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ABSTRACT

The study of the steady-state solutions of neutron transport equation requires the intro-
duction of appropriate eigenvalues: this can be done in various different ways by chang-
ing each of the operators in the transport equation; such modifications can be physically
viewed as a variation of the corresponding macroscopic cross sections only, so making the
different (generalized) eigenvalue problems non-equivalent. In this paper the eigenvalue
problem associated to the time-dependent problem (α eigenvalue), also in the presence
of delayed emissions is evaluated. The properties of associated spectra can give different
insight into the physics of the problem.

KEYWORDS: PN approximation, eigenvalue spectra, time eigenvalue, collision eigenvalue, effective
multiplication parameter

1. INTRODUCTION

In reactor physics, the study of the the neutronics of multiplying systems requires the solution of
the transport equation in steady-state condition. In particular, the determination of the criticality
condition is associated to the solution of an eigenvalue formulation of the neutron balance problem,
thus allowing a non-trivial solution.

In general terms, such eigenvalue problem can be formulated in various alternative forms, each
allowing different physical interpretations. The standard criticality problem is customarily ap-
proached by introducing a multiplication eigenvalue in correspondence of the fission term. In
more recent times the α eigenvalue problem has gained larger interest [1,2], thanks to the associ-
ated significance in terms of asymptotic evolution of the system.

It must be pointed out as well that the solution of the eigenvalue problem for the neutron balance
model can provide, in general, a set of eigenvalues associated to the corresponding eigenfunc-
tions, which can constitute a useful basis for projection techniques of relevance in reactor physics
analyses, such as higher-order perturbation theory [3,4]. It is therefore extremely interesting to ap-
proach the analysis of the eigenvalue formulation of the neutron transport model, focusing on both
the possible different formulations which can be given to the problem and the methods adopted for
its solution.
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In this work, different formulations of the eigenvalue problems are compared in terms of charac-
teristics of the resulting model and physical significance. The numerical solution is then achieved
adopting a PN approximation for the angular variable, focusing on some specific features of the
solution when comparing odd- and even-order expansions [5]. The solution approach adopted,
applied to simplified configurations, allows to calculate a set of eigenvalues, thus accessing the in-
formation related to higher-order harmonics. The eigenvalue spectra for the different formulations
of the problem will be compared and discussed.

2. Eigenvalue problem formulations

According to what is the physical phenomenon of interest for a certain system, the eigenvalue
problem associated to the transport (or diffusion) equation,

T̂ ~ϕ+ L̂~ϕ+ R̂~ϕ = Ŝ ~ϕ+ F̂ ~ϕ, (1)

where T̂ is the time operator, L̂ is the leakage, R̂ is the removal, Ŝ is the scattering, F̂ is the
total fission and ~ϕ is the flux, can be formulated in different ways, each one providing a different
interpretation of the problem [6].

The most popular approach to find the steady state neutron distribution is the one traditionally
introduced by Fermi, i.e. the criticality eigenproblem, where the κ eigenvalue is introduced in the
steady state balance equation as a ”tuning” parameter for the fission operator,

L̂~ϕ+ R̂~ϕ− Ŝ ~ϕ =
1

κ
F̂ ~ϕ. (2)

A similar approach for the stationary equation focuses on the collisions, dividing both the scattering
and the fission operators by the γ eigenvalue,

L̂~ϕ+ R̂~ϕ =
1

γ
(Ŝ ~ϕ+ F̂ ~ϕ). (3)

A more exotic and less explored alternative to study the steady state chain reaction is to look for
the material density allowing the system to become critical: this objective is achieved through the
introduction of a δ eigenvalue for all collision terms in the balance equation:

L̂~ϕ =
1

δ
(Ŝ ~ϕ+ F̂ ~ϕ− R̂~ϕ). (4)

As far as the time-dependent problem is concerned, assuming suitable initial conditions, it is pos-
sible to substitute the time operator T̂ with the so-called time eigenvalue, α, which has the physical
meaning of the inverse of the reactor period:

Ŝ ~ϕ+ F̂ ~ϕ− R̂~ϕ− L̂~ϕ =
α

v
~ϕ. (5)

Such formulation, which can also be interpreted as a Laplace transform of the time-dependent
balance model, is more correctly representing the asymptotic behavior of a nuclear system when
delayed fission amissions are included, leading to:{α

v
~ϕ = Ŝ ~ϕ+ F̂p~ϕ− R̂~ϕ− L̂~ϕ+ Ê ~Ci

(α + λi)Ci = F̂d i~ϕ i = 1, ..., R,
(6)
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where Ci is the i-th precursor concentration, λi is the decay constant of the precursor family i,
F̂d is the delayed fission operator and Ê is the delayed neutron emission density. This second
formulation of the α eigenproblem has deserved recently a lot of attention, regarding both the
algorithmic approach to its solution [1] and the characterization of the eigenvalue spectrum [2].

According to the kind of eigenproblem that is formulated and solved, one can retrieve different
information on the system. The κ-modes are usually employed as a basis to reconstruct the flux
of a perturbed system [7], while the α-modes are more useful for expanding the flux in time-
dependent problems. Other applications are related to the design and interpretation of experiments
using the eigenvalues and their separation [8].

In addition to the practical applications, the study of the properties of the different eigenproblem
spectra is significant also for theoretical interests: its properties – for instance the existence of
complex eigenvalues [9], of a continuous part of the spectrum [10] or the eigenvalues spacing
– are influenced by both the physical properties of the system under consideration and by the
mathematical scheme employed to solve the problem.

In this work we present the main results about the eigenvalue formulations of the 1D plane ge-
ometry transport equation approximated numerically with the PN method [11]. In the following
sections, an analysis of the convergence pattern of the various eigenvalue formulations with re-
spect to the different types of boundary conditions and to the order employed to truncate the PN

equations is carried out. Then, the properties of the spectrum of the different eigenproblem formu-
lations are discussed, highlighting also the effects related to the medium heterogeneity and to the
adoption of multi-group approximation.

3. NUMERICAL SETUP OF THE PROBLEM AND VERIFICATION

Thanks to the simplified geometry, the different operators appearing in equation (1) can be assem-
bled directly and manipulated in order to retrieve the various eigenvalue problem formulations. To
perform these tasks, we exploited the great flexibility offered by the object-oriented programming
paradigm implementing a set of classes in Matlab that discretises the transport equation, builds the
operators, combines them and looks for a user-defined number of eigenpairs. The code has been
verified against other numerical results found in literature for the different eigenvalue formulations
in some cases like two-group homogeneous and heterogeneous media. The eigenvalues are in good
agreement (<50 pcm for the fundamental one) with the reference ones [12][13][14].

The implementation of the equation numerical solver arises two interesting facts about the PN

approximation. The first one is related to the fact that the spatial discretisation, performed using
the centred finite difference scheme, requires that two staggered grids are defined for the even and
odd equations in order to ensure consistency with the continuous equations.

The other observation comes out when dealing with boundary conditions (BCs): while Marshak
BCs require that the odd moments vanish for the incoming directions on the two boundaries, Mark
BCs require that the incoming angular flux vanishes for a certain set of discrete directions µi. The
choice of these directions is quite natural for odd values of N . Since the roots of the Legendre
polynomial LN+1 are symmetrically distributed in the range [−1, 1], the µi values are usually
taken from this set. Moreover, this set of µi has also the nice feature of providing the equivalence
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between PN and SN+1. On the other hand, the choice of µi in case of even N leaves a certain
freedom, since one can choose the set of µi as roots of LN (i.e. the same of the previous odd order)
or LN+1, removing µ = 0 as it would not yield a meaningful condition since the particles moving
along this directions would not cross the boundaries (i.e., the problem is no longer differential).

The observation on the Mark BCs in case of evenN is related to the fact that, moving from the odd
to the subsequent even approximation, the order of the system of equations does not change, as
already pointed out in the past by Davison [15]. This feature allows to recast the even PN equations
into a set of PN−1 equations with modified coefficients. The influence of both the approximation
orders and the BCs choice is briefly discussed in the next section.

4. ANGULAR ORDER CONVERGENCE

The convergence behaviour of the eigenvalues κ, γ and α can be quite different depending on the
boundary conditions imposed. An inspection of figures 1-3 would allow to draw some preliminary
conclusions on the PN convergence properties. At first, it is interesting to notice that, moving

Figure 1: κ, γ, and α eigenvalues convergence as a function of the angular approximation
order with Mark BCs using the roots of LN .

from P1 to P2, the absolute error of κ and γ with respect to the reference solution (evaluated using
a P63 for all the three BCs cases) grows for the case of Mark BCs evaluated in the roots of LN ,
decreases for the case of Mark BCs computed in the roots of LN+1 and is about the same with
Marshak BCs. As regards α, the convergence trend from P1 to P2 shows that, on the contrary of
what is common believed, the even order approximations can provide a significant improvement
with respect to the previous odd order. This fact supports the idea that, even if the even PN has
the same rank of the odd system, the modified coefficients are more representative of the physics
described by the problem.

5. EIGENVALUE SPECTRUM

In this section, we use the code to investigate some of the features of the numerical spectrum
of different eigenvalue problems presented in section 2, Results for δ are not reported, as their
behaviour requires a deeper analytical investigation. This fact is in principle not so surprising if
one recall the physical meaning of the various eigenvalue. For instance, the κ eigenvalue meaning
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Figure 2: κ, γ, and α eigenvalues convergence as a function of the angular approximation
order with Mark BCs using the roots of LN+1.

Figure 3: κ, γ, and α eigenvalues convergence as a function of the angular approximation
order with Marshak BCs.

is the inverse of the fractional variation of the fissile density which is required to make the system
critical. Then, a real κ value smaller than 1 is expected for a subcritical system and viceversa for a
supercritical one. As far as δ eigenvalue is concerned - as it is related to the number of collisions
- we simply remark its physical meaning is the inverse of the fractional variation of the global
density of the system which is needed to make it critical: it is not obvious that a real positive value
exists as a solution for this rather unusual problem.

In Figures 4-7 the spectra evaluated are reported, with a red dot indicating the fundamental eigen-
value.

Figure 4 shows the behaviour of the κ spectrum for increasing values of the angular approximation
order in case of a symmetrically reflected system, with a reflector thickness of 100 cm of H2O
and 20 cm of fissile material (for the two-group data, please refer to the URRb-H2Oa(1)-2-0-
SL benchmark in [14]). Increasing the PN order does not seem to change the behaviour of the
spectrum, which attempts to reproduce the continuous spectrum for reflected systems

The α delayed spectrum is evaluated for a homogeneous slab with Mark boundary conditions (for
the two-group data employed, please refer to the PU-2-0-SL benchmark in [14]).
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Figure 4: κ eigenvalue distribution for a symmetrically reflected system.
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Figure 5: γ eigenvalue distribution for a symmetrically reflected system.

The comparison of the results highlights that the γ spectrum has real eigenvalues, as for κ, while the
time-eigenvalue spectrum shows, as expected, a distribution in the complex plane with clustering
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Figure 6: α prompt eigenvalue distribution for a symmetrically reflected system.

of eigenvalues as observed in other situation [2].

6. CONCLUDING REMARKS

In this work, the eigenvalue problem associated to the solution of the neutron balance equation
is analyzed, focusing on the different formulations that can be given to the problem, with their
physical significance. The role of the method adopted for its solution is discussed, focusing on the
PN method and pointing out at some peculiar effects regarding the angular expansion order which
deserves further investigations to assess the suitability of even-order PN for the solution of reactor
physics-relevant problems.

Figure 7: α eigenvalue distribution for a homogeneous system including delayed neutrons.
The dotted lines are the values of −λi.

7. ACNOWLEDGMENTS

The Authors are grateful to the reviewer for their very insightful comments and useful suggestions.

Proceedings of the PHYSOR 2020, Cambridge, United Kingdom



P. Saracco et al., Eigenvalue spectra of the PN transport problem

REFERENCES

[1] Andrea Zoia, Emeric Brun, and Fausto Malvagi. Alpha eigenvalue calculations with
TRIPOLI-4 R©. Annals of Nuclear Energy, 63:276 – 284, 2014.

[2] Richard Sanchez, Daniele Tomatis, Igor Zmijarevic, and Han Gyu Joo. Analysis of alpha
modes in multigroup diffusion. Nuclear Engineering and Technology,1259-1268 – 49, 2017.

[3] G.B. Bruna and K. Burn. Impact of the heavy steel reflector of a current large PWR on some
safety features. In Proceedings of the TOPSAFE 2012 Conference, Helsinki, Finland, April
22-26 2012.
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