
data.

4.1 Basic methods and proposal
Before undertaking the investigation of novel methods, the conventional meth-

ods are analyzed. Mainly, only two results have been shown in literature. The first
one is, in case of NN based estimator, the training error. If plotted against the
training epoch number, this value gives a global indication on the training phase.
It can indicate if the training phase converged or not. Partitioning the TS it is also
possible to monitor the potential overfitting condition. In fact, if the training error
decreases together with a clear increase on the test error, there is high probability
that the NN is overfitting the TS.

The training error can have different representations. In case of TS partitioning,
their common definitions for Sum-of-Squared Error (SSE) and NSSE are reported
in Eq. 4.1 and 4.2.
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SSEi =
N∑︂

n=1
Ωi(n){y (xn; w)− tn}2 (4.1)

NSSEi = 1
Ni

N∑︂
n=1

Ωi(n){y (xn; w)− tn}2 (4.2)

where

Ωi(n) =
⎧⎨⎩1 if n ∈ vi

0 if n /∈ vi

(4.3)

and vi represents a vector containing the indexes of samples selected for the i-th
set and i can represent training, test or validation.

Actually, for many reasons, this value is just an indication on the training phase,
that is only one of the steps on the design of a synthetic sensor. First of all, usually
this value refers to the input, output and target directly applied to the NN, which
can be mapped to a different space. Hence, the metric driving the training does not
assume physical values. Moreover, the map can be nonlinear, making impossible to
evaluate the metric in the physical space. Secondly, this metric is a global indication
on a subset of the TS. It does not give any indication on local behaviour of the
function. Lastly, it is not related to the aeronautical field.

A second method applied in literature is the comparison of the target and out-
put timeseries. With this method, it is possible to measure the local error at any
instant. To properly represent the results, a significant amount of time must be
plotted together with the error timeseries itself. Moreover, discarding unimportant
flight phase is preferred, to avoid a bias on the analysis. This analysis can be used
for a visual and numerical interpretation of the results. It is possible to find par-
ticular situation where the error increases and to understand (almost qualitatively)
if the function follows the aircraft dynamics. Moreover, spikes and outliers can be
easily discovered both on the target signal and on the output of the estimator. Un-
fortunately, this kind of analysis can become very difficult due to the dimension of
the problem (dimension of the input and output spaces). The analysis of only one
variable with respect to the time does not give any information on the correlation
with the other input variables. At the same time, to ensure the functioning of the
synthetic sensor, the estimator must be tested on a long series of timestamps, which
are difficult to be analysed.

In this dissertation, the estimator sums two values: an initial angle α̂ or β̂ and
the neural correction ∆α or ∆β. The industrial response to this solution is usually
skeptical on the neural correction segment. In fact, the impossibility to manage the
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mathematical model represented by the NN always brings to ask if the estimation
error is limited. This aspect brought to analyse both the final deviation between
the virtual sensor and the target and also the single neural correction with respect
to the initial value.

For these reasons, some statistical aspects must be considered.
To summarize, the following methods are proposed and classified.
Analysis of the results
• Comparison of the absolute deviation between the initial and final estimation

• Analysis of the deviation PDF

• Sensitivity analysis and uncertainty estimation
Analysis of the TS
• Hypercube coverage to verify that TS includes the Test Set

• TS analysis based on similarity functions
Training of the MLP
• Re-training and selection

• Manoeuver-based CV
Other support methods for the analysis of both the TS and the results
• Use of flight data mining

• Feature map for data visualization
Figures 4.1, 4.2, 4.3, 4.4 collect the functional diagrams for the techniques ap-

plied in this dissertation.

4.2 Comparison of the deviation between the ini-
tial and final estimation

Introducing the deviation between the initial estimation error and the final
estimation error as in Eq. 4.4

ϵ =| α̃− αt | − | α̂− αt | (4.4)
it is possible to measure how much the NN improved the initial estimation. α is
substituted with β when analysing AOS. In this thesis, the comparison is made
on the following statistics: mean value of ϵ, standard deviation of ϵ and maximum
value of ϵ [136]. If the metric based on ϵ is negative, it means that the NN actually
improved the estimation from α̂. Figure 4.5 shows an example of possible chart.
The value on the abscissa corresponds to a segment of the dataset.
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Figure 4.1: Functional diagram of the methods for the analysis of the results

Figure 4.2: Functional diagram of the methods for TS analysis

4.3 Hypercube coverage to verify that TS includes
the Test Set

Because of the weights of the NN are obtained by means of nonlinear regression,
the distribution of the TS is fundamental. In following sections the TS will be deeply
analysed. For now, it is sufficient to introduce the chart of the single marginal
distribution of the input and target variables. This chart is here represented as a
classical box-and-whisker plot [137]. An example can be seen in Figure 4.6.

This chart can help in the initial phase of design to select the TS so that at
least the desired flight envelope is included in it. More important is the comparison
of the same chart obtained for the test set. In fact, this method allows to check
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Figure 4.3: Functional diagram of the methods for training and model selection

Figure 4.4: Functional diagram of the support methods based on data mining and
visualization

if the TS is a superset of the test set or, in other words, the inclusion of the test
set in the TS applied to define the virtual sensor. If some points are not included
in the TS there are two possibilities: the output of the NN is erroneous or the NN
can still generalize the target from extrapolation. However, it must be noted that
this condition should be avoided. In fact, if TS is a superset for any test set means
that, in case of asintotical training, the UAT can be applied. On the contrary, to
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Figure 4.5: Example of statistics of ϵ

(a) TS distribution (b) Test set distribution

Figure 4.6: Distribution of the test set on the hypercube defined by the TS (Unit
of measurements as follows: angle in [°], angular rate in [rad s−1], pressure in [Pa],
time in [s]).

the best of the author’s knowledge, outside of the hypercube defined by the UAT
nothing can be said on the nonlinear map represented by the NN. Moreover, an
inclusive TS makes every test an additional check of the nonlinear map on internal
points, adding confidence on the final sensor. The possibility of an entire set of
points not included means that the behaviour of the map on that region has not
been controlled by the training phase.

4.4 PDF of the deviation
Another important analysis that can be conducted is the estimation of the PDF

of the deviation between the target and the output of the VS. This method allows
to better understand how the final error of the sensor is distributed. An example
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can be seen in Figure 4.7 where a kernel density method has been used to estimate
the deviation PDF. For instance, from Figure 4.7 can be seen that the mean error
is close to 0° and that the distribution of the error is symmetric and unimodal.

Figure 4.7: Example of error PDF

4.5 TS analysis based on similarity functions
In engineering, the source of data is usually an experimental measurement.

This means that data is affected by noise and errors and the effort to reduce the
uncertainty on the measurement usually results in increased costs. At the same
time, during flight tests the measurement uncertainty is higher than lab experiment
conducted in controlled environment. Sometimes, it would be necessary to plan,
cancel or repeat additional tests depending on availability of the aircraft, weather
conditions, overall budget. Final dataset is hence the result of a list of trade-off.

When a ML algorithm is hence implemented, the selection of data is of fun-
damental importance. A lack of methods to select data is observed, when dealing
with supervised regression [138, 139]. Regularization methods are usually applied
to handle noise and outliers, and outliers detection methods can be separately used
to recognize unvalid data.

This section suggests a method based on similarity measures for the analysis of
the TS effectiveness and, in turn, for the creation of the TS itself. This method will
give answer to some of the typical questions in applied ML: is this training set valid?
Is the generalization error related to the learning algorithm or to the measurement
error? Are there some points of the training set that should be removed? Some
aspects of this section can fit with the generic formulation showed in [140].
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4.5.1 Mathematical background
Henceforth, the analysis is conducted for a 1-dimensional target space. However,

this is not a limitation because the analysis can be independently conducted on
every target component.

Definition Defining χj as

χj = {multiset of indentical elements xi ∈ X}
with cardinality lj = mX (xi), where mX (xi) represents the multiplicity of xi in

X, it is possible to write

t|χj
=
{︃
ti ∈ T

⃓⃓⃓⃓
(xi, ti) ∈ T ,xi ∈ χj

}︃
(4.5)

It is hence possible to manually evaluate p
(︂
t|χj

)︂
to verify if χj meets the sta-

tistical requirements, which occurs if there are enough values to obtain a reliable
PDF or if the distribution is normally distributed or it is multimodal. Eventually,
exploring the reasons of the multimodality would contribute to find the searched
outliers. To obtain p

(︂
t|χj

)︂
a kernel density estimation method can be applied.

4.5.2 The algorithm
The main drawback in the proposed approach is that finding several identical

input vectors corresponding to different target values is quite tough in real applica-
tions. For instance, in engineering and practical applications, the noise will affect
every measurements impeding to build the situation reported in Eq. 4.5.

Eq. 4.5 basically suggests to analyze how the target distributes in case of identi-
cal input vectors. This is intractable in engineering, but also in other fields, due to
the measurement error. In fact, also in controlled experiments, input vectors will
never be actually the same. The solution proposed takes advantage of clustering
methods. Think about snowflakes. A common sentence is that there is no possi-
bility of finding two identical snowflakes. However, if some details can be removed,
it is more likely to find two similar snowflakes. Thinking to the snowflakes as the
input vectors, it means that confusing a set of input vectors with only one vector,
it is possible to determine the distribution of the target values corresponding to
this particular set. In details, it is possible to write the relation 4.6

Si = {x ∈ X | x ∼ xc,i},xc,i ← ∀x ∈ Si, =⇒ p (t | x ∈ Si) = p
(︃
t
⃓⃓⃓
Si

)︃
(4.6)

where xc,i is the centroid of the i-th cluster Si (subset of X). This assumption
helps to re-write the definition reported in Eq. 4.5.
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The proposed algorithm can be disentangled as follows:

• CLUSTERING of a subset of the input space (hence, excluding the target)

• EVALUATION of the proposed similarity functions

• COMPARISON of the TS

It is important to divide the sole input space in subsets, without considering
the value of the corresponding target observations. In fact, if the target is included
into the partitioning, it will affect the comparison analysis. Observing a spike in
the target value, it can be noticed that its enormous entity would likely affect the
definition of the subsets, by assigning it to a cluster which is not the closest in the
input space. In this case, the analysis of the target values would not show any
anomaly whereas, if the spike is assigned to the closest cluster in the input space,
the proposed approach allows to observe an outlier.

Please note that a multimodal PDF does not strictly mean that the MLP will
hardly estimate the expected value. If the points on the subdivision are far enough,
the target values may not be associated to the same data generating distribution.
Briefly, the cluster is too large and the modes belong to different zones of the
hypercube.

Obviously, this method is affected by the choice of the number of clusters, that is
their size. However, an interesting result on the connection between multimodality
and cluster size will be showed later on.

The squared error evaluated over the entire test set and the SSE are used to
verify if the proposed similarity functions are actually working. A non-dimensional
error can be introduced as follows:

Definition Given a model M and its corresponding training error in terms of
MSE, a target value t and the approximation of t called t̂ obtained with M, it is
possible to write:

En =

(︂
t̂− t

)︂2

MSEtrain

Difficulties arise, however, when the learning paradigm is not able to represent
the underlined solution. In other words, if a single hidden neuron feedforward NN
is applied to learn a map different from a sigmoidal function, the application of this
approach cannot lead to substantial improvements on the final generalization error.
In fact, the final regression will always be a sigmoid and the reduced complexity
of the regression model could imply several comparable local minima of the error
function. In other words, several different sigmoidal functions fitting the given TS
may exist, but any of them can represent the actual correlation of the processed
data.
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4.5.3 Similarity functions
Previous sections depicted the problem and provided a method for the TS anal-

ysis. This section introduces two similarity functions for the evaluation and com-
parison of TS.

The Density-Closeness function

Analyzing the TS data distribution with respect to the Test Set, two obser-
vations can be made. Firstly, suppose that every cluster has enough points to
determine a PDF on the target variable and consider null the measurement error.
In this situation, a test point close to a centroid would give a low generalization
error. However, the assumption of densely populated clusters is not always appli-
cable. In fact, it may happen that the TS has only one isolated point close to the
test point. In this case the associated cluster is not considered reliable. The reason
of such a situation may origin from a bad design of the experiment or even in the
decision to avoid to observe some conditions, both to reduce the overall experi-
ment cost and impossibility to provide measurements in such conditions. Another
situation is encountered when the distance inside the hypercube between the test
point and the TS increases. This involves, together with the previous observation,
testing the regression with a test point surrounded by a lot of elements of the TS.
Again, the generalization error should be low. However, the assumption that each
test point is surrounded by a lot of points might be too strong. Summarizing, it
would be advisable to have X such that the coverage of the input space is dense
and homogeneous. This corresponds to an high number of small clusters, defined
by a lot of points. For sake of clarity, see Figure 4.8.

Figure 4.9 shows the position of the TS entries superimposed to the logarithm
of En. It can be observed, as expected, that the approximation error is reduced in
correspondence to the blue dots, representing the TS. Moreover, some connections
can be visible between the low error regions. These connections actually represents
the regions of good generalization. Please consider that the figure does not show
necessarily an overfit condition.

For these reasons, a function is proposed to associate the approximation error to
the input vector. This value involves both closeness of a centroid with the density
of points that define the cluster itself. This Density-Closeness function will give an
evidence for the proposed approach.

Definition Given a partition P of the input space X and an element xi and defined
nj, rj respectively as the cardinality and the radius of the subset j such that xi ∈ Sj,
it is possible to define the Density-Closeness function dnrd : X→ R as follows:

dnrd (xi) = nj

rj

⃦⃦⃦
xi − xc,j

⃦⃦⃦
2

(4.7)
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Figure 4.8: Effect of the distribution of the TS entries on the accuracy at several
position on the input space.

Figure 4.9: Comparison of the logarithmic normalized approximation error
log10 (En) with availability of training points (analytic test case). SU stands for
System Unit

Intuitively, if the model distribution is tested in a region where the approxima-
tion is statistically valid, the generalization error would be low. To be considered
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statistically valid, a certain amount of points must be used to fit the distribution
and the proposed analysis must be sufficiently refined to detect the local effects.
The intuitive results are reported in Eq. 4.8 and 4.9, where d stands for distance.⎧⎨⎩n/r high

d low
=⇒ n

rd
high =⇒ E low (4.8)

⎧⎨⎩n/r low
d high

=⇒ n

rd
low =⇒ E high (4.9)

Please note that it is also possible to generalize Eq. 4.7. In fact, in place of the
cluster radius rj, it is possible to consider any other measure of the cluster concen-
tration, which could be geometrical or statistical (for example standard deviation
of the D-dimensional distribution inside each cluster).

In Sec. 4.5.4 some initial results will be shown. In those cases, a general trend
can be observed such that a minimum value for dnrd can be associated to a max-
imum error. In this way, a TS could be enhanced in some region, increasing the
corresponding dnrd. At least for low dimensional problems, a summarizing value can
be determined from this map as the ratio of points in the hypercube characterized
by dnrd at least equal to a given value.

Similarity function calculated from cardinality of the set of the stationary
points

If the TS is collected from practical experiments, it could happen that some
entries result from erroneous measurements (for example: thermal distortion of a
ruler, aerodynamic deflection of the sensor support in a wind tunnel setup, detach-
ment of the sensor itself during the test). In some cases, this kind of error might
be avoided with a proper design of the experiment. However, the cost of the exper-
iment is always an important figure on the trade-off between the repetition of the
test and the decision to exploit the obtained measurements. On the other hand, a
new algorithm can be applied on data that was previously collected for other pur-
poses. In this case, the experiment setup has been designed for another test without
taking care of some details that might be important for the new application.

This section deals with two different kinds of stochastic errors, as reported in
Eq. 4.10.

tmeas = t̃real + w + u (4.10)
where t̃real represents the real target considering the nominal distortion effects of
the sensor, w ∼ pnoise(w) models the stochastic noise and u ∼ padditive(u) models
a less likely but much more disruptive error. Hence u represents the unexpected
totally erroneous measurement, such as a damage on the sensor. Everything else
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acting on the measurements is contained in w. It is hence possible to consider t as
the union of a set of valid observations and a set of outliers ei as follows:

t = {t1, t2, t3, . . . tn, e1, e2, . . . ej} (4.11)
where ti stands for a single target measurement, ei for an erroneous target

measurement and t for the entire set of targets.
The analysis of the target PDF inside each cluster can give some important

insights on this problem. In fact, if t has a non-negligible error in a particular
position of the hypercube, and other measurements have been collected in similar
conditions, the density distribution of the target will tend to become multimodal.
In this case, the situation reported in Figure 2.2 modifies in Figure 4.10.
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Figure 4.10: Effect of the presence of outliers and noise on the conditional PDF of
the target given the input

Hence, it is possible to estimate the target PDF with kernel density methods,
as proposed in Sec. 4.5.1 and 4.5.2, and to evaluate the cardinality of the set of the
stationary points. In this paper, p

(︃
t
⃓⃓⃓
Si

)︃
has been obtained as discrete function.

Recall the stationary point definition as

Definition A stationary point of a function f is every point x0 where f is differ-
entiable and df

dx
(x0) = 0

It is possible to apply the definition to the discrete functions comparing each
value with the previous one. It is easy to imagine that the cardinality of the set
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of the stationary points is affected by the partition of the input space. However, if
the erroneous entries are close to other training points, they will be assigned to the
same cluster unless the subdivision is further refined.

Hence, features like maxima, extreme points and constant segments of p
(︃
t
⃓⃓⃓
Si

)︃
are dependent on the number of subdivisions. This dependency gives information
about the presence of outliers in t.

Notation Let P be a partition of the input space X and T the target space, a
discretization of the target PDF inside each subset Si ∈ P is written as p

(︃[︃
tn
⃓⃓⃓
Si

]︃)︃
.

In this work, minima are not considered in the overall count. Hence only max-
ima, constant values and points on the domain boundaries have been counted. For
these reason, the following similarity function can be defined:

Definition Let P be a partition of the input space X with cardinality τ and T
the target space. Given the discretized target PDF inside each subset p

(︃[︃
tn
⃓⃓⃓
Si

]︃)︃
,

it is possible to evaluate C as the maximum value of the cardinality of the sets of
constant and the maximum values of p

(︃[︃
tn
⃓⃓⃓
Si

]︃)︃
inside each subset.

C (τ) = max
i=1...τ

⃓⃓⃓⃓
⃓
{︃
t ∈ T

⃓⃓⃓⃓
max p

(︃[︃
tn
⃓⃓⃓
Si

]︃)︃
∨ p

(︃[︃
tn
⃓⃓⃓
Si

]︃)︃
= p

(︃[︃
tn−1

⃓⃓⃓
Si

]︃)︃}︃ ⃓⃓⃓⃓
⃓ (4.12)

Moreover, given the k-th set in which Eq. 4.12 is maximum, it is possible to
define C2 as follows:

C2 (τ) = C (τ)
| Sk |

(4.13)

Definition Let X and T be respectively the input and target spaces. Given a family
of partitions {P} with increasing number of subdivision from 1 to l where l is the
total number of TS entries, the area of the cardinality AC can be defined as:

AC = l − 1
2N

N∑︂
n=1

(C (τn) + C (τn+1))

evaluated with trapezoidal numerical integration with N usually equal to l. More-
over, LC can be defined as the arithmetic mean of the first J values of C (τ)

LC = 1
J

J∑︂
j=1

C(j) where J < l
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By extension, it is possible to define AC2 as the area of C2 (τ).
In this paper, J has been set to the value at which if the clusters are equally

distributed, they will contain 5 entries. It means around 9 - 10.
Three effects can be indirectly observed from the trend of this function. If the

sample is drawn from an ideal distribution without the w and u noise, the value of
C (τ) should quickly drop, thanks to the smoothness of the function to be learned.
Otherwise, the term u adds observations that affect the target PDF until they are
isolated, when τ becomes high. On the other hand, the w term smoothes the PDF,
reducing the area AC .

In Sec. 4.5.4 some visual and numerical demonstration of the proposed similarity
functions will be given.

4.5.4 Test Case: analytic function
This section shows an example of the results obtained with the method based

on similarity functions. The test case is the regression of an analytic function. This
test case is effective in showing a TS that does not cover the manifold of definition
of the function. Some observations will be drawn in case of noise and outliers
injection. Those observations will give evidence that this technique is also effective
in the determination of bad tuples (x, t).

Consider the following real-valued function:

f :R2 → R,

(x, y)→ cos
(︂
0.1(x2 + y2)

)︂
e−0.05(x2+y2) + 0.5e−(x−5)2−(y−5)2 + 0.5e−(x+5)2−(y)2

(4.14)

The function in Eq. 4.14 is a valid example of a composition of exponentially
decaying functions. With a partial knowledge of the map, fitting this kind of
function is very hard. In fact, although the three addends affect the entire function
domain, it might not be sufficient to learn the position of the maximum and the
width of the single bells.

Figure 4.11 shows the function f together with the TS and Test Set.
Ten different TS have been sampled with different sizes and distributions from

the Equation 4.14. The first two TS have 92 entries, other two have 500 entries
and the last six have 2800 entries. Among the TS with the same size of 92 and
500 entries, the spatial distribution of the entries changes. This would demonstrate
that not only the size of the TS affects the quality of the approximation but also
the location of the TS on the hypercube. This gives the proof that the proposed
method shows sensitivity on this subject.

The largest TS has been used to test the sensitivity of the method to noise
and outliers injection. Six different TS of 2800 entries have been drawn with every
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Figure 4.11: Original function to be learned (left) compared with a neural fitting
(right). The blue dots on the right figure represents the TS.

combination between injected outliers, no outliers, no noise and two level of noise.
A gaussian noise has been applied to the target values to detect the effect of the
uncertainty on the data. Eventually, some erroneous entries have been manually
added to the TS. Table 4.1, 4.2 and 4.3 collect the information on the various TS.

Table 4.1: Mean and variance of the family of generating distributions of the TS

N1 N2 N3 N4 N5 N6 N7 N8 N9

[µx, µy]T[0, 0] [0, 0] [0, 1] [3, 1] [-5, -7] [0, 8] [10, 15] [5, 5] [-5, 0][︂
σ2

x, σ
2
y

]︂T
[1, 1] [64,

64]
[1, 1] [4, 4] [0.01,

0.01]
[1, 1] [1, 1] [0.01,

0.01]
[1, 1]

The applied MLP for this test case has 2 hidden fully connected layers with 20
neurons each, organized in a Feed Forward architecture.

4.5.5 Observations
The density-closeness function values is showed in Figure 4.12. In this scatter

plot, the dnrd value has been correlated to the normalized approximation error
En, showing the expected relationship between higher dnrd and lower En. It must
be recalled that En is a squared error normalized by the MSEtrain. Hence, if to
a particular input vector corresponds En = 1, it means that the approximation
error equals the averaged squared error obtained after training, on the applied
TS. Figure 4.12 shows the CDF of dnrd related to the first test case and also the
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Table 4.2: TS point distributions

TS N1 N2 N3 N4 N5 N6 N7 N8 N9 σ2
pw

1 0 0 30 2 20 40 0 0 0 0
2 0 30 0 2 0 0 0 20 40 0
3 100 0 0 10 140 0 50 100 100 0
4 50 0 0 300 0 0 50 50 50 0
5 0 0 1000 500 300 1000 0 0 0 0
6 0 0 1000 500 300 1000 0 0 0 0.04
7 0 0 1000 500 300 1000 0 0 0 0.16
8 0 0 1000 500 300 1000 0 0 0 0
9 0 0 1000 500 300 1000 0 0 0 0.04
10 0 0 1000 500 300 1000 0 0 0 0.16

Table 4.3: TS size

TS # Entries # Extra entries
1 92 0
2 92 0
3 500 0
4 500 0
5 2800 0
6 2800 0
7 2800 0
8 2800 5
9 2800 5
10 2800 5

respective mean values have been highlighted. Figure 4.12 shows the complements
of the TSs and no further selection or processing have been applied to them. The
decrease appears to be power law in this case. Moreover, It is clear that the big
TS (corresponding to TS 5) produces a better fit than the TS 1, as expected. In
Figure 4.12 the corresponding points of the TS 5 shifted downwards and rightwards.
In fact, the TS 5 has a lot more entries in regions where the TS 1 leads to a poor
fit. At the same time, a cloud of points distributed around (dnrd, En) = (104, 1) can
be observed, which is missing in the scatter plot related to the TS 1.

It is interesting to see the effect of feature extraction on the density-closeness
function. Removing two input variables brought an increase on the dnrd mean value,
mainly due to the dimensionality reduction acting on the l2-norm at denominator.
This means that dnrd cannot be applied to compare TS with dimensions of the
input space that differ too much.

The effect of the presence of the outliers is clear from Figure 4.13. In fact,
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Figure 4.12: CDFs of the Density-Closeness function (upper plot) and correspond-
ing En (lower plot) for two different TS. Please note that the dnrd and En scales are
logarithmic. The dashed lines represents the mean values of the dnrd distributions.
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Figure 4.13: Analysis of the effect of outliers on the C (τ) similarity function. J is
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Figure 4.14: Analysis of the effect of noise on the C (τ) similarity function in case
of outliers.

because the injected errors differs from the value assumed by the other entries,
close in the input space, the target PDF in the corresponding cluster contains a lot
of stationary points. The trend of C (τ) drops with a low number of subdivisions,
when only ideal observations are contained into the sample. Otherwise, in case of
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outliers, the cardinality drops when the number of subdivision is higher. At the
same time, the noise injection also affects this figure, as can be seen in Figure 4.14.
The smoothness induced by the noise broadens the target PDFs and the kernel
density estimation fits smoother distributions, with a lower number of stationary
points. The corresponding function, chosen to summarize this behaviour, allows a
differentiation in the various TS.

The entire list of results from 100 tests have been summarized in Table 4.4,
4.5 and Figure 4.15. Several trends can be observed from Figure 4.15. LC is
significantly higher in TS 2 than in TS 1 and also AC increases slightly. In fact,
although the introduction of points with mean in [0, 0] with N2, and the points
around [5, 5] and [−5, 0] introduced by 20 points of N8 and 40 of N9, there is
no improvement on the description of the function. In fact, N2 has been made
purposely broad so that the 30 points likely fall far from the peak. Similarly, N8
is a narrow distribution and the removal of the points from the other distributions
likely damaged the discretization of the objective function. From TS 3 to 4, the
number of points associated to the most interesting distributions N1,8,9 has been
halved, maintaining the size of the TS at the same value of 500 entries. This affected
negatively on the AC values, which increased. The steep increase of AC and LC

passing from TS 4 to 5 is associated to the significant increase, with a factor of
5.6, on the number of points of the TS 5, which is associated to a general higher
value of C (τ) with respect to TS 4. The effect of noise injection can be seen from
TS 5 to 7, showing a slight reduction of both similarity functions. The injection
of outliers in TS from 8 to 10 increases significantly the values of both AC and LC

with respect to previous TSs. At the same time, the reduction of C (τ) shown in
Figure 4.14 is confirmed in the decreasing trend from TS 8 to 10.

A possible limitation of this approach is that the union of TS and Test Set is
only a partial sampling of the entire hypercube. The density-closeness function is
only a partial representation and hence, looking for the value such that the error is
the same as the training error could be wrong. However, this means that it is valid
at least for the given Test Set and hence it is possible to define a better TS from
this point of view.

4.6 Flight data mining
The following analysis has been already published in [108, 141]. As previously

mentioned, a quasi-uniform distribution of flight data inside the hypercube is ben-
eficial to avoid the minimization of the mean error mainly in local area rather than
on the entire hypercube. However, due to the size of the dataset both in terms
of cardinality of the elements and in terms of the number of variables involved,
some tools are needed to verify the performance of the VS during particular flight
conditions.
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Table 4.4: Mean and standard deviation (between parentheses) values over 100
tests of the similarity functions based on the cardinality of the stationary points
for the analytic function dataset

TS 1 2 3 4 5
LC 7.26

(5.13)
25.59
(15.24)

18.32
(9.60)

15.63
(9.72)

26.50
(11.53)

AC 385.48
(294.86)

525.05
(239.68)

748.50
(333.75)

927.23
(417.52)

2307.82
(442.62)

AC2 115.01
(100.05)

121.02
(74.30)

206.02
(113.83)

264.94
(141.84)

744.35
(150.52)

Table 4.5: Mean and standard deviation (between parentheses) values over 100
tests of the similarity functions based on the cardinality of the stationary points
for the analytic function dataset with noise and error injection

TS 6 7 8 9 10
LC 19.55

(9.81)
18.40
(8.81)

94.11
(2.10)

77.06
(9.00)

64.43
(11.17)

AC 2234.98
(411.53)

2224.86
(455.35)

3515.15
(334.87)

2856.19
(398.00)

2692.92
(423.38)

AC2 728.18
(139.93)

723.87
(154.64)

880.22
(115.26)

830.73
(137.58)

797.64
(143.01)

It can be demonstrated that the lift coefficient CL of an AC is linearly dependent
on the AOA when AOA is small [2]. The slope CL,α and the vertical intercept CL0
come from the aerodynamic properties of the airfoils of the wing and of the tail,
composed with the aerodynamic of the other bodies such us the fuselage and the
landing gear. The most common flight phase can be approximated to stationary
flight in linear conditions and, for this reason, it is required to meet good perfor-
mance of the algorithm in this conditions. At the same time, some so-called trim
shots have been planned and conducted during the flight test campaign of 2017
also to determine the CL − α curve. They consist in several seconds of trimmed
flight (constant speed, altitude and null angular rates) corresponding to the longi-
tudinal equilibrium condition, repeated for different AOA. If the mass of the AC
is known, it is possible to estimate the lift coefficient and define the linear section
of the CL − α curve. However, ideal longitudinal equilibrium conditions are rarely
obtained in flight test, due to residual variation of the flight parameters and the
noise acting on them. The analysis is based on dedicated test points and the as-
sumption of validity of the measurement grounds on experience of both pilot and
FTE, FTI performance, atmospheric and meteorological reasons.

To ease the data analysis, the method based on flight data mining proposed in
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Figure 4.15: Mean and standard deviation values of LC (blue line) and AC (red
line) among different TS for the analytic function dataset

this section automatically extracts a subset of the dataset corresponding to those
particular manoeuvres, in particular the stationary and quasi-stationary flight con-
ditions. Once the set of stationary condition has been extracted, it is possible to
test the performance of the AOA/AOS estimator. Moreover, this procedure allows
to obtain an higher number of available points with respect to the traditional proce-
dure of planning and analyzing several trim conditions. Eventually, this automatic
trim detection algorithm allows to estimate the balance between the entries of the
dataset corresponding to dynamic conditions and the one related to stationary con-
ditions. In this dissertation, the ratio has been estimated in 1 stationary condition
entry over 100000 dynamic condition entries and this value has been considered
high enough to negatively influence the training phase. In [141], a data-reduction
method has been applied to reduce the unbalance between dynamic and stationary
flight conditions in the TS.

The flight data mining algorithm is based on a down sampling technique followed
by a linear multivariable score assignation. Relaxing the constraints on the flight
parameters, that is with the assumption that a slight deviation from the ideal value
can be accepted, it is possible to define the quasi-stationary and quasi-symmetric
flight conditions. In case of the analysis of Smart-ADAHRS, it is not specifically
required a perfect longitudinal equilibrium. Hence, this method provides a set of
data corresponding to flight conditions close to the ideal longitudinal equilibrium,
without any manual analysis of the dataset and without planning dedicated ma-
noeuvers.

The main procedure is based on the assignation of a value called score to a given
instant. The maximum score is given to symmetric and stationary equilibrium
flight condition so that it is possible to select the desired instant observing this
value. Actually, the score is not assigned directly to the n-dimensional vector
associated to the flight condition but firstly assigned independently to the various

84



4.6 – Flight data mining

flight parameters and eventually the final score is obtained from the signal scores
(e.g. the average). See Algorithm 1 for details.

At the beginning, the signals are divided in non-overlapping time windows. The
length of the time windows is constant and it has been taken as 5 s. The length
of the time-window is obtained as a trade-off between finding an actual stationary
point and the efficiency of the algorithm. In fact, longer time window will bring to
a more reliable evaluation of the flight condition whereas shorter time window will
bring to extra points in the final result. Afterwards, some statistics of the signal
during each time window are evaluated. Because of this statistical analysis, the
original sampling frequency of the signal can have an important influence on the
final result. In fact, the number of elements in each subdivision must be sufficiently
high such that the sample estimators are statistically valid. In this work, original
sampling period is about 0.05 s, corresponding to 100 elements per interval, which is
sufficiently high. The original sampling period comes from the sampling frequency
of the FTI.

Algorithm 1: Quasi-Stationary and Quasi-Symmetric flight conditions
detection algorithm

Data: Flight data
Result: Set of quasi-symmetric and quasi-stationary flight conditions

1 Partitioning in 5 s-long time windows;
2 foreach time-window do
3 foreach signal do
4 Evaluation of the statistics of the signal during the time-window;
5 Assign a score to each signal;
6 end
7 FinalScore = average(signal scores at the current time-window);
8 if FinalScore > threshold then
9 Store as valid time-window

10 end
11 end

For each interval, the sample mean, sample standard deviation and the deviation
between the minimum and maximum values covered by the signal are calculated. A
score is hence assigned to each interval depending on the descriptive values calcu-
lated beforehand. The decision on which statistics consider for the score assignment
grounds on the type of signal evaluated. In some cases, the score depends on how
much the sample mean is close to a given value. For instance, the angular rates
must be zero in stationary conditions. In other cases, when the interest falls in
observing a constant signal, the sample standard deviation or the maximum devi-
ation drives the score assignment. For instance, the closer the maximum deviation
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of the impact pressure is to zero, the higher is the assigned score.
A piecewise linear function has been implemented to assign the score but several

other possibilities exist. The standard deviation of the signal during the time-
window has been added. In this way, the dispersion of the data around the desired
conditions affects the score assigned by the algorithm. This helps to increase the
score of the stable sample with respect to sample affected by high variability.

When every signal has been sampled and the signal score has been assigned,
the final sample score is evaluated as the mean of the scores among the signals.

Once the scores have been obtained, the selection of the stationary and quasi-
stationary points can be carried out. This procedure involves the definition of a
minimum score threshold necessary to pick or not a sample, given the scores as-
signed to each sample. The previous steps are applied equally to each flight test.
For this reason, the scores are comparable among different flights. However, it has
been observed that a normalization procedure greatly simplifies the decision pro-
cess. In fact, subtle differences exist between quasi-stationary and quasi-symmetric
conditions. To better explain this, it must be recalled that this method can obtain
a set of points on the flight envelope slightly relaxing the trim condition constraints.
In some cases, very low time derivatives and deviations can be observed. However,
the attitude could be too much asymmetric to be neglected. At the same time, a
slightly more symmetric flight condition but corresponding to higher deviation on
the measures than the previous case can be considered valid. The problem of defin-
ing when a flight condition is quasi-symmetric and quasi-stationary is obviously
ill-posed. This method converts the problem into the definition of a a threshold on
the score, that unfortunately fails to be a metric. It is not yet clear whether the
normalization of the score helps or not the solution.

4.6.1 The score assignment process
This subsection shows more details on how a sample of a signal has been related

to a scalar value. This step is crucial for the effective functioning of the algorithm.
Two different solutions have been applied.

Mathematically speaking, given a signal xi = xi (t) it is possible to extract a
sample xi [n] = E [xi (t)] with (n− 1) ts ≤ t < nts. Various statistics θ of the
sample xi [n] can be measured. Eventually, the signal score s is assigned to the
n-th sample based on the corresponding θ (n) as in the following relation:

s = s (θ (n)) = s (n) (4.15)
The first approach on the functional form for s is piecewise linear. The triangle

function can be generally defined as in Eq. 4.16. An example can be seen in
Figure 4.16.
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Λ (θ) =
⎧⎨⎩1− |θ|

θth
for |θ| < θth

0 for |θ| ≥ θth

(4.16)

Figure 4.16: Example of triangle function Λ = Λ (θ)

Setting s = Λ (θ (x [n])) a first evaluation of the sample score can be obtained.
For instance, if the qc signal is considered, the maximum acceptable ∆qc during 5 s
can be set to 100 Pa. In this case, if the maximum deviation is higher than ∆qc

then a null score will be assigned. At the same time, if the maximum deviation is
between 0 Pa and 100 Pa, then a proportional score will be assigned to that given
sample.

However, it has been found that extending the previous analysis to more than
one single statistic brings to higher coefficient of determination with respect to using
only one statistic. To this aim, Eq. 4.16 can be modified considering similarities to
a triangulation problem.

Figure 4.17: Generalization of the score function

Given θ1,1, θ1,2, θ2,1, θ2,2 ∈ R with θ1,1 < θ1,2 and θ2,1 < θ2,2 it is possible to
identify four regions as reported in Figure 4.18. For convenience, each region is
identified by the same index of one of the two border vertices.

Let P ∈ R2 a point belonging to the Oθ1θ2 space, it is possible to write
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Figure 4.18: Definition of the regions in a generic Oθ1θ2 plane

P ∈ R1 ⇔

⎧⎪⎪⎨⎪⎪⎩
θ2 > θ2,s1 (θ1)
θ1 < θ1,m

θ2 < θ2,m

, P ∈ R2 ⇔

⎧⎪⎪⎨⎪⎪⎩
θ1 ≥ θ1,m

θ2 < θ2,m

θ2 > θ2,s2 (θ1)
, (4.17)

P ∈ R3 ⇔

⎧⎪⎪⎨⎪⎪⎩
θ1 ≥ θ1,m

θ2 ≥ θ2,m

θ2 < θ2,s3 (θ1)
, P ∈ R4 ⇔

⎧⎪⎪⎨⎪⎪⎩
θ1 < θ1,m

θ2 ≥ θ2,m

θ2 < θ2,s4 (θ1)
(4.18)

where s1,2,3,4 stand for the 4 straight lines defining the border.
Once the r-th region in which P belongs to has been found, it is possible to

write Eq. 4.19 which describes each planar face of the pyramid as follows:

∇sr · (θ − θr) = sr (θ)− sr (θr) (4.19)
where θ represents the vector of coordinates of the point P . Moreover,

∇sr · (θm − θr) = sr (θm)− sr (θr) = 1 (4.20)
∇sr · (θr+1 − θr) = sr (θr+1)− sr (θr) = 0 (4.21)

For simplicity, Eq. 4.21 contains a little abuse of notation. In fact, r+1 becomes
1 for r = 4.

The following linear system can be written:

⎡⎣ θ1,m − θ1,r θ2,m − θ2,r

θ1,r+1 − θ1,r θ2,r+1 − θ2,r

⎤⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂sr

∂θ1
∂sr

∂θ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎨⎩1

0

⎫⎬⎭ (4.22)

which brings to Eq. 4.19,
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∂sr

∂θ1
= θ2,r+1−θ2,r

det G (4.23)

∂sr

∂θ2
= − θ1,r+1−θ1,r

det G (4.24)

representing the two partial derivatives of the score function s with respect to θ1
and θ2, where G is the matrix at the LHS of Eq. 4.22.

Eventually, the score assigned to any sample xi [n] is evaluated as follows:

s (xi [n]) =
⎧⎨⎩∇sr (θ (xi [n])− θr) if P ∈ Rr with r ∈ {1, 2, 3, 4}

0 if P /∈ Rr with r ∈ {1, 2, 3, 4}
(4.25)

With this formulation, two statistics can be considered. In this paper, the
standard deviation of the sample is always applied as second statistic. This help
to increase the score for stable samples. Table 4.6 shows the values used in this
dissertation.

Table 4.6: List of signals and corresponding statistics

Signal First statistic Value Second statistic
(Standard deviation)

value
Angular rate Sample mean 0.01 rad s−1 0.005 rad s−1

Altitude Max deviation 1 m 0.5 m
Vertical speed Sample mean 1 m s−1 0.5 m s−1

Acceleration Sample mean 0.05 g 0.025 g
Impact pressure Max deviation 100 Pa 50 Pa

Pitch angle Max deviation 2° 1°
Roll angle Sample mean 1° 0.5°
Yaw angle Max deviation 1° 0.5°

4.6.2 Results for G70 data
This section shows the results obtained on the flight dataset by the proposed

score-assignment method.
To evaluate the capability of the method, the CL−α plot is obtained. Because no

engine measurement is available on-board, a fuel consumption linearly descreasing
with time has been assumed. In this way, it is possible to evaluate the lift coefficient
as CL = mg

qcS
, where m is the aircraft mass, g is the gravitational acceleration, qc
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is the impact pressure and S is the wing surface area. The samples resulted to be
organized on a straight line, with slope CLα and zero α0 close to the independent
analysis previously conducted by [127]. To avoid nonlinear effects, only the samples
with α < 10° have been taken in consideration. A maximum error of −0.06 % on
CLα and of −2.27 % on α0 has been obtained. The quality of the linear regression
has been measured with the coefficient of determination.

Actually, the effects of CLδe and asymmetric flight condition should be accounted
in a post-processing correction. Shortly, according to [142], the slope obtained by
the regression should be properly called C∗

Lα. However, the difference between C∗
Lα

and CLα has been here dropped for sake of clarity.
It is interesting to note that the obtained samples organize on three straight

lines. In fact, some of them corresponds to flaps down in Take-Off (about 14°) and
Landing (about 36°) conditions. Because the flap angle deflection, for leading edge
plain flap, is equivalent to offset the null lift direction with an angle proportional to
the δf , it is possible to identify two analytic values of ∆α to compare our results.
In fact

∆α = τδf (4.26)
In this work, to assess the accuracy of the method, the effect given by the

flap on α0 has been evaluated. Considering a 2-dimensional τ2D = 0.5 [143] and
a surface ratio Sf/S = 0.66, the 3-dimensional value for ∂α

∂δf
becomes τ3D = 0.33.

Unfortunately, this value is valid up to 20° of flap deflection. The κ′ parameter [144]
has been used to extend the evaluation beyond this limit, leading to the following
more general formulation:

τ3D = τ2D ∗ κ′ ∗ Sf

S
(4.27)

Therefore, the following values are used in this paper τ3D,14° = 0.33, τ3D,36° =
0.27.

Looking at the Figure 4.19 it is possible to identify all the sample points obtained
with s(i) ≥ 0.667 and δf = 0°.

Figure 4.20 shows the samples corresponding to flaps in Takeoff (TO) condition,
whereas Figure 4.21 collects the sample obtained in Landing (LND) condition.

It is important to notice that no flight control surface data has been directly
applied into the score assignment. In fact, the flap deflection angle δf has been used
only in post-processing to distinguish Figure 4.19–Figure 4.21, in order to clearly
identify the three linear regression functions. Figure 4.22 gives a global view on the
CL − α curves found by the algorithm.

The comparison of the regression with the independent analysis conducted by
Battaini [127] confirms the validity of the method. Table 4.7 collects the results
obtained. A difference about −0.06 % has been obtained on CLα with respect to
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Figure 4.19: CL − α plot, clean condition, α0 = −5.7673°, CL,α = 0.085 136 °−1 =
4.8779 rad−1, R2 = 0.95812. Scatter plot color corresponds to the sample score.
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Figure 4.20: CL − α plot, TO condition, α0 = −9.2128°, CL,α = 0.084 072 °−1 =
4.817 rad−1, R2 = 0.70726. Scatter plot color corresponds to the sample score.

the manual derivation, neglecting the effect of the elevator. For what concern the
α0, the difference is about −2.27 %.

To evaluate the accuracy of the regression in TO and LND conditions, a manual
estimation has been carried out. Hence, although the coefficient of determination of
the linear regression is lower than 0.9 for the TO and LND conditions, the obtained
results can be considered a good demonstration of the trim identification method,
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Figure 4.21: CL − α plot, LND condition, α0 = −15.3087°, CL,α = 0.073 267 °−1 =
4.1979 rad−1, R2 = 0.88861. Scatter plot color corresponds to the sample score.
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Figure 4.22: CL − α plot, global view of the three regression lines

due to the accordance with the analytical estimation.

4.7 Re-training and selection
This section describes a procedure able to increase the independence from the

initial condition of the training operation. In fact, the training operation is actually
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Table 4.7: Result on the estimation of CL,α and α0

Source CL,α α0 R2

Battaini [127] 4.881 −5.9015 deg -
Regression, clean 4.8779 −5.7673 deg 0.95812
Regression, TO 4.817 −9.2128 deg 0.70726

Regression, LND 4.1979 −15.3087 deg 0.88861

an iterative procedure that tries to solve the non-convex problem of identifying the
weights able to minimize the value of the error. If the initial condition changes, the
path followed by the solution can change depending on the regularity of the error
surface. Repeating the training operation using the same dataset but re-initializing
the weights of the NN results in different sets of weights. Given this procedure
and defining a criterion, a NN can be chosen among the various obtained. In this
dissertation, the minimum global error obtained both in training and test is applied.

A second observation can be made. The final training error can change a lot
among the various solutions or not. It is worth noticing that training with simulated
data results in the first case, whereas using flight data brings to the second one. A
more homogeneity in the final training error gives an indication of convergence of
the training operation.

Figure 4.23: Repeated training and selection of the best NN (The red border iden-
tifies the selected NN)
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4.8 Manoeuver-based Cross-Validation
The definition of which manoeuver must be conducted in order to minimize the

final uncertainty of the virtual sensor is still an open question of this field. During
the flight test campaign, several flight segments or flight manoeuvers have been
flown. Moreover, some of them have been repeated at a different flight condition
(e.g. airspeed) or even at the same one. Thanks to the availability of these data and
its internal structure, it could be interesting to carefully analyze which manoeuver
acts positively on the uncertainty of the synthetic estimation. In this way, it could
be suggested to the designer of a synthetic sensor a guideline of flight campaign.

However, the amount of data available is too large to try every possible com-
bination of manoeuver. From a statistical point of view, it is possible to see this
situation as the model selection problem [121]. As mentioned in Sec. 2.4, it could
be applied a CV method.

Taking advantage of the CV methods, it is possible to define which subset of
data brings to the best estimation of AOA. Classic CV well applies for homogeneous
stationary data, each point is considered independently without the consideration
that the observation comes from the response of a dynamic system.

This section proposes a version of the k-Fold CV method. If the various folds
are obtained from consideration on the flight condition instead of using a statis-
tical partitioning method, the subset that results in the minimum error would be
composed by a set of flight conditions. Hence, dropping some assumptions of in-
dependence of the partitions, the result of the model selection algorithm can be
analyzed from a aeronautical point of view. It must be verified that the number of
points is at least statistically valid. For this reason, to the analysis it is necessary
to add the ratio of the size of the Test Set with respect to the TS.

The result of the Quasi-Stationary detection algorithm to the dataset can be
used to automatically split a huge dataset coming from flight test. The considera-
tion that each manoeuvre is conducted after the determination of a trim shot can
be used to partition the flight test database in smaller subsets, reducing the manual
search for trim points. This method is called Manoeuver-based CV.

Once the flight test database has been partitioned, the classical k-Fold CV
procedure can be carried out. In this dissertation, the value reported is calculated
as the ratio between the deviation from the average NSSE and the average itself.
This allows to immediately compare the results.

Figure 4.24 shows an example of the error comparison among various tests. In
that case, the selection of the 5th subset as TS induces a reduction of the 81.4 %
on the NSSE with respect to the average. This important reduction is an example
of how much the selection of the TS can affect the final uncertainty of the VS.
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Figure 4.24: Example of 10-fold CV result.

4.9 Feature map for flight data reduction
One of the open question in the synthetic sensor field is the guarantee that

the estimator does not show peak error in unknown conditions. Although, this
obviously greatly depends on the architecture of the sensor, a common procedure
can help finding issues in the estimation.

Unfortunately, the aircraft is a coupled multivariable system which size does not
allow to analyze each variable singularly, even less so check every flight condition.
The data visualization community has researched this kind of problem for the last
20 years and several methods exist. Among those method, the feature mapping is
a possibility.

This method is a possible data reduction based on feature mapping applicable
for the aeronautical engineering field. Feature mapping means to reduce the size of
the problem to a lower number of variables so that it is possible to represent data
on a chart. In this way, some information are surely lost but the data reduction
policy can be chosen in way of obtaining still rich information from data.

Defining X and Y as follows:

X = q + u̇+
√

2
2 p+

√
2

2 r +
√

2
2 v̇

Y = β + φ+
√

2
2 p+

√
2

2 r +
√

2
2 v̇

(4.28)

where the line above the symbols represents the non-dimensional quantity. The
original aircraft state vector is reduced to size 2. On this feature map it is hence
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possible to plot the estimation error obtaining a 2D chart as in Figure 4.25. This
chart shows how the error is distributed along the various flight conditions. The
X = 0 coincides with the Quasi-Stationary Flight Conditions. The origin of the
chart represents the symmetric and quasi-stationary flight conditions as defined in
[108], whereas in case of asymmetric flight, maintaining the quasi-stationarity, the
point moves along the X = 0 axis. The abscissa of a point is related to the presence
of a pitch rate or an acceleration along the X-Body axis. Hence, longitudinal non-
stationary flight condition are encountered moving along the X-axis whereas the
asymmetric fight is shown along the Y -axis. Mixed dynamics brings the points to
move away from both the axes.

Figure 4.25: Feature map example

4.10 Sensitivity Analysis and Uncertainty esti-
mation

This section describes a method that can be applied to VS in order to estimate
its uncertainty. As anticipated in Chap. 1, in this field the value reported is more
related to an error bound than an actual statistical analysis. In that case, the given
value is more subjective and less repeatable. However, there are common procedure
already studied in metrology that can be applied. Following these methods the
estimation will be repeatable and objective.

In this section, two main techniques are described for uncertainty propagation:
the first one is based on a truncated Taylor series using the theoretical results of
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Chap. 2, while the second is the study of the nonlinear uncertainty propagation. It
will be clear that the first technique is not able to provide an acceptable value due
to the highly nonlinearity of the MLP.

It is important to conduct these analysis on the entire dataset and not only on
the test set. In fact, once the network has been trained, the regions corresponding
to the TS are operative regions for the VS. A common error in this field is to report
data only for the Test Set, forgetting that this partitioning is only needed in order
to verify the generalization of the NN, but the VS can work also with values that
have been selected for the TS.

4.10.1 Linearization of the MLP
Given the covariance matrix Σx of the variables in input to the MLP, it is

possible to write the Eq. 4.29.

y = y (x0) +J∆x +O
(︂
∆x2

)︂
Σy = JΣxJT

(4.29)

However, the truncated Taylor series is not a good representation of the MLP
due to the high nonlinearity of the function. Hence, the results given by this analysis
can be erroneous.

4.10.2 Nonlinear analysis
To estimate the uncertainty of the sensor fully considering its nonlinearity, the

function is tested with a Monte Carlo simulation using a Gaussian distribution on
the input variables and analysing the distribution of the output around the nominal
values. Hence, for any point of the dataset it can be written as follows:

xi,MC = xi + ∆x where ∆x ∼ N (0,Σx) (4.30)
The number of points generated around the nominal point xi is of great im-

portance because it must be sufficiently high to allow a statistical analysis but the
computational cost can increase. In fact, this analysis must be conducted on the
entire dataset and the final number of points will be the size of the dataset times
the number of generated points around each one. In this dissertation, 100 points
have been generated for each entry of the dataset.

4.10.3 Presentation of the results
As typically requested by the aeronautical industry, the uncertainties must be

reported on a chart Oαβ. In this way, the uncertainty is specified for the actual
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values of the aerodynamic angles. As mentioned before, the evaluation of the un-
certainty must be executed for the entire available dataset and hence the heatmaps
will cover the entire envelope of AOA/AOS. However, any pair (α, β) can represent
several flight conditions. For sake of clarity, it is not specified, for instance, if the
flight is stationary or there is a linear or angular acceleration. For this reason,
the mean and standard deviation value of each resultant distribution are calcu-
lated and then grouped by bins on the α, β chart. The resultant distribution of
expected values and sample standard deviations will be analyzed statistically, if
there are enough points (here corresponding to different flight instants) to define a
distribution. In this way, it is possible to study the expected value of the standard
deviation in each bin and therefore associate an uncertainty of the estimation to
the particular bin. An example is shown in Figure 4.26.

Figure 4.26: Example of uncertainty map. Values of the colorbar are in [°]

The dispersion of the sample standard deviation is also of great importance.
In fact, if several fight conditions are grouped inside the same (α, β) bin, it is
interesting to study if the flight condition has an effect on the final uncertainty.
Statistically speaking, It must be checked if the sample standard deviation at a
given pair (α, β) is biased from the flight mechanics point of view. Finally, the
obtained charts should be compared with the estimation error, to try to understand
if the classical approach gives at least an estimation of the uncertainty.

Due to the structure of the estimator, this analysis is repeated twice. In fact,
although the final uncertainty is metrologically important, the effect of the NN on
the initial estimation can greatly help the design of the VS.
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Chapter 5

Data augmentation

Some of the analysis shown here, mostly regarding the modeling of the sensors,
have already been published in [107].

5.1 The reasons behind data augmentation
The case study of this dissertation is the Smart-ADAHRS algorithm, which

kernel is an MLP. During the design of an MLP, the selection of the data applied
for training is crucial. Although several works focuses on the architecture of the
NN, the availability of data both for training and testing the NN allows to improve
performance or, at least, to gain confidence on the results.

Based on the author’s experience, due to practical reasons related to the flight
tests, data-sets coming from actual flights tend to share some similarities. Figure 5.1
shows a typical coverage on the AOA/AOS envelope. A common shape is a cross,
due to the difficulty of flying with high AOA and at the same time high AOS. Also,
the envelope might be covered asymmetrically, due to intrinsic asymmetry of the
AC, i.e. effects due to the propeller. Another common problem concerns negative
AOA.

In addition, the same concept of incomplete data-set can be applied to static and
dynamic flight conditions. Using the algorithm published in [108], a set of quasi-
stationary flight conditions is extracted from the dataset. The extracted subset can
be seen in Figure 5.2.

The analysis of the corresponding output of Smart-ADAHRS in these conditions
showed an higher uncertainty in stationary conditions than in unsteady conditions.
This lack of accuracy has been associated to an unbalanced training operation,
between stationary and dynamic flight conditions. As common practice to assess
the AC performance, several trim shots have been scheduled, from which two or
three points are applied to fit linear models. Several aspects affect the quality of
these points from the air turbulence to the discretization of the flight control surface
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Figure 5.1: Typical cross-shaped distribution of available flight data (blue) on the
required AOA/AOS envelope (red)

Figure 5.2: Distribution of measured quasi-stationary and quasi-symmetrical flight
conditions

position. However, these points result very close in the phase space, meaning that
their Euclidean distance is low with respect to the maximum distance among all
the recorded entries. In short, the trim shots collected during flight tests are very
similar, low dispersion of airspeed, attitude and flight control surface positions.

Although it is difficult to plan additional flight tests to fill the red area in Fig-
ure 5.1 or to add points in particular dynamic or static conditions, it might be
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easier to simulate or artificially generate those points and add them to the data-
set. In this thesis, the cross-shaped distribution has been solved with additional
requirements on the manoeuvers to be flown in the flight test campaign of 2017.
However, the same re-planning was not enough to reduce the strong unbalance be-
tween stationary and dynamic entries. To obtain a better balance between dynamic
and stationary entries, the data augmentation techniques is applied.

Due to the particular application of this dissertation, there are two main ways
to conduct the data augmentation method. The first one takes advantage from the
fact that the data-set is made by the input, output and state variables of an AC.
Hence, the first method is to conduct a flight simulation. The second one is using
a very recent ML technique named GAN. In this case, a particular ML paradigm
is used to attempt to generate data from a multivariate distribution. These two
methods are described in this chapter together with their typical drawbacks and
results.

As a remark, it is questionable to artificially add data to the training set of a NN
with the aim to improve the training, using data coming from a flight identification
based on the same set of data. In fact, as it will be clearer at the end of this chapter,
the second solution is still not valid to improve the training operation. However,
it must be recalled that a flight simulator is designed based on an additional set
of data, that is the geometrical and technical data of the AC itself. This add a
definitely new set of information about the AC that is only partially self-contained
inside the data-set. The idea is to take advantage of the Computer-Aided Design
(CAD) drawings, engine and propeller datasheets, certification reports and studies
of the AC to complete the information coming from the raw flight test recordings.

5.2 Flight simulation
From a general point of view, training an MLP means to find a nonlinear map

between the input and the target entries that can reduce, or even minimize at the
limit, some global metric based on the error of estimation. In this framework,
the only possibility is to apply a huge set of data to train, validate and test the
MLP. However, it must be pointed out that in this particular case, data belongs
to a particular class of generation model, that is an AC. To better focus on this,
please consider a classical ML application as it could be the image classification.
In this case, the classifier is trying to find a map that is, up to now, hidden from a
mathematical point of view. The presence of a dog or a cat in a picture is something
that is difficult to model in a deterministic way, although the recent findings allow
to think that an actual function could exist. The application of this dissertation is
totally different, because the variables are strictly related among each other by the
aircraft kinematics and dynamics. These relationships have been already studied
in engineering and they allow, although not perfectly, to match with measurements
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conducted in flight. Briefly, it is possible to write an implicit equation as in Eq. 5.1
that must be verified by the AC data.

f (t,x, ẋ) = 0. (5.1)
The idea is to generate a set of data that verifies Eq. 5.1 to improve the coverage

of the training hypercube in those regions in which the TS is poorly defined. This
can be done with a flight simulator.

5.2.1 Structure of the Flight Simulator
The AC has been modeled in MATLAB®/Simulink implementing a nonlinear

Ordinary Differential Equation (ODE). The simulator is based on the Flight Dy-
namics and Control toolbox (FDC) toolbox [145]. The aerodynamic database has
been determined in two phases. At the beginning, preliminary results have been
obtained from the DIGITAL DATCOM [146]. Secondly, the DATCOM methods
from [147] have been applied to manually tune some of the aerodinamic deriva-
tives. Since the control derivatives related to the rudder are not available on the
DIGITAL DATCOM, also [144] has been used to evaluated them. The result is the
entire aerodynamic database of the aircraft which values are given in terms of α.
Figure 5.3 shows the comparison on the CL − α chart between the simulated and
real quasi-stationary conditions.

Figure 5.3: Comparison between simulated and flight test quasi-stationary condi-
tions on the CL − α plot

The engine Rotax® 912ULS has been modeled according to the performance
declared on the datasheet published by the producer [148]. Unfortunately, some
uncertainties exist. The geometry of the propeller, an Helix H50F 1.75 R-S-19-2,
is unknown and classified by the producer. Actually, the Rotax® 912ULS can be
coupled with a series of propeller, two-blade or three-blade, and this add an un-
certainty on the matching between flight simulation and flight test data. However,
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some results can be found from a series of Master Thesis from Politecnico di Milano
[127, 126].

The validation of the flight simulator is a difficult task. The main reason derives
from the fact that the throttle has not been logged during flight tests. This makes
impossible a perfect matching in a direct comparison feeding the simulator with
the same input recorded in flight.

However, it is possible to compare the parameters typically considered also by
the aeronautical regulations, that is the stick-fixed dynamical modes of the aircraft.
It must be mentioned that on this kind of vehicle, equipped with the available
FTI, some of the test cannot be properly conducted. For instance, the proper
exitation of the elevator to test the Short-Period mode and the one to the rudder
to test the Dutch-Roll mode have not been applied. Moreover, the test were mainly
conducted to verify compliance to the LFT-UL regulation and it simpy prescribes
that any short period mode must be heavily dumped. A comparison of the natural
frequencies, periods and time constants obtained from flight test in [126] and from
linearization of the AC model can be seen in Table 5.1. The damping values that
should be added to the oscillatory modes have not been compared because they
were not available in [126].

Table 5.1: Comparison of the stick-fixed aircraft modes

Mode Simulation Flight Test
Phugoid 0.36 rad s−1, period 18.02 s 0.35 rad s−1, period 18 s

Short-Period 3.11 rad s−1, period 2.9 s 4.18 rad s−1, period 1.5 s
Dutch-Roll 1.40 rad s−1, period 4.49 s Not observed

Spiral 36 s Not conducted
Roll mode 0.17 s Not conducted

To generate a comprehensive dataset it could be possible to design a set of
autopilots and to simulate a set of manoeuvers. Moreover, the sensor noise can be
simulated as it has been done during the analysis shown in Chap. 1. However, a
first test has been conducted simply perturbing a set of trim shots and propagating
the AC dynamics. First of all, the minimization of a scalar cost function J based on
the time-derivative of the state vector brought to a series of 25 equilibrium points
(the so-called trim shots). For each one, 19 perturbations have been applied and
100 s of trajectory have been simulated. The perturbations consist in altering the
airspeed, α and β singularly, and other mixed perturbations of both airspeed, α
and β. At the end of the data generation phase, a dataset with more than 475k
entries has been generated. Table 5.2 collects the main setup of the simulation.

Figure 5.4 shows the distribution of the simulated data on the AOA/AOS en-
velope. It is clear from Figure 5.4 that the stationary condition is covered by the
simulated data.
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Table 5.2: Simulation setup

Parameter Value
# of stationary points 25

# of simulated trajectories 475
TAS range from 19 m s−1 to 55 m s−1

AOA range from −7° to 15.6°
AOS range from −5.2° to 5.6°

∆V perturbation up to 5 m s−1

∆α perturbation up to 5°
∆β perturbation up to 5°
Simulation time 100 s

Figure 5.4: Coverage on the AOA/AOS envelope of the simulated data

5.3 Build a generative model to conduct data
augmentation

The flight simulation is an important tool, able to strongly reduce the cost of
the experiment in flight. However, to build a model is not an easy task. The
knowledge on the geometry of the aircraft is not always perfect. The formulations
of the aerodynamic database are based on empirical analysis and the validation of
the model itself requires a flight test campaign. In this section, another possibility
is studied, that should be able to augment the dataset in the stationary region.
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In 2014, Goodfellow et al. presented a popular paper proposing the GAN. Re-
cently, GANs are gaining a lot of attention in the field of ML and they have been
applied in a lot of fields. This paradigm showed compelling results in distribu-
tion fitting in high dimensional problems, such as image creation. At the same
time, GANs are not subjected to the overfitting problem, because the output of the
generative model is not directly compared to the target [149].

While a discriminative model is trained to fit the posterior PDF directly, a
generative model is implemented to solve the more general problem of finding the
joint PDF. Generally, it is preferred to use discriminative models over generative
ones. However, in [150] Ng and Jordan showed that two different regimes exist,
depending on the training set size. The size of this TS is small (about 100 entries,
corresponding to the number of the extracted stationary conditions) so a generative
model should reach its asymptotic error faster than a discriminative one.

Training a GAN requires particular attention due to its peculiar structure. For
example, non-convergence can lead the GAN to underfit [151]. Several techniques
have been proposed to improve GAN training [152, 153, 154, 155].

5.3.1 Introduction to Generative Adversarial Networks
A GAN is composed by two algorithms or players respectively called the Gener-

ator and the Discriminator. The training operation, or better the update operation
on the weights is not directly conducted on the estimation error of the Generator
with respect to some target. It is indeed the competition between the two players
to lead the training procedure. The Discriminator applies logistic regression and
it classifies if the input vector comes from the real data distribution or it is a fake
vector. The Generator aims to generate realistic vectors such that the Discrimi-
nator is not able to classify them as fake. Hence, this learning process is not an
optimization problem, but it is instead a minimax game and the solution is a Nash
equilibrium. It is convenient to introduce a value function V (G,D) [149].

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD (x)] + Ez∼pz(z) [log (1−D (G (z)))] (5.2)

GAN can be formally described as structured probabilistic models with latent
variables z and observed variables x [153].

Actually, the Generator and the Discriminator are simply two functions G and
D depending on the some parameters θ(G) and θ(D). Usually, they are implemented
as MLPs. The domain of G is the so-called latent space, a sample space associated
to a uniform or gaussian probability distribution. Two differentiable cost functions
are associated respectively to the Generator J (G)

(︂
θ(G), θ(D)

)︂
and the Discriminator

J (D)
(︂
θ(G), θ(D)

)︂
.
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A tuple
(︂
θ(G), θ(D)

)︂
which is a local minimum of J (D) with respect to θ(D) and

local minimum of J (G) with respect to θ(G) constitutes the Nash equilibrium before
mentioned [149].

The cost functions, based on cross-entropy minimization, can be expressed as
follows:

J (D) = −1
2 (Ex∼pdata logD (x) + Ez∼pz log (1−D (G (z)))) (5.3)

J (G) = −1
2Ez∼pz logD (G (z)) (5.4)

Several versions of GANs exist in literature, usually focusing on image creation.
The main differences between them are in the definition of the cost functions, which
intrinsically define the minimax game. In this dissertation, the classical framework
has been adopted. Training a GAN is still an open issue because it is subjected to
various phenomena typical of the game problem. The saturation of the game due
to the perfect discriminator and the mode collapse are only two of the difficulties
that can arise training a GAN. In the perfect discriminator case, the game saturates
because D easily classifies from the beginning the examples coming from the real
data distribution from the ones coming from G. Mode collapse happens when G
learns to produce only a single example that D is not able to classify as fake.
However, during training, D is easily trained to classify that example, so that
G again collapses on another mode. Several techniques have been proposed in
literature to improve this aspect, one of them is the minibatch discrimination.
Adding a minibatch discrimination layer allows to maintain a certain level of entropy
in the generated distributions. See [152] for additional details.

5.3.2 TrimGAN
Because at the beginning D quickly becomes perfect, a supervised pretraining

procedure is conducted on G, represented in Figure 5.5 by the dashed arrows. The
number of pretraining epoch has been obtained by a trial and error procedure with
the observation that very few epochs are enough to avoid the perfect discriminator
phenomena. In this work, only 10 pretraining epochs are conducted. The adver-
sarial training starts after the pretraining of G. Every main step, D is trained once
and G twice. This unbalance can again be justified by the perfect discriminator
phenomena. D is optimized with respect to Eq. 5.3 using an RMSProp update
scheme. The input is a mini-batch made by two stacked arrays, one coming from
the real dataset (in this case stored in a CSV file), the other coming from G. The
target is made by two stacked binary arrays, the first section corresponds to the
real data and is set to 1, whereas the second section is set to 0. On the contrary,
the Generator is trained indirectly using an Adadelta optimizer with respect to
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Latent Space

Generator

Discriminator
G(z)

G Loss D(x)

D(G(z))

Data Iteratorz

D Loss

A Loss

x

CSV

Figure 5.5: TrimGAN training outline (dashed gray lines represents the pretraining
operation, green lines the Discriminator training procedure, red lines represents
the Generator training procedure, A loss stands for the generator loss function in
adversarial training)

Eq. 5.4. The loss, reported on Figure 5.5 as A Loss where A stands for adversarial
to discriminate it from the G Loss, is calculated with respect to the output of D
with a sample generated by G. In this way, the weights of G are optimized in way
of generating samples classified as real by D.

5.3.3 GAN results
In this section some preliminary results regarding the generation of stationary

flight state vectors using GAN are shown. The effects of the training parameters
and of the hyperparameters of the two networks are not here considered. Further
studies will be conducted on this aspect. At the beginning, TrimGAN has been
implemented on low dimensional test case. In this case, the aircraft state vector
has been condensed in two variables, x = [α,CL]. Hence, the lift coefficient CL is
directly modeled as random variable instead of being evaluated from the mass and
impact pressure. Two tests have been conducted. In the first subcase, α comes from
the automatic trim detector algorithm whereas CL has been obtained by the linear
fitting reported in [108]. Hence, the first subcase is a linear fitting problem. The
second subcase considers the actual α and CL found by the autotrim algorithm,
hence a nongaussian error is intrinsically present in the data. Table 5.3 collect the
training configuration for both the simplified test cases.

GAN has shown promising results in the low dimensional test cases. The
marginal distributions of each variable is shown in Figure 5.6 and 5.7. In both
cases, the random variables assume realistic values and the distribution of the gen-
erated data is close to the original one.
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Table 5.3: Training configuration for dim (x) = 2

Parameter Pre-training Discriminator Generator
Learning rate 0.001 0.0005 0.5

# of epoch (partial/total) 2 1/10k 1/10k
Algorithm RMSProp RMSProp AdaDelta

MLP architecture N/A [1010] [10]
Batch size N/A 60 60

Figure 5.6: Marginal distributions of α and CL of the original dataset and of the
generated samples for Test Case 1 (Linear regression)

Figure 5.8 and 5.9 shows the loss function and the accuracy of both the Discrim-
inator and the Generator networks. Because the first two Test Cases are simplified
versions of the main problem, it is not surprising that the loss function quickly
reaches the convergence. This quick convergence is also visible on the Discrimina-
tor accuracy that reaches 0.5, at least as an average value.

Eventually, the CL − α curves can be compared. They have been represented
in Figure 5.10 and 5.11. Test Case 1 can be considered a Toy Problem, however
in Test Case 2 the positive correlation is weaker than in Test Case 1 and the joint
distribution of the two variables shows promising results.

The same analysis has been conducted on a complete set of variables with
dim (x) = 17. In this case, the lift coefficient CL is evaluated as additional variable
at the end of the training, directly on the generated data. This means that the
correlation between the variables is hidden by an additional formula that is not
explicit in the code or in the dataset. The training configuration is reported in

108



5.3 – Build a generative model to conduct data augmentation

Figure 5.7: Marginal distributions of α and CL of the original dataset and of the
generated samples for Test Case 2 (Real data, dim (x) = 2)

Figure 5.8: Loss and accuracy values for Test Case 1 (Linear regression)

Table 5.4.
In this case, the three linear regression lines that were underlined in the dataset

have been lost. The positive correlation can still be observed.
Even if state variables of the samples drawn from the pmodel assumed realistic

values and even if the joint probability density function pCL,α (x, y) seems similar,
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Figure 5.9: Loss and accuracy values for Test Case 2 (Real data, dim (x) = 2)

Figure 5.10: Comparison of the CL − α curves for Test Case 1 (Linear regression)

at the moment the state vectors obtained by the TrimGAN are still not eligible for
the training of Smart-ADAHRS. In fact, the uncertainty introduced by this new
dataset is higher than the one already obtained by Smart-ADAHRS. This aspect
should not be seen as a limitation of the methodology because these results must
be considered preliminary.
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Figure 5.11: Comparison of the CL−α curves for Test Case 2 (Real data, dim (x) =
2)

Table 5.4: Training configuration for dim (x) = 17

Parameter Pre-training Discriminator Generator
Learning rate 0.001 0.000 005 0.000 000 05

# of epoch (partial/total) 2 20/10k 1/10k
Algorithm RMSProp RMSProp AdaDelta

MLP architecture N/A [2020] [20]
Batch size N/A 60 60
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Chapter 6

Final comparison

Previous chapters described a set of methods applicable to the design of a syn-
thetic sensor based on NN for aerodynamic angle estimation. The description
focused on the theoretical foundation of the proposed methods and on the inter-
pretation of the individual results.

One of the aim of this dissertation is to show the performance that the same
NN architecture can reach, if trained with different methods. In 2013, the patent of
Smart-ADAHRS has been published and the method was at TRL 4. The NN was
tested in simulated environment and the demonstration in relevant environment
was beginning in 2016. The performance, moving from simulation to flight test,
dropped and it was necessary to tune the training of the NN to cope with sensor
noise and uncertainty propagation. From this point of view, the comparison with
other techniques such as Kalman filter was out of the main scope of this dissertation.
On the other hand, the definition of a design path for a NN-based estimator passes
from the comparison of the various methods that can be used to obtain the final
set of weights.

This point of view resembles the regression point of view. For instance, in
polynomial fitting the final product is a polynomial function, regardless of how it
has been obtained. Several methods can be used to fit a dataset using the same
degree of the polynomial. Thinking to MLP as a function obtained by means of
multivariate regression, it is interesting to compare several training or data analysis
methods in order to improve the performance of the MLP, without necessarily
changing the architecture.

This chapter provides the comparison of the results obtained with a synthetic
sensor designed with the methods proposed in the previous chapters, with respect
to a first attempt of design obtained with the classical method. This first MLP,
henceforth called Baseline network, is obtained through the traditional method
that composed the state-of-the-art of the training at the beginning of this PhD
project. To fully understand the advantages and disadvantages of the methods,
four classes of estimators are designed. This chapter begins with the description
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of the four classes of estimators in Sec. 6.1. Sec. 6.2 reports the analysis of the
PDFs and CDFs of the error. In Sec. 6.3 the uncertainty of the various solutions
is estimated and compared. In Sec. 6.6 the comparison of the error in the time
domain is conducted to show the limitations of the analysis of the timehistories.
In Sec. 6.7 the TS is analysed in terms of similarity functions. The feature maps
are shown in Sec. 6.5. At the end of this chapter, the proposed methods have been
applied to design a VS for the estimation of the AOS.

6.1 Definition of the compared estimators
As stated in Chapter 1, the absence of a shared metrology introduces a certain

difficulty in the design of a synthetic sensor. In fact, to conduct the comparison
between the solutions obtained following different design flows, a set of rules based
on some metrics must be defined. During the design of a synthetic sensor, a long
series of comparisons is conducted among the various solutions to fully understand
the behaviour of the estimator. In this dissertation, the methods proposed in
Chapter 4 and 5 are applied for two main reasons: to ease the design of a synthetic
sensor and to ensure the estimated uncertainty of the sensor itself. To analyze
their advantages and disadvantages, several estimators have been designed following
different methods and the results have been compared. A Baseline estimator is
designed following the only some fundamental steps, as common in literature. It is
used as scientific control for the other solutions. Due to the huge time needed by
some architectures, not every solutions has been analyzed. However, this should
not be seen as a limitation because the conclusions should be already clear.

Table 6.1: Classes of estimators

Class name Architecture
Baseline [13], [20 20], [20 20 20]

Multiple flight tests [13], [20 20], [20 20 20]
Manoeuver-based CV [13], [20 20], [20 20 20]
Data augmentation [13]

Data augmentation Manoeuver-based CV [13]

Table 6.2: Additional hyperparameters common to the various tests

Activation function sigmoidal
Codomain of the input and target map {∀x ∈ R | −1 ≤ x ≤ 1}

Maximum number of iteration 1000
Sampling time 0.5 s
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For sake of clarity, Table 6.1 collects the classes of estimators used to verify
the proposed methods. Table 6.2 gives details that are in common to the various
estimators.

6.1.1 Definition of the baseline estimator
The TS of the baseline networks is composed by a single flight segment contain-

ing sawtooth glides and excitation of the phugoid mode (Flight ID 6 in Table 3.7).
These manoeuvers are mainly contained into the longitudinal plane. Table 6.3
collects the main details of the Baseline estimator.

Figure 6.1 shows the coverage of the (α, β) envelope given by the selected TS.
It is clear from Figure 6.1 that some regions are not considered by the TS, for
instance {∀ (α, β) | 4° < α < 6° ∧ −5° < β < 0°}. A high (or even low) uncertainty
in those regions cannot be taken as granted. Testing the VS with values contained in
those regions will only verify the generalization capabilities of the NN. The marginal
distributions that define the hypercube for the Baseline NNs is shown in Figure 6.2.
The hybercube of the Baseline shows several outliers, corresponding to the red
crosses. This is an index of too narrow distributions and this can negatively affects
the final performance. Figure 6.3 shows the standard deviation of the residuals.

Table 6.3: Baseline definition

Number of flight test for training 1
Size of TS 38 000

Time duration of the TS 1900 s
Architectures 1 hidden layer 13 neurons

2 hidden layer [ 20 20 ] neurons
3 hidden layer [ 20 20 20 ] neurons

Input pattern : αin, qc, q̇c, ax, ay, az, θ, φ, p, q, r
Network output: ∆α

Heuristic rule Levenberg-Marquardt
TS partitioning 70 % training, 15 % validation, 15 % test
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Figure 6.1: Distribution of the TS on the AOA/AOS envelope, baseline

Figure 6.2: Marginal distributions of the TS, baseline (Unit of measurements as
follows: angle in [°], angular rate in [rad s−1], pressure in [Pa], time in [s])
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Figure 6.3: Standard deviation of the residuals, baseline (Unit of measurements as
follows: angle in [°], angular rate in [rad s−1], pressure in [Pa], time in [s])
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6.1.2 Multiple flight test training
The same architecture showed in Table 6.3 is applied on a dataset bigger than

the one of the baseline, composed of several flight tests.
Manoeuvers out of the longitudinal plane have been added to the TS. A more

generic training is in accordance with the practical habit of applying supervised
learning on a wide portion of the input-target space. In this way, the test set
becomes more likely a subset of the TS obtaining better generalization error per-
formance [114]. For this class of estimator, also the selection of one of the NNs
among several re-training is conducted. The selected network is one over 10 train-
ing.

Figure 6.4: Distribution of the baseline TS on the AOA/AOS envelope (red) su-
perimposed to the one of the multi-flight test
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Figure 6.5: Marginal distributions of the TS, multi-flight test (Unit of measure-
ments as follows: angle in [°], angular rate in [rad s−1], pressure in [Pa], time in
[s])

Figure 6.6: Standard deviation of the residuals, multi-flight test (Unit of measure-
ments as follows: angle in [°], angular rate in [rad s−1], pressure in [Pa], time in
[s])
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6.1.3 Manoeuver-based CV network
This section describes the results obtained with the application of the manoeuver-

based CV to the training of the MLP. As a recall, this method applies the entire
dataset and it tries different combinations of the subsets of the dataset to find the
best TS. The number of partitions have been set to 10 (10-fold CV).

Figure 6.7 shows the different coverage on the AOA/AOS envelope of the TS
allowed by the CV technique.

Figure 6.8 shows the definition of the hypercube using the selected subset of the
TS. The standard deviation of the residuals is reported in Figure 6.9.

Also in this case, the analysis has been repeated varying the architecture of the
NN. It could be expected that different NNs trained from scratch with different
capacity might select a different TS. It is quite notable that the selected subset
of data for training is always the same, that is the fifth one as can be seen from
Figure 6.10. This could be the indication that the selected subset is actually the
most adapt for the VS design, given the available dataset.

As negative outcome, the selected TS is almost the entire dataset. The best
combination excludes from the TS only some sawtooth glides from different flights.
In details, the entire segment of sawtooth glides of the flight ID 6 is excluded,
together with a section of the same manoeuver conducted in flight ID 1 and 2.
However, this is not completely a negative aspect. In fact, it means that the other
manoeuvers are essential for the training operation. The exclusion of some sawtooth
glides can also be caused by an unbalancement of the available manoeuvers inside
the dataset. In fact, there are 5 flight tests containing sawtooth glides (with several
repetitions for each one), whereas only one flight segment contain SHSS, 2 flight
segments contain Phugoid excitation and other 2 contain Dutch-Roll excitation.

It must be noticed that the ratio of test points on training points is 26.68 % and
it is the higher among the other combinations, as can be seen from Figure 6.10.

The results of the MBCV method can be visualized both in terms of statistics
of the training and validation error. Figure 6.11 shows the comparison of the
NSSE obtained using the 10 different subsets with respect to the average value.
Figure 6.12 shows the mean, maximum and standard deviation of the deviation ϵ
expressed by Eq. 4.4 among the various manoeuvers. As a remark, a negative value
means an improvement given by the NN with respect to the estimator α̂.
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Figure 6.7: Distribution of the baseline TS on the AOA/AOS envelope (red) su-
perimposed to the one selected by the CV method.

Figure 6.8: Marginal distributions of the TS, CV test (Unit of measurements as
follows: angle in [°], angular rate in [rad s−1], pressure in [Pa], time in [s])
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Figure 6.9: Standard deviation of the residuals, CV test (Unit of measurements as
follows: angle in [°], angular rate in [rad s−1], pressure in [Pa], time in [s])

Figure 6.10: Size of the various combinations analysed during the manoeuver-based
CV. The red circle points at the best partition in terms of training performance.
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Figure 6.11: Validation NSSE values obtained with the application of the MBCV
method

Figure 6.12: Statistics of ϵ among the various manoeuvers
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6.1.4 Training with data augmentation
This section describes the results obtained with the data augmentation tech-

niques to the training of the MLP.
Figure 6.13 shows the different coverage on the AOA/AOS envelope of the TS

allowed by the CV technique.
Figure 6.14 shows some differences with respect to the corresponding charts of

the previous methods. The introduction of a set of entries in an highly concentrated
region results in more narrowed PDFs of the various variables. This can negatively
affect the training phase.

As can be seen in Figure 6.15, the data coming from the flight simulator has
reduced the standard deviation of the residuals, except for the q variable.

Figure 6.13: Distribution of the baseline TS on the AOA/AOS envelope (red)
superimposed to the one of the data augmentation test

On the augmented dataset, it is possible to run the automatic trim detection
algorithm of Chapter 4 to verify if the region of the quasi-stationary flight conditions
has been actually improved in terms of coverage. Moreover, it is possible to partially
verify the consistency of the simulations with the real AC. In Figure 6.16 the CL−α
plot is shown. For this class of estimators, only the single hidden layer [13] is
designed.
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Figure 6.14: Marginal distributions of the TS, data augmentation test (Unit of
measurements as follows: angle in [°], angular rate in [rad s−1], pressure in [Pa],
time in [s])

Figure 6.15: Standard deviation of the residuals, data augmentation test (Unit of
measurements as follows: angle in [°], angular rate in [rad s−1], pressure in [Pa],
time in [s])
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Figure 6.16: Comparison between simulated and flight test quasi-stationary condi-
tions on the CL−α plot (the circles represent the simulated points, the diamonds the
flight test points) α0 = 6.2007°, CL,α = 0.086 994 °−1 (4.9844 rad−1), R2 = 0.99988
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6.1.5 Manoeuver-based CV training with data augmenta-
tion

Due to the huge size of the dataset, the training conducted in Sec. 6.1.4 might
become intractable. To understand if the combination of the methods can be
beneficial in terms of final uncertainty, the manoeuver-based CV is conducted on
the augmented dataset. For sake of clarity the method is henceforth reported as
MBCVDA. Moreover, for aforementioned reasons, It becomes important if the CV
procedure will discard the simulated trajectories. In fact, this behaviour indicates a
poor matching of the simulated aircraft with the real one or that no improvement is
added with the data augmentation. Also for this class, only the single hidden layer
network is designed. As can be seen from Figure 6.20, the ratio of the cardinality
of the test set on the cardinality of the TS is only 9.7 %, lower than the acceptable.

Figure 6.17: Distribution of the baseline TS on the AOA/AOS envelope (red)
superimposed to the one selected by the CV method on the data augmented dataset

6.1.6 Analysis conducted and computational cost
Due to the time needed for each analysis and because of the fact that in some

case the analysis can be considered unneeded on a particular solution, only the
most important tests have been conducted. This section reports the test plan that
brought the results that have been reported in this Chapter. To conclude this
section, the time needed to train the NNs is reported in Table 6.4. The Baseline
and the multiflight NNs have been trained on a personal laptop in parallel mode
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Figure 6.18: Marginal distributions of the data augmentation, CV test on aug-
mented dataset (Unit of measurements as follows: angle in [°], angular rate in
[rad s−1], pressure in [Pa], time in [s])

Figure 6.19: Standard deviation of the residuals, CV test on augmented dataset
(Unit of measurements as follows: angle in [°], angular rate in [rad s−1], pressure in
[Pa], time in [s])

with computation shared on the Central Processing Unit (CPU) Intel i7-7700HQ
and on the Graphics Processing Unit (GPU) nVidia GeForce GTX1050. The CV
and data augmentation methods have been carried out on the High Performance
Computing (HPC) facility of the Politecnico di Torino called Legion. Legion is
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Figure 6.20: Size of the various combinations analysed during the manoeuver-based
CV with data augmentation. The red circle points at the best partition in terms
of training performance.

equipped with Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores and
nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores. For additional details on the
HPC available at Politecnico di Torino visit http://hpc.polito.it.

Table 6.4: Time needed for training and hardware list

Method [13] [20 20] [20 20 20]
Baseline 15.4 s 237.5 s 557.4 s

Multiple flights 329.9 s 420.1 s 581.8 s
Manoeuver-based CV 620 s 988.2 s 1447.8 s

MBCVDA 20 812.7 s N/A N/A

The sensitivity analysis lasted 1300 s and 4550 s on the HPC, depending on the
architecture. The computation of the TS analysis based on similarity measurements
has been conducted only on the Manoeuver-based CV solution because it was con-
sidered the most promising. The analysis has been splitted in 10 jobs that required
more than 9.5 hours (85 CPU hours) and 20 GB of RAM each, corresponding to a
total amount of 850 CPU hours.
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6.2 Deviation PDF comparison
Before showing the results of the uncertainty estimation, the PDF of the devia-

tion between the target αT , the output of the initial estimation α̂ and the output of
the VS α̃ are given in this section. Although this analysis can be seen as part of the
uncertainty estimation, it still gives more understandable results than the analysis
of the timeseries. As for the uncertainty analysis, this evaluation is conducted on
the entire dataset, not only on the Test Set.

Figure 6.21: Comparison of the PDFs and CDFs obtained with various architectures
and methods on the entire dataset for the AOA estimator.

Figure 6.21 shows the PDFs and CFDs obtained with the various methods on
the entire dataset. It can be seen that the CV methods greatly improves the
Baseline results, whereas the DA results in broader distributions. As anticipated,
the architecture has little effect on the results and there is not a strong correlation
between the number of connections and the final error distribution. Only in the case
of the multiple flight TS there is an important improvement with a 3-hidden layer
NN with respect to a lower number of hidden layers. Moreover, being the multiple
flight NN selected among 10 re-trained networks, and because of the fact that the
training metric MSE is homogeneous among the various NNs, this improvement
might not be accounted to overfitting.
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6.3 Uncertainty comparison
This kind of synthetic sensor must be characterized with a final uncertainty value

with respect to the reference quantity. However, the behaviour of the isolated NN
can also be interesting. For this reason, also the distribution of the deviation of
the NN response with respect to nominal output has been analysed. As mentioned
in Chapter 4, the results reported in this section are based on the entire reference
dataset, containing both the TS and the Test Set. The following heatmaps contain
the entire dataset considered in this dissertation.

Figure 6.22 shows that the increased capacity of the network is not gener-
ally beneficial in terms of final uncertainty, independently from the applied train-
ing technique. Moreover, it seems that the major improvement given by the
Manoevuer-based CV is an increased homogeneity of the uncertainty.

Figure 6.23 shows the maximum error due to the uncertainty propagation. This
figure clarifies the positive effects of the CV, that avoids peaks in the estimation
error.

Figure 6.24 shows that the Manoeuver-based CV reduces the dispersion between
flight conditions at the same pair (α, β). On the contrary, the sensitivity to the
flight condition increases with the network capacity. Please note that the color
scale in Figure 6.24e has been cut to improve the visibility of the other maps. In
fact, the Baseline [20 20 20] network reaches a peak of 1.2° of standard deviation
of the uncertainty value.

As mentioned before, the DA techniques can be applied when the model used to
generate the augmented dataset matches perfectly to the desired AC. Any difference
between the two would bring to error in the training phase of the NN. Excluding the
extreme case of non-convergence of the training, the results can still be unacceptable
or, as happen in this case, they can make useless the application of the DA itself.
This has been shown in Figure 6.25, where 3 NNs with the same architecture have
been trained respectively using multiple flight tests, multiple flight test and DA and
MBCVDA. Although MBCVDA reduces the uncertainty at low AOA with respect
to simply using multiple flights to build the TS, the results show no improvement
on the uncertainty of the VS with respect to the MBCV method, which remains
the best in terms of every estimated metrics.
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(a) Baseline [13] (b) CV [13]

(c) Baseline [20 20] (d) CV [20 20]

(e) Baseline [20 20 20] (f) CV [20 20 20]

Figure 6.22: Comparison of the 1σ distributions on the AOA/AOS envelope ob-
tained using different architectures and techniques
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(a) Baseline [13] (b) CV [13]

(c) Baseline [20 20] (d) CV [20 20]

(e) Baseline [20 20 20] (f) CV [20 20 20]

Figure 6.23: Comparison of the maximum error distributions on the AOA/AOS
envelope obtained using different architectures and techniques
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(a) Baseline [13] (b) CV [13]

(c) Baseline [20 20] (d) CV [20 20]

(e) Baseline [20 20 20] (max value = 1.2°) (f) CV [20 20 20]

Figure 6.24: Comparison of the standard deviation of the uncertainty distributions
on the AOA/AOS envelope (Effect of the flight condition at equal pair (α, β)
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(a) Multiple flight test [13], 1σ (b) Multiple flight test [13], Dispersion of
1σ

(c) Multiple flight test and DA [13] (d) Multiple flight test and DA [13], Dis-
persion of 1σ

(e) MBCVDA [13] (f) MBCVDA [13], Dispersion of 1σ

Figure 6.25: Comparison on the AOA/AOS envelope of using multiple flights, DA
and MBCVDA 135
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6.4 Analysis of the most influential input variable
The analysis shown in Sec. 6.3 can be repeated analyzing the effect of each

input variable one at a time. Using the same input covariance matrix applied in
Sec. 6.3, it is possible to understand which is the most influential input variable with
important consequences on the necessary equipment for an actual implementation.
A white noise has been injected with the standard deviation reported in the figure.
This value has been defined by experience and previous works. Results obtained for
the CV [20 20] are shown in Figure 6.26. The reported heatmaps show that, except
for the q̇c signal which seems to have a very little effect, the contribution are almost
homogeneous. Both the attitude angles (θ and φ) acts with less then 0.01° in the
final uncertainty. For the CV [20 20] network, the major source of uncertainty is
the impact pressure. These results can be compared with the one obtained at the
end of Chap. 1 using genetic programming. Also in that case q̇c has a low impact
on the final performance and the same holds for the φ angle. For what concern the
acceleration ay, the genetic programming discarded that variable, whereas the NN
training revealed a certain sensitivity to ay. Both analysis, genetic programming
and NN training, confirm the importance of a reliable measurement of the impact
pressure qc.
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(a) α̂, σ = 0.25° (b) θ, σ = 0.1° (c) φ, σ = 0.1°

(d) ax, σ = 0.3 m s−2 (e) ay, σ = 0.3 m s−2 (f) az, σ = 0.3 m s−2

(g) p, σ = 0.8 ° s−1 (h) q, σ = 0.8 ° s−1 (i) r, σ = 0.8 ° s−1

(j) qc, σ = 50 Pa (k) q̇c, σ = 0.2 Pa s−1

Figure 6.26
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6.5 Feature maps comparison
This section shows the comparison of the feature maps. They differ from the

uncertainty charts in the variables used in the representation. In fact, the feature
map is based on the calculation of nondimensional variables X and Y . The com-
parison is shown from Figure 6.27 to Figure 6.29. Also in this case, the MBCV
method shows homogeneity in the estimation error also with respect to different
AC state vectors. The Baseline network, on the contrary, increases the estimation
error when the flight condition is highly asymmetrical or dynamic. The MBCV
method shows also that the selection of the TS can actually reduce the ambiguity
given by the NN architecture.

(a) Baseline [13] (b) CV [13]

Figure 6.27: Comparison of the feature maps (part 1/3)
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(a) Baseline [20 20] (b) CV [20 20]

Figure 6.28: Comparison of the feature maps (part 2/3)

(a) Baseline [20 20 20] (b) CV [20 20 20]

Figure 6.29: Comparison of the feature maps (part 3/3)
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6.6 Timeseries comparison
As mentioned before, the comparison of the timeseries is not a satisfactory

instrument. However, this section gives some details from this point of view.

550 600 650 700 750 800 850 900 950 1000 1050 1100

5

10

15

550 600 650 700 750 800 850 900 950 1000 1050 1100
-10

-5

0

5

Figure 6.30: Details of the results on a particular section of a flight.

Figure 6.30 shows the effect of the network capacity during a particular flight
condition. Some outliers have been observed in every architecture, at the same
instant. These outliers has not been injected by α̂ and hence they come directly
from the evaluation of ∆αNN using the NN. An apparent beneficial effect of the
increased NN capacity can be understood from this plot. However, this is not
confirmed by Figure 6.31, where the Baseline [20 20 20] VS clearly deviates from the
other VSs during flight conditions that seems coped well even with 1 hidden layer
with 13 neurons. This could be a representation of the overfitting encountered using
an increased capacity on a set of data with unsufficient cardinality. The observed
deviation persists for an unneglectable time length (about 45 s) and a drop of 5°
has been observed at 890 s.

Figure 6.32 shows the results of the VS designed following the manoeuver-based
CV method. No outliers have been observed and the error is less correlated to the
flight condition than in Figure 6.30.

The same observations can be gathered from Figure 6.33 and 6.34. In Figure 6.34
can also be found another case of high capacity network (CV [20 20 20]) with an

140



6.6 – Timeseries comparison
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Figure 6.31: Details of the results on a particular section of a flight.

error higher than the version with less capacity, this case can again be lead back to
overfitting.

The comparison between Figure 6.35 and Figure 6.36 shows that the promising
manoeuver-based CV method is not able to completely reduce the error between
1920 s and 1940 s. Some outliers have also been observed during this fight.
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Figure 6.32: Details of the results on a particular section of a flight.
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Figure 6.33: Details of the results on a particular section of a flight.
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Figure 6.34: Details of the results on a particular section of a flight.
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Figure 6.35: Details of the results on a particular section of a flight.
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Figure 6.36: Details of the results on a particular section of a flight.
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6.7 TS analysis
This last section of results concern the analysis of the TS following the methods

shown in Chap. 4.
The performance of the VSs designed following the Manoeuver-based CV are

considered the best among the various one. This should be confirmed by the value
of the Density-Closeness function dnrd, the LC and AC metrics. Moreover, it is
interesting to compare the feature maps.

Figure 6.37 shows the distribution of the error normalized by the MSE obtained
at the end of the training with respect to the value of the dnrd metric assumed by
the entries of the dataset. The trend confirms the thesis that increasing the dnrd

metric, the test error decreases quicker than linearly.
Figure 6.38 shows the value assumed by the LC and AC metrics on the various

combinations generated by the Manoeuver-based CV method. It is interesting to
notice that the subset with the minimum value of LC and AC is also the one that
gives the best performance of the VS. Figure 6.39 shows how the TSs differ in
terms of dnrd values. It is shown that the best TS distributes on higher values
than the other TSs. Although It does not have the higher minimum value and the
TS # 8 seems to cover higher values than # 5, TS # 5 has the higher maximum
value of dnrd. It is hence sufficient to have some points at higher dnrd to obtain
better performance in training. This aspect can be explained by the fact that the
relationship between the error and dnrd is nonlinear. The observation in Figure 6.39
gives an evidence for the validity of the TS analysis method.

Figure 6.37: Normalized error distribution with respect to the dnrd value.
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Figure 6.38: Values assumed by LC and AC metrics on the different combinations
of TS generated during the Manoeuver-based CV.

Figure 6.39: Distributions of the dnrd among the different TSs.

6.8 Design of the AOS sensor
The methods proposed in this dissertation can be used also in the design of a

VS for the AOS. However, the number of graphs that should be reported here is
too high. For this reason, only the final design is reported. Given the input vector
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in Eq. 1.10, the MBCV method has been conducted on the same dataset applied
for the AOA target. The results of the MBCV method in terms of NSSE are shown
in Figure 6.40, 6.41 and 6.42. The final uncertainty on the AOS variable is higher
than the one obtained for AOA. This is in accordance with the results found in
literature. This can be seen in terms of estimation error in Figure 6.43 and on
the uncertainty maps in Figure 6.44. Please note that in Figure 6.44c the colorbar
has been cut at 20° for sake of clarity but the maximum error shows a peak at
(α, β) = (5.26°, 0.79°) of 50°.

Figure 6.40: Validation NSSE values obtained with the application of the MBCV
method, AOS
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Figure 6.41: Size of the various combinations analysed during the manoeuver-based
CV. The red circle points at the best partition in terms of training performance,
AOS

Figure 6.42: Statistics of ϵ among the various manoeuvers, AOS
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Figure 6.43: Comparison of the PDFs and CDFs obtained with MBCV using the
same dataset for the estimation of AOA and AOS.
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(a) 1σ values on the AOA/AOS envelope (b) Dispersion of the 1σ values on the
AOA/AOS envelope

(c) Maximum error on the AOA/AOS en-
velope (max value = 50°)

Figure 6.44: Uncertainty charts for the AOS VS
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Chapter 7

Conclusions and future work

The aeronautical industry has recently seen two accidents with fatal results due
to technical reasons on the Boeing 737 MAX 8. One of the causes was a fault in the
physical sensor applied to measure the AOA. An alternative to the physical sensor
can be the implementation of a synthetic sensor. Although a huge literature exists
on the subject of synthetic sensors, most of the technological solutions proposed by
researchers didn’t go further TRL 5. Moreover, whereas for large AC the hardware
redundancy can still be applied to cope with the fact that the ADS is a critical
system, this is not always true on uncoming platforms as UAV or UAM.

The main reason behind the difficulty on the diffusion of VS has been identi-
fied on the total absence of a shared and applied metrological theory that could
support a procedural design and hence give the possibility to define a regulatory
basis for this kind of system. Starting from the literature review, this disserta-
tion focuses on NN-based VS and it describes the typical approaches applied to
demonstrate the capabilities of a VS based on NN. Then, several design methods
are proposed and analysed in order to provide the measurement uncertainty of a
synthetic sensors with a certain level of confidence. The results have been shown
for the Smart-ADAHRS, a patented method based on NN. Some of them did not
show the improvements able to justify its application. In Figure 7.1 the methods
proposed in this dissertation have been classified based on their applicability. DA
has been excluded from the Air Data estimation group because it seems unpractical
to build a model so accurate to augment the dataset. This does not exclude that it
could be done. At the same time, the Jacobian and Hessian matrices are not really
useful in the design of an air data VS because of the nonlinearity of the functions.

The traditional comparison of the timeseries of the output and of the target has
been showed to be useful but also limited and tricky. Due to the dimension of the
problem in terms of number of variables involved, the visualization on a chart of
which variable is the source of error during a particular manoeuver is not always
possible. Moreover, the length of the timeseries considered in this dissertation is
relevant and not limited to brief flight sections as often found in literature. This

151



7 – Conclusions and future work

Figure 7.1: Subdivision of the methods based on the performance shown in this
dissertation.

aspect increase the time needed to analyse the results once the design of a VS
is concluded. Because of the engineering process of design is recursive, the time
needed to design a VS increases to unacceptable level.

The majority of the proposed methods are then based on statistical analysis
and data mining. Some of them analyse the data in order to provide indications on
the results that can be obtained training a NN-based VS. Other analyse the results
to give a global metric and they can be applied to almost any kind of VS.

To begin with, the PDF of the estimation error has been proposed, analogously
to what is done for other kind of sensors. A kernel-based density estimation method
has been applied to show that the MLP actually improves the initial estimation.
It is interesting to notice the shape of the PDF, which is monomodal and almost
simmetrical with mode close to 0°.

In terms of NN training analysis, the TS inclusivity verification has been intro-
duced by means of hypercube coverage (following the procedure already presented
by the same author in [110]). Although the marginal distributions does not provide
information on the signal correlations, it still provides a first hint to the designer if
the NN can asymptotically tend to the desired function thanks to the result of the
UAT. If a test set contains several points outside the bounds provided by the TS,
then nothing can be said a priori on the estimation error on those cases.

A modification of the CV procedure has been introduced. The manoeuver-based
CV starts from the output of the automatic trim detector and it partitions a flight
log based on its steady flight conditions. This method can help to find which are
the manoeuvers that improve the training of a TS. The main difficulty is the ratio of
number of entries applied for training and testing that must be controlled manually.

A new procedure for the analysis of a TS has been introduced. It is based on
the definition of multivariate regression that is proven to be the result of an ideal
training of an MLP. The analysis of the distribution of the target values given
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the similar input vector is used to define three similarity measures: the Density-
Closeness dnrd function, the area of the cardinality of stationary points in the target
conditional distribution with respect to the number of clusters AC and the mean
value of the same variable on the first n subdivision LC . All of them have been
tested both on a controlled situation based on an analytical function and on the
flight data object of this dissertation. It has been empirically demonstrated that
if a TS contains higher values of dnrd, it results in a better training. In fact, the
manoeuver-based CV converged to the same TS indicated as the better one by this
analysis. The same agreement has been found studying the LC and AC values.
The TS selected by the manoevuer-based CV is the one with minimum LC and AC

value at the same time. This provides an evidence on the fact that if the number
of stationary points quickly drops, the TS is better distributed.

Also, a data reduction has been proposed, similarly to what is done in ML. It
culminates in a feature map, that shows the 84-th percentile on a 2D map related to
the flight condition. On this map, the origin coincides with the symmetric steady
state condition, moving along one of the two axis it is introduced asymmetry or
unsteady motion. This chart helped to find a defect of the Smart-ADAHRS on the
steady-state condition. In this case, the uncertainty was higher than in dynamic
conditions, due to unbalancing of the TS. Thanks to this method, the problem has
been identified and it was possible to act in order to increase the homogeneity in
the results.

Another important aspect introduced is the sensitivity analysis of VS. The pro-
cedure traditionally applied to study the uncertainty related to nonlinear function
has been used and the results have been reported on a AOA/AOS chart, as required
by several aeronautical industry. This method allowed to compare the effect of the
different MLP architectures and of the Manoeuver-based CV. Figures give evidence
of the overfitting condition that can occour with an increased capacity and on the
regularization that introduces the CV method. It is interesting that in most of the
cases the ambiguity of the AOA/AOS chart is not problematic. In fact, each (α, β)
point can be associated to several flight conditions, steady or unsteady. However,
the dispersion of the distribution at any point is low. This is in contrast with the
previous assumption of increased uncertainty in stationarity condition. However,
it must be reminded that it depends of the number of points available.

Moreover, the recursive formulation of Jacobian and Hessian matrix of MLP
have been analytically derived. Although these matrices can have several uses,
in this dissertation they have been applied for the sensitivity analysis based on
a linearization of the function. The nonlinearity of the function represented by
the MLP together with the difficulty of definition of the input covariance matrix
brought uncertainty values higher than those obtained with previous methods.

Data aumentation has been proposed to improve results in stationary flight
condition. The additional set of data have been generated in two ways. First, a
nonlinear AC model has been obtained based on the DATCOM formulation. A set
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of simulations regarding the stick-fixed dynamics of a perturbed equilibrium con-
dition has been conducted. Second, a recent paradigm of ML called GAN has been
used. Unfortunately, results showed no improvement given by data augmentation.
The reason has been associated to the matching of the model with the real AC.
This is actually an evidence of the fact that the manual definition of a model is not
a practical way of design a VS.

Starting from these methods, it is possible to define a shared metrological pro-
cedure so that a regulation on synthetic estimation can be obtained. A design flow
is hence proposed as follows:

• analysis of the coverage of the α, β envelope for TS and test set

• analysis of the marginal distributions

• verification that the number of test points is at least the 15 % (better 25 %)
of the TS cardinality, as common in ML, also in case of non-ML kernel

• analysis of the PDF/CDF of the estimation error

• estimation of the uncertainty propagation charts and use of this datum as
comparison metrics

• application of the CV method is highly recommended

Additional architectural features can be added to the VS. A saturation of the
output of the NN could avoid peaks coming from erroneous training. A NN can
be trained to estimate AOA and AOS at the same time. Avoiding the application
of the initial estimation α̂ as input signal to the NN reduces the sensitivity to the
wind. However, those design choices can be analyzed only when the adopted design
flow is able to catch the real differences. The suggested design flow can solve this
ambiguity.

Future research can focus on both research and development. A natural pro-
gression of this work is the implementation of these techniques in the EU project
MIDAS. The demonstration of the validity of this preliminary design flow into a
project with TRL 7 could lead a transition to a shared procedure that can, opti-
mistically, translate into a set of certification guidance notes. Moreover, further
work could help a better understanding of the mechanism behind the data analysis
techniques. From the applied machine learning point of view, a set of theoretically
justified techniques would be of great help in the design of innovative systems.
However, much effort should be done in demonstrating the validity of the approach
based on similarity function, also in terms of comparison with methods that are
already known in statistical analysis. At the same time, although the data augmen-
tation techniques has showed to be not effective in this case, an advanced model
identification method might help to obtain a set of augmented data that can have a
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better fitting with the flight test recordings. Moreover, the quasi-steady state iden-
tification algorithm could be enhanced to mine also other flight conditions. This
would ease the identification of the data for the evaluation of particular aerody-
namic derivatives.

Following these techniques is considered by the author as the minimum set of
operations needed in order to demonstrate the validity of a VS. Once these results
are obtained, then it is possible to think to the actual application of synthetic sensor
in real AC, potentially saving human lives.
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