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Abstract

Single-elimination (knockout) tournaments are the standard paradigm
for both main tennis professional associations WTA and ATP. Schedules are
generated by allocating first seeded and then unseeded players with seeds
prevented from encountering each other early in the competition. Besides,
the distribution of pairings in the first round between unseeded players and
seeds for a yearly season may be strongly unbalanced. This provides often a
great disadvantage to some ”unlucky” unseeded players in terms of money
prizes. Also, a fair distribution of matches during a season would benefit
from limiting in first rounds the presence of Head-to-Head (H2H) matches
between players that met in the recent past.

We propose a tournament generation approach in order to reduce in the
first round unlucky pairings and also replays of H2H matches. The approach
consists in a clustering optimization problem inducing a consequent draw
within each cluster. A Non-Linear Mathematical Programming (NLMP)
model is proposed for the clustering problem so as to reach a fair schedule.
The solution reached by a commercial NLMP solver on the model is com-
pared to the one reached by a faster hybrid algorithm based on multi-start
local search. The approach is successfully tested on historical records from
the recent Grand Slams tournaments.

Keywords: OR in Sports, Fairness, Mixed Integer Programming,
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Combinatorial Optimization

1. Introduction

Algorithms and quantitative approaches are increasingly becoming a key
aspect of the sports industry as discussed, e.g., in [13]. The large number
of stakeholders present in sports planning and scheduling creates favorable
conditions for optimization-based approaches. In general, maximizing rev-
enues and keeping sports games attractive for both media and fans are two
of the most important aspects involved in scheduling sports competitions.
Also, athletes are mainly concerned with their career and correspondingly
are interested in having a schedule that positively affects their performances
and returns. We turn our attention, here, to tennis tournaments genera-
tion with a particular reference to professional tennis tournaments and the
related associations, namely WTA for women and ATP for men.

The vast majority of professional tennis tournaments foresees a single-
elimination tournament where the loser of a match is directly eliminated
from the tournament, while the winner moves on to the next round. The
tournament ends when the two remaining players are opposed in the final
match leading to a final winner. Given the set of participants, a draw takes
place among the players in order to generate the first-round brackets graph
where players are split into two subsets, seeded players - the ones with
highest rankings - and unseeded ones. The first two seeded players usually
have an a-priori allocated slot in the brackets graph, while the remaining
seeds have a restricted set of slots in which they can be allocated. Hence,
a constrained draw for seeds is made before the one for unseeded players.
The seeding process ensures that the best players do not meet in the first
rounds of the competition. Once the draw among seeds is established, a
second draw takes places among the unseeded players in order to fill all the
empty slots of the brackets graph in the first round.

We consider here the allocation mechanism for unseeded players, assum-
ing that seeding has already been provided. We provide a fairness-based
approach in order to ensure that the generated schedule fits additional re-
quirements in terms of impartiality, fairness, and minimization of matches
replay between recent opponents.

We focus on WTA and ATP Grand Slams, the four most prestigious
tennis tournaments in professional leagues. In such tournaments, most of
the top-ranking players are competing. Correspondingly, these tournaments
are the most appealing for both fans and sponsors and money prizes are the
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highest in the season. As noted in [6, 3], the general interest in matches
is directly related to the uncertainty of outcomes and competitive intensity
between opponents. With respect to professional tennis tournaments, we
may assume that the predictability of outcomes can also be influenced - to
some extent - by the number of times two opponents played against each
other. The more information is available about matches of two players (e.g.,
the so-called Head-to-Head or H2H index), the more accurate predictions
can be given about the outcome of a match between them. On the other
side, apart from top players, such a match can turn out to be less appealing
to the public, particularly if it occurs in the first rounds of the tournaments.

We propose an algorithmic approach with the aim of maximizing the
diversification of pairings in the very first rounds and avoiding frequent
match replays in those rounds. While rivalries among top players drive
much of the interest in tennis and replays in the final tournaments rounds
are what many supporters look for, match replays in the very first rounds
are much less appealing, particularly between unseeded players. Further,
we focus on a phenomenon, more frequent than what one may expect, that
is related to unseeded players that are repeatedly paired in the first round
with seeded players. Hereafter, we will refer to those players as u-players,
and the match between one of these players with a seed as a u-pairing.

We take also into account others parameters such as players nationality
as potential elements of disparity in a schedule. Generally speaking, the cost
of pairing can be extended to any other parameter of interest. For instance,
when players get wild-cards, it might be of interest to penalize the pairing
of this wild card in the first round with some given players. The aim of
the proposed approach is to create tournament schedules that minimize a
generic pairing cost function. We propose an optimization approach where
we cluster players into different groups in order to minimize the mutual pair-
ing costs inside each group. A draw is then performed within each cluster.
For the solution of the clustering phase, an Integer Quadratic Programming
(IQP ) model is presented and applied to the above mentioned Grand Slam
instances. For that phase we also propose a two-step heuristic procedure
capable of reaching good results within a very limited CPU time. The com-
putational tests highlight how such an approach can turn into quantifiable
benefits for both players and audience.

Single-elimination tournaments have been deeply studied in the fields of
Statistics, Combinatorial Mathematics and Operations Research. Most of
the literature related to optimization in tennis actually focuses on round-
robin tournaments (see, e.g., [4]) without taking into account the fairness
aspects addressed in this article. An extensive relatively recent literature
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review on scheduling in sport is provided by [13] and covers a wide range of
optimization approaches and sports applications.

In [5] a method for allocating umpire crews in professional tennis tour-
naments is proposed. In [3], the problem of finding optimal seedings in
single-elimination tournaments in order to take into account the competi-
tive intensity and quality of every match is analyzed. In [10] a statistical
work is proposed for single-elimination tournaments, pointing out how dif-
ferent brackets graphs lead to diverse patterns of winners and losers. Ac-
cording to that work, the tournament configuration can advantage or disad-
vantage contenders, therefore creating potential cases of iniquity. In [8], a
bayesian optimal design approach is proposed for single-elimination tourna-
ments that optimizes the probability that the best player wins in the current
round. The inpact of seeding procedures in terms of fairness is investigated
in [19, 11, 12]. In [21], it is shown that - under certain assumptions - there is
always a specific tournament structure which maximizes the odds of winning
for any generic player. In [9], a methodology for finding globally optimal
single-elimination tournament designs is proposed when partial information
is known about the strengths of the players. In [1] the players winning
probability in single-elimination tournaments is studied under several dis-
tinct assumptions. With respect to the literature, we propose a schedule
generation approach which focuses on fairness in terms of repeated H2H
matches and u-pairings, assuming a seeding is given.

2. Ensuring fairness and diversity

The success of a tennis player is strongly related to the rank in the
leagues’ leaderboards, drafted by the WTA and the ATP associations. A
professional career requires among others a strong economical effort. Pro-
fessional tennis associations estimated that an average player traveling to
30 tournaments with a coach has to cover costs ranging from $121.000 to
$197.000. On the other side, statistically, only the players ranked in the
first 100 can cover such a cost. Therefore, according to [17], being in the top
100 is not only a milestone in terms of recognition but a mandatory target
for the development of a professional career. The unbalance between play-
ers actually making money and players struggling to break-even is a known
problem in the professional tennis world ([16]). In the last years, several
prize increase calls have been made from professional players ([16], [7]) and
tournaments organizers are actually boosting economical rewards ([2], [15]
and [20]). Although prizes in the four Grand Slams have been increased by
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a 113% in the last 10 years, most of the players outside the top 100 still
struggle to cover the basic costs for their professional career ([16]).

Table 1: Money prizes for winning 1st and 2nd rounds in the 2018 Grand Slams season
(WTA and ATP). Adapted from [20].

Tournament 1st-round Prize 2nd-round Prize

AUS $48,000 $72,000
ROL $46,800 $92,400
WIM $51,500 $96,400
US $54,000 $93,000

Average $50,075 $88,450

As shown in Table 1, winning the first-round in a Grand Slam tour-
nament can significantly impact the yearly income of an emerging tennis
professional. If we take into account the average estimated yearly cost for
a tennis professional (provided by [17]), a single first-round prize can cover
from 23% to 38% of players costs. Reaching the second round of a Grand
Slam tournament can nearly be the turning point into the career of a young
player.

In general, unseeded players are expected to lose against seeded ones
with high probability, hence, it is crucial for them not to be paired to seeded
players in the first round of Grand Slam tournaments. However, historical
data suggest that several unseeded players are paired - on first-rounds - with
seeds in three or more Slam tournaments in a single season. We highlight
how such situations can lead to significant damages in terms of career and
prizes. To this extent, we analyzed all Grand Slam tournaments for the
seasons in years 2013-2018. Table 2 provides statistics on the number of
times unseeded players are paired with seeds, on first-rounds, three or four
times in a year. Also, the number of unseeded players (denoted TOT-U)
participating to three or more Slams in the season is reported. We note
that, in year 2013-2018, TOT-U ranges both for ATP and WTA from 67 to
75.

In the considered time span, on average, 6 unseeded players were paired
with a seed three times or more in ATP tournaments, while this entry in-
creases to 7.7 for WTA tournaments (on the average, approximately 8.6 %
for ATP and 10.6% for WTA).

Although it might not be expected to have unseeded players paired with
seeds in almost all the first-rounds of a single season, the evidence suggests
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Table 2: Unlucky players for WTA and ATP seasons from 2013 to 2018.

ATP Season 3/4 4/4 TOT-U WTA Season 3/4 4/4 TOT-U

ATP 2013 6 0 75 WTA 2013 7 0 75
ATP 2014 3 1 71 WTA 2014 8 0 72
ATP 2015 3 0 71 WTA 2015 8 0 74
ATP 2016 9 1 69 WTA 2016 3 1 71
ATP 2017 5 1 67 WTA 2017 8 1 75
ATP 2018 5 2 68 WTA 2018 9 1 67

Average 5,2 0,8 70,2 Average 7,2 0,5 72,3

that this phenomenon occurred quite often both in WTA and ATP Slams.
The real data of Table 2 show that the above mentioned players are far

from being a theoretical speculation. Actually, given the money prizes re-
ported in Table 1, these players may suffer from a heavy economical damage
and may correspondingly be affected by setbacks in their professional ca-
reers. Hereafter, we will refer to these players as unlucky players according
to the following definition.

Definition 1. An unlucky player is an unseeded player who is paired with
a seeded player in the first round of three or four Grand Slam tournaments
in a season.

By looking at the distribution of pairings between unseeded players and
seeds for year 2017 in Figure 1, we can easily spot the unbalance between
the occurrences. In fact, many players have a limited number of pairings
with seeds while some of them are unlucky.

While a strong correlation between unlucky pairings and prizes cannot
be stated, the ranking positions of those players are generally negatively
affected in both WTA and ATP. According to the argument provided in this
section, a more balanced distribution of pairings between seeds and unseeded
players can constitute a reasonable claim. Correspondingly, a primary aim
is to generate schedules avoiding unlucky players.

2.1. Diversity and pairing cost in the first round

With respect to the pairing of players in the first round of any given tour-
nament as an outcome of the related draw, having a diverse set of matches
between players means avoiding frequent H2H matches that appeared in
the past. This induces an increase in the number of different opponents a
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Figure 1: Distribution of pairings between unseeded players and seeds in the 2017 Grand
Slam season for WTA and ATP.

single player can have in the season. Nowadays, there are several cases in
which players have been paired in the first round with the same opponent
multiple times in a relatively small time span. We report some examples of
frequent first-round pairings between players from the recent Grand Slams
tournaments in Table 3. Extending this analysis to ATP and WTA 1000,
500 and 250 tournaments, there is a much larger evidence of this situation.
For instance, we checked the H2H activity in year 2018 of the ATP players
that were ranked in positions 51-60 at the beginning of the year. All but
two of them (Troicki and Benneteau who by the way had a reduced activity
in that year) were paired more than once (in two cases three times) with
the same opponent in the first round.

In terms of fairness, it makes sense to increase the probability of having
first-round pairings between players that were never opposed. In terms
of supporters attendance, other parameters such as the players nationality
can be taken into account in the scheduling process (it could be worthy, for
instance, to avoid first-round matches between players of the same country).
To this extent, we introduce the cost of pairing, so that a specific score can be
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Table 3: Examples of frequent first-round pairings in recent Grand Slams for both WTA
and ATP.

Tournament Month/Year Player A Player B League

US Sept 2017 Caroline Wozniacki Mihaela Buzarnescu WTA
AUS Jan 2018 Caroline Wozniacki Mihaela Buzarnescu WTA

WIMB June 2017 Elena Vesnina Anna Blinkova WTA
US Sept 2017 Elena Vesnina Anna Blinkova WTA

AUS Jan 2017 Dudi Sela Marcel Granollers ATP
WIMB June 2017 Dudi Sela Marcel Granollers ATP

RG May 2018 Nikoloz Basilashvili Gilles Simon ATP
WIMB June 2018 Nikoloz Basilashvili Gilles Simon ATP

attributed to each pair of players, and its value depends on the parameters
of interest. This cost will be taken into account in the algorithmic approach
described in the following section.

3. Proposed approach

We consider a standard Grand Slam single-elimination tournament char-
acterized by the following sets of players. The set I := {i : 1 ≤ i ≤ 128}
contains all the 128 players. The subset M ∈ I has cardinality m = 32
and contains seeded players, which are preventively assigned to standard
predefined entries in the brackets graph. Then, a subset U ∈ I with car-
dinality u = m = 32 contains the u-players in the previous 4 Grand Slam
tournaments. In a more formal way, u-players are the set of unseeded play-
ers with the largest number of first-round matches with seeded players in
such tournaments).The u-players cannot be paired with seeds, that is we
avoid the presence of u-pairings. In order to maintain a draw procedure,
as required in the generation of the first-round brackets graph for standard
tennis tournaments, we propose the following approach. We consider a clus-
tering optimization problem, where the aim is to partition the players into
k = 4 different groups so that the pairing costs of the players assigned to
the same cluster are minimized. The empirical evidence suggests that this
number of clusters is suitable in order to achieve balanced outcomes while
preserving a random draw inside sufficiently large clusters. The u-players
are required to be uniformly split into each cluster (u/4 = 8 players per clus-
ter). Correspondingly, it will then be possible to have a draw within each
cluster so that the pairing in the first round between u-players and seeds
will be forbidden. Hence, the mutual costs between these players and the

8



seeds are forced to 0. Notice that, if clusters are generated as mentioned, a
consequent draw can be executed in each cluster where, first, the pairings
between the m/k = 8 seeds and randomly selected players among the re-
maining (128−m− u)/k = 16 players is generated and then a further draw
(including this time the u-players) can be executed in order to generate the
remaining pairings. The rationale of this approach is to solve the clustering
problem in order to facilitate fairness and diversification by minimizing the
pairing costs between the players that will undergo the draw.

3.1. The clustering problem

In order to minimize the players’ pairing costs, a symmetric positive-
defined n × n matrix H is provided in input, where the generic element
hαβ ∈ H represents the pairing cost of two players α, β : α, β ∈ I. Notice
that we pre-set hαβ = 0 ∀ α ∈ M,β ∈ U , so that there is a zero cost
between any seed α and u-player β due to the fact that u-players will not
be paired with seeds. As there are 4 clusters and each cluster will contain
n/k = 32 players with m/k = 8 seeded players already predetermined, it
follows that, in the clustering problem, we need to select for each cluster,
(128−m)/k = 24 unseeded players including u/k = 8 u-players.

3.1.1. Integer Quadratic Programming formulation

The clustering problem can be stated in terms of a quadratic 0/1 Math-
ematical Programming. We introduce a set of 0/1 variables xij : i ∈ I, j ∈
J = {1, ..., 4} where xij = 1 if player i is assigned to cluster j, xij = 0
otherwise. Considering the pairing costs hαβ introduced above, we obtain
the following integer quadratic programming formulation.
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min
x

Z =
k∑
j=1

(
n−1∑
α=1

n∑
β=α+1

hαβxαjxβj) (1)

s.t.

4∑
j=1

xij = 1 ∀i ∈ I (2)

n∑
i=1

xij = n/k ∀j ∈ J (3)∑
i∈U

xij = u/k ∀j ∈ J (4)

xij = 1 ∀i ∈M (5)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (6)

The objective function (1) minimizes the sum of pairing costs of all pairs
of players assigned to the same cluster. Constraints (2) require that every
player must be assigned to one of the clusters, while constraints (3) require
that each cluster contains exactly n/k players. Constraints (4) guarantee
that each cluster contains exactly u/k u-players. Constraint (5) fulfills the
requirement on the pre-assigned seeded players. Finally, constraints (6)
indicate that the xij variables are binary.

We remark that this problem is substantially equivalent (apart from the
additional requirements on seeds and u-players and the minimization of the
cost function) to the maximum diversity problem which is well known to be
NP-Hard in the strong sense [14].

3.1.2. Heuristic solution of the clustering problem

Model (1)-(6) can be solved by a nowadays commercial solver such as
CPLEX. However, the quadratic nature of the problem may possibly affect
the performance of a solver in providing good solutions in reasonable com-
putational time. Also, in general, it is of interest to determine whether high
quality heuristics may exist for a given combinatorial optimization problem.
In the light of these aspects, we also present a heuristic approach which
provide instant feasible solutions to the clustering problem. The algorithm,
denoted as A1, provides solution with an objective function very close to
an optimal one (see Table 4 for numerical insights). We describe A1 in the
following, and provide the pseudo-code. We can represent the problem by
means of a complete graph G = (V,E), with set of vertices V corresponding
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to the set of players, i.e. V = I, and set of edges E where each edge eij has
a weight equal to entry hij of matrix H. Correspondingly, each vertex i has
associated a weight wi equal to the weights of the edges emanating from it,
namely wi =

∑
j=1,...,n∩j 6=i hij . Hence, nodes with a large weight correspond

to players with a large amount of pairing costs. In the proposed approach,
we first apply a greedy procedure (steps 3-8 of the pseudo code) that it-
eratively selects unseeded players one at a time in non-increasing order of
weight wi. Then, the candidate clusters for that player are determined. A
cluster cannot be candidate for a player if n/k players have already been
assigned to that cluster. Likewise, as the number of u-players in each cluster
is given, every time a u-player is considered, it can be assigned to a cluster
only if the number of u-players already assigned to that cluster is inferior
to u/k = 8. Whenever a player is selected, it is assigned to the candidate
cluster jmin that induces the least increase in the objective function value. If
there are two clusters inducing the same increase, the one with the smallest
index is selected.

After a first solution is found, a simple local search procedure (steps
9-14) is launched as long as a time limit Tl is not reached. Two different
players α, β - respectively belonging to different clusters jα and jβ - are
iteratively selected in a random way. The players can be both u-players or
both unseeded. If swapping players α and β by assigning them respectively
to cluster jβ and jα induces an improvement in the objective function (the
corresponding variation is denoted as ∆Sαβ), the swap is performed. This
randomness implemented within a multi-start procedure can also improve
the unpredictability of the final schedule.

4. Computational results

We considered the WTA and ATP database provided by [18] and sourced
from the official websites of the two leagues. Computational tests consider
the 2017 season for the four Grand Slam tournaments: Australian Open
(AUS), Roland Garros (ROL), Wimbledon (WIM) and US Open (US). In
order to determine pairing costs hij between pairs of players (i, j), we con-
sidered some features of interest discussed in previous sections, for instance
by penalizing matches between players of the same country.

The pairing costs were determined as follows. First of all, we considered
all pairs of players α, β ∈ I, such that α ∈ V and β ∈ M and set hαβ = 0.
Similarly, we set hαβ = 0 if α, β ∈ I and α or β is a qualified player (in Grand
Slam tournaments the main draw foresees the presence of several - approx 5
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1 Algorithm A1

1: Input: H Matrix, I,M,U sets and time limit Tl.

2: Order elements of I by non-increasing wi

3: for all i in I\M do

4: Determine the candidate cluster jmin for player i such that

5: jmin contains less than n/k players

6: if i ∈ U then jmin contains less than u/k u-players

7: Assign i to jmin

8: end for

9: while time limit Tl is not reached do

10: Pick two random players α 6= β ∈ I\M
11: if ∆Sαβ < 0 then

12: Swap: assign α to jβ and β to jα

13: end if

14: end while

- players selected from a qualifying round that is not yet finished at the time
of the draw). For the remaining pairs, given two players α, β, the cost hαβ
is initially set to 0. Then, the following set of rules for increasing the value
hαβ based on the results of the previous four Grand Slam tournaments is
applied. Those rules constitute just a viable option for determining the hαβ
coefficients, but different options could be clearly considered.

Rule 1. If two players α, β ∈ I played against each other in a 1st round in
the last 4 tournaments, then hαβ+ = 5;.

Rule 2. If two players α, β ∈ I are from the same country, then hαβ+ = 5;.

Rule 3. If two players α, β ∈ I played against each other in a 2nd round in
the last 4 tournaments, then hαβ+ = 2;.

Rule 4. If two players α, β ∈ I played against each other in a 3rd round in
the last 4 tournaments, then hαβ+ = 1;.

Rule 5. If two players α, β ∈ I played against each other either in quarter-
final or semi-final rounds in the last 4 tournaments, then hαβ+ = 0.5;.

The contribution emerging from tests is twofold: on one side, we show
how our approach can lead to improvements - in terms of fairness and bal-
ance - compared to the official draw in selected tournaments. On the other
side, the computational tests provide indications on the effectiveness of the
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proposed heuristic in solving the clustering problem by comparing its per-
formances with the ones of solver CPLEX 12.7 launched on model (1)-(6).

Computational tests were carried out on a 3,5 GHz Intel Core i7 with
16GB of RAM. After preliminary testing, Tl was set to 0.8 seconds. This
time limit showed up to be sufficient to reach a local minimum for steps 12-17
in Algorithm A1. Table 4 provides the results for the selected competitions
indicated in column 1, comparing the actual tournament statistics to the
ones obtained with our approach. Here, we denote by h-pairing a pairing
between two players i, j inducing a cost hij > 0. For each tournament, we
report four different series of statistics:

i) REAL is the actual draw, sourced from the official tournament bracket
graph.

ii) REAL100 is a simulated draw, repeated 100 times, where any player
– if not seeded – is randomly drawn to a slot. Here the simulation is
executed with the same fashion employed in official draws.

iii) CPLEX provides a simulated draw, repeated 100 times, given the clus-
tering phase solved by running CPLEX 12.7 on model (1)-(6).

iv) HEU is a simulated draw fully generated by the heuristic procedure.

Notice that CPLEX always reaches the optimal solution value of the
clustering problem in these instances. For heuristic HEU , the results pro-
vide an average over 100 different runs. In each run, given the clustering
solution and corresponding fixed placement of the seeded players, a one-shot
random placement of the unseeded players in the tournament brackets graph
is executed. In this placement, first the unseeed players (u-players excluded)
are paired to seeds and then the other pairings are randomly determined.
For CPLEX, given the clustering solution, 100 simulations like the one used
for HEU were applied.

In the second column of Table 4, we report the CPU time required to
generate the solution (only for CPLEX and HEU). Column 3 provides
the value of the objective function (O.F.) of model (1)-(6) related to the
clustering problem. For entries REAL and REAL100, the clustering is
induced by assigning the first 32 players of the tournament brackets graph
to cluster 1, the second 32 players of the tournament brackets graph to
cluster 2 and so on. Column 4 provides the average, minimum and maximum
number of u-pairings. Finally, column 5 provides the average, minimum and
maximum value for the sum of u-pairings and h-pairings
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It is noteworthy to point out that HEU has performances - in terms of
O.F. - comparable to the ones of CPLEX, while the CPU times required
by the heuristic are dramatically smaller. Also, we remark that the pro-
posed approach provides strongly reduced pairing costs together with no u-
pairings, such that a much more balanced tournament is obtained. Indeed,
column 5 indicates that both for CPLEX and HEU the sum of u-pairings
and h-pairings is typically around 1 or 2 units on the average indicating
that, by means of this clustering and corresponding draw, it is possible to
get a first round reasonably fair and diversified.

In Table 5 we report some further statistics for the heuristic. Results are
averaged over 100 runs. The first column reports the percentage improve-
ment in the objective function achieved by the local search. The second and
third column are the attempted swaps and succesful ones, respectively. The
fourth column reports the average number of h-pairings in the first round,
while the last column sums up the values of such pairings.

From Table 5 we evince that the number of successful swaps is limited
compared to the attempted ones even though the successful swaps are quite
efficient. Indeed, the local search step in the heuristic is quite efficient as
it it improves the objective function by roughly 3.1% on the average with
respect to the greedy solution. Also, the cost of the h-pairings after the
simulation remains very limited.

5. Conclusions

The aim of this work has been to integrate concepts of fairness and bal-
ance - typically studied in other disciplines - with a combinatorial approach
typical of OR. This cross-fertilization between disciplines led to an approach
capable of implementing a concept of fairness in sports scheduling. The ini-
tial driver of this work concerns the presence of unbalance in professional
tennis competitions draws generation. As the practical evidence shows, the
need of better approaches is quite evident and Operations Research can pos-
itively contribute to their development. Indeed, the data reported from the
literature and media suggest that purely random draws and prizes increases
are not enough to cope with the growing financial disparity in tennis. With
this paper, we aim to provide a practical way for measuring and improving
diversity and fairness in tennis tournaments. A simple, instant and manual
step in this direction would be to modify all Slam tournaments draws as
follows. “ Select first the players to be paired to seeds without taking into
account those players that in the previous Slam were paired to a seed in the
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Table 4: Computational results for 2017 season of Grand Slams

Time O.F. Value u-pairings (u+ h)-pairings

avg (min-max) avg (min-max) avg (min-max)

WTA-AUS 2017
REAL — 565.00 14 22

REAL100 — 512.21 (413.5 - 681.0) 9.84 (5.0 - 17.0) 13.81 (8.0 - 23.0)
CPLEX 187.37 251.50 0.00 (—) 1.77 (0.0 - 6.0)

HEU 0.75 260.67 (258.5 - 263.5) 0.00 (—) 1.71 (0.0 - 7.0)
WTA-ROL 2017

REAL — 522.00 15 16
REAL100 — 439.37 (318.0 - 607.0) 10.02 (3.0 - 19.0) 14.30 (8.0 - 22.0)

CPLEX 45.48 229.00 0.00 (—) 2.33 (1.0 - 5.0)
HEU 0.74 240.91 (240.0 - 243.0) 0.00 (—) 2.58 (1.0 - 6.0)

WTA-WIM 2017
REAL — 474.00 15 19

REAL100 — 402.75 (299.0 - 558.0) 10.08 (6.0 - 15.0) 13.27 (7.0 - 20.0)
CPLEX 3.43 176.00 0.00 (—) 1.26 (0.0 - 5.0)

HEU 0.75 196.75 (190.0 - 201.0) 0.00 (—) 1.56 (0.0 - 5.0)
WTA-US 2017

REAL — 693.00 15 20
REAL100 — 585.69 (463.5 - 768.0) 10.03 (4.0 - 16.0) 14.92 (5.0 - 25.0)

CPLEX 601.28 378.00 0.00 (—) 2.79 (0.0 - 6.0)
HEU 0.74 387.41 (386.5 - 388.5) 0.00 (—) 2.71 (0.0 - 6.0)

ATP-AUS 2017
REAL — 377.50 8 10

REAL100 — 353.33 (226.5 - 514.5) 10.31 (5.0 - 17.0) 12.87 (6.0 - 24.0)
CPLEX 2.93 151.50 0.00 (—) 0.68 (0.0 - 4.0)

HEU 0.75 164.91 (161.5 - 166.5) 0.00 (—) 1.25 (0.0 - 4.0)
ATP-ROL 2017

REAL — 386.50 16 16
REAL100 — 403.11 (262.5 - 568.5) 9.49 (1.0 - 18.0) 12.62 (6.0 - 22.0)

CPLEX 2.99 208.50 0.00 (—) 0.99 (0.0 - 4.0)
HEU 0.75 219.33 (217.5 - 219.5) 0.00 (—) 1.43 (0.0 - 5.0)

ATP-WIM 2017
REAL — 302.50 16 17

REAL100 — 311.68 (223.5 - 420.5) 9.92 (5.0 - 16.0) 12.16 (6.0 - 20.0)
CPLEX 1.90 128.50 0.00 (—) 0.77 (0.0 - 3.0)

HEU 0.75 137.33 (136.5 - 137.5) 0.00 (—) 0.96 (0.0 - 4.0)
ATP-US 2017

REAL — 466.00 12 14
REAL100 — 390.79 (272.0 - 543.0) 10.03 (3.0 - 16.0) 13.07 (6.0 - 19.0)

CPLEX 3.92 190.00 0.00 (—) 0.78 (0.0 - 3.0)
HEU 0.77 194.33 (192.0 - 197.5) 0.00 (—) 0.78 (0.0 - 3.0)

first round. Then, conclude the draw as usual”. In this way, any player will
never be paired in the first round to seeds for two consecutive Slams.
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Table 5: Additional statistics on the Heuristic for 2017 season of Grand Slams

Avg.∆% Swaps h-pairings Costs of h-pairings
Attempted Successful

WTA-AUS 2017
HEU -8.95 37254.5 11.0 1.71 7.36

WTA-ROL 2017
HEU -1.67 45050.5 4.50 2.58 12.19

WTA-WIM 2017
HEU -2.62 55100.5 4.0 1.56 6.74

WTA-US 2017
HEU -4.17 54476.5 10.0 2.71 12.30

ATP-AUS 2017
HEU -0.50 16137.5 2.0 1.25 4.51

ATP-ROL 2017
HEU -2.37 58020.0 3.0 1.43 6.19

ATP-WIM 2017
HEU -1.60 61874.0 2.5 0.96 3.84

ATP-US 2017
HEU -2.92 57775.5 6.0 0.78 3.08

Code

The full code and data is available online on gitHub in the Tournament
Allocation Problem repository. It can be accessed at the address:
https://github.com/ALCO-PoliTO/TournamentAllocationProblem
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