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In this work, different formulations of the eigenvalue problems are compared in terms of charac-
teristics of the resulting model and physical significance. The numerical solution is then achieved
adopting a P approximation for the angular variable, focusing on some specific features of the
solution when comparing odd- and even-order expansions [5]. The solution approach adopted,
applied to simplified configurations, allows to calculate a set of eigenvalues, thus accessing the in-
formation related to higher-order harmonics. The eigenvalue spectra for the different formulations
of the problem will be compared and discussed.

2. Eigenvalue problem formulations

According to what is the physical phenomenon of interest for a certain system, the eigenvalue
problem associated to the transport (or diffusion) equation,

TG+ LG+ R3 = S3+ Fg, (1)
where T is the time operator, L is the leakage, R is the removal, S is the scattering, F is the

total fission and ( is the flux, can be formulated in different ways, each one providing a different
interpretation of the problem [6].

The most popular approach to find the steady state neutron distribution is the one traditionally
introduced by Fermi, i.e. the criticality eigenproblem, where the « eigenvalue is introduced in the
steady state balance equation as a ’tuning” parameter for the fission operator,

A . A 1.
Lgo—i—Rgo—S(p:EFcp. (2)

A similar approach for the stationary equation focuses on the collisions, dividing both the scattering
and the fission operators by the v eigenvalue,

. . 1A_» A
L¢+R¢=;@¢+F@- (3)

A more exotic and less explored alternative to study the steady state chain reaction is to look for
the material density allowing the system to become critical: this objective is achieved through the
introduction of a § eigenvalue for all collision terms in the balance equation:

A, 1 .. A A
Lg = 5(S¢+ Fg — R). 4)
As far as the time-dependent problem is concerned, assuming suitable initial conditions, it is pos-
sible to substitute the time operator 7" with the so-called time eigenvalue, o, which has the physical
meaning of the inverse of the reactor period:
A A A A a
SP+Ig—Rg—Lg=—0. )

Such formulation, which can also be interpreted as a Laplace transform of the time-dependent
balance model, is more correctly representing the asymptotic behavior of a nuclear system when
delayed fission amissions are included, leading to:

(0% ~ ~ ~ A A o
5= 8¢+ Fg— Rg— L@+ BC,
{Uw G+ Fp—Rp— Lo+ ©
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where C; is the i-th precursor concentration, J; is the decay constant of the precursor family 4,
Fy is the delayed fission operator and E is the delayed neutron emission density. This second
formulation of the o eigenproblem has deserved recently a lot of attention, regarding both the
algorithmic approach to its solution [1] and the characterization of the eigenvalue spectrum [2].

According to the kind of eigenproblem that is formulated and solved, one can retrieve different
information on the system. The x-modes are usually employed as a basis to reconstruct the flux
of a perturbed system [7], while the c-modes are more useful for expanding the flux in time-
dependent problems. Other applications are related to the design and interpretation of experiments
using the eigenvalues and their separation [8].

In addition to the practical applications, the study of the properties of the different eigenproblem
spectra is significant also for theoretical interests: its properties — for instance the existence of
complex eigenvalues [9], of a continuous part of the spectrum [10] or the eigenvalues spacing
— are influenced by both the physical properties of the system under consideration and by the
mathematical scheme employed to solve the problem.

In this work we present the main results about the eigenvalue formulations of the 1D plane ge-
ometry transport equation approximated numerically with the Py method [11]. In the following
sections, an analysis of the convergence pattern of the various eigenvalue formulations with re-
spect to the different types of boundary conditions and to the order employed to truncate the Py
equations is carried out. Then, the properties of the spectrum of the different eigenproblem formu-
lations are discussed, highlighting also the effects related to the medium heterogeneity and to the
adoption of multi-group approximation.

3. NUMERICAL SETUP OF THE PROBLEM AND VERIFICATION

Thanks to the simplified geometry, the different operators appearing in equation (1) can be assem-
bled directly and manipulated in order to retrieve the various eigenvalue problem formulations. To
perform these tasks, we exploited the great flexibility offered by the object-oriented programming
paradigm implementing a set of classes in Matlab that discretises the transport equation, builds the
operators, combines them and looks for a user-defined number of eigenpairs. The code has been
verified against other numerical results found in literature for the different eigenvalue formulations
in some cases like two-group homogeneous and heterogeneous media. The eigenvalues are in good
agreement (<50 pcm for the fundamental one) with the reference ones [12][13][14].

The implementation of the equation numerical solver arises two interesting facts about the Py
approximation. The first one is related to the fact that the spatial discretisation, performed using
the centred finite difference scheme, requires that two staggered grids are defined for the even and
odd equations in order to ensure consistency with the continuous equations.

The other observation comes out when dealing with boundary conditions (BCs): while Marshak
BCs require that the odd moments vanish for the incoming directions on the two boundaries, Mark
BCs require that the incoming angular flux vanishes for a certain set of discrete directions ji;. The
choice of these directions is quite natural for odd values of V. Since the roots of the Legendre
polynomial Ly, are symmetrically distributed in the range [—1, 1], the y; values are usually
taken from this set. Moreover, this set of y; has also the nice feature of providing the equivalence
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between Py and Sy.;. On the other hand, the choice of ; in case of even N leaves a certain
freedom, since one can choose the set of y; as roots of Ly (i.e. the same of the previous odd order)
or L1, removing i = 0 as it would not yield a meaningful condition since the particles moving
along this directions would not cross the boundaries (i.e., the problem is no longer differential).

The observation on the Mark BCs in case of even [V is related to the fact that, moving from the odd
to the subsequent even approximation, the order of the system of equations does not change, as
already pointed out in the past by Davison [15]. This feature allows to recast the even Py equations
into a set of Py_; equations with modified coefficients. The influence of both the approximation
orders and the BCs choice is briefly discussed in the next section.

4. ANGULAR ORDER CONVERGENCE

The convergence behaviour of the eigenvalues x, v and « can be quite different depending on the
boundary conditions imposed. An inspection of figures 1-3 would allow to draw some preliminary
conclusions on the Py convergence properties. At first, it is interesting to notice that, moving
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Figure 1: k, v, and a eigenvalues convergence as a function of the angular approximation
order with Mark BCs using the roots of. y.

from P, to P, the absolute error of x and ~y with respect to the reference solution (evaluated using
a Fg3 for all the three BCs cases) grows for the case of Mark BCs evaluated in the roots of Ly,
decreases for the case of Mark BCs computed in the roots of Ly, and is about the same with
Marshak BCs. As regards «, the convergence trend from P; to P, shows that, on the contrary of
what is common believed, the even order approximations can provide a significant improvement
with respect to the previous odd order. This fact supports the idea that, even if the even Py has
the same rank of the odd system, the modified coefficients are more representative of the physics
described by the problem.

5. EIGENVALUE SPECTRUM

In this section, we use the code to investigate some of the features of the numerical spectrum
of different eigenvalue problems presented in section 2, Results for § are not reported, as their
behaviour requires a deeper analytical investigation. This fact is in principle not so surprising if
one recall the physical meaning of the various eigenvalue. For instance, the x eigenvalue meaning
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Figure 2: k, v, and « eigenvalues convergence as a function of the angular approximation
order with Mark BCs using the roots of. ;.
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Figure 3: x, v, and «a eigenvalues convergence as a function of the angular approximation
order with Marshak BCs.

is the inverse of the fractional variation of the fissile density which is required to make the system
critical. Then, a real x value smaller than 1 is expected for a subcritical system and viceversa for a
supercritical one. As far as  eigenvalue is concerned - as it is related to the number of collisions
- we simply remark its physical meaning is the inverse of the fractional variation of the global
density of the system which is needed to make it critical: it is not obvious that a real positive value
exists as a solution for this rather unusual problem.

In Figures 4-7 the spectra evaluated are reported, with a red dot indicating the fundamental eigen-
value.

Figure 4 shows the behaviour of the x spectrum for increasing values of the angular approximation
order in case of a symmetrically reflected system, with a reflector thickness of 100 cm of H,O
and 20 cm of fissile material (for the two-group data, please refer to the URRb-H20Oa(1)-2-0-
SL benchmark in [14]). Increasing the Py order does not seem to change the behaviour of the
spectrum, which attempts to reproduce the continuous spectrum for reflected systems

The « delayed spectrum is evaluated for a homogeneous slab with Mark boundary conditions (for
the two-group data employed, please refer to the PU-2-0-SL benchmark in [14]).
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Figure 4:  eigenvalue distribution for a symmetrically re ected system.
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Figure 5: - eigenvalue distribution for a symmetrically re ected system.

The comparison of the results highlights that the v spectrum has real eigenvalues, as for «, while the
time-eigenvalue spectrum shows, as expected, a distribution in the complex plane with clustering
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Figure 6: o prompt eigenvalue distribution for a symmetrically re ected system.

of eigenvalues as observed in other situation [2].

6. CONCLUDING REMARKS

In this work, the eigenvalue problem associated to the solution of the neutron balance equation
is analyzed, focusing on the different formulations that can be given to the problem, with their
physical significance. The role of the method adopted for its solution is discussed, focusing on the
Py method and pointing out at some peculiar effects regarding the angular expansion order which
deserves further investigations to assess the suitability of even-order PN for the solution of reactor

physics-relevant problems.
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Figure 7: o eigenvalue distribution for a homogeneous system including delayed neutrons.
The dotted lines are the values ef),.
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