
21 September 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine Learning and Optimization for Production Rescheduling in Industry 4.0 / Li, Yuanyuan; Carabelli, Stefano;
Fadda, Edoardo; Manerba, Daniele; Tadei, Roberto; Terzo, Olivier. - In: THE INTERNATIONAL JOURNAL OF
ADVANCED MANUFACTURING TECHNOLOGY. - ISSN 1433-3015. - (In corso di stampa).

Original

Machine Learning and Optimization for Production Rescheduling in Industry 4.0

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2842141 since: 2020-08-02T17:21:26Z

Springer

Noname manuscript No.
(will be inserted by the editor)

Machine Learning and Optimization for Production Rescheduling in
Industry 4.0

Yuanyuan Li1 · Stefano Carabelli2 · Edoardo Fadda2,4 · Daniele Manerba3* ·
Roberto Tadei2 · Olivier Terzo1

Received: date / Accepted: date

Abstract Along with the fourth industrial revolution,
different tools coming from Optimization, Internet of
Things, Data Science, and Artificial Intelligence fields are
creating new opportunities in production management.
While manufacturing processes are stochastic and
rescheduling decisions need to be made under uncertainty,
it is still a complicated task to decide whether a
rescheduling is worthwhile, which is often addressed in
practice on a greedy basis. To find a tradeoff between
rescheduling frequency and the growing accumulation of
delays, we propose a rescheduling framework, which
integrates Machine Learning (ML) techniques and
optimization algorithms. To prove the effectiveness, we first
model a flexible job shop scheduling problem with
sequence-dependent setup and limited dual resources
(FJSP) inspired by an industrial application. Then we solve
the scheduling problem through a hybrid metaheuristic
approach. We train the ML classification model for
identifying rescheduling patterns. Finally, we compare its
rescheduling performance with periodical rescheduling
approaches. Through observing the simulation results, we
find the integration of these techniques can provide a good
compromise between rescheduling frequency and
scheduling delays. The main contributions of the work are
the formalization of the FJSP problem, the development of
ad-hoc solution methods, and the proposal/validation of an

*CONTACT Daniele Manerba. E-mail: daniele.manerba@unibs.it

1LINKS Foundation - via Pier Carlo Boggio 61, 10138 Torino,
Italy
2Department of Control and Computer Engineering, Politecnico di
Torino - corso Duca degli Abruzzi 24, 10129 Torino, Italy
3Department of Information Engineering, Università degli Studi di
Brescia - via Branze 38, 25123 Brescia, Italy
4ICT for City Logistics and Enterprises Lab, Politecnico di Torino -
corso Duca degli Abruzzi 24, 10129 Torino, Italy

innovative ML and optimization-based framework for
supporting rescheduling decision.

Keywords Industry 4.0 · Flexible Job-Shop Scheduling ·
Rescheduling · Machine Learning classification ·
Optimization algorithms · Real-time Data Analysis

1 Introduction

The fourth industrial revolution, or Industry 4.0 (I4.0) for
short, allows decision-makers to obtain real-time
information from various plant components and machines
to communicate with each other. I4.0 can, therefore, be
viewed as the application of the Internet of Things (IoT) to
industrial production (IIoT).

The exploitation of new data sources to improve system
understanding, as well as its management, is a common
trend in several fields (e.g., see [1] for an application in a
generic industrial project, [2] in waste collection, [3] in
fleet management, and [4] in the gig economy). This trend
is even more promising if we observe the number of
available Smart Manufacturing technologies on
interconnected equipment, real-time monitoring, data
collection with IIoT devices [5, 6, 7, 8]. Furthermore, the
technologies are still improving, e.g., the future Industrial
5G coverage will reduce latency times significantly [9].

In the scheduling sector, new data sources help to
trigger improvements in several aspects: shortening wasted
time, improving reliability, shortening setup times,
reducing waste, handling exceptions in real-time, and
controlling fixing times [10]. In this paper, we focus on the
real-time exception management and, in particular, on the
problem of determining when rescheduling is worthwhile
during the ongoing production. The problem of
rescheduling is an essential branch of the scheduling
literature [11, 12]. The reasons for rescheduling come from

2 Li et al.

several factors such as accumulation of delays in
production, the unexpected arrival of urgent orders,
machine faults, or absence of the operator. To enforce a
rescheduling, it is necessary to compute a new schedule
balancing the possible time savings and efforts to
implement the changes. Although rescheduling frequently
helps manage unexpected disturbances, it needs additional
working time in reorganization and affects the stability of
shop flows. On the contrary, rescheduling too rarely does
not eliminate enough a growing accumulation of the delays.
Given an optimization technique to create a new schedule,
determining the best rescheduling time remains the main
problem. If the company receives unforeseen, but urgent
requests or machine fails, this decision is easy to make (i.e.,
the rescheduling process should be carried out as soon as
possible). In general, rescheduling is required within a
manufacturing process if unexpected events arise, leading
to unfeasible schedules. However, in the continuous and
complex production setting, deciding to reschedule or not
quickly and effectively is not a trivial task. The problem is
so complicated that in the real setting, many factories just
reschedule periodically.

In the view of improving the rescheduling strategy, our
paper proposes a new rescheduling framework by
combining metaheuristic optimization algorithms and
Machine Learning (ML) techniques. The proposed
approach provides empirical evidence of efficiency and
effectiveness in the production problems of some Italian
companies, within the industrial project Plastic and Rubber
4.0 (P&R4.0)1 - a project aimed at being the Italian
response to I4.0 for companies in the plastic and rubber
processing field. It is essential to highlight that the paper
goal is to describe the integration between ML and
optimization and to show a comprehensively proof-of-work
methodology, but not necessarily to exploit its full potential
(which can be achieved only by tailoring the method to the
studied setting). For this reason, both the chosen
metaheuristics and ML algorithms are not the most
advanced ones but selected among mature and popular
methods, which have shown excellent performance in the
past. This choice also shows the potential of getting better
performance by adopting more advanced and tailored
algorithms.

The paper is organized as follows. Section 2 reviews the
literature on scheduling and rescheduling, highlighting
their relationship with I4.0. Section 3 introduces the
methodology of the integrated framework. Section 4
presents the scheduling problem and the mathematical

1 Plastic&Rubber 4.0. Piattaforma Tecnologica Fabbrica
Intelligente (Technological Platform for Intelligent Factory),
URL: https://www.regione.piemonte.it/web/temi/fondi-progetti-
europei/fondo-europeo-sviluppo-regionale-fesr/ricerca-sviluppo-
tecnologico-innovazione/piattaforma-tecnologica-fabbrica-intelligente

model. Section 5 displays the adopted optimization
approach. Section 6 demonstrates the creation of
classification models. The results of the numerical
experiments are shown in Section 7. Finally, we conclude
and outline future research lines in Section 8.

2 Literature review

Scheduling is the process of assigning tasks to resources or
allocating resources to perform tasks over time. This work
focuses on a variation of the Job-Shop Problem (JSP) [13].
Extensive research on JSP methods, including heuristic
principles, classical optimization, and artificial intelligence
(AI), is reported in [14]. [15] points out that priority rules
and dispatching rules are probably the most frequently
used heuristic policies embedded in metaheuristic methods
for scheduling problems.

The scheduling problems exist in different
manufacturing and service industries with their
particularities. In plastic and rubber molding-related fields,
the fabrication of injection molds supplies supports to other
companies using injected components either as
semi-finished products or as final products [16]. Their
scheduling often involves complex production systems [17]
owing in general to a large number of products, unrelated
parallel machines, and sequence-dependent setup times.
Such characteristics often match the job shop scheduling
problem ones [18]. Each order or aggregated orders can be
seen as a job. For each job, there is a set of ordered
activities, and each activity requires the exclusive use of a
resource. Although a well-designed schedule is critical to
get products delivered on time, the studies on the
scheduling problems in plastic and rubber field are still
limited. In [19], the authors develop mathematical models
for the job-shop scheduling problem with
sequence-dependent setup times and solve them through
several search methods. In [16], a case on plastic injection
molds is studied, and a flexible job-shop scheduling
problem is addressed with Petri nets (PN) and Genetic
Algorithms (GA). PN provides a formal representation of
the complex system. GA creates a near-optimal schedule to
minimize the total weighted tardiness based on the
structure provided by PN. The work also provides a clear
explanation of the characteristics of plastic injection molds.
In [20], the authors describe why the production process in
a Belgian rubber company is a job shop scheduling
problem. They solve such a problem through a hybrid
shifting bottleneck procedure with a tabu search algorithm.
Finally, in [21] a flexible JSP is transformed into a game,
which is solved through Game Theory (GT) approaches.
All the jobs and the manufacturer are players trying to
maximize their profits. Moreover, each job also aims at

ML and Optimization for Rescheduling in I4.0 3

minimizing its tardiness while the manufacturer also wants
to minimize the makespan of all the jobs.

In this paper, we formalize the scheduling problem in
P&R4.0, namely the Flexible Job-Shop Scheduling
problem with sequence-dependent setup time and limited
dual resources (FJSP), where dual resources mean
general-purpose machines and setup workers. And we solve
the problem with one of the possibilities - hybrid
metaheuristics.

Although the lack of setup workers is a common
phenomenon in factories, most researchers do not consider
their availability. For example, [22] introduces the issue
concerning both the selection of the machine and operation
with sequence-dependent setups, without mentioning
workers. In the papers [23] and [24], the authors have the
same lack. In [25] setup workers are viewed as a critical
resource in their single-stage production composed by a set
of unrelated parallel machines. In [26], the authors consider
setups in a dynamic environment. Specifically, the work
deals with a scheduling problem managing a wide variety
of products, and an implicit clustering is employed against
the impractical building of a large-scaled setup matrix.
However, the availability of setup workers is not
mentioned. Another research [27] concerns the flexibility
of both workers and machines as well as the precedence
between operations, but there is no consideration of setup.
To our knowledge, FJSP has not been formalized in the
literature, and no precise heuristics have been suggested as
solution methods in the static view, nor for rescheduling in
the dynamic setting. Consequently, to provide an integrated
rescheduling framework is another contribution of the
present paper.

As aforementioned, due to the I4.0 revolution, also
scheduling optimization has the opportunity to develop new
tools. In [28], the authors present an I4.0 survey on the
implementation of optimum control to scheduling in
production and supply chain by concentrating on the
deterministic maximum principle. Not only do they derive
major contributions, application areas, limitations, as well
as research and application recommendations for future
research, but also they explain control models in industrial
engineering and production management. In [13], the
author reviews several JSP related optimization problems
applied in I4.0, which shows that one of the most important
and active research fields is the application of distributed
optimization algorithms. Especially, multi-agent-based
systems have been proven to be very effective in several
settings (see, e.g., [29]). Moreover, the technique is capable
of generating effective schedules for both dynamic and
static problem sets, as in [30]. Nonetheless, there is no
research done in both articles on the problem of deciding
the right rescheduling time. The above discussion testifies a
lack in the literature if both I4.0 opportunities and

rescheduling problems are considered. In the rest of the
section, we focus on the papers considering the
rescheduling problem. The work [31] is the first to describe
a general model for providing schedules using JSP and GA.
This algorithm is evaluated under different situations of
workload in a dynamic environment. In [32], the authors
are the first to provide well-defined concepts for most
rescheduling production systems and to identify a
framework for understanding rescheduling approaches,
policies, and methods. After that, more rescheduling related
papers appear. [33] and [34] provide critical rescheduling
analyses. The former concerns a broad set of operations for
railway rescheduling. Even though different algorithms are
presented, most of them are problem-specific and cannot be
generalized into the context of the smart industry. Instead,
by focusing on solutions involving the integration among
industries and real application cases, [34] presents a
systematic literature review of the studies on rescheduling
production. Their paper mainly deals with the choice of the
rescheduling heuristic rather than the decision of the
rescheduling timing. The lack is common both in
rescheduling literature and in the small branch of the
literature dealing with rescheduling-specific ML
applications. For example, [35] presents an algorithm that
uses Q-learning principles to change the train schedules on
a single-track railway and in [36] the authors develop an
artificial cognition control system to acquire rescheduling
knowledge in the form of decision rules. Another work [37]
proposes a two-stage teaching-learning-based optimization
approach, which avoids considerable modifications for
ensuring robust and stable schedules after machine breaks
unexpectedly.

In terms of scheduling and rescheduling framework,
[38] introduces a general rescheduling framework to
address issues arising from the dynamic nature of
production scheduling for a classical JSP. The proposed
solution consists of a solver that assumes deterministic and
static data and a controller that handles uncertainty that
triggers a new solution from the solver if the scheduling
performance drops down below a certain threshold. Our
research is close to their approach to capturing the complex
rescheduling properties. However, while the
decision-making controller’s output depends on when
relevant information is gathered in their method, they do
not propose the possible integration of real-time data
analysis. Another similar work has been proposed [39],
which considers optimization scheduling and rescheduling
under I4.0 and introduces a new decision-making scheme
by using Tolerance Scheduling (identifying scenarios
where a given schedule remains acceptable) to mitigate the
rescheduling changes in the dynamic environment. They
propose to start from defining the disruption events and
designing tolerance for parameters, and then incorporate

4 Li et al.

the scheme into a Cyber Physical Production System
(CPPS, [40]), which can decide to reschedule only when
the objective function value is significantly affected.
However, the paper lacks a complete example or case study,
which makes the approach feasibility doubtful in terms of
the complexity of implementation and calculation time. In
our approach, we validate our rescheduling framework
through a scheduling problem and numerical experiments.
In [41], the authors propose an event-driven JSP
mechanism under machine capacity constraints. The
event-driven rescheduling strategy achieved better
performance with respect to a periodic rescheduling
approach. While our work and [41] both compare with the
periodic approach and show superior performance,
different rescheduling goals and actions can be identified.
Concerning goals, in [41] the rescheduling is done once a
dynamic event occurs while minimizing the objective
values. Our work intends to balance the big deviation of
objective value and energy spent on implementing
rescheduling. Concerning actions, in [41] the rescheduling
is applied after a disturbance occurs. Instead, our work
focuses on combining real-time monitoring and prevention,
depending on the various types of possible disturbances.
While rescheduling must be done for some unexpected
events (e.g., the arrival of urgent orders), some other
disturbances that may occur more frequently (e.g.,
accumulated processing time variations) can be detected
through real-time monitoring and integrated with ML to
make rescheduling decision.

In [42], the authors propose a decision-making model
based on minority game (MG) theory to organize and
manage the resources and services provided by the
autonomous participants of a cloud manufacturing system
with private information. In the game, a set of classes is the
agents competing for a group of workstations. Each agent
chooses the workstation with maximum availability. The
class i allocated on the workstation j wins if the workload
of the workstation j is less than limited value. The game
stops and gives the allocation when either all the agents win
or the number of rounds equal to the limitation.
Particularly, if a machine fails, MG reallocates the product
classes adding the processing time due to recovery time. In
the proposed model, each agent selects resources based on
the best agents’ score and not the best allocation of the
workstations, the simulation results and the low
computational complexity prove MG is adequate to solve
the resource allocation problem in a system of sharing
resources. However, the computation to compare the
performance is only based on the workload of workstations.
Regarding other objectives (e.g., minimization of
makespans, maximum or total tardiness), the performance
is not guaranteed. Also, it reschedules after a machine
failure without the incorporation of early failure detection

or prevention of rescheduling due to other disturbances. A
similar lack occurs in other GT-based approaches, such as
[43]. Also, in [44] a GT-based approach for
self-optimization and learning of modular production units
is presented. In the proposed method, each control
parameter serves as a player. To avoid long training time
and huge data set requirements, appropriate parameters are
defined from the basic control level (BCL) to be learned by
learning agents. In the learning algorithm, optimal actions
for each player have to be inferred from interacting with the
environment. However, the experiments focus on energy
optimization. In the production scheduling applications, the
ability to deliver customer orders in time is of primary
importance. The applicability in time-related objectives is
still to be validated. Besides, there are several limitations to
GT including the fact that each player must know the cost
functions of the other players and it is hard to choose when
several Nash equilibria exist [45].

To fill in the blanks of the existing frameworks for
rescheduling, we deepen the integration of ML and
optimization under I4.0 and propose our methodology in
detail in the next section.

3 Methodology

In this section, we present the general integration
methodology and the specific one implemented in our case
study. We recall the reader that the goal of the paper is not
to implement neither the most advanced scheduling and
rescheduling strategies, nor the most advanced ML
techniques. Instead, we concentrate on the methodology to
integrate various existing methods, which creates new
possibilities in the area of rescheduling.

Fig. 1 displays the proposed general methodology in a
sequential workflow. The main steps are:

1. analyze and classify the problem of scheduling. The
problem may range from a classical JSP to a complex
problem as the one proposed in Section 4.

2. develop techniques for the specific problem, including:
(a) optimization algorithms for scheduling and

rescheduling. They can be based on either
mathematical programming algorithms or any
appropriate metaheuristics. Usually, the scheduling
algorithm should be used as a strategic plan, while
the rescheduling algorithm should be used as a
tactical adaptation of the original scheduling. Thus,
the rescheduling optimization method has to be
extremely fast.

(b) the ML classification model for identifying
rescheduling patterns. To enable the automation of
rescheduling, meaning that the system knows when
to reschedule without or with minimal human

ML and Optimization for Rescheduling in I4.0 5

Fig. 1 Graphic representation of the data-driven
rescheduling methodology.

intervention, we use ML classification algorithms to
learn from the historical data and create a model for
future prediction. The features describing
operation-related status at each simulation time step
are the inputs of the classification model. According
to the classification algorithms chosen, each set of
input features is mapped to output as the
rescheduling decision. An implementation example
is described in detail later (see Fig.7, Section 6).
The ML strategy can rely on automatic feature
extraction or more sophisticated methods.

3. generate periodically a new schedule from a group of
production orders with the predefined optimization
algorithm. Then, each production schedule is started
with interconnected systems and real-time monitoring.
The real-time data are sent to the analytic data
algorithms periodically for being translated into
features that the classification model can recognize.
Then the model sends the output to the rescheduling

controller, suggesting to reschedule or not. If the
recommendation is to reschedule, the subsequent
rescheduling operation will be taken. Otherwise, the
output will be held to completion.

4. record the data as feedback to update the classification
model. Since this is a post-process executed only after
finishing the scheduling, it is represented in the Figure
through a dashed line.

To elucidate the general methodology of the automated
rescheduling framework, we implement the following steps
for a case study within the P&R4.0 project:

1. formalize the production scheduling problem.
2. develop the solution approach for the scheduling and

rescheduling problem.
3. derive features and algorithms for creating a

classification model.
4. demonstrate the potential effectiveness, run the

subsequent numerical experiments:
(a) implement and test a heuristic approach capable of

finding good schedules in a reasonable amount of
time;

(b) create data to simulate the information from
technologies provided in the I4.0 framework;

(c) train ML model to learn the rescheduling patterns
for deciding when to reschedule (i.e., when to trigger
the heuristic for getting a new schedule and then to
update the production schedule);

(d) compare the performance on the same scenarios
followed by the proposed rescheduling framework
and the commonly used periodical rescheduling that
do not align with ML and real-time data analysis.

4 Problem definition and modeling phase

The optimization problem being considered is the Flexible
Job Shop Problem with sequence-dependent setup time and
limited dual resources (FJSP). Based on conventional JSP,
our FJSP introduces:

– the flexibility in selecting machines as there may be
more than one machine capable of same operations;

– the limited resources of setup workers and machines;
– the sequence-dependent setup, which is under the

control of both machines and setup workers.

The key assumptions of the model are:

– no preemption is allowed for each operation, operations
between different jobs are independent;

– one machine and one worker can only work on one
operation at a time;

– all jobs, machines, and workers are known at the start.

The following sets are considered:

6 Li et al.

– J = {1, 2, . . . , jmax} is the set of jobs;
– T = {1, 2, . . . , tmax} is the set of time steps;
– M = {1, 2, . . . ,mmax} is the set of machines;
– O = {1, 2, . . . , omax} is the set of operations to be done,

each operation belonging to a specific job;
– C = {1, 2, . . . , cmax} is the set of configurations;
– Cm ⊆ C is the subset of the configurations that the

machine m ∈M can take;
– Co ⊆ C is the subset of configurations that a machine

can take in order to process operation o ∈ O.

Because each job is a predefined set of operations with a
fixed precedence relationship, we define a directed graph
G = (O, E ⊆ O ×O), where O is the set of nodes and E is
the set of arcs, which enforces the precedence relationships
of the operations for the same job (for example, [46]). More
specifically, an arc from operation õ to operation o means
that prior to operation o operation õ must be performed.

The following parameters are also specified:

– T cc̃mt is the setup time needed to change from
configuration c to configuration c̃ on machine m at time
t;

– Tom is the processing time for operation o done on
machine m;

– Lt is the number of setup workers available at time t.

Let us consider the following decision variables:

– Cmax is the value of the total makespan for the set of
jobs;

– Co is the completion time of operation o;
– yomt is a binary variable taking value 1 iff operation o is

processed on machine m at time t;
– somt is a binary variable taking value 1 iff operation o

starts to be processed on machine m at time t;
– zcmt is a binary variable taking value 1 iff machine m is

in configuration c at time t;
– wcc̃mt is a binary variable taking value 1 iff machine m

changes from configuration c to configuration c̃ at time
t.

Then a Mixed Integer Linear Programming (MILP)
formulation for the FJSP is as follows:

minimize Cmax (1)

subject to:

Cmax ≥ Co, ∀o ∈ O (2)∑
m∈M

∑
t∈T

somt = 1, ∀o ∈ O (3)

∑
o∈O

somt ≤ 1, ∀m ∈M,∀t ∈ T (4)

∑
t∈T

yomt = Tom
∑
t∈T

somt, ∀o ∈ O,∀m ∈M (5)

somt ≤ yomt̃,
∀t ∈ T ,∀t̃ ∈ [t, t+ Tom],∀o ∈ O,∀m ∈ M (6)

somt ≤
∑
m̃∈M

t∑
t̃=1

sõm̃t̃,

∀o, õ ∈ O,∀(õ, o) ∈ E ,∀m ∈ M,∀t ∈ T (7)

Tomsomt ≤
∑
m̃∈M

t∑
t̃=1

yõm̃t̃,

∀o, õ ∈ O,∀ (õ, o) ∈ E ,∀m ∈ M,∀t ∈ T (8)∑
c∈C

zcmt = 1, ∀m ∈M,∀t ∈ T (9)

zcmt = 0, ∀c ∈ C \ Cm,∀m ∈M,∀t ∈ T (10)∑
m∈M

∑
c∈C

∑
c̃∈C

wcc̃mt ≤ Lt, ∀t ∈ T (11)

somt ≤
∑
c∈Co

zcmt, ∀o ∈ O,∀m ∈M,∀t ∈ T (12)

Co ≥ t yomt, ∀o ∈ O,∀m ∈M,∀t ∈ T (13)

somt + yõmt ≤ 1, ∀o, õ ∈ O, o 6= õ,∀m ∈M,∀t ∈ T
(14)

1−wcc̃mt ≥ zcmt−zc̃m,t+1, ∀c, c̃ ∈ C,∀m ∈M,∀t ∈ T (15)

1−wcc̃mt ≥ zc̃m,t+1−zcmt, ∀c, c̃ ∈ C,∀m ∈M,∀t ∈ T (16)

1− wcc̃mt ≥ somt̃,
∀o ∈ O,∀c, c̃ ∈ C,∀m ∈M,∀t ∈ T ,∀t̃ ∈ [t, t+ T cc̃mt]

(17)

somt ∈ {0, 1}, ∀o ∈ O,∀m ∈M,∀t ∈ T (18)

yomt ∈ {0, 1}, ∀o ∈ O,∀m ∈M,∀t ∈ T (19)

zcmt ∈ {0, 1}, ∀m ∈M,∀t ∈ T ,∀c ∈ C (20)

wcc̃mt ∈ {0, 1}, ∀m ∈M,∀t ∈ T ,∀c, c̃,∈ C. (21)

The objective function (1) aims at minimizing the
maximum production makespan. Constraints (2) ensure the
correctness of makespan value by defining it as the
maximum of all the completion times. Constraints (3)
impose that each operation must be performed while (4)
enforce that each operation must start in single time step on
only one machine. Constraints (5) ensure that the right
amount of time for each operation is required. In addition,
constraint (6) imposes that an operation cannot be executed
unless it starts. The constraints (7) and (8) enforce the
precedence relation between the operations, while
constraints (9) enforce that each machine must have a

ML and Optimization for Rescheduling in I4.0 7

configuration. Constraints (10) prohibit a machine to take a
configuration which is not in the set of configurations that it
can achieve. Constraints (11) limit the number of
configuration changes that can be made in a given time
step. Furthermore, constraints (12)–(17) add the relations
between the variables. In particular, constraints (12) impose
that an operation cannot start if the machine is not in the
correct configuration, constraints (13) enforce that the
completion time of one operation must be greater than the
maximum time of that operation on the assigned machine,
and constraints (14) impose that when a machine performs
an operation, no other operations can start during the
process. For variables w and z, the logic consistence is
defined by constraints (15) and (16). Constraints (17)
impose that no operation should begin on it when a
machine is changing configuration. Finally, constraints
(19)–(21) define binary condition on the variables.

5 Scheduling optimization phase

Problem (1)–(21) becomes very difficult to solve, even for
small-size instances. It has a number of variables of the
order of 2max{|O||M||T |, |M||T ||C|2}. Thus, even for
relatively small instances (e.g., for |O| = 100, |M| = 7,
|T | = 30, and |C| = 3), exact solvers cannot solve the
problem in a reasonable amount of time. Since real
applications need efficient scheduling procedures without
affecting the overall makespan, we adopt a hybrid
algorithm (HA) to calculate the initial schedule. HA
consists of the Genetic Algorithm (GA) and Tabu Search
(TS), as discussed in [47]. Note that there exist many other
hybrid GA approaches dealing with flexible job shop
scheduling. For example, in [48], the authors design an
approach for integrating GA with Simulated Annealing
(SA). The introduction of SA is to overcome the premature
convergence of GA, similar to the introduction of TS in our
HA. however, since the focus of the paper is not to find the
best scheduling algorithm, the comparison of different
hybrid algorithms is considered out of the scope.

The flow chart (Fig. 2) describes the HA procedure by
starting with GA to provide a set of initial solutions as a
population and then selecting solutions to do crossover and
mutation. TS performs a local search on each of the new
solutions. GA then uses improved solutions from TS to
start a new evolution. By omitting the TS steps, this hybrid
framework can be converted into traditional GA. Similarly,
by setting the population size to one and omitting the
genetic operators, it can be converted into traditional TS.
While HA is not new, we would like to provide interested
readers with a clear view of how we adapt HA to solve
FJSP in the following sections.

Fig. 2 Flow chart of the heuristic approach.

5.1 Encoding and decoding

In GA, it is essential to ensure that all solutions (i.e.,
chromosomes) generated during the evolutionary process
are feasible. In the paper, we show aspects of both encoding
and decoding.

The job representation is selected to encode an
individual. A chromosome is an array of genes
[j1, j2, . . . , j|O|], each gene corresponds to the job number
of the operation. More precisely, this means that the ith
presence of the job number j is the ith operation of job j.

In the decoding phase, the assignment of machines, and
the calculation of start, end time are performed. There may
be more than one machine available for each operation, so
we use the modified greedy strategy to randomly select only
one of the earliest available machines between the first two
machines. Subsequently, the availability of both a machine
and a setup worker is considered to calculate the start and
end time of each operation. The objective is to minimize the
overall completion time, so the value of makespan is fitness.
The smaller the fitness, the better the solution is.

For example, in Fig. 3 we assume that each machine is
in configuration 4, there is only one setup worker, and we
label the operations by j-o, where j ∈ J , o ∈ O. All
machines and workers from t = 0 are available. The
directed graph in Figure 4 indicates the precedence
relationships. X and Y are two dummy nodes denoting the

8 Li et al.

source and sink, respectively, so there is a path going from
X to Y for each job there. The set of directed arcs specifies
the ordered pairs of operations.

Fig. 3 Example of one scheduling toy instance problem.

Fig. 4 Directed graph representation of one feasible
chromosome.

Fig. 5 (left side) shows one example of chromosomes.
The middle reports a possible machine assignment for
operations. Notably, for an operation o, the earliest starting
time on each machine is calculated based on the finishing
time of its predecessors and the setup worker’s available
time. Finally, in Fig. 5 (right side) we update the graph by
adding the arcs that model the operation precedence on the
same machine (dotted lines).

5.2 Genetic operators

The initial population consists of the chromosomes with
randomness in operation sequence (for operations in
directed arcs). Genetic operators - selection, crossover, and
mutation - are established for creating new solutions. To
ensure the feasibility of each solution, once it is discovered
that it is unfeasible, it will be corrected.

In each generation, we choose tournament selector
(selecting the best individual from random samples with
replacement) for selecting survivors and roulette wheel
selector (selecting according to the fitness proportion) for
selecting individuals to create offsprings.

A crossover operator acts on two strings of parents at a
time and produces offsprings by recombining the
characteristics of both parent strings. We use a so-called
two-point crossover, which randomly chooses two points in
parents and swap the area between the two points.

The left of the Fig. 6 shows a crossover example,
generating two feasible children. On the right, an infeasible
solution to the same problem shown in Figure 3 shows how
to fix infeasibility.

A strategy for swapping mutation is used to avoid
spending more time in managing feasibility rather than
exploring for better solutions. The solution is
straightforward, taking two positions in the recombined
chromosome randomly, then swapping genes on the
positions to obtain new offsprings. The newborns are
feasible on any swap since we use job number to represent
genes.

5.3 Tabu Search

In TS, move, neighborhood structure, tabu list, and
aspiration criteria are the main components.

A neighborhood structure is a mapping of a solution to
a set of neighbors (a neighbor is a slightly different solution
from the original). [49] proposes the first effective
neighborhood structure for JSP by reversing the order of
two successive operations on the same machine. A move is
a modification on a solution to get a neighbor. The
reversing transition is a type of move. This paper adopts the
swap strategy exchanging any two operations on different
jobs. With the intrinsic meaning of "tabu", forbidden, the
tabu list is a memory structure recording the recent moves
to avoid the solution cycle. In our work, the positions of the
two operations in a move are recorded as an element in the
tabu list. The list is cyclic with a fixed capacity, which
means the oldest element is removed when a new element
needs to be inserted, but the full capacity is reached. As
elaborated by [50], TS excels at avoiding getting stuck in
local optima with the usage of the tabu list. However, it is
inevitable to consider more for balancing intensification
(exploring best neighbors) and diversification (disallowing
the moves annotated as tabu) based on the length of the
tabu list.

While the advantage of the tabu list is shown, it
displays the possibility of forbidding some solutions, which
are discovered by applying the tabu move, being visited. To
mitigate the risk, we accept the widely used aspiration
criteria: accepting a tabu move, which creates a better
solution than what has been found so far.

TS records and encodes the best solution found in a
chromosome, and then returns it to the GA population.
Although it is likely to transform into better solutions by
running for more generations, there should be a tradeoff
between the running time of TS and that of GA in HA.

ML and Optimization for Rescheduling in I4.0 9

Fig. 5 Example of encoding, decoding, and directed graph with machine precedence relationships.

Fig. 6 Example of crossover and infeasibility handling. The red dashed lines represent crossover points.

6 Machine Learning-based classification phase

To overcome the difficulty of making the rescheduling
decision, we create a classification model that returns the
rescheduling suggestion, given the topology-related
information and the current state of the production system.
We highlight that the techniques presented in this section
are one possible choice for the classification methods. We
select those techniques because they are easy to implement,
well known, and robust.

The approach is useful for the following reasons: first,
the classifier returns the result of the calculation in a short
amount of time, which satisfies the time criterion in dynamic
production; second, it requires a small amount of computing
power; third, as it provides answers in a short time, it can
be run at high frequency and can, therefore, be responsive.
Finally, it is possible to know the characteristics of the plant
that play actively in deciding the need for rescheduling by
using the proposed methodology. Therefore, the plant can
be modified to improve its robustness, reduce the bottleneck,
and so on.

Considering a set of scenarios Θ = {1, 2, . . . , θmax}, in
each one θ ∈ Θ, the jobs that the plant has to fulfill, the
related operations and the number of machines will be
changed. In the following, we use the notation
u(θ) = (u1, . . . , uT) to indicate the schedules of the plant
in scenario θ ∈ Θ. Given two different schedules u(θ) and
v(θ), if the production follows u(θ) in [0, t] and v(θ) in
[t + 1, T], in order to indicate the concatenation of the two
schedules, we use the notation < u(θ), v(θ) >t. Given a
schedule u(θ) and a scenario θ ∈ Θ, we call the operator
F(u, θ) the computed makespan. For each scenario θ ∈ Θ,

we define the processing time variations
δ11(θ), . . . , δ|M|1(θ), . . . , δ1|T |(θ), . . . , δ|M||T |(θ). The
interpretation of δmt(θ) is as follows: given an operation o
that on machine m lasts for Tom to process, if scenario θ
occurs, it lasts Tom(1 + δmt(θ)). These variations can be
positive (under-estimated processing time) or negative
(over-estimated processing time). It is worth noting that the
random variables δmt(θ) are independent with respect to
machine and time step, and independent from the
scheduling [51]. In addition, we assume that the expected
value is zero. Please notice that this is not a restrictive
hypothesis because if the decision-maker discovers that
some process lasts longer than expected on average, then
the expectation change.

To compute the data set for training the classifier, we
compute the actual schedule u(θ) in each scenario θ, i.e.
the schedule to be followed by the plant by the heuristics
described in Section 5. Then, we run the rescheduling
procedure to get a new schedule u(θ|t) for each time step t
of scenario θ. The new schedule is computed using the
heuristic proposed in Section 5.3, with the current schedule
being u(θ) the starting solution, over the following
optimization model:

minimize λCmax + (1− λ)Nvar (22)

subject to (2)–(21). In the modified objective function (22),
0 < λ < 1 is the relative importance between the original
Cmax and the l1 norm of the difference between the solution
of the actual schedule and the rescheduled solution (Nvar).
The latter term is useful to limit the number of scheduling
changes while minimizing makespan.

10 Li et al.

Given schedule u(θ|t) and threshold b, if

F(< u(θ), u(θ|t) >t, θ) ≤ (1− b)F(u(θ), θ), (23)

then it is better to reschedule (label 1) and u(θ) is updated
with < u(θ), u(θ|t) >t, otherwise no (label 0). We consider
b as decrements of the makespan in Eq. (23) and assign it
5% by taking into account the time spent in re-organizing
the production and avoiding rescheduling if only a small
improvement can be achieved. Note that the threshold can
be adjusted to each production manager’s actual
requirement. A higher threshold can be set accordingly for
productions that are difficult to reschedule frequently.

It is worth noting that the similar idea of Eq. 23 can be
found in [39] where the authors call it inertia factor.

By using the procedure above, we get a set of plant
states, one for each pair (t, θ) ∈ T × Θ, and we associate
each of them with the label (reschedule or do not
reschedule). From the dataset, we extract a set of features
for each state, considering information on processing time
variations (PTV), planned scheduling, and plant
information (including the available resources for each
operation, customer orders to be managed, and so on).

Besides, it is assumed that all simulations have the same
time horizon T . This assumption is not restrictive as we can
always consider T as the longest simulation end time.

Following the approach of [52] and [53], we do not
consider automatic feature extraction but we exploit the
experience of the involved company to define the following
features:

– t: the time step,
– at t, the features related to operation o:

– OPTo: remaining processing time,
– PTVo: processing time variation,
– ρo: ratio of the available machines able to perform o.

Since considering all operations can lead to over-fitting
(the number of operations is higher than the number of
scenarios), with the ratio specified as a measure, only the
operations with a high ratio, meaning those with more
flexibility in changing machines, are considered. We call
the number of considered operations OP_Num. The
performance of the classifiers related to OP_Num is
evaluated in Section 7. When OP_Num is 2, the
considered feature set is
{t, OPT1, PTV1, ρ1, OPT2, PTV2, ρ2}. A snippet of
ML input and output example with OP_Num equal to 10
is shown in Fig. 7. The input is the same for all the
algorithms compared (negative PTV values mean that the
processing time is less than planned, and vice versa). The
output is the rescheduling decision (1 means reschedule, 0
means not to reschedule), which is obtained according to
the different ML algorithms.

After getting the features above, the resulting dataset is
divided into a training dataset (70%) and a test dataset
(30%). We consider three commonly used classification
algorithms: Random Forest Classifier, which belongs to
decision tree induction methods, Support Vector Machines
and Multilayer Perceptrons from neural networks:

1. Random Forest Classifier (RFC): a combination of
decision tree classifiers and the ensemble of trees voting
for the most popular class [54]. RFC is easy to
parametrize, not sensitive to over-fitting, and it provides
ancillary information like variable importance [55].
However, a large size of data set can lead to high
memory consumption [56].

2. Support Vector Machine (SVM): input vectors are
mapped to high dimensional feature space, and a linear
decision surface is constructed in the space [57]. It does
not require any parameter tuning since it can find good
parameter settings automatically [58]. It delivers a
unique solution because the optimization problem is
convex. However, while the feature of non-parametric
brings convenience, it lacks the transparency of results
[59].

3. Multilayer Perceptrons (MLP): a type of neural
network, which simulates human brains [60]. It is a
system of interconnected neurons, or nodes
representing a nonlinear mapping between an input
vector and an output vector. The algorithm works well
for simple problems, but for difficult problems, several
iterations are needed for the training convergence [61].
It shows one benefit that it needs of neither the prior
assumptions about the distribution of training data nor
the decision regarding the relative importance of input
measurements. The costs spent in deciding the number
of layers and the number of nodes in those layers are
not trivial, and there is no single method for doing it
[62].

We have decided not to use more advanced techniques such
as deep learning [63], convolution neural network [64], or
clustering [65] since our aim in this work is to provide a
proof of concept of the integration framework by starting
from simple but widely used techniques. Eventually, these
approaches are considered because they provide the user
with insights on the features considered.

Furthermore, for selecting the validation model, we
choose the Cross-Validation (CV) technique, which
overcomes over-fitting issues [66]. It is well-known that
using the same data for the training algorithm and
evaluating performance leads to over-optimistic results
[67].

ML and Optimization for Rescheduling in I4.0 11

Fig. 7 An example of ML inputs and outputs.

7 Numerical Experiments

In this section, we present the instance generation
procedure, the implementation details, and then discuss the
experimental results regarding the optimization and ML
techniques separately and those regarding their integration
in the rescheduling process.

7.1 Instance generation

The problem instances were created by using a general
method to construct all the sets, operators, and parameters
described in Section 4. Notably, we use it throughout the
section to model a company’s factory. The plant consists of
two product lines, one for molded rubber and the other for
plastic items. In the paper, only the rubber line is
considered. The line is made up of 16 machines. All jobs
are made up of successive operations, i.e., there are no two
operations of the same job that can be carried out in
parallel. Also, only one worker can perform the setup
operation. Every new setup operation required by a
particular operation must, therefore, wait for the setup to be
completed.

The empirical distribution of the PTV used is shown in
Fig. 8. The maximum increment is 20% of the planned

Fig. 8 PTV distribution.

processing time while the maximum reduction is 15%.

In the training phase, we start from 23 scenarios. For
each, the number of operations is simulated from 2 to 41,
with processing time varied from 3 to 25 time units, and
available machine quantity from 1 to 14.

7.2 Implementation details

As described in Section 5, the first schedule is obtained by
HA consisting of GA and TS. The GA part is built on the
open-source programming library Jenetics [68], while the
TS part has been implemented based on the open-source
programming library OpenTS [69]. By calibrating the
parameters, the population size is settled to 200 for both
GA only and HA. For the crossover and mutation operators,
in HA, a two-point crossover with probability 0.86 and a
swap mutation 0.3 are used. In GA only, two-point
crossover with 0.76 and swap mutation with 0.115 are
adopted. The tabu length is calibrated into 30 for the TS
only approach and 20 for the HA approach. For each
individual in HA, TS is set to iterate 50 times as a stopping
criterion.

The ML procedure has been implemented by using the
package Scikit-learn [70] in Python 3.6. The machine used
for the numerical experiments is equipped with an Intel(R)
Core(TM) i5 CPU@2.3GHz, 8 GB RAM and running
macOS v10.14.3. The MILP solver used in the numerical
experiment is GUROBI Optimizer v8.1.0 (build v8.1.0rc1).

The experiment results are shown in the next three
subsections. In Subsection 7.3, we compare the
performance of the heuristics implemented for solving
(1)-(21), in Subsection 7.4 the characteristics of the
classification problem are analyzed and next, in Subsection
7.5, the performance comparison between the proposed
approach and periodic rescheduling is elaborated.

7.3 Heuristics performance

7.3.1 Comparing the results of heuristics against the exact
solver

In Table 1, each row compares the heuristic gaps (%)
against the solutions provided by the GUROBI exact solver

12 Li et al.

(ES). All computation times reported are measured in
seconds. The results include two types of comparisons:

– under same running time, the differences of makespan;
– the distinctions of heuristic makespan from the best

possible values of ES.

Since running time is increased with the difficulty level
of the problem, we encompass four intervals to cover a wide
range of difficulty levels. The makespans of the instances
tested in Table 1 fall within the range 17–120 time units due
to the limitation of ES.

The columns under |M| and |O| provide the number of
machines and operations used in each instance,
respectively. Same machine number and operation number
do represent distinct instances because other parameters are
different (for example, the duration of each operation and
the precedence). For the comparison under the same
running time, GA_gap, TS_gap, HA_gap respectively
report their gaps (%) compared to the solutions supplied by
ES. Moreover, best_T indicates the running time for
Gurobi to find the optimal value for each instance. The
columns under GA_bgap, TS_bgap, HA_bgap separately
show the differences of GA, TS and HA compared to the
optimal values found by ES. A dash (-) indicates for the
given instance, the solving of solution approach ES
exceeded the running memory of the computer, thus no gap
is quantifiable.

When comparing under the same running time, there is
only one row of positive values (1 out of 20 instances)
available in the first three gap columns, demonstrating that,
in most cases, all the three heuristics perform significantly
better than ES. The statistics in the last two rows (averages
and standard deviations) support the effectiveness of the
heuristics. We found that keeping the running time shown
in the seventh column, ES slightly surpassed the
performance of the heuristics. HA stayed a bit beforehand
comparing to the other two heuristics.

7.3.2 Comparing results between heuristics

For comparing the three heuristics in larger scales,
instances with longer operation period (20–50) and larger
makespan (190–330) have been evaluated. In real and
dynamic production, it is critical to get a feasible schedule
quickly enough, so to compare the results, the time values
of 20s, 40s, 95s were chosen. Because ES was unable to
provide solutions, HA was used as a benchmark for gap
calculation (%), as shown in Table 2. The bigger the gap
shown under column GA_gap and TS_gap, the bigger the
makespan they compared to HA.

HA has demonstrated its good performance with more
frequent appearance of non-negative values in Table 2,
which is contributed by its mixture strategy in exploration

and exploitation. Consequently, HA is chosen to get the
initial schedule. TS achieved similar results with a slightly
worse quality compared to HA. With the feature of
neighbor exploration tending to discover similar solutions
and its satisfying quality, TS is chosen for rescheduling.

7.4 ML-based classification analysis

This section shows the performance of the proposed
approach from the results of three classification algorithms.
As for the performance estimator, the area under the
receiver operating characteristic curve (AUC) is adopted
since it exhibits more desirable properties comparing to
overall accuracy [71, 72]. The value of AUC ranges from
0.5 (useless test) to 1 (correctly discriminated test).

The test compares the performance of SVM, RFC, and
MLP and the number of operations considered. The X-axis
OP_Num indicates the number of collected operations
ranging from 1 to 10. The outcome is averaged by taking
results from 10 random seeds (different seed leads to
different fitting behavior of RFC and MLP, which likely
causes different scores). In Fig. 9, the average AUC values
are presented.

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

OP_Num

A
U

C

SVC
RFC
MLP

Fig. 9 AUC values for different operation numbers.

As shown, RFC stayed far ahead. For SVM, firstly AUC
score grew but declined after OP_Num 8 was reached.
Instead, for MLP, the score kept decreasing, with some
exceptions in the middle. Concerning RFC, as OP_Num
increased, its AUC values kept improving. Thus,
considering operations with the ten highest ratios, the RFC
achieved the best AUC score of 0.81. For this reason, RFC
and this setting are considered in the following subsection.

ML and Optimization for Rescheduling in I4.0 13

Time |M| |O| GA_gap TS_gap HA_gap best_T GA_bgap TS_bgap HA_bgap

[20, 40)

3 10 - - - - - - -
5 10 -6.12 -6.12 -6.12 4002 2.22 2.22 2.22
5 10 - - - 4265 8.00 8.00 8.57
5 10 - - - 3905 1.00 1.00 1.49
3 5 -10.11 -10.11 -10.11 3769 1.27 1.27 1.27

[40, 220)

4 20 -8.7 -8.70 -8.7 3656 0.00 0.00 0.00
2 30 -3.85 -3.85 -3.85 3769 0.00 0.00 0.00
4 30 - - - 3324 2.00 2.00 2.56
4 30 -46.94 -46.94 -46.94 3989 0.00 0.00 0.00
4 30 -20.41 -22.45 -22.45 2765 8.33 5.56 5.56

[220, 400)

6 30 - - - 4324 5.00 5.00 5.26
6 30 -26.32 -26.32 -26.32 2965 0.00 0.00 0.00
6 30 5.56 5.56 5.56 4297 11.76 11.76 11.76
4 35 -34.69 -34.69 -34.69 2987 6.67 6.67 6.67
4 30 - - - 2658 3.00 3.00 0.00

[400, 2200)

4 40 - - - 3456 0.00 0.00 0.00
6 40 -48.59 -48.98 -48.98 3406 4.17 4.17 4.17
6 50 - - - - - - -
6 50 - - - - - - -
6 60 - - - - - - -

Avg: -20.06 -20.26 -20.06 3.51 3.17 3.10
Std: 17.76 17.77 17.76 3.57 3.36 3.48

Table 1: Comparing GA, TS and HA with ES.

|M| |O| T (s) GA_gap TS_gap
3 6 20 0.21 0.00

40 0.00 0.00
95 0.00 0.00

6 14 20 2.48 0.00
40 1.65 0.00
95 1.92 0.00

6 23 20 1.48 0.29
40 1.00 0.04
95 0.57 -0.12

6 34 20 5.66 2.77
40 5.98 2.82
95 3.25 1.19

Avg: 2.02 0.58
Std: 1.95 1.09

Table 2: Comparisons among GA, TS, and HA.

7.5 Rescheduling performance

The following subsections will present the workflow of the
rescheduling framework, its computational results on the
comparisons of makespan improvements, remaining
makespan, and detailed analysis of two examples.

7.5.1 Rescheduling simulation process

The pseudo-code in Algorithm 1 exploits the workflow of
the simulation done in the rescheduling framework where
ML and optimization techniques are integrated.

As for competitors, we consider rescheduling actions at
every time interval (P-1), every 2 (P-2), 4 (P-4), 7 (P-7), and
10 (P-10) time intervals.

Algorithm 1 Rescheduling procedure
1: for θ ← 1 to θmax do
2: for t← 1 to tmax do
3: for m← 1 to mmax do
4: for o← 1 to omax do
5: if o is in process by m then
6: Tom = Tom(1 + δmt(θ))
7: end if
8: end for
9: end for

10: Collect feature values
11: Send to ML classifier to get prediction
12: if prediction is 1 then
13: Reschedule
14: end if
15: end for
16: end for

The method for rescheduling at fixed time intervals is
often used in practice due to the simplicity of rescheduling
rules. Especially, as we know, several companies with three
work shifts per day tend to reschedule every 8 hours (i.e., at
the start of each work shift). With this policy, when the
integration with I4.0 technologies is not applied, the
company gives workers their mansions at the start of the
shift, and workers stick to the plan until the end of their
shift. By contrast, some companies provide wearable
devices for workers with I4.0 that create the opportunity to
communicate quickly and efficiently—thus offering the
possibility of having real-time information to update the
work without paying a real cost for reorganizing. So it is
not considered to add a penalty when implementing
rescheduling.

14 Li et al.

7.5.2 Rescheduling computational results

Given the time interval of T = 2 time units and θmax = 15,
we tested the periodic approach with 1, 2, 4, 7 and 10

rescheduling time intervals and the ML rescheduling
policies outlined in Section 6. For the same scenario that
ML and periodic approaches run, the same oscillation
values are added. By implementing the procedures
presented in Algorithm 1, the statistics were collected at
each time interval until reaching the originally planned
finishing time. For example, if a schedule is estimated to be
completed in 100 time units, then in the simulation of
production, 100 time units will be set as the time horizon.

All the values correlated with time are normalized and
represented in percentages.

7.5.2.1 Comparison on makespan improvements

The statistics on each approach are shown in Table 3. The
column Approach indicates the rescheduling mechanism,
N represents the rescheduling times, avgI indicates the
average improvement of the makespan (i.e., the average
saving of the production time, calculated by averaging the
improvements of all the rescheduling occurrences). The
last, stdI , presents the standard deviation of the makespan
improvements. More precisely, by defining n(θ) as the
times in which a rescheduling is performed in scenario θ,
the rescheduling number taking into account all scenarios is
defined as

N :=

θmax∑
θ=1

n(θ). (24)

As shown, P-1 had a negligible average improvement
with the highest rescheduling frequency. We assume that a
single time unit is 1 hour, this strategy is equivalent to
rescheduling every 2 hours, so it is not ideal for real-world
implementation (many operations can last longer than 2
hours).

On the contrary, P-10 rescheduled just 24 times but
achieved the highest average gain in makespan (16.00).
Rescheduling less frequently creates a more extensive
growing space. However, its considerable standard
deviation value indicates the range of its improvement
values is a bit too wide.

In general, ML performed best in terms of both average
value and standard deviation by rescheduling a few times.

7.5.2.2 Comparison on remaining makespan

For stabilizing the production, it is essential to manage
unexpected events in a dynamic environment. Generally
speaking, the less rescheduling, the better, despite the use
of modern technologies, because any communication can
fail for various reasons (workers may miss messages,

Approach N avgI stdI

ML 38 12.76 7.71
P-1 306 3.20 5.20
P-2 150 4.00 5.37
P-4 71 6.28 8.23
P-7 39 11.87 10.60
P-10 24 16.00 13.92

Table 3: Comparison in makespan improvements.

misunderstand, lose time to understand the message, and so
on).

In order to investigate the differences between the
makespans achieved through each periodical solution and
ML approach, Cθ is defined as the remaining makespan of
scenario θ ∈ Θ at the last measured time step (the time step
is measured till the planned finish time) through periodical
rescheduling, CML

θ is for ML approach, and Dθ is the
corresponding difference, calculated as in Eq. (25):

Dθ = Cθ − CML
θ , ∀θ ∈ Θ. (25)

With the methods above applied in each scenario, both
the average makespan difference avgD and the standard
deviation stdD are calculated by considering all the
scenarios. The results are shown in Table 4.

Approach avgD stdD

P-1 1.67 44.68
P-2 19.93 62.83
P-4 13.53 56.60
P-7 -0.33 28.34
P-10 6.8 31.82

Table 4: Difference in remaining makespan.

In Table 4, the figures excluding the row of P-7 are
positive, which indicates that most periodical solutions had
bigger remaining makespan than those of the ML approach.
Therefore the schedules were probably finished later than
ML by the periodic ones. P-1 and P-7 reach, on average, the
closest makespan values to ML. However, as stated before,
P-1 is not the right approach in practice because its frequent
rescheduling leads to unstable production and potential
resource waste. The standard deviations were significant
because the tested instances were quite diversified in
operation quantity, machine quantity, and processing time.

Although P-4 rescheduled more frequently than P-10,
no advantage in reducing makespan values, hence we can
infer rescheduling frequently was not indeed necessary in
every scenario. P-2 rescheduled more often than P-4.
However, it failed to reschedule at the most "profitable"
time in general. Besides, we can see that compared to other
periodical approaches, P-7 was most comparable to the ML
approach.

ML and Optimization for Rescheduling in I4.0 15

7.5.2.3 Comparison on the makespan at each time step

Ultimately, not only at the end of the time horizon but also
during the time phases, we examine the discrepancies in
makespan. At each time step, we compare the makespan
difference and compute it by considering ML as the
benchmark.

Similar to the calculation of Dθ, the difference at each
time step is now counted. Given scenario θ ∈ Θ and a set of
time steps T , Ctθ is defined as the remaining makespan at
the time step t ∈ T , CML

tθ is for ML, D∗θ is the makespan
difference by comparing each approach with the ML
approach at same t, which is calculated in Eq. (26):

D∗θ = Ctθ − CML
tθ , ∀θ ∈ Θ,∀t ∈ T . (26)

After getting D∗θ , the averages and standard deviations
were calculated by following the conventional methods. The
results are listed in Table 5.

Approach avgD∗ stdD∗

P-1 1.16 44.67
P-2 10.18 46.18
P-4 4.78 36.44
P-7 11.88 61.81
P-10 6.32 36.69

Table 5: Difference in the makespan at each time step.

Table 5 shows that averagely all the periodical
approaches had greater makespan than ML, which proves
the effectiveness of ML in the ongoing production. Among
periodical methods, P-4 stood out by having small values
both on average and standard deviation.

Observing all the Tables 3, 4 and 5, while P-7 had a
bigger average makespan considering all time steps
compared to ML (in Table 5), it did indicate a good tradeoff
between rescheduling frequency and schedule delays. In
general, P-4 behaved fairly in all the aspects, which
matches the fact that it is widely used in factories.
Considering the proposed approaches - ML and periodical
ones – we can see that by recommending to reschedule less
frequently and at the right time, ML got satisfactory
outcomes not only in saving overall production time but
also in the rescheduling effectiveness, which avoided
wasting resources in managing machine and worker
changes.

7.5.2.4 Detailed analysis of two examples

We take two scenarios for detailed analysis in Fig. 10 by
showing the makespan trend. Table 6 shows the
corresponding rescheduling frequency for each approach in
the two scenarios.

Scenario ML P-1 P-2 P-4 P-7 P-10
1 2 28 14 7 4 2
2 0 18 9 4 2 1

Table 6: Rescheduling times with each approach on the 2
scenarios.

On the left of Fig. 10, it shows that ML suggested
rescheduling twice at around time steps 25 and 65.
Generally, all lines shook greatly from time step 18 to 69,
which might result from the random oscillations added to
the schedule. ML outperformed all others except for P-7.

On the right, P-7, P-10, and ML overlapped into one
line. Without any rescheduling, ML got the best result
equivalently in makespan. We can deduce that rescheduling
is not necessary for every disturbance, and a periodical
approach is rigid to fit in.

The planning problem is NP−hard. Therefore,
adequate time to run metaheuristic algorithms is needed. In
the continuous manufacturing process, the production
status is changing concerning the passage of time. A
rescheduling decision can be made within seconds with an
ML approach, and the actual rescheduling approach is
searched only if the favorable decision is made. ML reveals
the potential to make better rescheduling decisions not only
for the adaptability it owns but also for the time it saves.

8 Conclusions and future research

In this paper, we have proposed a new framework for
coping with rescheduling under the context of I4.0. This
work represents the preliminary approach to use ML and
optimization together in the rescheduling field by assuming
the availability of real-time data analysis. We proved the
potential of the integration of these techniques by
conducting computational experiments. It is essential to
notice that, despite the simplicity of the techniques used in
the framework, we have been able to achieve good results.
This is a promise of even better results if new and ad-hoc
techniques are used.

The main results of the paper are, therefore, the
definition of the first set of features that led to a good
classifier and the above general methodology. Furthermore,
another contribution is the formalization of the FJSP
through a mathematical programming model. While the
case study is on plastic and rubber manufacturing, the
proposed framework can also be tailored for other
industries (such as printed circuit board, semiconductor,
metal, etc.), which often face the problem of making the
rescheduling decisions. Specifically, the dedicated features
should be derived for the new problem. Besides, we believe
it is also possible to effectively adapt the approach out of

16 Li et al.

Fig. 10 Comparison in makespan trend for Instance 1, on the left, and Instance 2, on the right. The red dashed lines indicate
when the ML approach reschedules.

the production industry, such as in personnel scheduling for
hospitals, where daily fluctuations in emergencies, patient
population, and levels of care occur frequently. For
example, in [73], there is a list of available nurses,
including floaters who are assigned to specific units in
need, and casuals who have no employment contract and
are typically called at the last minute. How to satisfy the
patients’ demand in time while avoiding excessive
workload of nurses remains a big challenge. In this
particular case, our rescheduling framework may help to
balance the service. The average waiting time of patients,
the number of patients, and the number of available nurses
can be exciting features to be included within the ML
approach.

Several future developments on this topic could be
considered:

– improving the performance of the heuristics by reducing
the number of machines capable of carrying out each
task [74]

– expanding the simulation by differentiating the
stochastic oscillations under different disturbance
factors because the current distribution of PTV is too
general and it may result in the rapid increase of
processing time

– more advanced machine learning algorithms, as well as
the definition of an enlarged set of features including
the deeper knowledge related to the bottleneck of the
scheduling and the property of the graph G. In
particular, we are interested in exploring the research
with graph theory and neural networks of scheduling
and rescheduling patterns [75]. There is also a need for
more detailed instructions on the methodology of data
analysis.

Finally, the work has shown that the performance of a
heuristic is possible to be learned for a machine learning
technique. This general aspect could be applied in several
other contexts and opens several general research lines as,
for example, the possibility to use the ML techniques not
just to classify the application of a heuristic but to guide and
calibrate it on the ongoing setting.

Acknowledgement

This research was partially supported by the Plastic and
Rubber 4.0 (P&R4.0) Research Project, POR FESR
2014-2020 - Action I.1b.2.2, funded by Piedmont Region
(Italy), Contract No. 319-31. The authors acknowledge all
the project partners for their contribution.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Trstenjak M, Cosic P (2017) Process
planning in industry 4.0 environment.
Procedia Manufacturing 11:1744–1750, DOI
https://doi.org/10.1016/j.promfg.2017.07.303, 27th
International Conference on Flexible Automation and
Intelligent Manufacturing, FAIM2017, 27-30 June
2017, Modena, Italy

2. Fadda E, Gobbato L, Perboli G, Rosano M, Tadei R
(2018) Waste collection in urban areas: A case study.
Interfaces 48(4):307–322

ML and Optimization for Rescheduling in I4.0 17

3. Giusti R, Manerba D, Bruno G, Tadei R (2019)
Synchromodal logistics: An overview of critical
success factors, enabling technologies, and open
research issues. Transportation Research Part E:
Logistics and Transportation Review 129:92–110, DOI
https://doi.org/10.1016/j.tre.2019.07.009

4. Fadda E, Perboli G, Tadei R (2018) Customized
multi-period stochastic assignment problem for social
engagement and opportunistic IoT. Computers &
Operations Research 93:41–50

5. Frank AG, Dalenogare LS, Ayala NF (2019) Industry
4.0 technologies: Implementation patterns in
manufacturing companies. International Journal of
Production Economics 210:15–26

6. Cohen Y, Faccio M, Pilati F, Yao X (2019)
Design and management of digital manufacturing
and assembly systems in the industry 4.0
era. The International Journal of Advanced
Manufacturing Technology 105(9):3565–3577, DOI
https://doi.org/10.1007/s00170-019-04595-0

7. Farahani S, Brown N, Loftis J, Krick C, Pichl F, Vaculik
R, Pilla S (2019) Evaluation of in-mold sensors and
machine data towards enhancing product quality and
process monitoring via industry 4.0. The International
Journal of Advanced Manufacturing Technology 105(1-
4):1371–1389, DOI https://doi.org/10.1007/s00170-
019-04323-8

8. Zhang Y, Cheng Y, Wang XV, Zhong RY, Zhang Y,
Tao F (2019) Data-driven smart production line and its
common factors. The International Journal of Advanced
Manufacturing Technology 103(1-4):1211–1223, DOI
https://doi.org/10.1007/s00170-019-03469-9

9. Handelsblatt (2019) How 5G
revolutionizes the industry. URL
https://www.handelsblatt.com/adv/siemens-
digital/schnell-vernetzt-stabil-gehalten-wie-5g-die-
industrie-revolutioniert/24093034.html?ticket=ST-
19056066-l6TWhVJaFBvxSAXdbkcQ-ap2

10. McKinsey (2015) Industry 4.0 how to navigate
digitization of the manufacturing sector.
URL https://www.mckinsey.com/business-
functions/operations/our-insights/industry-four-
point-o-how-to-navigae-the-digitization-of-the-
manufacturing-sector

11. Brucker P (2010) Scheduling Algorithms, 5th edn.
Springer Publishing Company, Incorporated

12. Gupta D, Maravelias CT, Wassick JM (2016)
From rescheduling to online scheduling. Chemical
Engineering Research and Design 116:83–97

13. Zhang J (2017) Review of job shop scheduling research
and its new perspectives under industry 4.0. Journal of
Intelligent Manufacturing 30:1809–1830

14. Sellers DW (1996) A survey of approaches to the
job shop scheduling problem. In: Proceedings of 28th
Southeastern Symposium on System Theory, IEEE, pp
396–400

15. Ðurasević M, Jakobović D (2018) A survey of
dispatching rules for the dynamic unrelated machines
environment. Expert Systems with Applications
113:555–569

16. Caballero-Villalobos JP, Mejía-Delgadillo GE,
García-Cáceres RG (2013) Scheduling of complex
manufacturing systems with Petri nets and genetic
algorithms: a case on plastic injection moulds. The
International Journal of Advanced Manufacturing
Technology 69(9-12):2773–2786

17. Mönch L (2007) Simulation-based benchmarking of
production control schemes for complex manufacturing
systems. Control Engineering Practice 15(11):1381–
1393

18. Graham RL, Lawler EL, Lenstra JK, Kan AR (1979)
Optimization and approximation in deterministic
sequencing and scheduling: a survey. In: Annals of
Discrete Mathematics, vol 5, Elsevier, pp 287–326

19. Tamaki H, Hasegawa Y, Kozasa J, Araki M (1993)
Application of search methods to scheduling problem
in plastics forming plant: A binary representation
approach. In: Proceedings of 32nd IEEE Conference on
Decision and Control, IEEE, pp 3845–3850

20. Sels V, Steen F, Vanhoucke M (2011) Applying a
hybrid job shop procedure to a Belgian manufacturing
company producing industrial wheels and castors in
rubber. Computers & Industrial Engineering 61(3):697–
708

21. Nie L, Wang X, Pan F (2019) A game-theory approach
based on genetic algorithm for flexible job shop
scheduling problem. In: Journal of Physics: Conference
Series, IOP Publishing, vol 1187, p 032095

22. Azzouz A, Ennigrou M, Ben Said L (2017) A hybrid
algorithm for flexible job-shop scheduling problem
with setup times. International Journal of Production
Management and Engineering 5(1):23–30

23. Gao L, Peng C, Zhou C, Li P (2006) Solving flexible
job shop scheduling problem using general particle
swarm optimization. In: Proceedings of the 36th CIE
Conference on Computers & Industrial Engineering, pp
3018–3027

24. Roshanaei V, Azab A, ElMaraghy H (2013)
Mathematical modelling and a meta-heuristic for
flexible job shop scheduling. International Journal of
Production Research 51(20):6247–6274

25. Costa A, Cappadonna FA, Fichera S (2013) A hybrid
genetic algorithm for job sequencing and worker
allocation in parallel unrelated machines with sequence-
dependent setup times. The International Journal of

18 Li et al.

Advanced Manufacturing Technology 69:2799–2817,
DOI https://doi.org/10.1007/s00170-013-5221-5

26. Baykasoğlu A, Ozsoydan FB (2018) Dynamic
scheduling of parallel heat treatment furnaces: A
case study at a manufacturing system. Journal of
manufacturing systems 46:152–162

27. Gong G, Deng Q, Gong X, Liu W, Ren Q (2018) A new
double flexible job-shop scheduling problem integrating
processing time, green production, and human factor
indicators. Journal of Cleaner Production 174:560–576

28. Dolgui A, Ivanov D, Sethi SP, Sokolov B (2019)
Scheduling in production, supply chain and industry
4.0 systems by optimal control: fundamentals,
state-of-the-art and applications. International
Journal of Production Research 57(2):411–432,
DOI 10.1080/00207543.2018.1442948

29. Fadda E, Perboli G, Squillero G (2017) Adaptive
batteries exploiting on-line steady-state evolution
strategy. In: Squillero G, Sim K (eds) Applications
of Evolutionary Computation, Springer International
Publishing, Cham, pp 329–341

30. Sahin C, Demirtas M, Erol R, Baykasoğlu A,
Kaplanoğlu V (2017) A multi-agent based approach
to dynamic scheduling with flexible processing
capabilities. Journal of Intelligent Manufacturing
28(8):1827–1845

31. Bierwirth C, Mattfeld DC (1999) Production scheduling
and rescheduling with genetic algorithms. Evolutionary
Computation 7(1):1–17

32. Vieira GE, Herrmann JW, Lin E (2003) Rescheduling
manufacturing systems: A framework of strategies,
policies, and methods. Journal of Scheduling 6(1):39–
62

33. Narayanaswami S, Rangaraj N (2011) Scheduling
and rescheduling of railway operations: A review
and expository analysis. Technology Operation
Management 2(2):102–122

34. Uhlmann IR, Frazzon EM (2018) Production
rescheduling review: Opportunities for industrial
integration and practical applications. Journal
of Manufacturing Systems 49:186–193, DOI
https://doi.org/10.1016/j.jmsy.2018.10.004

35. Šemrov D, Marsetič R, Žura M, Todorovski L, Srdic
A (2016) Reinforcement learning approach for train
rescheduling on a single-track railway. Transportation
Research Part B: Methodological 86:250–267, DOI
https://doi.org/10.1016/j.trb.2016.01.004

36. Palombarini JA, Barsce JC, Martínez EC (2014)
Generating rescheduling knowledge using
reinforcement learning in a cognitive architecture.
CoRR abs/1805.04752

37. Buddala R, Mahapatra SS (2019) Two-stage
teaching-learning-based optimization method

for flexible job-shop scheduling under machine
breakdown. The International Journal of Advanced
Manufacturing Technology 100(5-8):1419–1432,
DOI https://doi.org/10.1007/s00170-018-2805-0

38. Larsen R, Pranzo M (2019) A framework for
dynamic rescheduling problems. International
Journal of Production Research 57(1):16–33, DOI
10.1080/00207543.2018.1456700

39. Rossit DA, Tohmé F, Frutos M (2019) Industry 4.0:
smart scheduling. International Journal of Production
Research 57(12):3802–3813

40. Rudtsch V, Gausemeier J, Gesing J, Mittag T, Peter
S (2014) Pattern-based business model development
for cyber-physical production systems. Procedia CIRP
25:313–319

41. Baykasoğlu A, Karaslan FS (2017) Solving
comprehensive dynamic job shop scheduling problem
by using a grasp-based approach. International Journal
of Production Research 55(11):3308–3325

42. Carlucci D, Renna P, Materi S, Schiuma G (2020)
Intelligent decision-making model based on minority
game for resource allocation in cloud manufacturing.
Management Decision

43. Wang J, Yang J, Zhang Y, Ren S, Liu Y (2020) Infinitely
repeated game based real-time scheduling for low-
carbon flexible job shop considering multi-time periods.
Journal of Cleaner Production 247:119093

44. Schwung D, Reimann JN, Schwung A, Ding SX (2020)
Smart manufacturing systems: A game theory based
approach. In: Intelligent Systems: Theory, Research and
Innovation in Applications, Springer, pp 51–69

45. LaValle SM (2006) Planning algorithms. Cambridge
university press

46. Balas E (1969) Machine sequencing via disjunctive
graphs: an implicit enumeration algorithm. Operations
Research 17(6):941–957

47. Meeran S, Morshed M (2012) A hybrid genetic tabu
search algorithm for solving job shop scheduling
problems: a case study. Journal of Intelligent
Manufacturing 23(4):1063–1078

48. Huang X, Yang L (2019) A hybrid genetic algorithm for
multi-objective flexible job shop scheduling problem
considering transportation time. International Journal of
Intelligent Computing and Cybernetics 12(2):154–174

49. Van Laarhoven PJ, Aarts EH, Lenstra JK (1992) Job
shop scheduling by simulated annealing. Operations
Research 40(1):113–125

50. Zäpfel G, Braune R, Bögl M (2010) Metaheuristic
search concepts: A tutorial with applications to
production and logistics. Springer Science & Business
Media

51. Li RK, Shyu YT, Adiga S (1993) A heuristic
rescheduling algorithm for computer-based production

ML and Optimization for Rescheduling in I4.0 19

scheduling systems. International Journal of Production
Research 31(8):1815–1826

52. Castrogiovanni P, Fadda E, Perboli G, Rizzo A
(2020) Smartphone data classification technique
for detecting the usage of public or private
transportation modes. IEEE Access 8:58377–58391,
DOI 10.1109/ACCESS.2020.2982218

53. Fadda E, Mana D, Perboli G, Vallesio V (2018)
Sustainable mobility and user preferences by
crowdsourcing data: The open agora project.
In: 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE), DOI
10.1109/COASE.2018.8560512

54. Breiman L (1999) Random forests. UC Berkeley TR567
55. Horning N, et al. (2010) Random forests: An

algorithm for image classification and generation
of continuous fields data sets. In: Proceedings of
the International Conference on Geoinformatics for
Spatial Infrastructure Development in Earth and Allied
Sciences, Osaka, Japan, vol 911

56. Santur Y, Karaköse M, Akin E (2016) Random forest
based diagnosis approach for rail fault inspection
in railways. In: National Conference on Electrical,
Electronics and Biomedical Engineering (ELECO),
IEEE, pp 745–750

57. Cortes C, Vapnik V (1995) Support-vector networks.
Machine Learning 20(3):273–297

58. Joachims T (1998) Text categorization with support
vector machines: Learning with many relevant features.
In: European Conference on Machine Learning,
Springer, pp 137–142

59. Auria L, Moro RA (2008) Support vector machines
(SVM) as a technique for solvency analysis. DIW
Berlin Discussion Paper N. 811

60. Pal SK, Mitra S (1992) Multilayer perceptron, fuzzy
sets, and classification. IEEE Transactions on Neural
Networks 3(5):683–697

61. Singhal S, Wu L (1989) Training multilayer perceptrons
with the extended kalman algorithm. In: Advances in
Neural Information Processing Systems, pp 133–140

62. Gardner MW, Dorling S (1998) Artificial neural
networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences. Atmospheric
Environment 32(14-15):2627–2636

63. Shrestha A, Mahmood A (2019) Review of deep
learning algorithms and architectures. IEEE Access
7:53040–53065, DOI 10.1109/ACCESS.2019.2912200

64. Aloysius N, Geetha M (2017) A review on deep
convolutional neural networks. In: International
Conference on Communication and Signal
Processing (ICCSP), pp 0588–0592, DOI
10.1109/ICCSP.2017.8286426

65. Cuzzocrea A, Gaber MM, Fadda E, Grasso GM
(2019) An innovative framework for supporting
big atmospheric data analytics via clustering-based
spatio-temporal analysis. J Ambient Intelligence
and Humanized Computing 10(9):3383–3398, DOI
10.1007/s12652-018-0966-1

66. Arlot S, Celisse A, et al. (2010) A survey of cross-
validation procedures for model selection. Statistics
Surveys 4:40–79

67. Larson SC (1931) The shrinkage of the coefficient of
multiple correlation. Journal of Educational Psychology
22(1):45

68. Wilhelmstötter F (2019) Jenetics library user’s manual
v.5.1.0. URL https://jenetics.io/

69. Harder R (2019) OpenTS tutorial. URL
https://www.coin-or.org/Ots/docs/manual.html

70. Pedregosa F, Varoquaux G, Gramfort A, Michel V,
Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, et al. (2011) Scikit-learn: Machine
learning in python. Journal of Machine Learning
Research 12:2825–2830

71. Bradley AP (1997) The use of the area under the roc
curve in the evaluation of machine learning algorithms.
Pattern Recognition 30(7):1145–1159

72. Wald N, Bestwick J (2014) Is the area under an
ROC curve a valid measure of the performance of
a screening or diagnostic test? Journal of Medical
Screening 21(1):51–56

73. Bard JF, Purnomo HW (2004) Real-time scheduling for
nurses in response to demand fluctuations and personnel
shortages. In: Proceedings of the 5th International
Conference on the Practice and Theory of Automated
Timetabling, Citeseer, pp 67–87

74. Quinton F, Hamaz I, Houssin L (2019) A mixed integer
linear programming modelling for the flexible cyclic
jobshop problem. Annals of Operations Research DOI
10.1007/s10479-019-03387-9

75. Obara M, Kashiyama T, Sekimoto Y (2018) Deep
reinforcement learning approach for train rescheduling
utilizing graph theory. In: IEEE International
Conference on Big Data, IEEE, pp 4525–4533

