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Abstract

In this paper, the mechanical behaviour of three-dimensional curved beams is investigated

through closed-form solution as well as one-dimensional finite elements based on Carrera’s

Unified Formulation (CUF). CUF is a hierarchical formulation in which the approximation

order of the displacement field is a free parameter of the analysis. Therefore, refined models

accounting for higher-order effects such as shear deformation and local warping can be ob-

tained with no need for ad hoc formulations. The Principle of Virtual Displacements (PVD)

is used in order to derive both strong and weak formulations. For the latter, locking phenom-

ena typical of curved finite elements are tackled by means of a Mixed Interpolation of Tensorial

Components (MITC). Numerical results for different boundary conditions and loading config-

urations are investigated and validated towards elasticity solutions and commercial software

finite elements showing that the proposed formulation can lead to an accurate evaluation of

the displacement and stress fields with reduced computational costs.

Keywords: Curved beams, Carrera Unified Formulation, Closed form solutions, One-dimensional

finite elements, Mixed Interpolation of Tensorial Components
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1 Introduction

Curved beam elements find applications in many mechanical, civil and aerospace engineering

systems, such as turbine blades, stiffeners, arch bridges and long-span roof structures. Curved

structural components are often analysed by employing straight finite elements together with

a very refined mesh in order to minimize the geometrical error. A more accurate and efficient

model can be obtained by developing theories that account for the curvature of the beam axis.

On the other hand, curved beams are more complex to handle due to the coupling between

the axial and bending deformations and, in the framework of finite elements, the presence

of locking phenomena which can negatively influence the accuracy of the results. Extensive

research has been carried out in the past in this area in order to develop accurate curved

beam models. A brief overview of the existing literature about analytical solutions and finite

elements formulation for the static mechanical analysis of curved beams is reported below.

Elasticity solutions of common case studies for curved beam structures can be found in Tim-

oshenko and Goodier [1]. Analytical expressions based on Volterra integral for the shear and

radial stresses were provided by Yu and Nie [2]. Tufekci and Arpaci [3] provided analytical

solutions for axial- and shear-flexible planar curved beams with variable cross-section by the

initial value method. Gimena et al. [4] provided analytical solutions for three-dimensional

circular arches and balcony structures. The formulation of the curved beam was derived in

global Cartesian coordinates and a twelve lower-triangular governing differential equations

system was solved through successive integrations.

As far as finite element analysis is concerned, attention was concentrated on the performance

evaluation of the element. Higher-order shape functions were proven to yield significantly

more accurate results at the expense of computation efficiency. Most common techniques

that have been used in order to alleviate locking phenomena include the strain element tech-

nique, the selective or reduced integration and the use of modified isoparametric elements.

Babu and Prathap [5] derived a locking-free thick curved beam finite element in which a linear

interpolation for displacements and rotation was assumed. Axial and shear strain fields were

indirectly derived from the displacements through strain smoothing in order to improve the

efficiency of the element. Tabarrok et al. [6] proposed a finite element model for spatially

curved rods by assuming constant strain and using displacement modes as basis functions for

the formulation of the elemental matrices. Reddy and Volpi [7] carried out a mixed finite el-

ement investigation for the analysis of circular arches. Governing equations were obtained by

Timoshenko-Mindlin-Reissner’s assumptions. The equivalence between mixed problem and

standard problem with selective reduced integration was demonstrated. Choi and Lim [8]

formulated general curved beam elements on the basis of Timoshenko’s beam theory. A

two-node element with constant strain field and a three-node element with linear strain field

assumption were proposed for the displacements and stress resultants prediction in rings and

curved cantilever beams. A three-node locking-free curved beam element was proposed by

Lee and Sin [9], in which the nodal unknowns were curvatures instead of pure displacements.
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Litewka and Rakowski [10] formulated a two-node locking-free curved beam finite element

including the effects of flexural, axial and shear deformations. Exact trigonometric shape

functions for the case of constant curvature were employed in order to derive the element

stiffness matrix. Raveendranath et al. [11] presented a three-node curved element based on

Timoshenko’s beam theory for static and free-vibration analyses of several curved structures.

A quartic-order polynomial for the flexural rotation was a-priori assumed and a novel way

of deriving the polynomial interpolations for the displacements was presented, by employ-

ing the force-moment and moment-shear equilibrium equations. A novel geometrically exact

finite-strain beam theory was proposed by Zupan and Saje [12]. A modified version of the

principle of the virtual work was proposed, where the strain vectors were the only functions

that needed to be interpolated. The strain field was assumed to be linear and a collocation

algorithm was used in order to solve the governing equations. Zhu and Meguid [13] proposed

a three-node element based on Euler-Bernoulli’s beam theory. Coupled consistent polynomial

displacement fields satisfying the membrane locking-free requirement were employed. Quintic

transverse displacement interpolation functions were used to represent the bending deforma-

tion of the beam, while the assumption of linear variation was considered for the membrane

and torsional shear strain fields. In-plane arch structures were studied by Nascimbene [14]

by three-node and five-node shear-flexible curved beam elements based on Mindlin-Reissner’s

theory. Locking issues were tackled by an appropriate choice of the shear and membrane strain

functions. Tang et al. [15] presented a two-node displacement-based curved beam element in

which the interpolation function for the displacements is based on the infinitesimal straight

beam section in order to avoid the coupling between tangential and radial displacement in

the strain field. Zhang et al. [16] presented an isogeometric approach for the formulation of

three-dimensional curved beams. Non-uniform rational b-spline interpolation was used for

both geometry and finite element unknowns. Locking phenomena were tackled by increasing

the order of the interpolation. Most of the existing studies on curved beam elements assume

classical kinematic hypotheses, such as Euler-Bernoulli’s and Timoshenko’s theory. These

solutions can be adequate for a number of common structural analyses involving very slender

components. Nevertheless, in the case of thicker beams, they lead to inaccuracies in the dis-

placement and stress field prediction due to higher-order shear deformation effects and local

cross-sectional warping.

In this paper, a mechanical analysis of slender and thick curved beam structures is carried

out via a closed-form Navier-type analytical solution as well as a weak form finite element

solution based on CUF. In the framework of CUF, advanced one-dimensional elements can be

formulated via a compact notation of the displacement field expansion over the cross-section.

The approximation order of the displacement field is a free input of the structural analysis.

Therefore, by appropriately choosing the order, shear and torsional deformation as well as

cross-section in- and out-of-plane warping can be straightforwardly and implicitly accounted

for with no need for ad hoc formulations. CUF also allows deriving finite elements with a

generic number of nodes. Cubic C0 elements are used in the following numerical investigations,
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unless stated otherwise. CUF had been previously proposed for plate and shell structures,

see Carrera [17] and Biscani et al. [18] and it has been lately extended to beams, see Carrera

et al. [19] and Carrera and Giunta [20]. 1D CUF theories based on Taylor expansion as well

as Legendre expansion of the displacement field are adopted in this work. This formulation

has been thoroughly investigated in the framework of straight beams for isotropic as well as

laminated composite structures by Giunta et al. [21, 22], Carrera et al. [23, 24] and Pagani

et al. [25]. Locking phenomena are avoided via MITC, which was initially proposed for beam

elements by Bathe [26] and recently extended to higher-order beam models by Carrera et

al. [27]. Numerical investigations are carried out for different boundary conditions, external

loadings and slenderness ratios of the beam. Displacement and stress field over the beam

domain are compared with available literature results, elasticity solutions and commercial 2D

and 3D finite element solutions showing that a computationally efficient prediction of the

mechanical response of curved beams can be obtained via the proposed formulation.

2 Geometrical and Constitutive Relations

2.1 Geometry of a curved beam

A curved beam is a solid generated by the translation of a plane cross-section along a generic

curved axis. Let r(s) be the vector defining the beam axis in R
3 and s the independent variable

corresponding to the length of the arc. The Frenet-Seret coordinate system associated to a

unit-speed curve is defined by an orthonormal vector basis {t,b,n}, being:

t(s) =
dr(s)

ds
n(s) =

d2r(s)
ds2

∥

∥

∥

d2r(s)
ds2

∥

∥

∥

b(s) = t(s)× n(s) (1)

where t is the tangent versor to the curve at each s location, whereas n and b are the

principal normal and bi-normal unit vector, respectively. Figure 1 shows the Frenet-Seret

frame embedded in a curved beam. The derivatives of the {t, n, b} triad are provided by the

Ferret-Seret formulae, which can be written in a matrix form as:

d

ds







t

n

b







=





0 κ 0
−κ 0 τ
0 −τ 0











t

n

b







(2)

where κ and τ are the curvature and torsion, respectively, of the beam axis and they are

defined as:

κ(s) =

∥

∥

∥

∥

d2r(s)

ds2

∥

∥

∥

∥

τ(s) = −n(s) · db(s)
ds

(3)

The curvature measures the deviation of the curve from being a straight line, whereas the

geometric torsion is the amount by which the curve does not lie in a plane. The reference

system {e1, e2, e3}, with e1 ≡ t and e2, e3 being the unit vectors aligned to the principal

axes of the beam cross-section could also be introduced. In the most general case, e2 and
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e3 are rotated by an angle θ with respect to the principal normal and binormal unit vectors,

therefore:






e1
e2
e3







=





1 0 0
0 cos θ sin θ
0 − sin θ cos θ











t

n

b







(4)

From Eq. (2) and (4), the following differential equations can be obtained:

d

ds







e1
e2
e3







=





0 κ2 −κ1

−κ2 0 κ3

κ1 −κ3 0











e1
e2
e3







(5)

where κ1 = κ sin θ, κ2 = κ cos θ and κ3 = τ +
dθ

ds
.

The position vector of a generic point P within the beam domain can be defined as:

rrrP = rrr(s) + ξ eee2 + η eee3 (6)

being {s, ξ, η} the coordinates associated to the {e1, e2, e3} reference system. Finally, from

Eq. (6), the expressions for the determinant of the metric tensor g and the infinitesimal volume

dV can be derived (see Washizu [28]):

g = (1− ξκ2 + ηκ1)
2 (7)

dV = H ds dξ dη (8)

where H =
√
g.

In this study, e2 and e3 vectors are assumed to coincide with n and b (i.e. θ = 0°), therefore

κ1 = 0, κ2 = κ and κ3 = τ . Furthermore, a constant radius of curvature R and no twist of

the beam axis are considered (κ = 1/R and τ = 0).

2.2 Strain-displacement relations

The displacement vector expressed in the local reference system is:

uT (s, ξ, η) =
{

us (s, ξ, η) uξ (s, ξ, η) uη (s, ξ, η)
}

(9)

where superscript “T” represents the transposition operator.

The strain vector ε is given by:

ε
T =

{

εss εξξ εηη εξη εsη εsξ
}

(10)
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Under the hypothesis of geometrical linearity, the strain-displacement relations are given by

the following relations:

εss =
1

H

(

∂us
∂s

− κuξ

)

εξξ =
∂uξ
∂ξ

εηη =
∂uη
∂η

εξη =
∂uξ
∂η

+
∂uη
∂ξ

εsη =
1

H

(

∂uη
∂s

)

+
∂us
∂η

εsξ =
1

H

(

∂uξ
∂s

+ κus

)

+
∂us
∂ξ

(11)

Eqs. (11) can be written in a matrix form as follows:

ε = (Ds +DΩ +Dκ)u (12)

Ds, DΩ and Dκ are the following differential matrix operators:

Ds =



























1

H

∂

∂s
0 0

0 0 0

0 0 0
0 0 0

0 0
1

H

∂

∂s

0
1

H

∂

∂s
0



























DΩ =





































0 0 0

0
∂

∂ξ
0

0 0
∂

∂η

0
∂

∂η

∂

∂ξ
∂

∂η
0 0

∂

∂ξ
0 0





































Dκ =























0 − κ

H
0

0 0 0

0 0 0
0 0 0
0 0 0
κ

H
0 0























(13)

Ds is the differential operator accounting for the derivative along the beam axis, DΩ for the

cross-sectional variations and Dκ includes the curvature term.

2.3 Constitutive equations

Accordingly to the strain vector definition, the stress vector σ is given by:

σ
T =

{

σss σξξ σηη σξη σsη σsξ
}

(14)

In the case of a linear elastic material, Hooke’s law reads:

σ = C ε (15)
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where C is the material elastic stiffness matrix:

C =























C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C3 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66























(16)

For isotropic materials, the dependency of the coefficients Cij versus Young’s modulus E and

Poisson’s ratio ν is given by:

C11 = C22 = C33 =
1− ν

(1 + ν) (1− 2ν)
E

C12 = C13 = C23 =
ν

(1 + ν) (1− 2ν)
E

C44 = C55 = C66 =
1

2 (1 + ν)
E

(17)

3 Unified Formulation

The displacement field is a priori assumed over the cross-section in the following manner:

u (ξ, η, s) = Fτ (ξ, η)uτ (s) with τ = 1, 2, . . . , Nu (18)

According to Einstein’s notation, a repeated index τ implicitly represents a summation.

Fτ (ξ, η) is a generic expansion function over the cross-section, Nu is the number of accounted

terms and uτ = {usτ uξτ uητ}T .
Since the choice of the expansion functions Fτ (ξ, η) and Nu is arbitrary, several displacement-

based beam theories can be derived and investigated within the same formulation. In this

work, two different classes of expansion functions Fτ (ξ, η) are used: Taylor Expansions (TE)

and Hierarchical Legendre Expansions (HLE).

3.1 Taylor expansions

The generic explicit form of the displacement field expanded via N -order Taylor polynomials

is given by:

us = us1 + us2ξ + us3η + · · ·+ u
s
(N2+N+2)

2

ξN + · · ·+ u
s
(N+1)(N+2)

2

ηN

uξ = uξ1 + uξ2ξ + uξ3η + · · ·+ u
ξ
(N2+N+2)

2

ξN + · · ·+ u
ξ
(N+1)(N+2)

2

ηN

uη = uη1 + uη2ξ + uη3η + · · ·+ u
η
(N2+N+2)

2

ξN + · · ·+ u
η
(N+1)(N+2)

2
ηN

(19)

In the framework of CUF notation introduced in Eq. (18), Nu and Fτ can be expressed as

function of the order of the approximating polynomials N through Pascal’s triangle in Table 1.
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3.2 Hierarchical Legendre expansions

A HLE-based cross-sectional displacement field is defined through the use of vertex, edge

and internal cross-sectional polynomials. The vertex polynomials correspond to the bi-linear

Lagrange polynomials:

Fτ (ζ1, ζ2) =
1

4
(1− ζ1τζ1) (1− ζ2τζ2) with τ = 1, 2, 3, 4 (20)

being ζ1, ζ2 the natural cross-section coordinates varying from −1 to 1 and ζ1τ , ζ2τ the cross-

section vertex coordinates. Edge polynomials are used for polynomial degrees p ≥ 2 and they

are defined as:

Fτ (ζ1, ζ2) =
1

2
(1− ζ2)φp (ζ1) with τ = 5, 9, 13, 18, ...

Fτ (ζ1, ζ2) =
1

2
(1 + ζ1)φp (ζ2) with τ = 6, 10, 14, 19, ...

Fτ (ζ1, ζ2) =
1

2
(1 + ζ2)φp (ζ1) with τ = 7, 11, 15, 20, ...

Fτ (ζ1, ζ2) =
1

2
(1− ζ1)φp (ζ2) with τ = 8, 12, 16, 21, ...

(21)

where:

φp (ζ1) =

√

2p− 1

p

∫ ζ1

−1

Lp−1 (x) dx (22)

being Lp−1 a 1D Legendre polynomial of order p−1 and φp (ζ2) being defined in an analogous

manner as φp (ζ1) in Eq. (22). Finally, for p ≥ 4, internal cross-sectional polynomials are also

taken into account. As an example, for p = 6, the following additional expansion functions

are considered:
F28 (ζ1, ζ2) = φ4 (ζ1)φ2 (ζ2)

F29 (ζ1, ζ2) = φ3 (ζ1)φ3 (ζ2)

F30 (ζ1, ζ2) = φ2 (ζ1)φ4 (ζ2)

(23)

The relation between the polynomial degree p and the number of expansion functions taken

into account in the displacement field is shown in Fig. 2 for polynomials up to the 7-th order.

For more details, a thorough presentation of HLE-based beam theories can be found in Carrera

et al. [23] and Pagani et al. [25].

3.3 Strain field

According to Eq. (11) and (18), the strain-displacement relations become:

εss =
Fτ
H

(usτ,s − κuξτ)

εξξ = Fτ,ξuξτ

εηη = Fτ,ηuητ

εξη = Fτ,ηuξτ + Fτ,ξuητ

εsη =
1

H
Fτuητ,s + Fτ,ηusτ

εsξ =
Fτ
H

(uξτ,s + κusτ ) + Fτ,ξusτ

(24)
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where the subscripts ‘s’, ‘ξ’ and ‘η’, when preceded by comma, represent derivation versus

the respective coordinate.

4 Governing Equations

For both strong and weak form solutions, the governing equations for a static mechanical

analysis are obtained via the PVD:

δLint = δLext (25)

Lint represents the strain energy, Lext the external work and δ stands for a virtual variation.

4.1 Strong form Navier-type solution

Governing differential equations and boundary conditions are obtained through the applica-

tion of PVD. The virtual variation of the beam strain energy is given by:

δLint =

∫

l

∫

Ω

δǫTσH(ξ)dsdξdη (26)

where l corresponds to the total length of the curved axis and Ω is the beam cross-section area.

By considering the geometrical relations in Eqs. (12), the constitutive relations in Eqs. (15)

and the displacements unified formulation in Eq. (18), the compact vectorial form of the

virtual variation of the strain energy in terms of displacement components is given by:

δLint =

∫

l

δuTt K
τt
uτds+ δuTt Π

τt
uτ

∣

∣

s=l

s=0
(27)

Subscript t has the same meaning of subscript τ introduced in Eq. (18), but it is here referred

to the virtual displacement vector. K
τt
represents the differential stiffness matrix fundamental

nucleus and Π
τt

is the differential fundamental nucleus related to the boundary conditions.

Once the approximation order of the displacement field is fixed, the governing equations and

the boundary conditions of the desired model can be obtained via assembly of the respective

nucleus over the indexes τ and t.

The variation of the virtual external work done by the transverse pressure loading pξ acting

at ξ = ξ over an area Aξ : [0, l] × [η1, η2] and the contribution of a transverse pressure pη

acting at η = η over the domain Aη : [0, l]×
[

ξ1, ξ2
]

can be written as:

δLext =

∫

l

(

pξE
ξ
t δuξt + pηE

η
t δuηt

)

ds (28)

where:

Eξ
t = H

(

ξ
)

∫ η2

η1

Ft
(

ξ, η
)

dη

Eη
t =

∫ ξ2

ξ1

H (ξ)Ft (η, ξ) dξ

(29)
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For the sake of brevity, only transverse pressure components are reported within the formula-

tion, but the contributions given by any generic surface loading can be derived in an analogous

manner. A Navier-type harmonic displacement field is assumed along the curved axis coor-

dinate in order to solve the differential equations and automatically satisfy the boundary

conditions for simply supported beams:

usτ = Usτ cos(αs)

uξτ = Uξτ sin(αs)

uητ = Uητ sin(αs)

(30)

where α = mπ
l
, m is the number of half-waves along the beam axis and {Usτ , Uξτ , Uητ} are

the generalised displacement unknowns that are obtained by solving the governing algebraic

system. The applied transverse pressures pξ and pη are also assumed to vary harmonically

along the beam axis:
pξ = Pξ sin(αs)

pη = Pη sin(αs)
(31)

Without loss of generality, due to the linearity hypothesis between load and displacements,

any loading profile can be obtained from Eq. (31) via Fourier’s series expansion approximation

(see Carrera and Giunta [29, 30]). Upon substitution of Eq. (29) and (31) into the governing

differential equations, the algebraic stiffness matrix Kτt and the load vector Pt fundamental

nuclei are obtained. Their complete expressions can be found in Appendix A.

4.2 Weak form FEM solution

With respect to the presented closed-form solution, CUF-based one-dimensional curved finite

element solution has the main advantage to be suitable for the study of structural problems

with arbitrary boundary conditions. On the other hand, it is well known that curved finite

elements can show locking phenomena that negatively influence the accuracy of the results

and, therefore, a closed-form exact analytical solution will prove useful for locking assessment

purposes. The displacement variables are interpolated along the curved beam axis through

conventional Lagrangian shape functions Ni:

uτ (s) = Ni (s)qτ i with τ = 1, 2, . . . , Nu and i = 1, . . . , N e
n (32)

where the subscript i represent implicit summations over the element nodes, qτi is the un-

known nodal displacement vector and N e
n is the number of nodes per element. Cubic elements

are used in the numerical analyses. The virtual variation of the element strain energy is given

by:

δLint =

∫

le

∫

Ω

δǫTσH(ξ)dsdξdη (33)

being le the curved beam element length. If the finite element formulation in Eq. (32) is

considered, along with Eqs. (12), (15) and (18), the virtual variation of the strain energy
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can be written as:

δLint = δqTtjK
τtij
e qτi (34)

Kτtij
e is the element stiffness matrix fundamental nucleus. Analogously to the fundamental

nuclei derived in the closed-form solution, Kτtij
e needs to be assembled over the indexes τ , t, i

and j in order to obtain the element stiffness matrix of the desired higher-order beam element.

The components of the element fundamental nucleus are explicitly reported in Appendix B.

As far as the virtual variation of the element external work is concerned, the contributions

given by the transverse pressure loadings pξ and pη can be written as:

δL
pξ
ext = δqξtjpξIjE

ξ
t δL

pη
ext = δqηtjpηIjE

η
t (35)

with:

Ij =

∫

le
Nj (s) ds (36)

The contributions given by the line loads lξ and lη applied at (ξl, ηl) are:

δL
lξ
ext = δqξtjlξIjFt (ξl, ηl)H (ξl) δL

lη
ext = δqηtj lηIjFt (ξl, ηl)H (ξl) (37)

The contribution of a concentrated load F applied at (sF , ξF , ηF ) is given by:

δLFext = Ft (ξF , ηF )Nj (sF ) δq
T
tjF (38)

Finally, the virtual variation of the external work can be written as the summation of each

contribution:

δLext = δL
pξ
ext + δL

pη
ext + δL

lξ
ext + δL

lη
ext + δLFext (39)

4.2.1 Shear and membrane locking: MITC beam elements

The numerical phenomenon of locking is a major issue in the structural analysis of curved

bodies. This detrimental phenomenon needs to be mitigated, especially when slender struc-

tures and low-order shape functions are considered. By using the MITC method, locking

phenomena can be alleviated by interpolating the axial and shear strain components along

the beam element axis in the following manner:

εss = Nmε
m
ss

εsη = Nmε
m
sη

εsξ = Nmε
m
sξ

(40)

where m denotes an implicit summation and varies from 1 to N e
n − 1. εmss, ε

m
sη and εmsξ are

the strain components coming from the geometrical relations in Eq. (11) evaluated at the

m-th tying point and Nm are the assumed interpolating functions. For cubic elements, their

expressions as functions of the natural beam element coordinate r are given by:

N 1 =
5
6
r
(

r −
√

3
5

)

N2 = −5
3

(

r −
√

3
5

)(

r +
√

3
5

)

N 3 =
5
6
r
(

r +
√

3
5

)

(41)
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whereas the tying points coordinates are: rT1 = −
√

3
5
, rT2 = 0 and rT3 =

√

3
5
. The new

estimate for the strain components given by Eq. (40) is used within the constitutive relations

in Eq. (15) as well as for the evaluation of the element strain energy given by Eq. (33). The

explicit expression of the fundamental nucleus for the MITC beam element can be found in

the companion paper [31].

5 Numerical Results

The beam support is [0, l] × [−h/2, h/2] × [−b/2, b/2] with l being the length, h the thick-

ness and b the width. The geometrical features of the considered structure are shown in

Figure 3. Simply supported, cantilever and doubly-clamped circular beams are investigated

for different in-plane and out-of-plane loading configurations and slenderness ratios. Beams

made of aluminium are considered (E = 30 GPa and ν = 0.17). Results provided by the

proposed family of advanced curved beam models are compared with commercial software

finite elements solutions as well as elasticity solutions and results available in the literature.

5.1 Locking assessment

In order to assess the behaviour of the present formulation in terms of locking, a plane stress

analysis of simply supported circular arches for different slenderness ratios is carried out via

standard cubic elements, referred to as B4, and MITC cubic elements, referred to as MITC4.

An exact Navier-type solution, obtained with m = 150 half-waves, is used as reference. The

opening angle of the beam is Φ = 2
3
π, the thickness h = 0.6 m and the width b = 0.4 m. A

uniform pressure pξ = 1 Pa is applied at the top surface of the beam (ξ = h/2). The variation

of ûz = uFEM
z /uNav

z versus the slenderness ratio l/h by using four beam elements is shown

in Figure 4. A TE2 beam model has been used for the presented results, nevertheless the

effectiveness of the MITC method for locking mitigation does not depend upon the order of

the theory nor the approximation base type. Tables 2 and 3 show the convergence analysis

of the transverse displacement at (s = l/2, ξ = 0) for a very thick beam (l/h = 5) and a very

slender one (l/h = 1000), respectively. Excellent rates of convergence can be observed for the

MITC beam elements.

5.2 Circular thick arch

A plane stress analysis for the displacement and stress fields prediction in thick curved beams

with circular axis is carried out in this section. Two-dimensional finite elements validation

has been obtained via bi-quadratic 8-node “Plane183” Ansys elements. As far as the com-

putational costs are concerned, the most refined beam theory considered are HL5 and TE5,

with number of degrees of freedom (NDOFs) equal to 12, for the analytical solution, and 1452,

for a 121 nodes finite elements solution, whereas NDOFs for the two-dimensional model used

for comparison (120× 24 elements) is 70274.
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5.2.1 Simply supported beam

The beam has a rectangular cross-section with h = 0.6 m and b = 0.4 m. The circular axis

has radius of curvature R = 4 m and opening angle Φ = 2/3π. Results provided by the

proposed finite elements are compared with the corresponding Navier-type solution, which

represents an exact solution in the framework of the theory. For the sake of completeness,

both TE and HLE expansions are reported, although, for homogeneous material structures

under plane stress conditions, no significant differences can be noticed. Table 4 shows the

maximum tangential and radial displacements for a uniform bending pressure load pξ = 1 Pa

applied at the top surface (ξ = h/2). The evaluation points are (s = 0, ξ = −h/2) for us and

(s = l/2, ξ = 0) for uξ. Figures 5 to 7 show the agreement between strong form and weak

form solutions for the through-the-thickness profile of axial, radial and shear stresses.

5.2.2 Clamped-clamped beam

Doubly-clamped boundary conditions are considered in this section and different loading cases

are investigated. Geometrical properties are the same as in the previous section. Results

obtained via the proposed finite elements are compared with those provided by Tupecki

and Arpaci [3] and Litewka and Rakowski [10], as well as Ansys 2D elements. A case of

a concentrated force F = 1000 N applied at (s = l/2, ξ = 0) is considered as well as the case

of a uniform load per unit length pξb = 1000 N/m applied at ξ = 0, in accordance with [10].

Table 5 shows the dimensionless displacements ũ = u/l evaluated at the point (s = l/2,

ξ = −h/2). Results show that the proposed advanced beam models allow a more accurate

prediction of the displacement field with respect to the classical theories, when compared to

the reference 2D finite element solution. Since higher-order theories implicitly account for

shear deformation effects as well as local cross-sectional warping, the errors can be reduced

from 1.3% to 0.08% for the case of concentrated radial force and from 3.3% to 0.3% for the

case of concentrated axial force.

5.2.3 Cantilever beam

In this section, stress results for a cantilever circular beam with R = 1 m, Φ = π/2 and square

cross-section (h = b = l/10) are compared with elasticity solutions given by Timoshenko and

Goodier [1]. The load is a concentrated radial force Fξ = 1 N at the free end (s = l,

ξ = 0). Figures 8 to 10 show the variation of the dimensionless axial, radial and shear stresses

σ̃ = σbh/(Fξ
√
2) along the dimensionless thickness coordinate ξ̃ = ξ/h at the mid-span of

the beam axis (s = l/2). Results show that the exact stress distributions can be provided by

higher-order theories such as TE5.

5.3 3D balcony

A semi-circular 3D balcony is considered for the last assessment. This case study focuses on

the capabilities of higher-order curved beam elements to provide an accurate prediction of

14



the displacement and stress fields in a more general three-dimensional case with out-of-plane

loadings. The radius R is equal to 3 m, whereas the opening angle Φ = π. The cross section

is square with dimensions h = b = 0.3 m. The structure is clamped at both end sides and a

line load of magnitude lη = 5 kN/m is applied along the axis, as shown in Figure 11. Two

different mesh discretizations with 10 and 20 MITC4 beam elements have been considered.

As far as the beam cross-section kinematics is concerned, polynomial expansions based on

HLE are investigated. The full three-dimensional formulation is considered and resuls are

compared with Abaqus “C3D8” quadratic brick elements.

As far as the computational costs are concerned, theNDOFs for the most refined one-dimensional

model used in the following analyses (HL5 beam theory and 61 nodes), is 4209, whereas, for

the three-dimensional model used for comparison (200 × 10 × 10 elements), NDOFs is 278223.

Figure 12 shows the transverse displacement along the arc-length coordinate s for Legendre

polynomial expansions up to the 3rd-order. The solutions provided by Zhang et al. [16] as

well as solid Abaqus model are included for comparison purposes. Figures 13 and 14 show

the axial and transverse shear stresses profiles at different locations within the structure. For

both displacements and stresses, the accuracy of the solutions can be greatly increased by

enriching the kinematics of the beam with higher-order terms. Indeed, for this case, a 3rd-

order model HL3 is already capable to predict the stress fields with solid-like accuracy. For

the sake of completeness, the 3D colour plots for the axial stress σss, transverse shear stresses

σsη and σsξ provided by the fifth order model HL5 are presented in Figures 15, 16 and 17,

respectively.

6 Conclusions

A family of one-dimensional beam models based on CUF has been derived for the mechanical

analysis of curved beam structures. Different geometries, boundary conditions and loading

cases have been investigated by a strong form Navier-type solution as well as a weak form

solution based on the finite element method. For the latter, locking phenomena have been

assessed against exact solutions and MITC method was proven to yield excellent convergence

rates: 4 MITC cubic elements instead of 40 standard cubic elements were needed in order

to predict the exact radial displacement in slender beams. Results in terms of displacement

and stress profiles over the whole beam domain were compared with commercial software

FEM solutions, elasticity solutions and data from the existing literature. Unlike classical 1D

models, higher-order theories such as TE3 or HL3 can accurately predict the axial, shear

and radial stresses in thick curved beam-like structures, with computational costs differing

by one or two orders of magnitude when compared to 2D and 3D commercial software finite

elements.
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A Closed-form fundamental nuclei

The components of the differential stiffness matrix K
τt

introduced in Eq. (27) are reported

below:

K
τt

ss = −J11
τt 1
H

∂2

∂s2
+ J55

τ,ηt,ηH
+ J66

τ,ξt,ξH
+ κ

(

J66
τt,ξ

+ J66
τ,ξt

)

+ κ2J66
τt 1
H

K
τt

sξ =
[

−J12
τ,ξt

+ J66
τt,ξ

+ κ
(

J66
τt 1
H

+ J11
τt 1
H

)] ∂

∂s

K
τt

sη =
(

−J13
τ,ηt

+ J55
τt,η

) ∂

∂s

K
τt

ξs =
[

J12
τt,ξ

− J66
τ,ξt

− κ
(

J66
τt 1
H

+ J11
τt 1
H

)] ∂

∂s

K
τt

ξξ = J22
τ,ξt,ξH

+ J44
τ,ηt,ηH

− J66
τt 1
H

∂2

∂s2
− κ

(

J12
τt,ξ

+ J12
τ,ξt

)

+ κ2J11
τt 1
H

K
τt

ξη = J23
τ,ηt,ξH

+ J44
τ,ξt,ηH

− κJ13
τ,ηt

K
τt

ηs =
(

J13
τt,η

− J55
τ,ηt

) ∂

∂s

K
τt

ηξ = J23
τ,ξt,ηH

+ J44
τ,ηt,ξH

− κJ13
τt,η

K
τt

ηη = J33
τ,ηt,ηH

+ J44
τ,ξt,ξH

− J55
τt 1
H

∂2

∂s2

(42)

being Jghτ(,φ)t(,ψ)
, Jghτ(,φ)t(,ψ)H

and Jgh
τ(,φ)t(,ψ)

1
H

the following integrals over the beam cross-section Ω:

Jghτ(,φ)t(,ψ)
=

∫

Ω

CghFτ(,φ)Ft(,ψ)
dξ dη

Jghτ(,φ)t(,ψ)H
=

∫

Ω

CghFτ(,φ)Ft(,ψ)
H dξ dη

Jgh
τ(,φ)t(,ψ)

1
H

=

∫

Ω

CghFτ(,φ)Ft(,ψ)
1

H
dξ dη

(43)

As far as the boundary conditions are concerned, the components of Π
τt

are:

Π
τt

ss = J11
τt 1
H

∂

∂s
Π
τt

sξ = J12
τ,ξt

− κJ11
τt 1
H

Π
τt

sη = J13
τ,ηt

Π
τt

ξs = J66
τ,ξt

+ κJ66
τt 1
H

Π
τt

ξξ = J66
τt 1
H

∂

∂s
Π
τt

ξη = 0

Π
τt

ηs = J55
τ,ηt

Π
τt

ηξ = 0 Π
τt

ηη = J55
τt 1
H

∂

∂s

(44)

Therefore, the explicit form of the boundary conditions is given by:

δust

[

J11
τt 1
H

usτ,s +
(

J12
τ,ξt

− κJ11
τt 1
H

)

uξτ + J13
τ,ηt

uητ

]
∣

∣

∣

s=l

s=0
= 0

δuξt

[(

J66
τ,ξt

+ κJ66
τt 1
H

)

usτ + J66
τt 1
H

uξτ,s

]
∣

∣

∣

s=l

s=0
= 0

δuηt

[

J55
τ,ηt

usτ + J55
τt 1
H

uητ,s

]
∣

∣

∣

s=l

s=0
= 0

(45)
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If the displacement field in Eq. (29) is adopted, the boundary conditions are satisfied for

simply supported beams, since:

usτ,s (0) = usτ,s (l) = 0
uξτ (0) = uξτ (l) = 0

uητ (0) = uητ ((l) = 0
(46)

δust,s (0) = δust,s (l) = 0

δuξt (0) = δuξt (l) = 0

δuηt (0) = δuηt ((l) = 0

(47)

and the following algebraic stiffness matrix fundamental nucleus Kτt is obtained:

Kτt
ss = α2J11

τt 1
H

+ J55
τ,ηt,ηH

+ J66
τ,ξt,ξH

+ κ
(

J66
τt,ξ

+ J66
τ,ξt

)

+ κ2J66
τt 1
H

Kτt
sξ = α

[

−J12
τ,ξt

+ J66
τt,ξ

+ κ
(

J66
τt 1
H

+ J11
τt 1
H

)]

Kτt
sη = α

(

−J13
τ,ηt

+ J55
τt,η

)

Kτt
ξs = α

[

−J12
τt,ξ

+ J66
τ,ξt

+ κ
(

J66
τt 1
H

+ J11
τt 1
H

)]

Kτt
ξξ = J22

τ,ξt,ξH
+ J44

τ,ηt,ηH
+ α2J66

τt 1
H

− κ
(

J12
τt,ξ

+ J12
τ,ξt

)

+ κ2J11
τt 1
H

Kτt
ξη = J23

τ,ηt,ξH
+ J44

τ,ξt,ηH
− κJ13

τ,ηt

Kτt
ηs = α

(

−J13
τt,η

+ J55
τ,ηt

)

Kτt
ηξ = J23

τ,ξt,ηH
+ J44

τ,ηt,ξH
− κJ13

τt,η

Kτt
ηη = J33

τ,ηt,ηH
+ J44

τ,ξt,ξH
+ α2J55

τt 1
H

(48)

Once the displacement approximation order has been fixed, the stiffness matrix is straight-

forwardly obtained by summing the fundamental nucleus of Eqs. (48) for each term of the

displacement expansion in Eq. (18).

As far as the load vector fundamental nucleus Pt is concerned, its non-zero components

expression, according to Eq. (28), is given by:

P t
ξ = pξE

ξ
t

P t
η = pηE

η
t

(49)
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B FEM fundamental nuclei

The components of the stiffness matrix fundamental nucleus Kτtij
e ∈ R

3×3 of the curved beam

element are:

Kτtij
ess = Ii,sj,sJ

11
τt 1
H

+ Iij

(

J55
τ,ηt,ηH

+ J66
τ,ξt,ξH

)

+ κIij

(

J66
τt,ξ

+ J66
τ,ξt

)

+ κ2IijJ
66
τt 1
H

Kτtij
esξ = Iij,sJ

12
τ,ξt

+ Ii,sjJ
66
τt,ξ

+ κ
(

Ii,sjJ
66
τt 1
H

− Iij,sJ
11
τt 1
H

)

Kτtij
esη = Iij,sJ

13
τ,ηt

+ Ii,sjJ
55
τt,η

Kτtij
eξs = Ii,sjJ

12
τt,ξ

+ Iij,sJ
66
τ,ξt

+ κ
(

Iij,sJ
66
τt 1
H

− Ii,sjJ
11
τt 1
H

)

Kτtij
eξξ = Iij

(

J22
τ,ξt,ξH

+ J44
τ,ηt,ηH

)

+ Ii,sj,sJ
66
τt 1
H

− κIij

(

J12
τt,ξ

+ J12
τ,ξt

)

+ κ2IijJ
11
τt 1
H

Kτtij
eξη = Iij

(

J23
τ,ηt,ξH

+ J44
τ,ξt,ηH

)

− κIijJ
13
τ,ηt

Kτtij
eηs = Ii,sjJ

13
τt,η

+ Iij,sJ
55
τ,ηt

Kτtij
eηξ = Iij

(

J23
τ,ξt,ηH

+ J44
τ,ηt,ξH

)

− κIijJ
13
τt,η

Kτtij
eηη = Iij

(

J33
τ,ηt,ηH

+ J44
τ,ξt,ξH

)

+ Ii,sj,sJ
55
τt 1
H

(50)

where Ii(,s)j(,s) is the following integral along the beam element axis:

Ii(,s)j(,s) =

∫

le

Ni(,s)Nj(,s) ds (51)

Subscript ‘s’ preceded by comma represent derivation versus the axis coordinate. For a

fixed approximation order, the element stiffness matrix has to be assembled according to the

summation indexes τ , t, i and j.
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Tables

N Nu Fτ
0 1 F1 = 1
1 3 F2 = ξ F3 = η
2 6 F4 = ξ2 F5 = ξη F6 = η2

3 10 F7 = ξ3 F8 = ξ2η F9 = ξη2 F10 = η3

. . . . . . . . .

N (N+1)(N+2)
2

F (N2+N+2)
2

= ξN F (N2+N+4)
2

= ξN−1η . . . FN(N+3)
2

= ξηN−1 F (N+1)(N+2)
2

= ηN

Table 1: Taylor’s polynomials terms via Pascal’s triangle.
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109 × uξ
Navier 8.0640
Ne B4 MITC4
60 8.0640 8.0640
40 8.0640 8.0640
20 8.0640 8.0640
10 8.0640 8.0640
8 8.0640 8.0640
6 8.0639 8.0640
4 8.0627 8.0640
2 7.9893 8.0619

Table 2: Transverse displacement uξ [m] for a very thick simply supported circular beam via
TE2 model for different number of elements.
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uξ
Navier 10.1613
Ne B4 MITC4
60 10.1613 10.1613
40 10.1613 10.1613
20 10.1587 10.1613
10 10.0565 10.1613
8 9.9082 10.1613
6 9.5641 10.1613
4 8.7190 10.1613
2 5.8122 10.1587

Table 3: Transverse displacement uξ [m] for a very slender simply supported circular beam
via TE2 model for different number of elements.
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107 × us 107 × uξ
PLANE183 3.0563 4.1860

FEM Navier FEM Navier
TE5, HL5 3.0563 3.0563 4.1860 4.1860
TE4, HL4 3.0563 3.0563 4.1860 4.1860
TE3, HL3 3.0563 3.0563 4.1859 4.1859
TE2, HL2 3.0490 3.0490 4.1762 4.1762

Table 4: Displacement components [m] for a thick simply supported circular beam.
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Radial force Fξ Axial force Fs Uniform pressure pξb
106 × ũξ 106 × ũs 105 × ũξ

PLANE183 0.2456 0.1488 0.1183
Tufekci and Arpaci [3] 0.2205a 0.1412a -

0.2488b 0.1537b -
Litewka and Rakowski [10] 0.2205a 0.1412a 0.1190a

0.2488b 0.1537b 0.1180b

TE5 0.2458 0.1493 0.1183
TE4 0.2457 0.1492 0.1183
TE3 0.2448 0.1478 0.1183
TE2 0.2410 0.1457 0.1185

a: Axial deformation only. b: Axial and shear deformation.

Table 5: Dimensionless displacement components for a thick clamped-clamped circular beam
via CUF TE-based 1D finite elements.
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Figures

Figure 1: Curved beam structure and Frenet-Seret coordinate system.
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Figure 2: HLE set of expansion functions up to the order p = 7.
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Figure 3: Geometry of a thick arch and cross-section.
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Figure 5: Axial stress σss at s = l/2 for a thick simply supported circular beam obtained via
FEM and Navier solution for different Taylor expansions.
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Figure 6: Radial stress σξξ at s = l/2 for a thick simply supported circular beam obtained
via FEM and Navier solution for different Taylor expansions.
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Figure 7: Shear stress σsξ at s = 0 for a thick simply supported circular beam obtained via
FEM and Navier solution for different Taylor expansions.
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Figure 8: Dimensionless axial stress σ̃ss at s = l/2 for a thick cantilever circular beam obtained
by the proposed finite elements and an elasticity solution.
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Figure 9: Dimensionless radial stress σ̃ξξ at s = l/2 for a thick cantilever circular beam
obtained by the proposed finite elements and an elasticity solution.
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Figure 10: Dimensionless shear stress σ̃sξ at s = l/2 for a thick cantilever circular beam
obtained by the proposed finite elements and an elasticity solution.
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Figure 13: Axial stress σss at s = l/2 and ξ = h/2 for the balcony structure.
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Figure 14: Transverse shear stresses for the balcony structure.
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Figure 15: Three-dimensional distribution of the axial stress σss.
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Figure 16: Three-dimensional distribution of the transverse shear stress σsη.
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Figure 17: Three-dimensional distribution of the transverse shear stress σsξ.
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