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An algorithm for the optimal waste collection in
urban areas

Edoardo Fadda, Guido Perboli, and Roberto Tadei

Abstract In waste collection, one of the most important decision regards the rout-
ing and the scheduling of the service. In this context, during the Optimization for
Networked Data in Environmental Urban Waste Collection (ONDE-UWC) project,
an innovative optimization method for tackling those decisions has been developed
in collaboration with the company Cidiu Spa (www.cidiu.to.it). The importance of
the method is three-folds. First, it is innovative because it does not impose periodic
routes. Second, it uses information coming from IoT sensors in order to build sta-
tistical models for the waste collection evolution. Third, the developed method has
shown great usability and performance in the real field.

Key words: Waste Management, Scheduling Heuristic, Routing, Heuristic

1 Introduction

Waste collection in urban areas is a challenging problem due to urbanization and to
consumption growth. The citizens of the European Union generate more than 2.3
billion tons of refuse each year. Although municipal waste represents only about
10% of total waste [5], it is of central importance for city livability. Furthermore,
the efficiency of the collection services directly influences the tax amount, the emis-
sions of pollutant, the health of citizens and visual pollution. Thus, improving the
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efficiency of waste management results in substantial advantages for the whole com-
munity.

In this context, this paper presents the results of the project Optimization for Net-
worked Data in Environmental Urban Waste Collection (ONDE-UWC) (http://onde.city).
This project was funded by the Regional Council of Piemonte. The importance of
the proposed approach is twofold. First, while in the literature the waste collection
problem is usually considered in the periodic settings (i.e., the dumpsters are forced
to be visit periodically [9, 11]), the proposed approach removes this constraint . Sec-
ond, the heuristic developed finds good solutions in a reasonable amount of time.
For these reasons, the proposed approach has been adopted by the Cidiu Spa IT
system.

The present paper is an extension of [6] including the exposition of the statistical
model and the description of the IoT effects on the mathematical model. It is orga-
nized as follows: in Section 2, the waste collection problem is described, in Section
3 we revise the literature of the problem. In Section 4 we present the mathematical
model, in Section 5 we describe the solution approach and in Section 6 we show the
numerical results. Finally, in Section 7 we present the conclusion of the work and
we depict future lines of research.

2 Problem description

Cidiu S.p.A. is a company dealing with environmental-services. It collects mu-
nicipal waste in the towns of Alpignano, Buttigliera Alta, Collegno, Druento,
Grugliasco, Pianezza, Rivoli, Rosta, San Gillio, and Venaria Reale (Figure 1). It
is responsible for the collection of five types of waste: paper, solid urban refuse,
plastic, metallic materials, and glass.

Cidiu S.p.A. is organized in two independent headquarters, one in Rivoli and one
in Collegno. Each one of them manages the waste-collection operations in its area
without interacting with the other one.

From Cidiu S.p.A. experience, each dumpster must be voided before it is 80
percent full.

The fleet of vehicles used to collect the waste is composed by 8 trucks (4 for each
headquarter). Each vehicle must start its activity from one headquarter, travel to a
predetermined set of dumpsters from which it collects waste, go to the dump, and
return to the headquarter.

Each vehicle is equipped with an IoT sensor able to measure the weight of the
dumpsters that it collects. This information can be exploited in several ways. First,
it is possible to develop a statistical model for forecasting the daily increment of the
waste quantity in each dumpster. Second, it is possible to monitor the production
of waste and to react to sudden increments of production (e.g. the arrival of more
people in a zone of the city).

Finally, it is possible to share the data with the population in order to improve
the awareness of the waste collection activities. It is worthwhile noting that the
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Fig. 1 The Municipalities Served by Cidiu S.p.A. Are Geographically Dispersed. Reprinted by
permission, E. Fadda L.Gobbato, G.Perboli, M.Rosano, R. Tadei, ”Waste Collection in Urban Ar-
eas: A Case Study”, Interfaces, 48, 4, 2018. Copyright 2018, the Institute for Operations Research
and the Management Sciences, 5521 Research Park Drive, Suite 200, Catonsville, Maryland 21228
USA.

vehicles are equipped with other IoT sensors such as the GPS tracking, sensors of
the vehicle state, ecc. Nevertheless, we do not consider those sensors because they
do not provide information useful for the optimization problem.

Cidiu S.p.A. organizes its operations in three time shifts. The first two are done
in the morning (from 6 a.m. to 12 a.m.) and in the afternoon (from 1 p.m. to 7 p.m.);
they have the same cost. Instead, the third time shift is more expensive and it is
done during the night (from 10 p.m. to 4 a.m.). For this reason, one of the principal
concern of Cidiu S.p.A. is to reduce the usage of the third time shifts.

The decisions that we want to optimize are how many vehicles to use in each
time shift, which type of waste to collect and the list of dumpsters to visit.

The computation of the routing and scheduling must be computed in less than 6
hours (the duration of a time shift), in this way the Cidiu S.p.A. technical staff can
check the solution and send it to the drivers.

It is important to remark that the problem description was obtained by using the
GUEST methodology. This methodology allows people with different background
to share their knowledge in a fast and easy way. We do not describe this methodol-
ogy here because it is out of the topic (the interested reader is referred to [6]).

3 Literature review

The literature about waste collection and operation research is very wide. To the
authors knowledge one of the most recent literature review about the topic is [7].
It classifies the literature in strategic, tactical, and operational decisions by consid-
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ering the time horizon of the decisions. Strategic decisions deal with long range
decisions such as building new facilities or buying new vehicles. Tactical decisions
deal with medium range decisions such as dumpster locations. Instead, operational
decisions deal with short range decisions such as the choice of day-to-day activities.
The present paper belongs to this last branch. Due to its importance several works in
this field have been done. The main stream of the literature about waste collection
focuses in two problems: the computation of optimal routes for vehicles (see [11]
and [4]) and the research for the optimal emptying frequency (see [8] and [9]). In
particular, the papers dealing with this second problem compute the optimal empty-
ing frequency of each dumpster and then they use this information in order to solve
a periodic capacitated arc routing problem (e.g. [3]).

As stated above, we consider the problem of computing the scheduling and rout-
ing of waste collection, without imposing a fixed voiding frequency. Thus, we allow
the solutions to define the time of a most suitable next visit to empty each dumpster.
This approach has received less attention because companies often have agreements
with the municipalities that involve fixed frequencies and because aperiodic solution
needs a model of the growth rate of the waste in each dumpster.

Although the aperiodic approach is less explored in the literature, another study
([10]) not considering fixed routes is available. It presents a heuristic for applying
the inventory-routing problem to waste collection, considering data from sensor-
equipped containers.

Our study and that of [10] are different for several reasons. First, [10] consid-
ers a mathematical model addressing only vehicle routing decisions. Instead, our
approach considers also the scheduling of the operations. Second, [10] uses sensor-
equipped containers to forecast the level of fullness of each dumpster. This is, from
the application point of view, a risky choice because the company must do the main-
tenance of all the dumpsters. Instead, having the sensors on the vehicles is more
reliable and less subject to fault.

4 Mathematical formulation and solution method

Let I be the set of available vehicles, S the set of garbage types, T the set of time
shifts and J the set of dumpsters. The cardinalities of these sets are I,S,J, and T ,
respectively. Without loss of generality we consider that the set J also includes the
depot ( j = 1) and the dumps ( j = J− S, . . . ,J one for each type of waste). We use
the following parameters:

• cit is the cost of using vehicle ∀ i ∈I during shift t ∈ T . This cost is the same
for the first two time shifts and greater for the third shifts.

• Cmax is the maximum duration of the time shift.
• d j1 j2 is the time that the vehicle requires to go from dumpster j1 ∈J to dumpster

j2 ∈J .
• Ĉ is the maximum volume that a vehicle can transport.
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• ls is the difference between a standard quantity that a vehicle can transport and
the real quantity if it is used to collect waste type s ∈S . This difference results
from the use of a press (i.e., an engine that can compress the waste).

• Θ jt is the increment of volume of waste in dumpster j ∈J during time t ∈
T − 0; Θ jt is the quantity of waste in dumpster j ∈J at the beginning of the
first time shift.

• a is the time that the driver needs to collect the waste from a dumpster. Because
of the technology installed on the vehicles, the collection time is the same for all
dumpsters.

• α is the percentage of the dumpster volume that cannot be exceeded.
• λ is a parameter that weighs the importance of the routing with respect to the

operational costs. It is expressed in e/h and it considers the fuel cost and the
manpower cost of the trip per hour.

• Vj is the capacity of dumpster j.

It is worthwhile noting that the parameters Θ jt ∀ t are computed by using the statis-
tical models of the growth rate of the waste in each dumpster j. These models have
been fitted by using the data recorded from the IoT sensors installed on the vehicles.

The following variables are used:

• wit binary variables assuming value one if vehicle i ∈ I is used during shift
t ∈T

• zist , binary variables assuming value one if vehicle i ∈I collects the garbage of
type s ∈S during shift t ∈T ,

• yi jt , binary variables assuming value one if vehicle i ∈I collects the garbage of
dumpster j ∈J during shift t ∈T

• rit
j1 j2 , binary variable assuming value one if vehicle i∈I during time shift t ∈T

goes from dumpster j1 ∈J to dumpster j2 ∈J .
• xi jt , continuous variables describing the volume of garbage collected by vehicle

i ∈I from dumpster j ∈J during shift t ∈T ,
• Vjt , continuous variables describing the volume of waste present in dumpster

j ∈J at the end of time shift t ∈T .

The mathematical problem describing Cidiu’s activities is:

min
I

∑
i=1

T

∑
t=1

citwit +λ

I

∑
i=1

T

∑
t=1

J

∑
j1=1

J

∑
j2=1

d j1 j2rit
j1 j2 (1)

subject to
wit ≥ yi jt ∀ i, j, t (2)

Myi jt ≥ xi jt ∀ i, j, t (3)

I

∑
i=1

yi jt ≤ 1 ∀ j, t (4)
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xi jt ≥Vjt −M(1− yi jt) ∀ i, j, t (5)

J

∑
j=1

xi jt ≤ Ĉ+
S

∑
s=1

lszist ∀ i, t (6)

Mzist ≥ xi jt ∀ i,s, j ∈J s, t (7)

S

∑
s=1

zist ≤ 1 ∀ i, t (8)

Vj0 =Θ j0 ∀ j (9)

zist ≤ yi(J−s)t ∀ i, t (10)

Vjt =Vjt−1 +Θ jt −
I

∑
i=1

xi jt ∀ j, t 6= 0 (11)

Vjt ≤ αVj ∀ j, t (12)

wit ≥ wi+1,t ∀ t, i = 1 : I−1 (13)

J

∑
j1=1

rit
j j1 = yi jt ∀ t, i, j (14)

J

∑
j1=1

rit
j j1 =

J

∑
j1=1

rit
j1 j ∀ t, i, j (15)

J

∑
j=1

rit
1 j = wit ∀ t, i (16)

J

∑
j=1

rit
j1 = wit ∀ t, i (17)

J

∑
j1=1

J

∑
j2=1

d j1 j2rit
j1 j2 +a

J

∑
j=1

yi jt ≤Cmax ∀ i, t (18)

∑
j1, j2∈S, j1 6= j2

rit
j1 j2 ≤ |S|−1 ∀S⊂J ,S 6= /0 (19)

xi jt ∈ R+ ∀i, j, t

zist ∈ {0,1} ∀i,s, t
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yi jt ∈ {0,1} ∀i, p, t

rit
j1 j2 ∈ {0,1} ∀i, j1, j2, t

Vjt ∈ R+ ∀ j, t

The objective function is the weighted sum of the costs derived from the usage
of a vehicle during a time shift and the routing cost. Constraints (2) and (3) are
logic constraints enforcing that it is not possible to use a vehicle during a time shift,
without activating the corresponding time shift. Constraints (4) enforce that, in each
time shift, no more than one vehicle can void a dumpster. Constraints (5) enforce
that the vehicles must collect all the garbage from the dumpsters it visits. Constraint
(6) enforces the capacity limit of the vehicles; the right hand side considers that for
some types of waste the vehicle can press the waste, thus diminishing the volume.
Constraints (7) and (8) enforce that vehicles cannot collect waste from dumpsters
of different type. Constraints (10) enforce that if a vehicle is used for voiding waste
type s ∈S , it must go to the assigned dump. Constraints (9), (11), and (12) enforce
the model of the evolution of the waste in each dumpster and bound this quantity.
Constraints (13) enforce an order in the vehicle choice. These constraints are used
for breaking the symmetry of the problem by reducing the feasible set. Finally,
constraints (14), (15), (16), (17), (18), and (19) describe the routing problem and
set a maximum time for the activity.

It is worth noting that because of constraints (9) and (11) the value of Vjt can be
modified only by using the variables xi jt . Furthermore, if variables variables xi jt are
null, then constraint (12) is violated because the contributions Θ jt > 0∀ j, t.

4.1 The statistical model

For each dumpster, the company records the waste quantity collected. We call θ̂ jn
the observed quantity of waste collected from dumpster j during the collection n,
θ

p
jn the corresponding random variable, and tn the time (expressed in number of

time shift) of the n-th collection. Given a waste producer p belonging to the set of
waste producers P , we call the quantity of waste produced by p in dumpster j and
collected during the collection n as θ

p
jn. It holds that

θ jn = ∑
p∈P

θ
p
jn (20)

We assume that the quantity of waste observed in each dumpster is produced uni-
formly in time. Furthermore, we suppose that the distributions of the θ̂

p
jn have finite

mean and variance and that the random variables θ̂
p
jn are independent. Furthermore,

we assume that the Lyapunovs condition holds, i.e., there exists δ > 0 such that

lim
n→∞

1

s2+δ
n

n

∑
i=1

E
[
|θ p

jn−µ jn|2+δ

]
= 0, (21)
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where µ jn and sn are respectively the average and the square root of the sum of the
variances of the θ

p
jn.

The Lyapunovs condition guarantees that the moments of the distributions do not
increase too much as it is reasonable to assume. By applying the Lyapunov central
limit theorem [2], we have that the θ jn are normal distributed random variables.
Thus, we use as estimator for the production rate the average daily fulfillment rate:

Θ jt =
1
N

N

∑
n=1

θ̂ jn

(tn− tn−1)
∀ j, t.

5 The Solution Algorithm

The mathematical model described in (1)-(19) is a mixed-integer linear problem.
Thus, the main method to solve the problem exactly is the branch and bound algo-
rithm. Since the number of variables of the model is O(2IJ2T ) (where I is the number
of vehicles, J is the number of dumpsters, and T is the number of time steps) this
is also the worst case complexity of the model. It is easy to see that even for small-
size problems the number of variables is big. In order to overcome this problem we
implement a heuristic method. Based on numerous experiments, we decided to use
a three-phased heuristic. We describe the first phase is Subsection 5.1 and the two
remaining phases in Subsection 5.2.

5.1 Clusterization

Phase 1 solves the exact problem by considering aggregation of dumpsters (called
clusters), instead of single dumpster. The policy chosen for aggregation is geograph-
ical proximity i.e. we group together all the dumpsters located in the same city.
This choice greatly outperforms other kinds of policy such as grouping together
the dumpsters by level of productivity, last visit date, etc. We cannot present the
comparison between the different methods in this paper for length constraints. It is
worthwhile noting that, in order to solve the exact problem with clusters instead of
dumpsters, we have to modify model (1)-(19). In particular, instead of the set J ,
we consider the set C , the set of clusters (with cardinality C). We remove constraints
(4) and (5), because we allow more than one vehicle to collect waste from the same
cluster. This choice increases the size of the feasible solution space and ensures the
feasibility of the problem. In fact, since we consider a low number of clusters and
a vehicle has enough time to visit at least one cluster, the worst feasible solution is
that each vehicle collects exactly one cluster.

Moreover, in the new model the parameter dc1c2 becomes the distance between
cluster c1 and cluster c2, Θct becomes the maximum growth rate of the dumpsters in
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the cluster, Vc the capacity of the cluster and âC becomes the time spent to empty a
cluster. We define them as follows:

1. dc1c2 = min j1∈c1 j2∈c2 d j1 j2 ;
2. Θct = max j∈c Θ jt ;
3. Vc = max j∈c Vj. Vc is the maximum capacity of the dumpsters in the cluster;
4. âC = Tv(C)+Tr(C) where Tv(C) is the sum of the emptying time of all dumpsters

and Tr(C) is the time of a path among all dumpsters in the cluster.

Remark 1 It is worthwhile noting that the parameter âC used in the cluster model
is the sum of the time for visiting all dumpsters in the clusters plus their emptying
time. In other words, it represents the worst possible case i.e. the one in which all
dumpsters in the clusters must be voided. We choose this very conservative value
because, in the cluster model, dc1c2 is a lower approximation for the travelling time
and by that choice we ensure that for each travelled edge (c1,c2) the sum âC1 +
dc1c2 + âc2 is an upper bound of the total time spent for the collection.

On average, the trip time computed in the cluster model is 1.5 times the one
computed in the real model. Nevertheless, since the critical resource of the problem
is the volume of the vehicle, this approach does not remove any feasible solution
from the solution space.

5.2 Building a feasible solution and Postoptimization

By using the solution computed in the Phase 1, Phase 2 builds a feasible solution
for problem (1)-(19). Its output is, for each vehicle and for each time shift, a list
of dumpsters that the vehicle must void. The procedure is shown in the following
Algorithm (1).
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Data: Solution of the model (1)-(19) for the cluster network
Result: Solution of the model (1)-(19) for the real network

1 for each wit = 1, where i ∈ I , t ∈ T do
2 create list list0;
3 insert in list0 all dumpsters for each cluster, such that yict = 1 where

i ∈ I , c ∈ C , t ∈ T ;
4 remove from list0 all dumpsters that have been voided in the previous

iterations;
5 sort list0 in decreasing order of quantity of waste;
6 create list1;
7 while Constraints (6) or (18) computed on list1 hold with equality and

list06= /0 do
8 add, the first element of list0 into list1;
9 remove the first element of list0 ;

end
10 if list0= /0 then
11 add all the dumpsters that are such that if voided the time of the path

as well as the capacity of the vehicle is not exceed;
end

end
Algorithm 1: Post Optimization

From the solution provided by Algorithm 1, Phase 3 optimizes the routing. In
particular, for each list of dumpsters that a vehicle has to void during a time shift, it
computes the solution of a traveling salesman problem (TSP) by using the Chained-
Lin-Kernighan heuristic for asymmetric networks, as [1] discusses.

Because the Phase 1 and Phase 2 run quickly, we run them several times by
randomly changing the order in which the dumpsters in list0 are ordered.

Remark 2 It is worthwhile noting that the variables zist are set by the association
of a vehicle to a type of waste and they are derived from the exact solution of the
clusterized model.

6 Computational experiments

In order to evaluate the solutions provided by the heuristic, we considered six key
performance indicators (KPIs):

• nTS: average number of third shifts used during a week of activity.
• nV: average number of vehicles daily used. This KPI is the ratio between the

number of vehicles used during one month of activity and the number of days.
• WV%: average percentage of waste volume at the moment of collection. During

the collection operations, the vehicle records the volume occupied by the waste.
The indicator is computed by averaging the percentage of occupation over all the
collections and all the dumpsters collected;
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• TRT: total routing time.
• FV%: average fulfillment percentage of the vehicles. This KPI is the average

percentage of fulfillment over each time shift and over each vehicle.
• nVD: average number of dumpsters visited during each time shift in which a

vehicle is used.

In Table 1 we show the KPIs values for a real month of activity for Cidiu S.p.A.
and a simulated month of activity for the proposed method (within brackets the
standard deviation of each value is shown). The simulated month is the same as the
real one.

Table 1 For Each KPI, We Compare the Solution before and after Using Our Proposed Algorithm

KPIs Cidiu S.p.A. solution Simulated solution
nTS 1.44 (0.5) 0 (0)
nV 3 (0) 2 (0)
WV% 0.28 (0.10) 0.70 (0.05)
TRT 4.35 (0.5) 5.24 (0.3)
FV% 54%(10%) 87%(5%)
nVD 62.3(12) 68.5(12)

The results presented in Table 1 show that the proposed methodology outper-
forms the actual policy with respect to all the KPIs. The most important result is
that the proposed method do not use the third shift. Furthermore, it uses 33% less
vehicles. It is worthwhile noting that the increase in the total routing time is due to
the usage of fewer vehicles that have to travel more. For this reason, the growth of
the total routing time is not due to inefficiency but it denotes a better usage of the
vehicles.

In order to test the effects on the real field of the algorithm, Cidiu S.p.A. uses
the methodology for small periods of time obtaining similar results to the ones in
the simulation. Currently, due to the good results, Cidiu S.p.A. is integrating the
proposed methodology into its IT system.

It is important to note that the problem depends by the parameter λ that converts
the time of the routing in cost for the company. Unluckily, it is difficult to estimate
because it is generated by fuel consumption, the cost of the drivers, the depreciation
of the vehicle, etc. Nevertheless, variations in the value of this parameter change
slightly the solution. Another parameter that does not influence the solution is the
capacity of the vehicle Ĉ. This is due to the fact that the most critical resource is the
duration of the time shift and not the volume of the vehicle.

Instead, the model is sensitive to changes in the Θ jt . The greater those quantities
the greater the total cost. It is worthwhile noting that for Θ jt sufficiently high the
model becomes unfeasible. By this mathematical observation, it is possible to de-
duce the importance of the data recorded by the IoT sensors measuring the weight
of the refuse. An accurate estimation of the waste collection production leads the
model to be really effective. Indeed, this is an added value of the proposed method-
ology that, to the authors knowledge, has never been considered in the literature.
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Another parameter that deeply influences the model is the duration of the time
shift Cmax. The greater this value, the lower the objective function.

In order to estimate the optimality gap of the solutions obtained by the proposed
heuristic, we compared them with the optimal solution found using CPLEX 12.6.
Since the solver is not able to solve real instances because it runs out of memory, we
consider instances with 10,20,30,40, and 50 dumpsters, six time periods, and two
types of waste.

In those instances, the dumpsters are spatially generated from a combination of
multinomial distributions, in order to be located in scattered ellipses (as in the real
settings). The initial waste quantity of each dumpster and its increment are simulated
from the historical data. The travel times are computed by using the real distances
and the costs of each time shift are the same as the one of Cidiu S.p.A.

Table 2 shows the results of this comparison, we report the differences between
the costs of time shifts and the costs of the routing of the two solutions. In each cell
the table shows the average value over 20 runs and standard deviation (in brackets).

Table 2 The Table shows a Comparison of Cidiu S.p.A.’s Optimal Solutions and the Solutions
Generated Using our Proposed Approach

Number of dumpsters nTs [%] rC [%] Optimal time [s] Heuristic time [s]
10 0 (0) 0(0) 43.43 (1.64) 2.76 (0.65)
20 0 (0) 0(0) 150.43 (10.89) 3.73 (0.56)
30 0 (0) 1.75 (1.38) 443.64 (15.92) 8.56 (0.84)
40 0 (0) 2.69 (1.43) 890.67 (30.53) 13.36 (0.74)
50 0 (0) 3.32 (2.34) 1842.86 (45.65) 26.27 (2.45)

It is worthwhile noting that the proposed method finds the optimal number of
time shifts in all the generated instances. The differences between the optimal solu-
tion and the one found by the heuristic are in the routing.

Furthermore, the average running time of the proposed method in the real setting
is 4 hours and 23 minutes with a standard deviation of 20 minutes (these values are
computed by using 100 simulations).

Thus, the proposed heuristic can be run once every time shift, allowing the man-
agement to adjust the plan and to consider missed operations (e.g., the vehicle can-
not collect the waste because a car is parked near the dumpster).

7 Conclusions

In conclusion, we claim that the proposed method has proven to be effective in
the real field: the system presented is currently being integrated into the IT system
of Cidiu S.p.A. and, according to the company forecasts, the system will be fully
operational by the end of 2018. By doing so, we have proved that the aperiodic
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approach is worth to be studied and that heuristics dealing with this problem can be
useful in real world.
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