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Abstract

In this paper, the mechanical behaviour of three-dimensional curved beams is investigated
through closed-form solution as well as one-dimensional �nite elements based on Carrera’s
Uni�ed Formulation (CUF). CUF is a hierarchical formulation in which the approximation
order of the displacement �eld is a free parameter of the analysis. Therefore, re�ned models
accounting for higher-order e�ects such as shear deformation and local warping can be ob-
tained with no need for ad hoc formulations. The Principle of Virtual Displacements (PVD)
is used in order to derive both strong and weak formulations. For the latter, locking phenom-
ena typical of curved �nite elements are tackled by means of a Mixed Interpolation of Tensorial
Components (MITC). Numerical results for di�erent boundary conditions and loading con�g-
urations are investigated and validated towards elasticity solutions and commercial software
�nite elements showing that the proposed formulation can lead to an accurate evaluation of
the displacement and stress �elds with reduced computational costs.

Keywords: Curved beams, Carrera Uni�ed Formulation, Closed form solutions, One-dimensional
�nite elements, Mixed Interpolation of Tensorial Components
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1 Introduction

Curved beam elements �nd applications in many mechanical, civil and aerospace engineering
systems, such as turbine blades, sti�eners, arch bridges and long-span roof structures. Curved
structural components are often analysed by employing straight �nite elements together with
a very re�ned mesh in order to minimize the geometrical error. A more accurate and e�cient
model can be obtained by developing theories that account for the curvature of the beam axis.
On the other hand, curved beams are more complex to handle due to the coupling between
the axial and bending deformations and, in the framework of �nite elements, the presence
of locking phenomena which can negatively in
uence the accuracy of the results. Extensive
research has been carried out in the past in this area in order to develop accurate curved
beam models. A brief overview of the existing literature about analytical solutions and �nite
elements formulation for the static mechanical analysis of curved beams is reported below.
Elasticity solutions of common case studies for curved beam structures can be found in Tim-
oshenko and Goodier [1]. Analytical expressions based on Volterra integral for the shear and
radial stresses were provided by Yu and Nie [2]. Tufekci and Arpaci [3] provided analytical
solutions for axial- and shear-
exible planar curved beams with variable cross-section by the
initial value method. Gimena et al. [4] provided analytical solutions for three-dimensional
circular arches and balcony structures. The formulation of the curved beam was derived in
global Cartesian coordinates and a twelve lower-triangular governing di�erential equations
system was solved through successive integrations.
As far as �nite element analysis is concerned, attention was concentrated on the performance
evaluation of the element. Higher-order shape functions were proven to yield signi�cantly
more accurate results at the expense of computation e�ciency. Most common techniques
that have been used in order to alleviate locking phenomena include the strain element tech-
nique, the selective or reduced integration and the use of modi�ed isoparametric elements.
Babu and Prathap [5] derived a locking-free thick curved beam �nite element in which a linear
interpolation for displacements and rotation was assumed. Axial and shear strain �elds were
indirectly derived from the displacements through strain smoothing in order to improve the
e�ciency of the element. Tabarrok et al. [6] proposed a �nite element model for spatially
curved rods by assuming constant strain and using displacement modes as basis functions for
the formulation of the elemental matrices. Reddy and Volpi [7] carried out a mixed �nite el-
ement investigation for the analysis of circular arches. Governing equations were obtained by
Timoshenko-Mindlin-Reissner’s assumptions. The equivalence between mixed problem and
standard problem with selective reduced integration was demonstrated. Choi and Lim [8]
formulated general curved beam elements on the basis of Timoshenko’s beam theory. A
two-node element with constant strain �eld and a three-node element with linear strain �eld
assumption were proposed for the displacements and stress resultants prediction in rings and
curved cantilever beams. A three-node locking-free curved beam element was proposed by
Lee and Sin [9], in which the nodal unknowns were curvatures instead of pure displacements.
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Litewka and Rakowski [10] formulated a two-node locking-free curved beam �nite element
including the e�ects of 
exural, axial and shear deformations. Exact trigonometric shape
functions for the case of constant curvature were employed in order to derive the element
sti�ness matrix. Raveendranath et al. [11] presented a three-node curved element based on
Timoshenko’s beam theory for static and free-vibration analyses of several curved structures.
A quartic-order polynomial for the 
exural rotation was a-priori assumed and a novel way
of deriving the polynomial interpolations for the displacements was presented, by employ-
ing the force-moment and moment-shear equilibrium equations. A novel geometrically exact
�nite-strain beam theory was proposed by Zupan and Saje [12]. A modi�ed version of the
principle of the virtual work was proposed, where the strain vectors were the only functions
that needed to be interpolated. The strain �eld was assumed to be linear and a collocation
algorithm was used in order to solve the governing equations. Zhu and Meguid [13] proposed
a three-node element based on Euler-Bernoulli’s beam theory. Coupled consistent polynomial
displacement �elds satisfying the membrane locking-free requirement were employed. Quintic
transverse displacement interpolation functions were used to represent the bending deforma-
tion of the beam, while the assumption of linear variation was considered for the membrane
and torsional shear strain �elds. In-plane arch structures were studied by Nascimbene [14]
by three-node and �ve-node shear-
exible curved beam elements based on Mindlin-Reissner’s
theory. Locking issues were tackled by an appropriate choice of the shear and membrane strain
functions. Tang et al. [15] presented a two-node displacement-based curved beam element in
which the interpolation function for the displacements is based on the in�nitesimal straight
beam section in order to avoid the coupling between tangential and radial displacement in
the strain �eld. Zhang et al. [16] presented an isogeometric approach for the formulation of
three-dimensional curved beams. Non-uniform rational b-spline interpolation was used for
both geometry and �nite element unknowns. Locking phenomena were tackled by increasing
the order of the interpolation. Most of the existing studies on curved beam elements assume
classical kinematic hypotheses, such as Euler-Bernoulli’s and Timoshenko’s theory. These
solutions can be adequate for a number of common structural analyses involving very slender
components. Nevertheless, in the case of thicker beams, they lead to inaccuracies in the dis-
placement and stress �eld prediction due to higher-order shear deformation e�ects and local
cross-sectional warping.
In this paper, a mechanical analysis of slender and thick curved beam structures is carried
out via a closed-form Navier-type analytical solution as well as a weak form �nite element
solution based on CUF. In the framework of CUF, advanced one-dimensional elements can be
formulated via a compact notation of the displacement �eld expansion over the cross-section.
The approximation order of the displacement �eld is a free input of the structural analysis.
Therefore, by appropriately choosing the order, shear and torsional deformation as well as
cross-section in- and out-of-plane warping can be straightforwardly and implicitly accounted
for with no need for ad hoc formulations. CUF also allows deriving �nite elements with a
generic number of nodes. Cubic C0 elements are used in the following numerical investigations,
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unless stated otherwise. CUF had been previously proposed for plate and shell structures,
see Carrera [17] and Biscani et al. [18] and it has been lately extended to beams, see Carrera
et al. [19] and Carrera and Giunta [20]. 1D CUF theories based on Taylor expansion as well
as Legendre expansion of the displacement �eld are adopted in this work. This formulation
has been thoroughly investigated in the framework of straight beams for isotropic as well as
laminated composite structures by Giunta et al. [21, 22], Carrera et al. [23, 24] and Pagani
et al. [25]. Locking phenomena are avoided via MITC, which was initially proposed for beam
elements by Bathe [26] and recently extended to higher-order beam models by Carrera et
al. [27]. Numerical investigations are carried out for di�erent boundary conditions, external
loadings and slenderness ratios of the beam. Displacement and stress �eld over the beam
domain are compared with available literature results, elasticity solutions and commercial 2D
and 3D �nite element solutions showing that a computationally e�cient prediction of the
mechanical response of curved beams can be obtained via the proposed formulation.

2 Geometrical and Constitutive Relations

2.1 Geometry of a curved beam

A curved beam is a solid generated by the translation of a plane cross-section along a generic
curved axis. Let r(s) be the vector de�ning the beam axis in R3 and s the independent variable
corresponding to the length of the arc. The Frenet-Seret coordinate system associated to a
unit-speed curve is de�ned by an orthonormal vector basis ft,b,ng, being:

t(s) =
dr(s)

ds
n(s) =

d2r(s)
ds2


d2r(s)
ds2





b(s) = t(s) � n(s) (1)

where t is the tangent versor to the curve at each s location, whereas n and b are the
principal normal and bi-normal unit vector, respectively. Figure 1 shows the Frenet-Seret
frame embedded in a curved beam. The derivatives of the ft, n, bg triad are provided by the
Ferret-Seret formulae, which can be written in a matrix form as:

d
ds

8
<

:

t
n
b

9
=

;
=

2

4
0 � 0

�� 0 �
0 �� 0

3

5

8
<

:

t
n
b

9
=

;
(2)

where � and � are the curvature and torsion, respectively, of the beam axis and they are
de�ned as:

�(s) =






d2r(s)
ds2





 �(s) = �n(s) �
db(s)

ds
(3)

The curvature measures the deviation of the curve from being a straight line, whereas the
geometric torsion is the amount by which the curve does not lie in a plane. The reference
system fe1, e2, e3g, with e1 � t and e2, e3 being the unit vectors aligned to the principal
axes of the beam cross-section could also be introduced. In the most general case, e2 and

5



e3 are rotated by an angle � with respect to the principal normal and binormal unit vectors,
therefore: 8

<

:

e1
e2
e3

9
=

;
=

2

4
1 0 0
0 cos � sin �
0 � sin � cos �

3

5

8
<

:

t
n
b

9
=

;
(4)

From Eq. (2) and (4), the following di�erential equations can be obtained:

d
ds

8
<

:

e1
e2
e3

9
=

;
=

2

4
0 �2 ��1

��2 0 �3
�1 ��3 0

3

5

8
<

:

e1
e2
e3

9
=

;
(5)

where �1 = � sin �, �2 = � cos � and �3 = � +
d�
ds

.
The position vector of a generic point P within the beam domain can be de�ned as:

rrrP = rrr(s) + � eee2 + � eee3 (6)

being fs; �; �g the coordinates associated to the fe1, e2, e3g reference system. Finally, from
Eq. (6), the expressions for the determinant of the metric tensor g and the in�nitesimal volume
dV can be derived (see Washizu [28]):

g = (1 � ��2 + ��1)2 (7)

dV = H ds d� d� (8)

where H =
p

g.
In this study, e2 and e3 vectors are assumed to coincide with n and b (i.e. � = 0°), therefore
�1 = 0, �2 = � and �3 = � . Furthermore, a constant radius of curvature R and no twist of
the beam axis are considered (� = 1=R and � = 0).

2.2 Strain-displacement relations

The displacement vector expressed in the local reference system is:

uT (s; �; �) =
�

us (s; �; �) u� (s; �; �) u� (s; �; �)
	

(9)

where superscript \T " represents the transposition operator.
The strain vector " is given by:

"T =
�

"ss "�� "�� "�� "s� "s�
	

(10)
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Under the hypothesis of geometrical linearity, the strain-displacement relations are given by
the following relations:

"ss =
1
H

�
@us
@s

� �u�
�

"�� =
@u�
@�

"�� =
@u�
@�

"�� =
@u�
@�

+
@u�
@�

"s� =
1
H

�
@u�
@s

�
+

@us
@�

"s� =
1
H

�
@u�
@s

+ �us
�

+
@us
@�

(11)

Eqs. (11) can be written in a matrix form as follows:

" = (Ds + D
 + D�) u (12)

Ds, D
 and D� are the following di�erential matrix operators:

Ds =

2

66666666666
4

1
H

@
@s

0 0

0 0 0
0 0 0
0 0 0

0 0
1
H

@
@s

0
1
H

@
@s

0

3

77777777777
5

D
 =

2

66666666666666664

0 0 0

0
@
@�

0

0 0
@
@�

0
@
@�

@
@�

@
@�

0 0
@
@�

0 0

3

77777777777777775

D� =

2

666666666
4

0 �
�
H

0

0 0 0
0 0 0
0 0 0
0 0 0
�
H

0 0

3

777777777
5

(13)

Ds is the di�erential operator accounting for the derivative along the beam axis, D
 for the
cross-sectional variations and D� includes the curvature term.

2.3 Constitutive equations

Accordingly to the strain vector de�nition, the stress vector � is given by:

�T =
�

�ss ��� ��� ��� �s� �s�
	

(14)

In the case of a linear elastic material, Hooke’s law reads:

� = C " (15)
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where C is the material elastic sti�ness matrix:

C =

2

666666666
4

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C3 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

3

777777777
5

(16)

For isotropic materials, the dependency of the coe�cients Cij versus Young’s modulus E and
Poisson’s ratio � is given by:

C11 = C22 = C33 =
1 � �

(1 + �) (1 � 2�)
E

C12 = C13 = C23 =
�

(1 + �) (1 � 2�)
E

C44 = C55 = C66 =
1

2 (1 + �)
E

(17)

3 Uni�ed Formulation

The displacement �eld is a priori assumed over the cross-section in the following manner:

u (�; �; s) = F� (�; �) u� (s) with � = 1; 2; : : : ; Nu (18)

According to Einstein’s notation, a repeated index � implicitly represents a summation.
F� (�; �) is a generic expansion function over the cross-section, Nu is the number of accounted
terms and u� = fus� u�� u��gT .
Since the choice of the expansion functions F� (�; �) and Nu is arbitrary, several displacement-
based beam theories can be derived and investigated within the same formulation. In this
work, two di�erent classes of expansion functions F� (�; �) are used: Taylor Expansions (TE)
and Hierarchical Legendre Expansions (HLE).

3.1 Taylor expansions

The generic explicit form of the displacement �eld expanded via N -order Taylor polynomials
is given by:

us = us1 + us2� + us3� + � � � + u
s (N2+N+2)

2

�N + � � � + us (N+1)(N+2)
2

�N

u� = u�1 + u�2� + u�3� + � � � + u
� (N2+N+2)

2

�N + � � � + u� (N+1)(N+2)
2

�N

u� = u�1 + u�2� + u�3� + � � � + u
� (N2+N+2)

2

�N + � � � + u� (N+1)(N+2)
2

�N
(19)

In the framework of CUF notation introduced in Eq. (18), Nu and F� can be expressed as
function of the order of the approximating polynomials N through Pascal’s triangle in Table 1.
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3.2 Hierarchical Legendre expansions

A HLE-based cross-sectional displacement �eld is de�ned through the use of vertex, edge
and internal cross-sectional polynomials. The vertex polynomials correspond to the bi-linear
Lagrange polynomials:

F� (�1; �2) =
1
4

(1 � �1��1) (1 � �2��2) with � = 1; 2; 3; 4 (20)

being �1, �2 the natural cross-section coordinates varying from �1 to 1 and �1� , �2� the cross-
section vertex coordinates. Edge polynomials are used for polynomial degrees p � 2 and they
are de�ned as:

F� (�1; �2) =
1
2

(1 � �2) �p (�1) with � = 5; 9; 13; 18; :::

F� (�1; �2) =
1
2

(1 + �1) �p (�2) with � = 6; 10; 14; 19; :::

F� (�1; �2) =
1
2

(1 + �2) �p (�1) with � = 7; 11; 15; 20; :::

F� (�1; �2) =
1
2

(1 � �1) �p (�2) with � = 8; 12; 16; 21; :::

(21)

where:

�p (�1) =
r

2p � 1
p

Z �1

�1
Lp�1 (x) dx (22)

being Lp�1 a 1D Legendre polynomial of order p�1 and �p (�2) being de�ned in an analogous
manner as �p (�1) in Eq. (22). Finally, for p � 4, internal cross-sectional polynomials are also
taken into account. As an example, for p = 6, the following additional expansion functions
are considered:

F28 (�1; �2) = �4 (�1) �2 (�2)
F29 (�1; �2) = �3 (�1) �3 (�2)
F30 (�1; �2) = �2 (�1) �4 (�2)

(23)

The relation between the polynomial degree p and the number of expansion functions taken
into account in the displacement �eld is shown in Fig. 2 for polynomials up to the 7-th order.
For more details, a thorough presentation of HLE-based beam theories can be found in Carrera
et al. [23] and Pagani et al. [25].

3.3 Strain �eld

According to Eq. (11) and (18), the strain-displacement relations become:

"ss =
F�
H

(us�;s � �u��)

"�� = F�;�u��
"�� = F�;�u��
"�� = F�;�u�� + F�;�u��

"s� =
1
H

F�u��;s + F�;�us�

"s� =
F�
H

(u��;s + �us� ) + F�;�us�

(24)
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where the subscripts ‘s’, ‘�’ and ‘�’, when preceded by comma, represent derivation versus
the respective coordinate.

4 Governing Equations

For both strong and weak form solutions, the governing equations for a static mechanical
analysis are obtained via the PVD:

�Lint = �Lext (25)

Lint represents the strain energy, Lext the external work and � stands for a virtual variation.

4.1 Strong form Navier-type solution

Governing di�erential equations and boundary conditions are obtained through the applica-
tion of PVD. The virtual variation of the beam strain energy is given by:

�Lint =
Z

l

Z




��T�H(�)dsd�d� (26)

where l corresponds to the total length of the curved axis and 
 is the beam cross-section area.
By considering the geometrical relations in Eqs. (12), the constitutive relations in Eqs. (15)
and the displacements uni�ed formulation in Eq. (18), the compact vectorial form of the
virtual variation of the strain energy in terms of displacement components is given by:

�Lint =
Z

l

�uTt K�tu�ds + �uTt ��tu�
��s=l
s=0 (27)

Subscript t has the same meaning of subscript � introduced in Eq. (18), but it is here referred
to the virtual displacement vector. K�t represents the di�erential sti�ness matrix fundamental
nucleus and ��t is the di�erential fundamental nucleus related to the boundary conditions.
Once the approximation order of the displacement �eld is �xed, the governing equations and
the boundary conditions of the desired model can be obtained via assembly of the respective
nucleus over the indexes � and t.
The variation of the virtual external work done by the transverse pressure loading p� acting
at � = � over an area A� : [0; l] � [�1; �2] and the contribution of a transverse pressure p�
acting at � = � over the domain A� : [0; l] �

�
�1; �2

�
can be written as:

�Lext =
Z

l

�
p�E�

t �u�t + p�E�
t �u�t

�
ds (28)

where:

E�
t = H

�
�
� Z �2

�1

Ft
�
�; �

�
d�

E�
t =

Z �2

�1

H (�) Ft (�; �) d�
(29)
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For the sake of brevity, only transverse pressure components are reported within the formula-
tion, but the contributions given by any generic surface loading can be derived in an analogous
manner. A Navier-type harmonic displacement �eld is assumed along the curved axis coor-
dinate in order to solve the di�erential equations and automatically satisfy the boundary
conditions for simply supported beams:

us� = Us� cos(�s)
u�� = U�� sin(�s)
u�� = U�� sin(�s)

(30)

where � = m�
l , m is the number of half-waves along the beam axis and fUs� ; U�� ; U��g are

the generalised displacement unknowns that are obtained by solving the governing algebraic
system. The applied transverse pressures p� and p� are also assumed to vary harmonically
along the beam axis:

p� = P� sin(�s)
p� = P� sin(�s)

(31)

Without loss of generality, due to the linearity hypothesis between load and displacements,
any loading pro�le can be obtained from Eq. (31) via Fourier’s series expansion approximation
(see Carrera and Giunta [29, 30]). Upon substitution of Eq. (29) and (31) into the governing
di�erential equations, the algebraic sti�ness matrix K�t and the load vector Pt fundamental
nuclei are obtained. Their complete expressions can be found in Appendix A.

4.2 Weak form FEM solution

With respect to the presented closed-form solution, CUF-based one-dimensional curved �nite
element solution has the main advantage to be suitable for the study of structural problems
with arbitrary boundary conditions. On the other hand, it is well known that curved �nite
elements can show locking phenomena that negatively in
uence the accuracy of the results
and, therefore, a closed-form exact analytical solution will prove useful for locking assessment
purposes. The displacement variables are interpolated along the curved beam axis through
conventional Lagrangian shape functions Ni:

u� (s) = Ni (s) q� i with � = 1; 2; : : : ; Nu and i = 1; : : : ; N e
n (32)

where the subscript i represent implicit summations over the element nodes, q�i is the un-
known nodal displacement vector and N e

n is the number of nodes per element. Cubic elements
are used in the numerical analyses. The virtual variation of the element strain energy is given
by:

�Lint =
Z

le

Z




��T�H(�)dsd�d� (33)

being le the curved beam element length. If the �nite element formulation in Eq. (32) is
considered, along with Eqs. (12), (15) and (18), the virtual variation of the strain energy
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can be written as:
�Lint = �qTtjK

�tij
e q�i (34)

K�tij
e is the element sti�ness matrix fundamental nucleus. Analogously to the fundamental

nuclei derived in the closed-form solution, K�tij
e needs to be assembled over the indexes � , t, i

and j in order to obtain the element sti�ness matrix of the desired higher-order beam element.
The components of the element fundamental nucleus are explicitly reported in Appendix B.
As far as the virtual variation of the element external work is concerned, the contributions
given by the transverse pressure loadings p� and p� can be written as:

�Lp�
ext = �q�tjp�IjE�

t �Lp�
ext = �q�tjp�IjE�

t (35)

with:
Ij =

Z

le
Nj (s) ds (36)

The contributions given by the line loads l� and l� applied at (�l, �l) are:

�Ll�
ext = �q�tjl�IjFt (�l; �l) H (�l) �Ll�

ext = �q�tj l�IjFt (�l; �l) H (�l) (37)

The contribution of a concentrated load F applied at (sF , �F , �F ) is given by:

�LF
ext = Ft (�F ; �F ) Nj (sF ) �qTtjF (38)

Finally, the virtual variation of the external work can be written as the summation of each
contribution:

�Lext = �Lp�
ext + �Lp�

ext + �Ll�
ext + �Ll�

ext + �LF
ext (39)

4.2.1 Shear and membrane locking: MITC beam elements

The numerical phenomenon of locking is a major issue in the structural analysis of curved
bodies. This detrimental phenomenon needs to be mitigated, especially when slender struc-
tures and low-order shape functions are considered. By using the MITC method, locking
phenomena can be alleviated by interpolating the axial and shear strain components along
the beam element axis in the following manner:

"ss = Nm"mss
"s� = Nm"ms�
"s� = Nm"ms�

(40)

where m denotes an implicit summation and varies from 1 to N e
n � 1. "mss, "ms� and "ms� are

the strain components coming from the geometrical relations in Eq. (11) evaluated at the
m-th tying point and Nm are the assumed interpolating functions. For cubic elements, their
expressions as functions of the natural beam element coordinate r are given by:

N 1 = 5
6r

�
r �

q
3
5

�
N2 = �5

3

�
r �

q
3
5

� �
r +

q
3
5

�
N 3 = 5

6r
�

r +
q

3
5

�
(41)
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whereas the tying points coordinates are: rT1 = �
q

3
5 , rT2 = 0 and rT3 =

q
3
5 . The new

estimate for the strain components given by Eq. (40) is used within the constitutive relations
in Eq. (15) as well as for the evaluation of the element strain energy given by Eq. (33). The
explicit expression of the fundamental nucleus for the MITC beam element can be found in
the companion paper [31].

5 Numerical Results

The beam support is [0; l] � [�h=2; h=2] � [�b=2; b=2] with l being the length, h the thick-
ness and b the width. The geometrical features of the considered structure are shown in
Figure 3. Simply supported, cantilever and doubly-clamped circular beams are investigated
for di�erent in-plane and out-of-plane loading con�gurations and slenderness ratios. Beams
made of aluminium are considered (E = 30 GPa and � = 0:17). Results provided by the
proposed family of advanced curved beam models are compared with commercial software
�nite elements solutions as well as elasticity solutions and results available in the literature.

5.1 Locking assessment

In order to assess the behaviour of the present formulation in terms of locking, a plane stress
analysis of simply supported circular arches for di�erent slenderness ratios is carried out via
standard cubic elements, referred to as B4, and MITC cubic elements, referred to as MITC4.
An exact Navier-type solution, obtained with m = 150 half-waves, is used as reference. The
opening angle of the beam is � = 2

3�, the thickness h = 0:6 m and the width b = 0:4 m. A
uniform pressure p� = 1 Pa is applied at the top surface of the beam (� = h=2). The variation
of ûz = uFEM

z =uNav
z versus the slenderness ratio l=h by using four beam elements is shown

in Figure 4. A TE2 beam model has been used for the presented results, nevertheless the
e�ectiveness of the MITC method for locking mitigation does not depend upon the order of
the theory nor the approximation base type. Tables 2 and 3 show the convergence analysis
of the transverse displacement at (s = l=2; � = 0) for a very thick beam (l=h = 5) and a very
slender one (l=h = 1000), respectively. Excellent rates of convergence can be observed for the
MITC beam elements.

5.2 Circular thick arch

A plane stress analysis for the displacement and stress �elds prediction in thick curved beams
with circular axis is carried out in this section. Two-dimensional �nite elements validation
has been obtained via bi-quadratic 8-node \Plane183" Ansys elements. As far as the com-
putational costs are concerned, the most re�ned beam theory considered are HL5 and TE5,
with number of degrees of freedom (NDOFs) equal to 12, for the analytical solution, and 1452,
for a 121 nodes �nite elements solution, whereas NDOFs for the two-dimensional model used
for comparison (120 � 24 elements) is 70274.
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5.2.1 Simply supported beam

The beam has a rectangular cross-section with h = 0:6 m and b = 0:4 m. The circular axis
has radius of curvature R = 4 m and opening angle � = 2=3�. Results provided by the
proposed �nite elements are compared with the corresponding Navier-type solution, which
represents an exact solution in the framework of the theory. For the sake of completeness,
both TE and HLE expansions are reported, although, for homogeneous material structures
under plane stress conditions, no signi�cant di�erences can be noticed. Table 4 shows the
maximum tangential and radial displacements for a uniform bending pressure load p� = 1 Pa
applied at the top surface (� = h=2). The evaluation points are (s = 0, � = �h=2) for us and
(s = l=2, � = 0) for u�. Figures 5 to 7 show the agreement between strong form and weak
form solutions for the through-the-thickness pro�le of axial, radial and shear stresses.

5.2.2 Clamped-clamped beam

Doubly-clamped boundary conditions are considered in this section and di�erent loading cases
are investigated. Geometrical properties are the same as in the previous section. Results
obtained via the proposed �nite elements are compared with those provided by Tupecki
and Arpaci [3] and Litewka and Rakowski [10], as well as Ansys 2D elements. A case of
a concentrated force F = 1000 N applied at (s = l=2, � = 0) is considered as well as the case
of a uniform load per unit length p�b = 1000 N/m applied at � = 0, in accordance with [10].
Table 5 shows the dimensionless displacements ~u = u=l evaluated at the point (s = l=2,
� = �h=2). Results show that the proposed advanced beam models allow a more accurate
prediction of the displacement �eld with respect to the classical theories, when compared to
the reference 2D �nite element solution. Since higher-order theories implicitly account for
shear deformation e�ects as well as local cross-sectional warping, the errors can be reduced
from 1:3% to 0:08% for the case of concentrated radial force and from 3:3% to 0:3% for the
case of concentrated axial force.

5.2.3 Cantilever beam

In this section, stress results for a cantilever circular beam with R = 1 m, � = �=2 and square
cross-section (h = b = l=10) are compared with elasticity solutions given by Timoshenko and
Goodier [1]. The load is a concentrated radial force F� = 1 N at the free end (s = l,
� = 0). Figures 8 to 10 show the variation of the dimensionless axial, radial and shear stresses
~� = �bh=(F�

p
2) along the dimensionless thickness coordinate ~� = �=h at the mid-span of

the beam axis (s = l=2). Results show that the exact stress distributions can be provided by
higher-order theories such as TE5.

5.3 3D balcony

A semi-circular 3D balcony is considered for the last assessment. This case study focuses on
the capabilities of higher-order curved beam elements to provide an accurate prediction of
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the displacement and stress �elds in a more general three-dimensional case with out-of-plane
loadings. The radius R is equal to 3 m, whereas the opening angle � = �. The cross section
is square with dimensions h = b = 0:3 m. The structure is clamped at both end sides and a
line load of magnitude l� = 5 kN/m is applied along the axis, as shown in Figure 11. Two
di�erent mesh discretizations with 10 and 20 MITC4 beam elements have been considered.
As far as the beam cross-section kinematics is concerned, polynomial expansions based on
HLE are investigated. The full three-dimensional formulation is considered and resuls are
compared with Abaqus \C3D8" quadratic brick elements.
As far as the computational costs are concerned, the NDOFs for the most re�ned one-dimensional
model used in the following analyses (HL5 beam theory and 61 nodes), is 4209, whereas, for
the three-dimensional model used for comparison (200 � 10 � 10 elements), NDOFs is 278223.
Figure 12 shows the transverse displacement along the arc-length coordinate s for Legendre
polynomial expansions up to the 3rd-order. The solutions provided by Zhang et al. [16] as
well as solid Abaqus model are included for comparison purposes. Figures 13 and 14 show
the axial and transverse shear stresses pro�les at di�erent locations within the structure. For
both displacements and stresses, the accuracy of the solutions can be greatly increased by
enriching the kinematics of the beam with higher-order terms. Indeed, for this case, a 3rd-
order model HL3 is already capable to predict the stress �elds with solid-like accuracy. For
the sake of completeness, the 3D colour plots for the axial stress �ss, transverse shear stresses
�s� and �s� provided by the �fth order model HL5 are presented in Figures 15, 16 and 17,
respectively.

6 Conclusions

A family of one-dimensional beam models based on CUF has been derived for the mechanical
analysis of curved beam structures. Di�erent geometries, boundary conditions and loading
cases have been investigated by a strong form Navier-type solution as well as a weak form
solution based on the �nite element method. For the latter, locking phenomena have been
assessed against exact solutions and MITC method was proven to yield excellent convergence
rates: 4 MITC cubic elements instead of 40 standard cubic elements were needed in order
to predict the exact radial displacement in slender beams. Results in terms of displacement
and stress pro�les over the whole beam domain were compared with commercial software
FEM solutions, elasticity solutions and data from the existing literature. Unlike classical 1D
models, higher-order theories such as TE3 or HL3 can accurately predict the axial, shear
and radial stresses in thick curved beam-like structures, with computational costs di�ering
by one or two orders of magnitude when compared to 2D and 3D commercial software �nite
elements.
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A Closed-form fundamental nuclei

The components of the di�erential sti�ness matrix K�t introduced in Eq. (27) are reported
below:

K�t
ss = �J11

�t 1
H

@2

@s2 + J55
�;�t;�H + J66

�;�t;�H + �
�

J66
�t;� + J66

�;�t

�
+ �2J66

�t 1
H

K�t
s� =

h
�J12

�;�t + J66
�t;� + �

�
J66
�t 1
H

+ J11
�t 1
H

�i @
@s

K�t
s� =

�
�J13

�;�t + J55
�t;�

� @
@s

K�t
�s =

h
J12
�t;� � J66

�;�t � �
�

J66
�t 1
H

+ J11
�t 1
H

�i @
@s

K�t
�� = J22

�;�t;�H + J44
�;�t;�H � J66

�t 1
H

@2

@s2 � �
�

J12
�t;� + J12

�;�t

�
+ �2J11

�t 1
H

K�t
�� = J23

�;�t;�H + J44
�;�t;�H � �J13

�;�t

K�t
�s =

�
J13
�t;� � J55

�;�t

� @
@s

K�t
�� = J23

�;�t;�H + J44
�;�t;�H � �J13

�t;�

K�t
�� = J33

�;�t;�H + J44
�;�t;�H � J55

�t 1
H

@2

@s2

(42)

being Jgh�(;�)t(; )
, Jgh�(;�)t(; )H and Jgh�(;�)t(; )

1
H

the following integrals over the beam cross-section 
:

Jgh�(;�)t(; )
=

Z




CghF�(;�)Ft(; ) d� d�

Jgh�(;�)t(; )H =
Z




CghF�(;�)Ft(; )H d� d�

Jgh�(;�)t(; )
1
H

=
Z




CghF�(;�)Ft(; )
1
H

d� d�

(43)

As far as the boundary conditions are concerned, the components of ��t are:

��t
ss = J11

�t 1
H

@
@s

��t
s� = J12

�;�t � �J11
�t 1
H

��t
s� = J13

�;�t

��t
�s = J66

�;�t + �J66
�t 1
H

��t
�� = J66

�t 1
H

@
@s

��t
�� = 0

��t
�s = J55

�;�t ��t
�� = 0 ��t

�� = J55
�t 1
H

@
@s

(44)

Therefore, the explicit form of the boundary conditions is given by:

�ust
h
J11
�t 1
H

us�;s +
�

J12
�;�t � �J11

�t 1
H

�
u�� + J13

�;�tu��
i���
s=l

s=0
= 0

�u�t
h�

J66
�;�t + �J66

�t 1
H

�
us� + J66

�t 1
H

u��;s
i���
s=l

s=0
= 0

�u�t
h
J55
�;�tus� + J55

�t 1
H

u��;s
i���
s=l

s=0
= 0

(45)
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If the displacement �eld in Eq. (29) is adopted, the boundary conditions are satis�ed for
simply supported beams, since:

us�;s (0) = us�;s (l) = 0
u�� (0) = u�� (l) = 0
u�� (0) = u�� ((l) = 0

(46)

�ust;s (0) = �ust;s (l) = 0
�u�t (0) = �u�t (l) = 0
�u�t (0) = �u�t ((l) = 0

(47)

and the following algebraic sti�ness matrix fundamental nucleus K�t is obtained:

K�t
ss = �2J11

�t 1
H
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(48)

Once the displacement approximation order has been �xed, the sti�ness matrix is straight-
forwardly obtained by summing the fundamental nucleus of Eqs. (48) for each term of the
displacement expansion in Eq. (18).
As far as the load vector fundamental nucleus Pt is concerned, its non-zero components
expression, according to Eq. (28), is given by:

P t
� = p�E�

t

P t
� = p�E�

t
(49)
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B FEM fundamental nuclei

The components of the sti�ness matrix fundamental nucleus K�tij
e 2 R3�3 of the curved beam

element are:
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(50)

where Ii(;s)j(;s) is the following integral along the beam element axis:

Ii(;s)j(;s) =
Z

le

Ni(;s)Nj(;s) ds (51)

Subscript ‘s’ preceded by comma represent derivation versus the axis coordinate. For a
�xed approximation order, the element sti�ness matrix has to be assembled according to the
summation indexes � , t, i and j.
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Tables

N Nu F�
0 1 F1 = 1
1 3 F2 = � F3 = �
2 6 F4 = �2 F5 = �� F6 = �2

3 10 F7 = �3 F8 = �2� F9 = ��2 F10 = �3

: : : : : : : : :
N (N+1)(N+2)

2 F (N2+N+2)
2

= �N F (N2+N+4)
2

= �N�1� : : : FN(N+3)
2

= ��N�1 F (N+1)(N+2)
2

= �N

Table 1: Taylor’s polynomials terms via Pascal’s triangle.
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109 � u�
Navier 8:0640
Ne B4 MITC4
60 8:0640 8:0640
40 8:0640 8:0640
20 8:0640 8:0640
10 8:0640 8:0640
8 8:0640 8:0640
6 8:0639 8:0640
4 8:0627 8:0640
2 7:9893 8:0619

Table 2: Transverse displacement u� [m] for a very thick simply supported circular beam via
TE2 model for di�erent number of elements.
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u�
Navier 10:1613
Ne B4 MITC4
60 10:1613 10:1613
40 10:1613 10:1613
20 10:1587 10:1613
10 10:0565 10:1613
8 9:9082 10:1613
6 9:5641 10:1613
4 8:7190 10:1613
2 5:8122 10:1587

Table 3: Transverse displacement u� [m] for a very slender simply supported circular beam
via TE2 model for di�erent number of elements.
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107 � us 107 � u�
PLANE183 3:0563 4:1860

FEM Navier FEM Navier
TE5, HL5 3:0563 3:0563 4:1860 4:1860
TE4, HL4 3:0563 3:0563 4:1860 4:1860
TE3, HL3 3:0563 3:0563 4:1859 4:1859
TE2, HL2 3:0490 3:0490 4:1762 4:1762

Table 4: Displacement components [m] for a thick simply supported circular beam.
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Radial force F� Axial force Fs Uniform pressure p�b
106 � ~u� 106 � ~us 105 � ~u�

PLANE183 0:2456 0:1488 0:1183
Tufekci and Arpaci [3] 0:2205a 0:1412a -

0:2488b 0:1537b -
Litewka and Rakowski [10] 0:2205a 0:1412a 0:1190a

0:2488b 0:1537b 0:1180b

TE5 0:2458 0:1493 0:1183
TE4 0:2457 0:1492 0:1183
TE3 0:2448 0:1478 0:1183
TE2 0:2410 0:1457 0:1185
a: Axial deformation only. b: Axial and shear deformation.

Table 5: Dimensionless displacement components for a thick clamped-clamped circular beam
via CUF TE-based 1D �nite elements.
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Figures

Figure 1: Curved beam structure and Frenet-Seret coordinate system.
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Figure 2: HLE set of expansion functions up to the order p = 7.
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Figure 3: Geometry of a thick arch and cross-section.
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Figure 4: Shear locking correction via MITC for four-nodes elements, simply supported cir-
cular beam.
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Figure 5: Axial stress �ss at s = l=2 for a thick simply supported circular beam obtained via
FEM and Navier solution for di�erent Taylor expansions.
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Figure 6: Radial stress ��� at s = l=2 for a thick simply supported circular beam obtained
via FEM and Navier solution for di�erent Taylor expansions.
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Figure 7: Shear stress �s� at s = 0 for a thick simply supported circular beam obtained via
FEM and Navier solution for di�erent Taylor expansions.
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Figure 8: Dimensionless axial stress ~�ss at s = l=2 for a thick cantilever circular beam obtained
by the proposed �nite elements and an elasticity solution.
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Figure 9: Dimensionless radial stress ~��� at s = l=2 for a thick cantilever circular beam
obtained by the proposed �nite elements and an elasticity solution.
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Figure 10: Dimensionless shear stress ~�s� at s = l=2 for a thick cantilever circular beam
obtained by the proposed �nite elements and an elasticity solution.
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Figure 12: Transverse displacement u� along the arc-length s for the balcony structure.
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Figure 13: Axial stress �ss at s = l=2 and � = h=2 for the balcony structure.
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Figure 14: Transverse shear stresses for the balcony structure.
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Figure 15: Three-dimensional distribution of the axial stress �ss.
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Figure 16: Three-dimensional distribution of the transverse shear stress �s�.
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Figure 17: Three-dimensional distribution of the transverse shear stress �s�.
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