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Abstract: We cast a theoretical model based on effective semiconductor Maxwell-Bloch
equations and study the dynamics of a multi-mode mid-infrared quantum cascade laser in a
Fabry-Perot configuration with the aim to investigate the spontaneous generation of optical
frequency combs. This model encompasses the key features of a semiconductor active medium,
such as asymmetric, frequency-dependent gain and refractive index as well as the phase-amplitude
coupling of the field dynamics provided by the linewidth enhancement factor, and some specific
resonator features, such as spatial hole burning. Our numerical simulations are in excellent
agreement with recent experimental results, showing broad ranges of comb formation in locked
regimes, separated by chaotic dynamics when the field modes unlock. In the former case, we
identify self-confined structures travelling along the cavity, while the instantaneous frequency is
characterized by a linear chirp behaviour. In such regimes, we show that OFCs are characterized
by concomitant and relevant amplitude and frequency modulation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum cascade laser (QCLs) have attracted a remarkable interest as THz and Mid-IR sources
capable of self-starting optical frequency combs (OFCs) under DC current injection [1–4]. OFCs
are generally meant as lasers emitting, under particular bias conditions, a set of equally spaced
optical lines with low phase and amplitude noise [5]. These optical sources are appealing for a
wealth of applications in the Mid-IR and THz range, encompassing high precision molecular
spectroscopy, broad band free space optical communication and hyperspectral imaging [6,7].
From an experimental point of view, the OFC regime has been mainly characterised through

the intermode beatnote (BN) spectroscopy and associated with a narrow BN linewidth (typically
less than 100KHz). By sweeping the bias current, it was found ranges of irregular dynamics
(phase unlocked optical lines and wide BN linewidth) alternated with current ranges of OFC
operation (phase locked optical lines and narrow BN linewidth) [6,8,9]. Figures of merit of the
OFC are typically the number of locked modes in the −40dB (or −20dB) spectral bandwidth
and the OFC dynamic range, intended as the range of bias current where OFC emission occurs.
In this regard, THz QCLs emitting at 3.1THz can provide up to few tens of modes in the
−40dB spectral bandwidth of about 1.1THz; whereas Mid-IR QCL can give self-locked optical
lines in a bandwith of about 3THz centered at 36.5THz [10,11]. In absence of any dispersion
compensation [12,13] or microwave modulation [14], stable OFC regimes have been found in
current ranges of about one hundred milliamperes starting from about twice the lasing threshold
[10,11]. Only recently the temporal dynamics of the optical field became accessible through the
Shifted Wave Interference Fourier Transform Spectroscopy (SWIFTS) technique that allows to
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retrieve the amplitude and phase of the optical field from experimental data [11,15,16]. This
additional information revealed the true nature of the self-generated OFC in QCLs: it occurs
not only in presence of a Frequency Modulated (FM) laser emission, but its formation also
implies a significant (or even dominant) Amplitude Modulation (AM), appearing as intra-cavity
optical pulses which propagate on a quasi-homogeneous background field [11,17]. In addition,
the inspection of the temporal evolution of the field phase and the consequent instantaneous
frequency, demonstrates the existence of linear frequency chirp with a frequency jump at the time
instants where the field amplitude is modulated by the pulse [11,16,17]. Well before experimental
SWIFTS measurements, theoretical predictions of such pulses having a solitary wave character
was provided in [18].

Although several theoretical efforts have beenmade in order to provide a physical understanding
of the fascinating phenomenon of self-starting OFCs in QCLs, to the best of our knowledge there
is still a lack of models capable to comprehensively reproduce the experimentally measured
coexistence of optical pulses and linear frequency chirp, and also the alternance between locked
and unlocked regimes. We believe that such tools would be promising to predict possible
strategies to extend the OFC dynamic range by employing externally controllable signals, by
optimizing the device gain material or the laser cavity design. The approaches proposed so far
are based on the classical set of Maxwell-Bloch equations valid only for an ideal two o three
levels atom-like medium system [19–25]. This model, while grasping some basic features of
the laser physics, fails in correctly describing the phase-amplitude coupling (quantified by the
Linewidth Enhancement Factor, LEF ) peculiar of semiconductor lasers. In absence of the
phase-amplitude coupling, the relevant mechanism in determining the multi-mode instability
threshold and influencing the possibility to observe OFCs was only ascribed to the Spatial Hole
Burning (SHB) [22,25,26] consisting in a carrier grating excited by the interfering counter
propagating field of the Fabry-Perot (FP) laser cavity. More recently, a non-null LEF and an
inhomogeneous gain broadening have been "ad hoc" included in [16,17]; new instabilities and
multi-mode dynamics have been found with a better match with some of the experiments reported
for e.g. in [11].
In [18] we adopted a model consisting on a set of Effective Semiconductor Maxwell-Bloch

Equations (ESMBEs) [27] to study THz QCLs and we demonstrated it could well reproduce the
experimental observation of self-generated OFCs alternated with ranges of irregular multi-mode
regimes [8]. The ESMBEs was based on a non-linear optical susceptibility model that describes
radiation-matter interaction by fitting microscopic calculated and/or experimentally measured
optical gain spectra and refractive index dispersion. This allowed us to point out the role played
by the LEF in reproducing and explaining:

• the instability of the CW lasing even close to lasing threshold, whereas it was originally
predicted to occur above about ten times the threshold current due to the Risken-Nummedal-
Graham-Haken (RNGH) instability

• the multi-mode dynamics, due to the onset of solitary pulses travelling in the resonator,
and narrow BN spectra at the round trip frequency (or at the double of the BN explaining
the disappearance of the BN in some experiments)

• the self-generation of OFCs not only close to the threshold current but also in current
ranges beyond regions of irregular unlocked dynamics

Since the model in [18] was rigorously valid only in unidirectional ring configuration and with
no coupling to the output waveguide, the aim of this work is to extend that approach to the case
of a more realistic FP laser which can coherently describe the formation of the standing wave
field pattern along the laser cavity through the additional presence of the SHB caused by the
carrier grating [25,28].
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We apply the model to study Mid-IR FP QCL and we show that simulation results are in
very good agreement with the experimental evidences reported in [11]. Specifically, we can
exhaustively describe the phenomenon of self-starting OFCs and the coexistence of the AM and
FM regime characterized by pulses at the cavity round trip repetition rate and FM linear chirp of
the output optical field. Thanks to a campaign of simulations exploring the parameter space of
LEF, carrier lifetime and optical gain bandwidth, we can show the impact of these parameters on
the extension of the current range of self-OFC generation and on the number of locked optical
modes.
In Section 2 we derive the model for a FP QCL, remarking the role of the carrier grating

in the medium dynamics and linking the model parameters to physical quantities, relevant for
comparison with experiments. In Section 3 we start by illustrating results from our model,
relative to a realistic case. We show that the laser field, upon current ramping, can exhibit
locking regimes, multiple locking window, window of chaotic dynamics, AM and FM dynamics
associated thereto as well as instantaneous linear frequency chirping, with close similarity to
experimental evidence. Some quantifiers are introduced, to characterize both OFC formation
(beyond standard reference to BN linewidth) and linear chirp regimes. Following this reference
case, in paragraph 3.1 we illustrate the role of critical medium parameters, mainly the LEF and
the gain bandwidth, in ruling the OFC regime extension and its spectral character and we compare
our evidence to laser dynamics in absence of SHB and approaching the two-level case. Finally in
paragraph 3.2 the role of carrier rates is considered, confirming that ’slower’ carriers give rise to
longer pulses and eventually lead to the loss of the pulsed regime. Conversely, faster carriers
give rise to shorter pulses and we can show that, interestingly, the corresponding simulations also
reveal the formation of OFC encompassing larger number of modes, occurring for larger gain
linewidth and in ampler current ranges, thus in very good agreement with the results recently
reported for e.g. in [11]. Sec. 4 draws conclusions and prospects future developments.

2. Model: effective semiconductor Maxell-Bloch equations for a Fabry-Perot
multi-mode QCL

Our model encompasses the semiconductor susceptibility, typical of a QCL (originally developed
in [18] for an unidirectional resonator) combined with the multiple scale approach adopted for
Quantum Dot (QD) lasers in [28] to account for carriers grating due to standing wave pattern and
responsible for SHB, with the goal to properly describe a bidirectional FP resonator (see also
Chap. 14 in [29]).
We consider a FP cavity a few millimeters long and start by treating the spatio-temporal

evolution of the electric field. We start from the d’Alembert equation:

∂2E
∂z2
−

1
v2
∂2E
∂t2
=

1
ε0c2

∂2P
∂t2

, (1)

where E is the electric field, P is the polarization and v is the radiation group velocity. We then
assume that the electric field and the polarization can be expressed as:

E(z, t) =
1
2
[E(z, t)+ exp(−ik0z + iω0t) + E(z, t)− exp(+ik0z + iω0t) + c.c.], (2)

P(z, t) =
1
2
[P0(z, t) exp(+iω0t) + c.c.], (3)

where E+(z, t), E−(z, t) are respectively the slowly varying envelopes for the forward and backward
fields inside the resonator and P0(z, t) is the polarization envelope, assumed to vary slowly only
in time for reasons that will be clarified in the following passages, ω0 and k0 are respectively the
reference frequency (cold cavity mode closest to the gain peak) and its wavenumber.



Research Article Vol. 28, No. 16 / 3 August 2020 / Optics Express 23849

Inserting Eqs. (2) and (3) in Eq. (1) and applying the slowly varying envelope approximation
(SVEA) we obtain the following equation:[

∂E+

∂z
+
1
v
∂E+

∂t

]
exp (−ik0z) +

[
−
∂E−

∂z
+
1
v
∂E−

∂t

]
exp (+ik0z) = gP0, (4)

where g is a complex coefficient given by:

g =
−iω0NpΓc

2ε0nc
, (5)

Np is the number of stages in the cascading scheme, Γc is the optical confinement factor (that
takes into account the overlap between the optical mode and the active region) and n is the
effective background refractive index of the medium.
The field dynamics is coupled to the active medium’s. The carrier dynamics is described by

assuming that in each transition, within the cascaded superlattice, the ground state is always
empty, because of the fast depopulation due to the LO phonon-electron scattering processes.
Therefore in our model only the carrier density of the upper laser level N(z, t) appears as a
dynamical variable. The evolution equation is retrieved from the Bloch two-level approach [29]
in the rotating wave approximation. We consider a pumping current I, the carrier nonradiative
decay time τe, and take into account the forward and backward field envelopes, as required for FP
cavities. We obtain:

∂N
∂t
=

I
eV
−

N
τe
−

i
4~

[ (
E+exp(−ik0z) + E−exp(+ik0z)

)
P∗0

−
(
E+∗exp(+ik0z) + E−∗exp(−ik0z)

)
P0

]
,

(6)

where V is the medium volume and e is the electron charge.
The equation for the polarization dynamics is derived following the approach described detailed

in Sec. 2 of [18]. We start by introducing a phenomenological optical susceptibility χ(ω,N) that
allows to describe spectrally asymmetric curves for gain and dispersion, generally dependent
on the carrier density; it has the form (note that we use a different sign convention respect to
[18], due to the assumptions for the expression of the complex electric field and polarization
(Eqs. (2)-(3))):

χ(ω,N) =
f0N (1 + iα) (i − α)
(1 + iα) + iωτd

. (7)

In Eq. (7) we have assumed, for simplicity, that the gain maximum coincides with the reference
cavity frequency ω0 = 0 (note that the FSR is large enough so that a moderate frequency shift of
the gain peak is of little relevance to the laser dynamics) and that its variation with N is fixed
by the ratio f0/τd. Equation (7) is associated in the time domain to the following polarization
equation where the peculiar feature of the FP resonator is made evident by the dependency from
the counterpropagating field envelopes:

∂P0
∂t
=

1
τd
(1 + iα)

[
−P0 + if0ε0εb (1 + iα)N

(
E+ exp (−ik0z) + E− exp (+ik0z)

) ]
, (8)

where α is the LEF and 1
τd

is the effective polarization decay rate (note that the effective
polarization decay time corresponds to Γ

τd
in Eq. (13) of [18]). For further convenience we

introduce δhom =
1

πτd
, which is a measure of the FWHM of the gain spectrum in the limit α<<1

where the susceptibility χ(ω,N) becomes that of homogeneous broadened two-level system gain
[18].
At this point our equations include field-carrier interactions at all spatial orders (measured

in multiples of λ), but in order to retain physical insight and numerical viability, a relevant
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simplification can be introduced by exploiting a multiple scale approach [30–32]. Specifically,
we expand in Fourier series the spatial variation at the wavelength scale of P and N [32]:

P0 = exp(−ik0z)
∞∑

n=0
P+n exp (−2nik0z) + exp(+ik0z)

∞∑
n=0

P−n exp (+2nik0z), (9)

N = N0 +

∞∑
n=1

N+n exp (−2nik0z) +
∞∑

n=1
N−n exp (+2nik0z). (10)

Inserting Eqs. (9) and (10) into Eqs. (4), (6) and (8) and neglecting the terms with spatial
frequency higher than 2k0, we get the final set of Effective Semiconductor Maxwell-Bloch
Equations for QCL in FP configuration in the form:

∂E+

∂z
+
1
v
∂E+

∂t
= −

αL

2
E+ + gP+0 , (11)

−
∂E−

∂z
+
1
v
∂E−

∂t
= −

αL

2
E− + gP−0 , (12)

∂P+0
∂t
=
(1 + iα)
τd

[
−P+0 + if0ε0εb (1 + iα)

(
N0E+ + N+1 E−

) ]
, (13)

∂P−0
∂t
=
(1 + iα)
τd

[
−P−0 + if0ε0εb (1 + iα)

(
N0E− + N−1 E+

) ]
, (14)

∂N0
∂t
=

I
eV
−

N0
τe
+

i
4~

[
E+∗P+0 + E−∗P−0 − E+P+∗0 − E−P−∗0

]
, (15)

∂N+1
∂t
= −

N+1
τe
+

i
4~

[
E−∗P+0 − E+P−∗0

]
. (16)

Finally, the model equations must be completed by the boundary conditions which read:

E−(L, t) =
√

RE+(L, t), (17)

E+(0, t) =
√

RE−(0, t), (18)

where R is the reflectivity of each mirror of the symmetric FP cavity, here considered.

3. Numerical simulations: self-generated frequency and amplitude modulated
OFCs

In this section we present the results obtained by numerical integration of the ESMBEs (11–16)
with the boundary conditions (17)–(18) for typical Mid-IR QCL parameters reported in Table 1
and adopted from literature [4,11]. The numerical code is based on a TDTW algorithm, which
exploits an advanced finite differences scheme both in time and space [28].

Table 1. Typical parameters for a FP QCL [4,11]

n L(µm) R τe(ps) Γc f0(µm3) V(µm3) Np λ0(µm)

3.3 2000 0.3 1 0.3 1.1*10−7 2240 50 10

Our first aim is the reproduction of OFC regimes with characteristics similar to those
experimentally observed [8,11,33–35], namely: a combination of FM and AM OFCs occurring
close to the lasing threshold and in a significant bias current range, followed by a current range of
unlocking with irregular dynamics and, possibly, occurring again in a second window for larger
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bias currents, a feature that is commonly observed in experiments, but that, to the best of our
knowledge, was never found theoretically.

In such perspective, we first present the typical results adopting the realistic values of α = 0.4
and δhom = 0.48THz. The corresponding light-current plot is reported in Fig. 1. Further on,
we will present the results of a massive campaign of simulations showing a broad zoology of
dynamical regimes and the impact of the LEF, optical gain bandwidth and carrier lifetime on the
figure of merit of the self-generated OFC.

Fig. 1. Power as a function of the ratio I/Ithr for α = 0.4, δhom = 0.48THz. In this case
Ithr = 260mA. Power is the time average over a simulation time window of about 500ns,
after a stable regime is attained. Other parameters as in Table 1.

We first focus on the identification of OFC regimes by sweeping the bias current I. In
our simulations, the emergence of an OFCs regime can be characterized, as typically done in
experiments, by a narrow BN linewidth at Radio Frequency (RF). However a better assessment
can be achieved by estimating some additional phase and amplitude noise quantifiers that we have
recently introduced for the numerical characterization of OFCs in QD lasers [28]. To calculate
them, the spectrum of the optical field at z=L (exit facet of the simulated device) is filtered
so as to retain only the modes within a 10dB power ratio to the spectral maximum. We then
consider the temporal evolution of each filtered optical line of the spectrum: the modal amplitudes
Pq(t), q = 1, . . . ,N10 and the temporal phase difference between one mode and the adjacent one
∆Φq(t), q = 1, . . . ,N10, where N10 is the number of optical lines in the −10dB spectral bandwidth
[28]. Given the amplitude and phase dynamics of each optical line, we calculate the quantities:

MσP =
1

N10

N10∑
q=1

σPq , M∆Φ =
1

N10

N10∑
q=1

σ∆Φq , (19)

where:
µPq = <Pq(t)> , µ∆Φq = <∆Φq(t)>, (20)

σPq =

√
<

(
Pq(t) − µPq

)2
> , σ∆Φq =

√
<

(
∆Φq(t) − µ∆Φq

)2
>, (21)

and the symbol < > indicates the temporal average.
The indicators defined by Eq. (19) measure the average fluctuations of the power and phase

of the selected optical lines. An ideal OFC should have no intensity noise fluctuation of the
power of each line (ie: low relative intensity noise per line) and zero differential phase noise
such that both indicators should be zero. In our simulations we observe residual fluctuations, so
that we will define in the following an OFC regime when the indicators are MσP<10−2mW and
M∆Φ<2 · 10−2rad.



Research Article Vol. 28, No. 16 / 3 August 2020 / Optics Express 23852

An example of dynamical behaviour corresponding to the self-starting OFC is shown in Fig. 2,
for I/Ithr = 2.31, where Ithr is the threshold current of the laser. The propagation of confined
field structures sitting on an almost constant background in the intensity trace (Fig. 2(a)) appears
intrinsically paired with an instantaneous frequency chirp in the time range where the intensity is
almost constant, followed by discontinuous jumps when the field structure occurs (Fig. 2(a));
note the remarkable similarity with the experimental evidences in Fig. 1(b) of [11] and with
the analytical predictions very recently reported in [36]. This evidence suggests that OFC is a
locking phenomenon where concomitant AM and FM is a commonplace (see also Fig. 7).

Fig. 2. OFCs emission for I/Ithr = 2.31. Here α = 0.4, δhom = 0.48THz, other parameters
as in Table 1. Temporal evolution of laser power (blue curve) and instantaneous frequency
(red curve). A propagating pulse at the round trip frequency sits on an almost constant
background associated with a linear frequency chirp. (b) Optical spectrum of the emitted
radiation showing 10 modes in the −10dB spectral bandwidth. c) Zoom around one peak of
the optical spectrum.

Additionally, we observe 10 locked lines in the −10dB spectral bandwidth of 0.2 THZ
(Fig. 2(b)); each line has a very narrow linewidth as shown by the zoom around one line in
Fig. 2(c)

When the laser unlocks, an irregular dynamics is observed as for example at I/Ithr = 3.46. The
field intensity and its instantaneous frequency versus time are shown in Fig. 3(a); whereas the
whole optical spectrum of Fig. 3(b) is apparently not too different from Fig. 2(b), we note that
each line is significantly enlarged with several side bands close to the main peak (Fig. 3(c))).
Since the ratio of the moduli of two adjacent Fourier coefficients (cn,st and cn+1,st) of the

Fourier series of an ideal sawtooth can be written as |cn+1,st |
|cn,st |

= n
n+1 ; we calculate the Fourier

transform of the instantaneous frequency signal, we define cn the peak of each n-th component of
the spectrum and the ratio Rn =

|cn+1 |
|cn |

. The relative error (εn) between n
n+1 and Rn and its average

over Nc components (εc) are defined respectively, as Fig. 2 indicates, in excellent agreement
with experimental evidence, that the OFC regime with a broad and flat optical spectrum is
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Fig. 3. Chaotic behaviour for I/Ithr = 3.46. Other parameters are as in Fig. 2. (a) Temporal
evolution of laser power (blue curve) and instantaneous frequency (red curve). Irregular
oscillations can be easily detected. (b) Optical spectrum of the emitted radiation. c) Zoom
around one peak of the optical spectrum.

characterized by an almost linear frequency chirp. To quantify the linearity of the chirp at
different bias currents and/or for different sets of parameters, we introduce here an indicator of
chirp linearity, based on the comparison of the simulated instantaneous frequency with a perfect
frequency sawtooth [37].

εn =

����Rn − n/(n + 1)
n/(n + 1)

���� ; εc = 1
Nc

Nc∑
1
εn. (22)

The indicator εc is therefore a relative error aimed at quantifying the discrepancy between the
QCL instantaneous frequency signal and an ideal sawtooth. We assume that a regime can be
reasonably defined as ’linearly chirped’ when εc<10−1.

As Fig. 4(a) shows, our QCL starts off with a CW emission at threshold (Ithr = 260mA), which
is soon destabilized towards a multi-mode dynamics associated with the appearance of a BN at
I/Ithr between 1.25 and 1.64. In this current range we see an OFC regime characterized by a
gradual increase of N10, low intensity/phase noise (since MσP<10−2mW and M∆Φ<2 · 10−2rad)
and rather large linear chirp indicator (εc>10−1). We also report a BN shift of 0.03GHz around
I/Ithr = 1.34, which is in agreement, in terms of order of magnitude, with recent experimental
results [38].
Around I/Ithr = 1.73 the OFC regime is lost; we observe the onset of several lines around

the BN causing an important broadening of the BN linewidth. This broadening is a fingerprint
of an unlocked regime characterized by an amplitude modulation with a period equal to the
inverse of the separation between the BN and adjacent side bands. The corresponding phase and
intensity noise indicators increase of nearly two order of magnitude. This regime ceases just
before I/Ithr = 1.83 where a new OFCs regime appears, thus reproducing the locked/unlocked
state alternance found in some experiments [8]. This regime is even more sizeably extending
up to I/Ithr = 3.08, after which chaotic emission sets in. Comparing in the Fig. 4(e) the linear
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Fig. 4. Results of simulations for a current scan from QCL threshold Ith to 3.5Ith for α = 0.4,
δhom = 0.48THz. Other parameters as in Table 1. a) First BN in the RF spectrum (color
scale normalized to the maximum for each current value; log scale); b) number of modes
in a -10dB spectral bandwidth; (c) amplitude and (d) phase noise quantifiers for the N10
modes, as introduced in [28]; (e) chirp quantifier for the first Nc = 5 Fourier coefficients of
the instantaneous frequency signal. Two regions of OFCs operation highlighted with a red
rectangular box can be identified.

chirp indicator of the first and the second locking window, we see that for all current I/Ithr<2 the
value of εc is higher than 10−1. In this region N10 is less than 9. In the second locking region
for I/Ithr>2 we have linear chirp with N10>10 and an increase of the number of locked modes
is accompanied by a further reduction of the linear chirp indicator. The observed correlation
between the reduction of εc and an increasing number of locked modes suggests that linear chirp
is a complex cooperative phenomenon involving a highly multi-mode dynamics (note that in
calculating our εc we choose Nc=5).
As proposed in [6] the spontaneous formation OFCs is due to efficient Four Wave Mixing

(FWM) that for sufficiently high interactivity field intensity (or bias current) acts as a self-injection
locking mechanism in compensating the cavity mode dispersion and fixing their relative phase
differences.

3.1. OFC properties: the role of LEF and gain/dispersion bandwidth

In order to highlight the role of the LEF and the gain/refractive index dispersion in affecting both
the bias current range of the OFC regime and the figure of merit of the optical comb, we run
systematic sets of long (>500ns) simulations by sweeping the bias current between the threshold
Ithr and 3Ithr with a step of 0.19Ithr, and considering α ∈ (0.4, 1) and δhom ∈ (0.16THz, 1.27THz).
Other parameters as in Table 1. Our results are conveniently summarized in Fig. 5, where we
report for each pair (α, δhom) a black circle when no locking is observed, and a red circle in case of
OFC emission; in the latter case inside the circle we also report the FWHM of the gain spectrum
at threshold, the maximum number of locked modes found in the −10dB spectral bandwidth, the
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extension of the bias current interval ∆I where the OFC regime is found and the estimated values
of εc.

Fig. 5. Analysis of locked regimes upon variation of parameters δhom and α. Black dots
indicate that no locked regime could be found upon scanning the pump current in the interval
(Ithr , 3Ithr). Red dots indicate parameter pairs where such regime could be found. In the dots
the dynamical FHWM gain linewidth (see text) in THz is reported along with the current
range where locking was found ∆I, the corresponding value of N10 and εc. The symbol ’∗’
indicates the presence of more than one locking window.

We first observe that spontaneous OFC formation is found diffusely throughout the considered
values of α and of δhom. Also, as a general trend, in the locked regime the number of locked
modes N10 tends to increase with the FWHM of the gain curve.

We also report that, for a fixed value of δhom, larger values of α increase the modal competition
via nonlinear dispersion and reduce the range of ∆I where OFC is met in agreement with the
results in [18]. As an example, for e.g. δhom = 0.32THz where OFCs are reported for all values
of α, we found that ∆I drastically decreases as α increases. For fixed value of δhom, the increase
of LEF is equivalent to an increase of the asymmetry or inhomogeneity of the semiconductor
material gain spectrum which is deviating from the ideally symmetric homogeneous gain of
two-level atoms. On the contrary, low value of LEF implies a more symmetric gain broadening,
whereas the increase of δhom can be read as a reduction of the de-phasing time as typically
observed increasing temperature. Finally, we report that when few number of modes are locked
in the -10dB bandwidth (N10<7), the resulting instantaneous frequency does not show a clear
linear chirp behaviour since εc>10−1 in these cases.
At fixed α, as a general trend an increment of δhom reduces the current range (or occurrence)

for OFC regimes. These evidences seem consistent with the fact that the number of dispersed
cavity modes for which the gain overcomes the losses increases with δhom, but the quantity N10
is actually limited by the efficiency of the FWM in locking the lasing modes that typically is
an inverse function of distance from the resonance [6]. In this regard an anomalous behaviour
is found at the map edge where, for α = 1 and δhom = 0.16THz, we could not find any locked
regime contrary to what happens for the two neighbouring circles of the map. We may argue
that this low value of the gain FWHM implies a destabilization of the single mode solution for
high bias currents where the multi-mode regime is prone to be chaotic for the relatively high
value α = 1. To corroborate this interpretation we checked that for α = 1 and δhom<0.16THz
only irregular multi-mode regimes are reliazed beyond the CW instability threshold.
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Let us briefly analyze the results about the size ∆I of bias current generating the combs. If we
focus on the case α = 0.4 where we report OFC formation for all the considered δhom, for the
lowest value of δhom we found a comb regime spanning just a few mA in the whole simulation
interval (Ithr, 3Ithr); nevertheless, an extended comb regime of ∆I = 1000mA can be found for
higher values of the pump current (I/Ithr>3). For larger values of δhom, ∆I keeps growing, it is
maximum at δhom = 0.48THz and then decreases.
In order to clarify the role of α in triggering the CW multi-mode , we observe that it was

already shown how increasing this parameter lowers the threshold for the multi-mode lasing
(see Fig. 3(a) in [18]). In fact, since amplitude fluctuations lead to frequency fluctuations via
α, in presence of sufficiently large gain and bias current, we expect that a CW emission will be
destabilized more easily in presence of larger α. This mechanism is the only possible multi-mode
source in an unidirectional ring resonator, but in a FP configuration it would compete with SHB,
a second well known mechanism for CW instability [22,25].
We numerically verified the previous considerations by simulating the QCL dynamics for

α = 0 (ideal two-level system). We set δhom = 0.48THz, since it corresponds to the largest ∆I and
maximum N10 when α , 0. In absence of SHB, we verified the expected CW emission even very
far from threshold. We estimated the instability threshold (see Chap. 20-22 in [29]) and could
verify that beyond that value (Iinst>13Ithr) a RNGH multi-mode instability sets in reducing our
code to match the treatment of an unidirectional resonator and in the limit of small transmissivity.
This result is consistent with the expectation that in unidirectional, two-level case the well known
RNGH instability is the only means to destabilize the single mode emission, triggered by the
resonance of one cavity mode with the Rabi oscillation. By increasing α (e.g. setting α = 1.5)
and without SHB, we can confirm, in line with [18,39], that the multi-mode instability affecting
the single mode CW emission appears just above threshold.

When instead, keeping α = 0, and the SHB is switched on, we observe again CWdestabilization
just above the lasing threshold as we recently demonstrated for the QD laser case [28]. Moreover
we verified that for the set of parameters of Fig. 2 we observe only irregular regimes. We therefore
conclude that either the LEF or the SHB can (alone or together) contribute to the multi-mode
emission which however does not necessarily lead to an OFC regime. The self-locked regime is
found only for proper bias currents, for proper combinations of LEF and homogeneous braodening
linewidth and, as shown in the following, for fast enough carrier dynamics.

3.2. Pulses, chirping and OFC: the role of carrier dynamics

A relevant role in the formation of regular dynamics from multi-mode emission is played by the
carrier decay time. In slow (τe > 100ps− 1ns) conventional semiconductor lasers (for example in
quantum well laser diodes) the spontaneous OFC formation is scarcely reported. In agremement
with that, our numerical simulations showed that increasing τe from 1ps to 1.3ps leads to a pulse
broadening (Fig. 6). For larger τe, mode locking is lost for the same set of parameters of Fig. 4.
In the other direction, we investigated the behaviour for a fast carrier life time τe = 0.2ps

(smaller than the value considered in previous sections). We also set α = 0.4 and δhom = 3.18THz,
which gives a FWHM of the gain bandwidth at threshold of 3.7THz, much larger then those
considered in the map of Fig. 5. This gain bandwidth is comparable with the one measured in [40].
We interestingly found that a reduction of the carrier lifetime is very beneficial in giving OFC
regimes in quite wide bias current range and even for very large gain bandwidth FWHM. This
seems to be consistent with the evidence reported in [40] according to which a very small carrier
lifetime will result in very broad and strong FWM at the origin of the locking phenomenon.
Whereas the map of Fig. 5 shows that, increasing the gain FWHM, the OFC regime might

be lost, we stress here that the OFC regime is also strongly dependent on the carrier lifetime.
Thanks to the increased gain bandwidth we also observe a significant increase of the number of
comb lines N10. The OFC and linear chirp indicators versus bias current are shown in Fig. 7,
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Fig. 6. Zoom of a single power pulse for τe = 1ps (blue line) and τe = 1.3ps (red line)
for δhom = 0.48THz, α = 0.4. Other parameters as in Table 1. The width of blue pulse is
estimated 25ps, and 35ps for the red one.

where we see one very large comb region (red rectangle) characterized also by the presence of
linear chirped regime, since εc<10−1 for all the current values in this region. The maximum
number of locked modes is N10 = 61 found at I/Ithr = 2.16; the corresponding AM and FM
dynamics at this bias current, shown in Fig. 8, shows shorter pulses and markedly linear chirp as
compared to Fig. 2.

Fig. 7. a) Power spectrum map for the case τe = 0.2ps with carrier grating. b) Number of
modes in the -10dB band as a function of the current. c) MσP and d) M∆Φ as functions of
the ratio between bias current and threshold current. e) Chirp quantifier for the first Nc = 5
Fourier coefficients of the instantaneous frequency signal.
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Fig. 8. Locked regime for I/Ithr = 2.16, with α = 0.4, δhom = 3.18THz and τe = 0.2ps.
Other parameters as in Table 1. Temporal evolution of laser power (blue curve) and
instantaneous frequency (red curve).

Finally Fig. 9 reports the map for τe = 0.2ps in the parameter space α ∈ (0.4, 1) and
δhom ∈ (3.18THz, 5.74THz); for each parameter configuration the bias current has been scanned
between Ithr and 3Ithr, with current step 0.08Ithr of 100mA. The other values are those in Table 1.
For α = 0.4 we find locked cases for all the considered values of δhom. The wider bias current

Fig. 9. Case τe = 0.2ps: analysis of locked regimes upon variation of parameters δhom and
α. Black dots indicate that no locked regime could be found upon scanning the pump current
in the interval ((Ithr, 3Ithr). Red dots indicate parameter pairs where such regime could be
found. In the dots the FWHM gain bandwidth (see text) in THz is reported along with the
current range where locking was found, the corresponding value of N10 and εc.
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range for OFC corresponds to δhom = 3.18THz and the highest number of locked modes is
achieved with a FWHM gain linedwith of 6.47THz. Locked states are found also for a higher
(and probably more realistic) value of α = 0.7 [41], whereas locking is completely lost for α = 1.
The trend is similar to the one in Fig. 5: the increase of the LEF causes a reduction of N10 as well
as a reduction of the bias current range of OFC operation.

4. Conclusions

In this paper we have presented results concerning spontaneous OFC obtained in an original
model we developed to encompass critical features for the coherent multi-mode dynamics of a
QCL such as 1) a FP resonator with counterpropagating fields, which allows to include SHB
effect in the gain dynamics, 2) an effective semiconductor medium dynamics which reproduce
asymmetric gain and dispersion spectra.

Simulations correctly predict formation of OFC for bias currents close to lasing thresholds and,
spanning the current up to a few time the threshold, they could also predict the recurrence of OFC
ranges, spaced out by current intervals where modes unlock and cause irregular field dynamics.
Our work is thus successful in providing a unique model capable of replicating the main

evidences of several experiments in the field.
We have characterized the OFC regimes and their dependence on the laser’s gain bandwidth

and LEF, finding in particular that an increase of the LEF, which corresponds to an increase of the
phase-amplitude coupling, determines a reduction of the locking regime extension, a reduction
of the number of locked modes and eventually the predominance of a chaotic behaviour. We
qualified OFC regimes not only on the basis of a narrow BN spectral line (which is nevertheless
a commonplace in experiments), but also observing reduced instantaneous frequency jitter and
modal power fluctuations, as measured by purposely introduced quantifiers.
Another feature of our simulations is the confirmation that OFC associated to a sufficiently

large number of locked modes exhibit the propagation of well defined pulses inside the cavity (on
an almost flat field background) and a linear chirping of the instantaneous frequency, which we
also conveniently characterized. This allows us to evidence how AM and FM modulations of the
emitted field are simultaneously present in OFC.
Finally, we investigated the role of carrier decay rates, i.e. the speed with which the medium

evolves in time with respect to coherence and optical field, showing that faster carriers, with rates
below (1ps)−1, allow for shorter pulse formation in the OFC regimes, and, in association, for
broader period of linear frequency chirping.

Having achieved such a powerful model opens a broad range of possible investigations aimed
to improving the search for better-quality, more robust OFC existing in ever-wider current ranges.
Also, we plan to extend our analyses towards devices where RF injection provides a forcing
element for active frequency locking, as well as towards lasers with an external coherent injection,
acting as an external control exploitable in principle for locking and localized structures formation
addressing. On a more fundamental basis, the analysis of the instability leading to multi-mode
emission in a QCL will be a focus of interest, since the characterization of phase/amplitude
instabilities is crucial for the determination of the general dynamical behaviour of the considered
optical system. Finally, we plan to extend this model with the inclusion of waveguide Group
Velocity Dispersion (GVD) following for e.g. the approach recently presented in [16], where the
role of GVD in affecting the OFC formation and properties is well highlighted.
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