POLITECNICO DI TORINO Repository ISTITUZIONALE

High magnetic shielding properties of an MgB2 cup obtained by machining a spark-plasma-sintered bulk cylinder

Original

High magnetic shielding properties of an MgB2 cup obtained by machining a spark-plasma-sintered bulk cylinder / Gozzelino, Laura; Gerbaldo, Roberto; Ghigo, Gianluca; Torsello, Daniele; Bonino, Valentina; Truccato, Marco; Grigoroscuta, Mihai A; Burdusel, Mihail; Aldica, Gheorghe V; Sandu, Viorel; Pasuk, Iuliana; Badica, Petre. - In: SUPERCONDUCTOR SCIENCE & TECHNOLOGY. - ISSN 0953-2048. - STAMPA. - 33:4(2020), p. 044018. [10.1088/1361-6668/ab7846]

Availability:

This version is available at: 11583/2841675 since: 2020-07-28T17:41:52Z

Publisher:

IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND

Published

DOI:10.1088/1361-6668/ab7846

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright IOP postprint/Author's Accepted Manuscript

"This is the accepted manuscript version of an article accepted for publication in SUPERCONDUCTOR SCIENCE & TECHNOLOGY. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/1361-6668/ab7846

(Article begins on next page)

High magnetic shielding properties of an MgB₂ cup obtained by machining a Spark-Plasma-Sintered bulk cylinder

Laura Gozzelino^{1,2}, Roberto Gerbaldo^{1,2}, Gianluca Ghigo^{1,2}, Daniele Torsello^{1,2}, Valentina Bonino^{2,3}, Marco Truccato^{2,3}, Mihai A Grigoroscuta^{4,5}, Mihail Burdusel⁴, Gheorghe V Aldica⁴, Viorel Sandu⁴, Iuliana Pasuk⁴, and Petre Badica⁴

E-mail: laura.gozzelino@polito.it badica2003@yahoo.com

Received xxxxxx Accepted for publication xxxxxx Published xxxxxx

Abstract

Superconductors are key materials for shielding quasi-static magnetic fields. In this work, we investigated the shielding properties of an MgB₂ cup-shaped shield with small aspect-ratio of height/outer radius. Shape and aspect-ratio were chosen in order to address practical requirements of both high shielding factors (SFs) and space-saving solutions. To obtain large critical current densities (J_c) , which are crucial for achieving high magnetic-mitigation performance, a high-purity starting MgB₂ powder was selected. Then, processing of the starting MgB₂ powder into high density bulks was performed by spark plasma sintering. The as-obtained material is fully machinable and was shaped into a cup-shield. Assessment of the material by scaling of the pinning force showed a non-trivial pinning behaviour. The MgB₂ powder selection was decisive in enlarging the range of external fields where efficient shielding occurs. The shield's properties were measured in both axial- and transverse-field configurations using Hall probes. Despite a height/outer radius aspect ratio of 2.2, shielding factors higher than 10^4 at T = 20 K up to a threshold field of 1.8 T were measured in axialfield geometry at a distance of 1 mm from the closed extremity of the cup, while $SFs > 10^2$ occurred in the inner half of the cup. As expected, this threshold field decreased with increased temperature, but SFs still exceeding the above mentioned values were found up to 0.35 T at 35 K. The shield's shape limits the SF values achievable in transverse-field configuration. Nevertheless, the in-field J_c of the sample supported SFs over 40 at T = 20 K up to a field of 0.8 T, 1 mm away from the cup closure.

Keywords: magnetic shielding, MgB₂ bulk superconductors, machinable bulks

xxxx-xxxx/xx/xxxxxx 1 © xxxx IOP Publishing Ltd

¹ Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy

² Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino Italy

³ Department of Physics, Interdepartmental Centre NIS, University of Torino, 10125 Torino, Italy

⁴ National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania

⁵ University Politehnica of Bucharest, 060042 Bucharest, Romania

1. Introduction

Owing to their ability to expel magnetic flux, superconducting materials have been demonstrated to be promising candidates for the fabrication of efficient low-frequency passive magnetic shields. In particular, their use is crucial in several kinds of applications, for instance when shielding magnetic flux density over 1 T [1-3] or very low magnetic field background [4-6] is required.

Shielding properties of superconducting bulks with cylindrical and planar geometries and made from different materials have successfully been investigated [7-11]. Moreover, improvements in the shielding performance have been found by superimposing superconducting bulk and tapes [12] or taking advantage of the combined use of superconducting and ferromagnetic materials [13-15].

In this context, MgB₂ bulk shields have shown great potential [16-18]. Indeed, MgB₂ long coherence length is suitable for supporting the fabrication of large untextured polycrystalline samples, because the flow of high critical current density, Jc, across clean grain-boundaries is not prevented by weak-link effects, even when two pellets are joined [19]. This has fostered the development of processing techniques able to produce and assemble dense MgB2 bulk samples with almost isotropic and homogeneous J_c , into complex geometries [17, 20-23]. The starting elements are cheap, non-toxic and do not include rare-earths, and the small weight density of this superconductor makes it attractive for portable applications such as space ones [24]. Besides this, the typical operating temperatures (20-30 K) of this compound can be easily reached using closed-cycle cryocoolers or liquid H₂.

All the above mentioned characteristics make MgB₂ able to face the major challenges in the field of magnetic shield fabrication [25]. In our previous paper [18], we reported on a novel fabrication technique that, starting from Spark Plasma Sintering (SPS) of MgB₂ and hexagonal BN powders, produces fully machinable MgB₂ bulks, which can be geometrized in order to meet specific shape requirements. The first shielding experiment carried out on a hollow cylinder, fabricated with this technique, showed promising values of the shielding factor (SF), especially considering the small aspect ratio of height/radius of the sample (1.75). In the same paper, we also demonstrated by computation how the addition of a cap (disk) on one of the tube's apertures would lead to SFs over 10^4 at T=25 K in axial applied fields up to $\mu_0 H_{\rm appl} = 1.0$ T.

Based on these calculation results and in order to address this topic experimentally, in this work we applied the same fabrication process to produce a cup-shaped shield. With the aim of obtaining a significant improvement in the shielding factor independently from the direction of the external field, the shield was manufactured by suitably shaping a single bulk cylinder, so as to guarantee a superconducting joint between the tube and its cap. Indeed, it was demonstrated that a cap addition provides a noteworthy increase of the tube's shielding ability even in transverse-field configuration, only if cap and tube are "fused" together [26], as it happens when they are fabricated in the same process.

In addition, since high shielding performance also requires large J_c values [25, 26], we worked to improve the effective current carrying cross-sectional area by an accurate selection of the starting MgB₂ powder.

As in our previous works [15, 18], the shielding vessel had a small aspect ratio of height/outer radius. Indeed, this geometry can be useful to address magnetic mitigation solutions in situations where the space occupied by the shield and its mass must be minimized (e.g. space applications [27, 28]). Furthermore, the choice of a small aspect ratio is necessary when the shield radius is so large that, in practice, its height cannot be much longer than the radius [29].

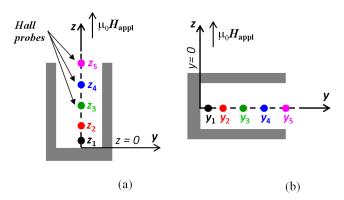
The paper is organized as follows. In section 2, we briefly recall the details of the sample fabrication process and describe the experimental procedures used for their characterization. The experimental results concerning X-ray diffraction analysis, the critical current density and pinning force evaluation and the shielding measurements are reported and discussed in section 3. The main findings are summarized in section 4.

2. Experimental details

2.1 MgB₂ fabrication process

MgB₂ commercial powder was mixed with hexagonal BN (BNh, henceforth). The mixture was loaded into a graphite die with 20 mm inner diameter and processed by spark plasma sintering at 1150 °C for a dwell time of 8 min. The maximum pressure applied on the sample during sintering was 95 MPa. More details of the fabrication process are reported in [30]. The as-prepared cylinder (25 mm in height) was fully machinable [31] and, at first, it was partially bored by using drill bits and then it was refined in the final cupshape by means of a lathe machine. Two pictures of the final

Figure 1. MgB₂ cup fabricated by spark plasma sintering, drilling and final refining on a lathe machine. Geometrical parameters: outer radius, $R_0 = 10.15$ mm, inner radius, $R_i = 7.0$ mm, external height, $h_e = 22.5$ mm, internal depth, $d_i = 18.3$ mm.

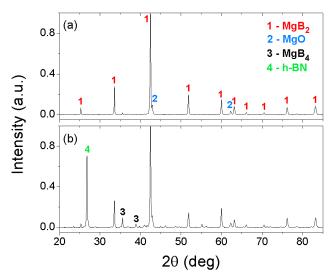

product (simply named cup, henceforth) are shown in Figure 1. Its geometrical parameters are specified in the figure caption and its aspect ratio, defined as the ratio of the external height over the outer radius is 2.2.

2.2 Measurements details

The structural analysis of the sample was carried out with a Bruker-AXS D8 ADVANCE diffractometer (CuK $_{\alpha 1}$ radiation, $\lambda = 1.5406$ Å). Phase concentration, crystallite size and lattice parameters of MgB $_2$ were extracted from Rietveld analysis. The bulk density of the full cylinder before shaping into cup was determined by the Archimedes method using toluene as weighting medium.

Magnetic measurements were performed with a Physical Properties Measurement System (PPMS 14 T, Quantum Design, US) on a sample with dimensions 1.5 cm \times 1.5 cm \times 0.5 cm cut from residual parts obtained in the shaping process of the as-Spark Plasma Sintered (as-SPSed) cylinder. Transition temperature, T_c , is the onset temperature of the superconducting transition in the curve of magnetization vs. temperature, M(T), measured applying a magnetic field $\mu_0 H_{\rm appl} = 10$ mT after zero-field-cooling. From magnetization loops carried out at different temperatures the critical current density, $J_c(H)$, curves were extracted by using the Bean model [32]. The irreversibility field, $H_{\rm irr}$, obtained from the same measurements, was defined as the field at which J_c is $10^2 \, {\rm A/cm}^2$.

For the shielding experiment, the cup was placed in tight


Figure 2. Schematic drawing of the Hall probe arrangements for the axial- (a) and transverse- (b) magnetic field measurements. In the axial-field configuration, assuming z=0 the coordinate of the closed extremity, the Hall probes were positioned at $z_1=1$ mm, $z_2=5.0$ mm, $z_3=9.2$ mm (shield's centre) and $z_4=13.7$ mm and $z_5=18.3$ mm (shield's open extremity). Likewise, in the transverse-field configuration, assuming y=0 the coordinate of the closed extremity, the Hall probes were placed at $y_1=1$ mm, $y_2=4.6$ mm, $y_3=9.2$ mm (shield's centre) and $y_4=13.7$ mm and $y_5=18.3$ mm (shield's open extremity). The external field was always applied parallel to z axis and the Hall probes were always oriented to measure B_z .

thermal contact with the second stage of a cryogen-free cryocooler. More details on the experimental setup are reported in Ref. 18. First, the cup was cooled in zero field down to the working temperature and then a homogenous de field was applied either parallel or perpendicular to the sample's axis with an average rate of 1×10^{-4} T/s. The local magnetic flux density was measured by means of five cryogenic Ga-As Hall probes [33] located along the cup's axis as sketched in figure 2. The probes were always oriented to measure the component of the magnetic induction parallel to the applied field (i.e. B_7).

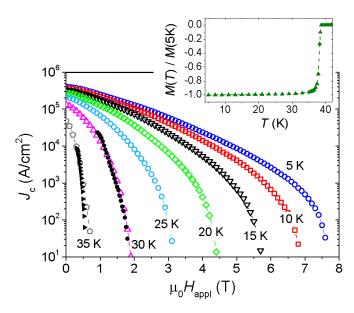
3. Results and discussion

3.1 Structural analysis

Figure 3 compares the X-ray diffraction (XRD) patterns of the starting MgB₂ raw powder and corresponding sparkplasma sintered sample added with BNh. In the starting powder, besides the MgB₂ main phase, impurity phases of MgO and Mg were present. Their weight concentration is summarized in Table 1, together with the average crystallite size. It is worth mentioning that the MgB2 phase concentration in the raw powder and in the SPSed bulk was about 10 % higher than in the case of the cylinder sample investigated in Ref [18]. We also note that the ratio among secondary phases in the raw MgB2 powder is much different in this work compared to the previous one [18]: for MgO it is 1.8 against 4.6 wt.%, for MgB₄ 0 against 7.1 wt.%, and for Mg 1.2 against 0.3 wt.%, respectively. The lower amount of non-superconducting phases, such as MgO, in the sample from this work is expected to positively affect J_c since the presence of impurity phases reduces the supercurrent effective cross-section [34].

Figure 3. X-ray diffraction patterns of MgB_2 raw powder (a) and $(MgB_2 + 10\%wt\ BNh)$ sintered bulk cylinder (b).

Table 1. Lattice parameters, phase content (without considering the amount of BNh) and average crystallite size of the MgB₂ raw powder and of the final bulk product.


	Lattice parameters [Å]		Phase concentration [wt. %]				Average crystallite size [nm]			
	a	С	$\overline{\text{MgB}_2}$	MgB ₄	MgO	Mg	MgB_2	MgB_4	MgO	Mg
MgB ₂ raw powder	3.087	3.522	97	-	1.8	1.2	113±10		45±6	51±4
MgB_2 bulk cylinder	3.084	3.525	73	18	9	-	138±3	200±20	41±1	-

The density of the final bulk sample was 2.50 g/cm³. Since the theoretical density of the composite is 2.62 g/cm³, as determined by considering the wt.% of the component phases and their theoretical densities [30], it results a relative density of ~95%, indicating a good grain packing.

3.2 Critical temperature, critical current densities and pinning forces

The normalised magnetization of the sintered bulk displays a very sharp superconducting transition, as reported in the inset of figure 4. The transition temperature is 38.9 K. This high value of $T_{\rm c}$ indicates the lack of chemical reactions between MgB₂ and BNh powders [35]. Moreover, we argue that possible MgB₂ contamination with carbon from the graphite mould system during SPS processing can also be neglected since C entering on B sites strongly reduces $T_{\rm c}$ [36].

The main frame of figure 4 shows the critical current density calculated from magnetic hysteresis loops as a function of the external field and for temperatures ranging from 5 to 35 K. The self-field J_{c0} (figure 5(a)) reaches values of $4.0 \cdot 10^5$ and $2.7 \cdot 10^5$ A/cm² at T = 5 and 20 K, respectively, which are comparable or slightly higher than J_c measured on undoped MgB₂ samples used for practical applications as bulk magnets [37, 38]. Moreover, both J_{c0} and in—field J_{c} are higher than for machinable SPSed sample from Ref [18], demonstrating the high influence of the raw MgB₂ powder on samples quality and performance. However, these values are lower than the highest ones for non-machinable optimallydoped SPS MgB₂ [39]. Indeed, the price to pay to obtain a fully machinable material, which is crucial for applications, is to have slightly lower material's performance in terms of critical current density and correlated parameters, such as the quality product $(J_{c0} \times \mu_0 H_{irr}$ - see figure 5 (b)) and the maximum pinning force, $F_{p,max}$ (figure 5 (c), being F_p calculated as $\mu_0 H_{appl} \times J_c$). Conversely, the machinable sample from this work retained a high irreversibility field (figure 5(d)). Considering this observation, it is of much interest to further investigate the pinning mechanism details.

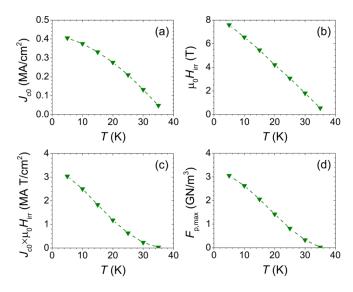
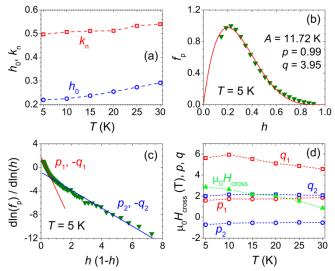


Figure 4. Main panel: J_c dependence on the applied magnetic field at different temperatures (open symbols: J_c values extracted from the hysteresis loops carried out on a small sample – see sect. 3.2; solid symbols: J_c values calculated from B_z vs $\mu_0 H_{\rm appl}$ cycles measured by the Hall probe located at position z_5 along the cup's axis – see sect. 3.3.1). Inset: normalized magnetization of the bulk product as a function of temperature.

To this aim, the pinning forces vs. applied field curves were normalised following the universal pinning force scaling procedure reported in [40, 41]. Then, the experimental data was fitted by the law:

$$f_{p} = A h^{p} \left(1 - h \right)^{q} \tag{1}$$

where $f_{\rm p}=F_{\rm p}/F_{\rm p,max}$, $h=H_{\rm appl}/H_{\rm irr}$. A,p and q are fitting parameters, and in particular, p, and q values are correlated to vortex pinning mechanisms [41]. Moreover, considering percolation aspects and defining $h_0=h(f_p=1)$, the


Figure 5. The dependencies on temperature of: (a) self-field critical current density J_{c0} , (b) irreversibility field $\mu_0 H_{irr}$, (c) quality product ($J_{c0} \times \mu_0 H_{irr}$), and (d) maximum pinning force $F_{p, max}$. Dashed lines are a guide to the eye.

introduced by Eisterer [42] was also taken into account. Theoretical values for Grain-Boundary Pinning (GBP) (i.e. surface pinning) are $h_0 = 0.2$, p = 0.5, q = 2, $k_n = 0.34$ and for Point Pinning (PP) they are $h_0 = 0.33$, p = 1, q = 2, $k_n = 0.47$ [41, 42].

The parameters h_0 , and k_n are plotted as a function of temperature in figure 6(a). They show an increase with temperature and this suggests a strengthening of the point pinning at high temperatures, considering that the values k_n (as well as h_0 at high temperatures) are close to their respective theoretical values for PP mechanism ($h_0 = 0.33$ and $k_n = 0.47$). This is the typical case for MgB₂ pristine and BN added samples fabricated by SPS [39].

However, a deeper investigation in the framework of Dew-Hugues model [41] seems to indicate that different mechanisms are simultaneously active. For investigated temperatures within 5-30 K range, fits by equation (1) yielded fitting parameters that do not agree with the theory (figures 6(b),(d)). In addition, by plotting the derivative $d \ln (f_p)/d \ln (h)$ vs. h/(1-h) two linear dependencies were obtained (figure 6(c)). The line intercept with y-axis and the opposite of the slope for each linear domain are the pinning force parameters p_1 , q_1 and p_2 , q_2 , respectively. By defining x = h/(1-h), the crossover coordinate between the two regions, x_{cross} , corresponds to the crossover scaled field

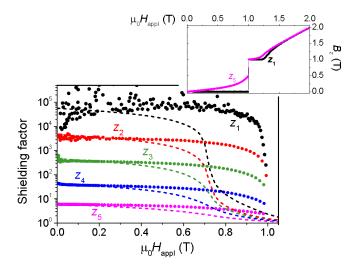
$$h_{\text{cross}} = \frac{x_{\text{cross}}}{1 + x_{\text{cross}}}$$
. The corresponding crossover field is

Figure 6. (a) Pinning force parameters h_0 and k_n vs. temperature; (b) scaling of the pinning force at 5 K in the entire field range (continuous red line is the fit for the indicated A, p, q parameters); (c) derivative of the pinning force (see text) at 5 K indicating two linear domains with linear fit parameters p_1 , $-q_1$ and p_2 , $-q_2$, respectively; (d) p_1 , q_1 , p_2 , q_2 and $\mu_0 H_{cross}$ behavior with temperature. Dashed lines in figure (a) and (d) are a guide to the eye.

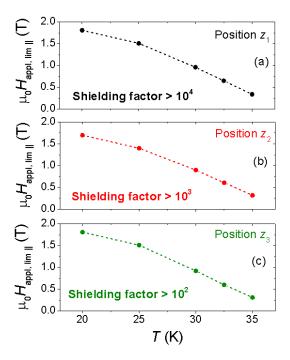
 $H_{\text{cross}} = h_{\text{cross}} \times H_{\text{irr}}$. Parameters p_1 , q_1 , p_2 , q_2 , and $\mu_0 H_{\text{cross}}$ are given as a function of temperature in figure 6(d). Parameters p_1 , p_2 , and q_2 almost do not depend on temperature. The exception is q_1 that is decreasing when temperature increases. A decrease from 2.8 to 0.8 T is also visible for $\mu_0 H_{\text{cross}}$. The values of p_1 (~ 1.7) and q_1 (4.6-5.9) and variation of the latter parameter with temperature are approximately similar to those reported in Ref. [43] for the non-machinable composite samples with compositions $((MgB_2)_{0.99}(Te_x(HoO_{1.5})_y)_{0.01}), x/y=0.31/0.69,$ 0.25/0.75. On the other hand, the values of p_2 (~ -0.6) and q_2 (~ 2.1) and variation of these parameters with temperature is very different than for the indicated samples: the dependencies $p_2(T)$ and $q_2(T)$ for MgB₂ samples co-added with Ho₂O₃ and Te show a higher degree of complexity and, hence, of pinning behaviour. The physical meaning for the obtained negative values of p_2 from this work remains unclear and further research is needed.

3.3 Magnetic shielding measurements

The shielding properties of the cup were investigated in the temperature range from 20 to 35 K. We explored the magnetic mitigation performance of the manufact in both axial- and transverse-field configuration in order to attain more meaningful information on its competitiveness in


practical applications where generic field orientations are likely.

The shielding efficiency was estimated using two parameters: the shielding factor (SF), calculated as the ratio between the applied magnetic field and the local magnetic induction measured by the Hall probes, $\mu_0 H_{\rm appl}/B_z$, and an applied field threshold, $\mu_0 H_{\rm appl,lim}$, above which the shielding factor drops below a given value.


3.3.1 Magnetic shielding in axial-field configuration

The main frame of figure 7 provides the shielding factors evaluated at T=30 K along the cup's axis as a function of the applied field, $\mu_0 H_{\rm appl}$, in axial-field configuration. Despite the aspect ratio of only 2.2, which makes the flux penetration from the cup's edge not negligible, SFs exceeding 10^4 and 10^2 was found 1 mm far from the closed extremity (position z_1) and in correspondence of the cup's centre (position z_3), respectively, up to $\mu_0 H_{\rm appl}=1.0$ T. Above this field, the shielding factor sharply decreases due to a flux jump occurrence [44, 45] (figure 7, inset).

As mentioned above, we defined a threshold field, $\mu_0 H_{\text{appl,lim}||}$, as the applied field above which the shielding factor drops below a reference value, that must be different in different positions since SFs span over orders of magnitudes (see figure 7). We chose SF=10⁴ for position z_1 , 10^3 for position z_2 , and 10^2 for position z_3 . As expected, $\mu_0 H_{\text{appl,lim}||}$ depends on temperature, as summarized in figure

Figure 7. Shielding factors (symbols) measured by the five Hall probes placed along the cup's axis at T=30 K and as a function of the applied field. The dashed lines represent the shielding factors computed in correspondence of the Hall probe positions, assuming the $J_{\rm c}(B)$ dependence obtained at T=30 K in [18] (see text). In the inset, the magnetic induction curves measured by the Hall probes located at positions z_1 and z_5 are plotted. At $\mu_0 H_{\rm appl}=1$ T a flux-jump phenomenon clearly occurred. Measurements and computations were performed in the axial-field configuration.

Figure 8. Temperature dependence of the threshold applied fields, $\mu_0 H_{\text{appl,lim}||}$, above that the shielding factor drops below 10^4 (for position z_1 , figure (a)), 10^3 (for position z_2 , figure (b)) and 10^2 (for position z_3 , figure (c)). Measurements were performed in the axial-field configuration and the dashed lines are a guide to the eye.

8. Remarkably, at 20 K, SF > 10^2 up to $\mu_0 H_{appl} = 1.8$ T were achieved in half the inner volume of the shield (figure 8 (c)). In the same range of applied fields, the SF increases over 10^4 moving towards the closed extremity (figure 8 (a)). A further shift of $\mu_0 H_{appl,lim||}$ to higher applied field values is expected by increasing the lateral wall thickness, reducing the inner radius of the cup. In comparison, a similar SF was found at 20 K for a YBa₂Cu₃O₇ cup with comparable aspect ratio and lateral wall thickness, but only up to $\mu_0 H_{appl,lim||} \sim 1$ T [10].

Then, in order to investigate how the $J_{\rm c}$ improvement with respect to previous samples [18] affects the shielding properties of the cup, we compared the measured SFs with those expected by assuming the same $J_{\rm c}(B)$ dependence found in [18]. To this aim, we applied the numerical modelling procedure described in [18] using a cup layout with the same sizes as that characterized experimentally in this work

As can be seen in figure 7, by assuming in SF calculation

$$J_{\rm c}(B) = J_{\rm c,0} \exp \left[-\left(\frac{B}{B_0}\right)^{\gamma} \right]$$
, where $J_{c,0} = 3.0 \times 10^4 \text{ A/cm}^2$,

 $B_0 = 0.83$ T and $\gamma = 2.52$, i.e. the parameter values obtained in [18] at 30 K, a good agreement between experimental and computed curves is achieved only at low applied fields, where the shielding performance mainly depends on the

sample geometry. This is supported also by the evidence that in this field range the SF dependence on the distance from the closed extremity of the shield can also be described by the analytical expression calculated by Claycomb *et al.* [46, 47] for the axial field attenuation by a superconducting tube in Meissner state closed by an end cap. Following [46, 47] the expression

$$\operatorname{SF}(z_{i})/\operatorname{SF}(z_{j})_{|\operatorname{calc}} = \sinh\left(3.834 \frac{z_{j}}{R_{i}}\right) / \sinh\left(3.834 \frac{z_{i}}{R_{i}}\right)$$

is predicted, being R_i the inner radius of the tube and z the distance from the center of the end cap. Focusing on z_2 , z_3 and z_4 positions (experimental data at z_1 position are too scattered), we obtained $SF(z_2)/SF(z_3)_{|calc} = 10.0$,

$$SF(z_3)/SF(z_4)_{\text{lcalc}} = 11.7$$
 and $SF(z_2)/SF(z_4)_{\text{lcalc}} = 119$, in

satisfactory agreement to the corresponding experimental ratios: 9.5, 10.0 and 94, respectively.

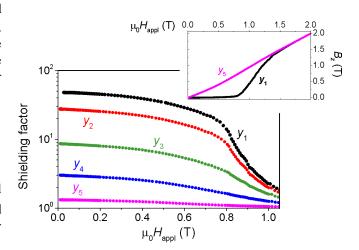
At higher fields, where the field-dependence of J_c comes into play, this analytical approach does not fit any more and the calculated curves in figure 7 clearly drop faster than the experimental ones. Considering the SF threshold values reported in figure 8, this means that the improvement of $J_c(B)$ raised $\mu_0 H_{appl,lim||}$ of more than 0.3 T.

Finally, we checked if the critical current density measured on a small sample and reported in figure 4 (open symbols) can be considered representative of the actual current flowing in the whole cup. To address this topic, we measured again the magnetic induction at T=30 and 35 K by the Hall probes positioned along the cup's axis. To minimize the flux jump occurrence, we furtherly decreased the ramp rate of the applied field down to 5×10^{-5} T/s. Then, we calculated J_c from the B_z vs $\mu_0 H_{\rm appl}$ cycle measured by the Hall probe located at position z_5 (i.e. in correspondence to the cup's open extremity) as proposed by Bartolomé *et al.* for finite superconducting rings [48]:

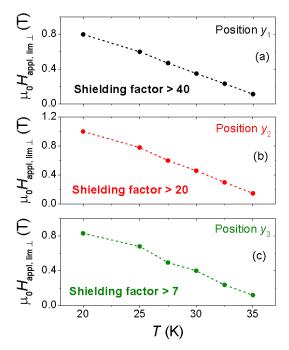
$$J_c = \frac{\Delta B_c}{\mu_0 f(R_o, R_i, d_i, z)}$$
 (2)

where $\Delta B_c = B_c^+ - B_c^-$ is the induction cycle width measured at a given applied field in the axial-field configuration and the function f provides the dependency of J_c on the geometry of the system:

$$f(R_o, R_i, d_i, z) = \left(\frac{d_i}{2} - z\right) \ln \left(\frac{R_o + \sqrt{R_o^2 + (z - d_i/2)^2}}{R_i + \sqrt{R_i^2 + (z - d_i/2)^2}}\right) +$$


$$+\left(\frac{d_{i}}{2}+z\right) \ln \left(\frac{R_{o}+\sqrt{R_{o}^{2}+\left(z+d_{i}/2\right)^{2}}}{R_{i}+\sqrt{R_{i}^{2}+\left(z+d_{i}/2\right)^{2}}}\right)$$

In our case R_o and R_i are the outer and inner radii of the cup, respectively, d_i the cup internal depth and z the distance from the cup's centre (i.e $z=z_3$). We used the B_z data measured by the Hall probe located at z_5 , since in that position the effects of the cup closure can be disregarded [18]. Notably, focusing on high field region, i.e. above the full penetration field in the first-magnetization curve of the cup, where the Bean model is expected to give realistic J_c values [49], the agreement is good (figure 4). Comparisons at lower temperatures could not be carried out because of the multiple occurrences of flux jumps that prevented the J_c evaluation using the Hall probes.


3.3.2 Magnetic shielding in transverse-field configuration

The main frame of figure 9 presents the SFs evaluated along the cup's axis at $T=30~\rm K$ and as a function of the applied field as in figure 7, but in transverse-field configuration. The shielding ability of the cup is much lower than for the axial-field configuration even at low applied fields, as expected for this geometry [29].

Likewise in the axial-field configuration, in the low field range the shielding performance mainly depends on the sample shape. Indeed, the SF dependence on the distance from the closed extremity is still suitably described by the analytical expression calculated in [46, 47] for the transverse field attenuation by a superconducting cup in Meissner state:

Figure 9. Shielding factors (symbols) measured in the transverse-field configuration by the five Hall probes placed along the cup's axis at T = 30 K. In the inset, the magnetic induction curves measured by the Hall probes located at positions y_1 and y_5 are plotted.

Figure 10. Temperature dependence of the threshold applied fields, $\mu_0 H_{\text{appl,lim}}$, above that the shielding factor drops below 40 (for position y_1 , figure (a)), 20 (for position y_2 , figure (b)) and 7 (for position y_3 , figure (c)). Measurements were performed in the transverse-field configuration and the dashed lines are a guide to the eye.

$$SF(y_i)/SF(y_j)_{|calc} = cosh\left(1.84 \frac{y_j}{R_i}\right) / cosh\left(1.84 \frac{y_i}{R_i}\right)$$

being y the distance from the center of the closure cap. Fixing on y_2 , y_3 and y_4 positions, we obtained $SF(y_2)/SF(y_3)_{|calc} = 3.1$, $SF(y_3)/SF(y_4)_{|calc} = 3.2$ and $SF(y_2)/SF(y_4)_{|calc} = 10.0$, in well agreement to the corresponding experimental ratios: 3.2, 2.9 and 9.1, respectively.

On the other hand, the large values of in-field J_c guarantee a smooth decrease or even a flat behaviour of the SF vs. $\mu_0 H_{\rm appl}$ curves up to high applied fields.

As we did in the axial-field configuration, we defined three threshold fields, $\mu_0 H_{\text{appl,lim}\perp}$, as the applied field above that the shielding factor goes below 40 (for position y_1), 20 (for position y_2) and 7 (for position y_3). In figure 10, $\mu_0 H_{\text{appl,lim}\perp}$ values are plotted as a function of temperature. As can be seen, near to the cup's closed edge (position y_1), at 20 K SF is over 40 up to $\mu_0 H_{\text{appl}} = 0.8$ T, while in the same field range it is over 7 in correspondence to the cup's centre (position y_3).

5. Conclusions

With the aim of obtaining a superconducting magnetic shield with small height/ lateral dimension aspect ratio and significant SFs for different orientations of the external field, we fabricated an MgB₂ cup-shaped shield via mechanical machining of an MgB₂ bulk cylinder produced by spark plasma sintering of BNh-added MgB₂ powder.

Large J_c values, which are essential for reaching a high magnetic-shielding capability, were obtained by a careful selection of the starting powder operated by X-ray diffraction analysis. J_c homogeneity was also proved by the agreement between the values measured on a small sample cut from machining residual parts and those obtained from the whole cup characterization. However, no clear indication on a prevalent pinning mechanism was given by the analysis of the pinning forces, but different mechanisms seem to be simultaneously active.

Shielding properties of the cup-shaped shield was investigated in both axial- and transverse-field geometries as a function of temperature, applied magnetic field and Hall-probe position along the sample's axis. Despite a height/external-radius aspect ratio of only 2.2, in the axial-field configuration, inside the cup and 1 mm away from its closed extremity, we measured SFs exceeding 10^4 at T=20 K up to $\mu_0 H_{\rm appl}=1.8$ T. Moreover, in the same temperature and field region, SFs $>10^2$ still persisted in the whole inner half of the cup. In addition, the range of external fields where such efficient shielding occurred is much larger than that expected on the basis of the modelling approach and related parameters reported in [18]. This result proves the high influence of the quality of the raw MgB₂ powder on shield performance.

Although the transverse-field geometry intrinsically limits the shield performance [29], the in-field J_c of the sample allowed SFs over 40 to be still measured at T = 20 K up to $\mu_0 H_{\rm appl} = 0.8$ T at a distance of 1 mm from the cup closure.

Further improvements in the shielding performance are expected by further enhancing the critical current density or by superimposing additional superconducting [29] or ferromagnetic [21, 50, 51] layers. On the other hand, an increase of J_c could favour flux-jump occurrence, limiting the practical applications of MgB₂ shields. Thus, minimizing this phenomenon, without compromising J_c values and shielding performance, is the next challenging goal in this research field.

Acknowledgements

V. B. and M. T. acknowledge partial support from the "Departments of Excellence" (L. 232/2016) grant, funded by the Italian Ministry of Education, University and Research (MIUR), and from the project BIOMB (Reference Number 4114) funded by the consortium M-ERA.NET. Romanian

team gratefully acknowledges UESFISCDI, projects POC 37_697 No. 28/01.09.2016 REBMAT, ERA-M 74/2017 BIOMB (Reference Number 4114), and Core Program PN19-03 (contract no. 21 N/08.02.2019).

References

- [1] Pourrahimi S, Williams J, Punchard W, Tuttle J, DiPirro M, Canavan E and Shirron P 2008 *Cryogenics* **48** 253-7
- [2] Barna D 2017 Phys. Rev. Accel. Beams 20 041002
- [3] Barna D, Giunchi G, Novák M, BrunnerK, Német A, Petronez C, Atanasovz M, Bajasz H and Feuvrierz J 2019 IEEE Trans. Appl. Supercond., in press, DOI: 10.1109/TASC.2019.2920359
- [4] Seki Y, Kandori A, Suzuki D and Ohnuma M 2005 Appl. Phys. Lett. 86 243902
- [5] Giunchi G, Bassani E, Cavallin T, Bancone N and Pavese F 2007 Supercond. Sci. Technol. 20 L39–41
- [6] Bergen A, van Weers H J, Bruineman C, Dhallé M M J, Krooshoop H J G, ter Brake H J M, Ravensberg K, Jackson B D and Wafelbakker C K 2016 Rev. Sci. Instrum. 87 105109
- [7] Denis S, Dusoulier L, Dirickx M, Vanderbemden P, Cloots R, Ausloos M and Vanderheyden B 2007 Supercond. Sci. Technol. 20 192–201
- [8] Terao Y, Sekino M, Ohsaki H, Teshima H and Morita M 2011 IEEE Trans. Appl. Supercond. 21 1584-7
- [9] Fagnard J-F, Elschner S, Bock J, Dirickx M, Vanderheyden B and Vanderbemden P 2010 Supercond. Sci. Technol. 23 095012
- [10] Wéra L, Fagnard J -F, Namburi D K, Shi Y, Vanderheyden B and Vanderbemden P 2017 IEEE Trans. Appl. Supercond. 27 6800305
- [11] Yang P, Fagnard J F, Vanderbemden P and Yang W Supercond. Sci. Technol 2019 Supercond. Sci. Technol. 32 115015
- [12] Tomków Ł. Ciszek M and Chorowski M 2015 J. Appl. Phys. 117 043901
- [13] Gömöry F, Solovyov M, Šouc J, Navau C, Prat-Camps J and Sanchez A 2012 Science 335 1466–8
- [14] Prat-Camps J, Navau C and Sanchez A 2015 Sci. Rep. 5 12488
- [15] Gozzelino L, Agostino A, Gerbaldo R, Ghigo G and Laviano F 2012 Supercond. Sci. Technol. 25 115013
- [16] Rabbers J J, Oomen M P, Bassani E, Ripamonti G and Giunchi G 2010 Supercond. Sci. Technol. 23 125003
- [17] Giunchi G, Barna D, Bajas H, Brunner K, Nèmet A and Petrone C 2018 *IEEE Trans. Appl. Supercond.* **28** 6801705
- [18] Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Torsello D, Bonino V, Truccato M, Batalu D, Grigoroscuta M A, Burdusel M, Aldica G V and Badica P 2019 Supercond. Sci. Technol. 32 034004
- [19] Mikheenko P, Yurchenko V V and Johansen T H 2012 Supercond. Sci. Technol. 25 045009
- [20] Giunchi G, Ripamonti G, Cavallin T and Bassani E 2006 Cryogenics 46 237-40
- [21] Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Truccato M and Agostino A 2016 Supercond. Sci. Technol. 29, 034004
- [22] Agliolo Gallitto A, Camarda P, Li Vigni M, Figini Albisetti A, Saglietti L and Giunchi G 2014 IEEE Trans. Appl. Supercond. 24 1500109
- [23] Bhagurkar A G, Yamamoto A, Hari Babu N, Durrell J H, Dennis A R and Cardwell D A 2015 Supercond. Sci. Technol. 28 015012

- [24] Giunchi G, Ripamonti G, Cavallin T, Bassani E, 2006 Cryogenics 46 237-42
- [25] Durrell J H, Ainslie M D, Zhou D, Vanderbemden P, Bradshaw T, Speller S, Filipenko M and Cardwell D A 2018 Supercond. Sci. Technol. 31 103501
- [26] Wéra L, Fagnard J-F, Hogan K, Vanderheyden B, Namburi D K, Shi Y, Cardwell D A and Vanderbemden P 2019 IEEE Trans. Appl. Supercond. 29 6801109
- [27] Giunchi G 2014 Proc. of the 20th IMEKO TC4 Symp. On Measurements of Electrical Quantities (Budapest: IMEKO) pp 1020–4
- [28] Prouvé T, Duval J M, Luchiera N and D'escrivan S, 2014 Cryogenics 64 201-6
- [29] Fagnard J F, Vanderheyden B, Pardo E and Vanderbemden P 2019 Supercond. Sci. Technol. 32 074007
- [30] Aldica G, Batalu D, Popa S, Ivan I, Nita P, Sakka Y, Vasylkiv O, Miu L, Pasuk I and Badica P, 2012 Physica C 477 43-50.
- [31] Aldica G, Burdusel M, Cioca V and Badica P Patent No RO130252-A2, DPAN 2015-383635
- [32] Bean C P 1962 Phys. Rev. Lett. 8 250-3
- [33] Gozzelino L, Minetti B, Gerbaldo R, Ghigo G, Laviano F, Agostino A and Mezzetti E 2011 *IEEE Trans. Appl.* Supercond. 21 3146-9
- [34] Li W and Dou S-X, 2015 in "Superconductors: New Developments" (ed. by Alexander Gabovich, IntechOpen) pp. 95-126 (Available from: https://www.intechopen.com/books/superconductors-new-developments/high-critical-current-density-mgb2)
- [35] Badica P, Aldica G, Burdusel M, Popa S, Negrea RF, Enculescu M, Pasuk I and Miu L 2014 Supercond. Sci. Technol. 27 095013
- [36] Mickelson W, Cumings J, Han W Q and Zettl A 2002 Phys. Rev. B 65 052505
- [37] Bhagurkar A G, Yamamoto A, Wang L, Xia M, Dennis A R, Durrell J H, Aljohani T A, Babu N H and Cardwell D A 2018 Sci. Rep. 8 13320
- [38] Fujishiro H, Naito T and Yoshida T 2014 Supercond. Sci. Technol. 27 065019
- [39] Badica P, Aldica G, Ionescu A M, Burdusel M and Batalu D 2017 in "Correlated Functional Oxides: Nanocomposites and Heterostructures" (ed. by H. Nishikawa et al., Springer International Publishing AG) pp. 75-116
- [40] Fietz W A and Webb W W 1969 Phys. Rev. B 178 657-67
- [41] Dew-Hughes D 1974 Philos. Mag. **30** 293–305
- [42] Eisterer M 2008 Phys. Rev. B 77 144524
- [43] Badica P, Aldica G, Burdusel M, Grigoroscuta M, Ionescu A M, Sandu V, Popa M, Euculescu M, Pasuk I, Kuncser A, 2020 in "Superconductivity from materials science to practical applications" (ed. by P. Mele et al., Springer Nature Switzerland AG) pp. 303-24
- [44] Romero-Salazar C, Morales F, Escudero R, Durán A and Hernández-Flores O A 2007 *Phys. Rev. B* **76** 104521
- [45] Ghigo G,Gerbaldo R, Gozzelino L, Laviano F, Lopardo G, Monticone E, Portesi C and Mezzetti E 2009 Appl. Phys. Lett. 94 052505
- [46] Claycomb J R and Miller J H 1999 Rev Sci Instrum 70 4562-8
- [47] Claycomb J R 2016 in "Applied Superconductivity -Handbook on Devices and Applications", edited by P Seidel, (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp. 780-806
- [48] Bartolomé E, Granados X, Palau A, Puig T, Obradors X, Navau C, Pardo E, Sánchez A and Claus H 2005 Phys. Rev. B 72 024523

- [49] Chen D -X and Goldfarb R B 1989 J. Appl. Phys. **66** 2489-500
- [50] Omura A, Oka M, Mori K and Itoh M 2003 *Physica C* **386** 506–11
- [51] Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Truccato M 2017 J Supercond Nov Magn 30 749-56