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Abstract. For an autonomous robotic system, detecting, opening, and
navigating through doors remains a very challenging problem. It involves
several hard-to-solve sub-tasks such as recognizing the door frame and
the handle, discriminating between different type of doors and their sta-
tus, and opening and moving through the doorway. Previous works often
tackle single individual sub-problems, assuming that the robot is mov-
ing in a well-known static environments or it is already facing the door
handle. However, ignoring navigation issues, using specialized robots, or
restricting the analysis to specific types of doors or handles, reduce the
applicability of the proposed approach. In this paper, we present a uni-
fied framework for the door opening problem, by taking a navigation
scenario as a reference. We implement specific algorithms to solve each
sub-task and we describe the hierarchical automata which integrates the
control of the robot during the entire process. We build a publicly avail-
able data-set which consists in 780 images of doors and handles crawled
from Google Images. Using this data-set, we train a deep learning neu-
ral network, exploiting the Single Shot MultiBox Detector, to recognize
doors and handles. We implement error recovery mechanisms to add ro-
bustness and reliability to our robot, and to guarantee a high success
rate in every task. We carry-out experiments on a realistic scenario, the
“Help Me Carry” task of the RoboCup 2018, using a standard service
robot, the Toyota Human Support Robot. Our experiments demonstrate
that our framework can successfully detect, open, and navigate through
doors in a reliable way, with low error rates, and without adapting the
environment to the robot.

Keywords: Service Robotics · Door Opening · State Machines · Object
Detection · Autonomous System.

1 Introduction

Today the greatest challenge in robotics is to create robots which are able
to perform increasingly complex tasks autonomously and with little previous
knowledge about the environment around them. Former approaches concentrate
on static (unchanging) environments, with little or no interaction between the
robot and the environment. Latter frameworks have modeled non-static environ-
ments, and at a bare minimum, they must navigate in and interact with them
autonomously.
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The first attempts of human-robot cooperation focused on robots capable
of guiding people in human coexisting environments [4, 23, 13]. Minerva [32] was
installed in the Smithsonian’s National Museum of American History during two
weeks in 1998. The evolutionary Mobot Museum Robot Series [31] were perma-
nently installed robots which have operated in public spaces for many years.
However, influenced by the aging population problem, service robotics has fo-
cused on the design of robots to assist elderly people, or people with mobility
impairments, in their daily life at home [12]. Current approaches emphasize
the ability to autonomously navigate unknown environments (such as houses or
offices), to perform common tasks (such as picking up objects or delivering arti-
cles), and to interact with humans [9]. For example, the Defense Advanced Re-
search Projects Agency (DARPA) Robotics Challenge (DRC) program recently
conducted a series of prize-based competition events to develop and demonstrate
technology for disaster response [11, 17, 19]. The DRC Finals required robots to
perform eight tasks: Drive, Egress, Door, Valve, Wall, Surprise, Rubble, and
Stairs. Door opening has drawn attention not only because it is a very common
task but also because of its complexity. In the “Door” task of the DRC, the
robot was supposed to open a door and to travel through a 91.4 cm (36 inches)
doorway, without the human assistance. Very detailed specifications were used
to simplify the task. The doorway had no physical threshold, and the door could
be opened inward (away from the robot). The handle was a standard American
with Disabilities Act-compliant lever, which released the latch in either the up or
the down direction. The task was considered complete when all points of robot
ground contact were past the door threshold.

In general, a robust unified pipeline including navigation and door opening,
which does not rely on prior knowledge of the environment or on the characteris-
tics of the door, requires the following tasks: Detection of the door, estimation of
the type and status of the door, understanding of the opening direction, recogni-
tion and grasping of the handle, and navigation through the door. Many existing
approaches tackle this pipeline only partially and they concentrate on indepen-
dent tasks, often neglecting navigation issues. Many other techniques suppose
that the robot initially faces the door. Unfortunately, the position of the robot
with respect to the door can greatly influence the success of the handle detection
process, meaning that the robot needs to know the position of the door within
the environment to proceed correctly. Thus, these strategies are not suitable for
realistic scenarios in which the robot is moving and interacting with a dynami-
cally changing environment. Moreover, while an off-the-shelf system is desirable,
most of the existing approaches use custom-made robots which imply very high
costs and completely hinder reproducibility.

In this work, we present a unified framework to open doors while navigating
the environment. We assume the robot navigates an unmodified house, that
is, a house furnished with common furniture pieces and with non-automatic
doors. We consider robot navigation in a structured environment, admitting
semantic navigation. This allows studying the door opening problem from the
perspective of a realistic navigation problem. We suppose no prior knowledge of
the properties of the doors such that these attributes (i.e., door width, handle
position, and opening direction) are estimated at run-time. We also recognize
whether the door is closed or partially open, whether it has to be pushed or
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pulled, and we perform appropriate actions to open it. We present a detailed
hierarchical automata model of our framework. Using this model, we decompose
the overall task into sub-tasks, and we perform proper error recovery during all
main phases. We solve the implied sub-problems adopting a unified approach,
providing detailed explanations of the resulting automata. To automatic detect
doors and handles, we leverage a deep learning approach based on the Single
Shot MultiBox Detector (SSD). In order to train such a detector, we build and
make available the “MIL-door” data-set3, including 780 different images of doors
and handles. After the door and the handle have been detected, depth images are
used to evaluate the location of the handle with a higher precision. This strategy
allows our robot to recognize doors and handles even while navigating through
unknown environments, that is, without previously knowing their existence.

While the majority of the proposed solutions use specific architectures, such
as the Personal Robot 2 (PR2) robotic platform [21] or other custom-made
robots [17], we implemented our framework into a standard general purpose
robot, namely, the Toyota Human Support Robot (HSR) [33], To evaluate it,
we chose a complex task among the RoboCup 2018 [26] challenges, namely the
“Help Me Carry” task. In this task, the user instructs the robot to fetch an
object in a specific location in a different room, and he awaits for the robot to
return. We force the robot to follow different paths on the outward journey and
on its way back (with different doors along the two paths) and we dynamically
change the environment status during its trip. After that, we focus on the sub-
task of grasping an handle, forcing our HSR platform to deal with a large variety
of doors and handles. We present extensive experimentation showing low failure
rate and a very efficient recovery procedure, able to rectify errors in the majority
of the cases. Overall, our analysis show the high reproducibility and the broad
applicability of our approach.

It has to be noticed that this work is an extended version of the conference
paper [29]. While the conference paper focuses only on a few steps of the en-
tire work-flow, the current one describes the entire process with more details,
more accurate author’s considerations and hints on the work done. Abstract, in-
troduction, contributions, related works, and conclusions have been completely
rewritten and are now organized in a completely different way. The core sections
include new details and some extra descriptive pictures. An explicit section on
future works has also been added to indicate our current effort in the area.
References are now more complete and updated.

1.1 Contributions

The principle of the proposed framework is to provide a comprehensible solution
to the problem of door opening in a unified fashion. That is, while most related
works focus only in individual modules (e.g., door detection [7], door unlatch-
ing [25], we tackle the entire problem end to end: From the moment the robot
starts navigating the environment to the moment the robot traverses the door
and reaches its destination. The direct benefit of such a unified framework is its
high applicability to solve a real-world door-opening problem. Moreover, to the

3 The data set is publicly available at https://www.mi.t.u-tokyo.ac.jp/projects/mil-
door.
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best of our knowledge, current literature does not contain any method or eval-
uation for amalgamating all the required modules to solve the end-to-end door
opening problem. Building such a framework is challenging, given the complexity
of the system obtained when combining all modules. To successfully build the
proposed framework, we identified the following design requirements:

– Comprehensibility: The end-to-end door opening problem involves multiple
behaviors. A state-machine implementation should follow an understandable
relationship among the modules, and consider all possible cases in the task
pipeline.

– Robustness: The framework should be able to handle an error at any point
of the state machine execution.

– Reproducibility: Other researchers should be able to re-implement our frame-
work. For that, explicitly specifying the parameter values used and other im-
plementation details is essential, but not enough. Deploying the framework
on a standard platform is also preferable over a closed implementation.

In this research, in order to achieve comprehensibility, our implementation of the
framework follows a hierarchical structure of state machines. In order to achieve
robustness, we also define an error recovery module that can deal with errors at
any point of the door opening. The error recovery module behaves in a hierar-
chical fashion, to adapt to the state machine structure of our network. In order
to achieve reproducibility, we provide the necessary details as well as sharing
the datasets built for the training. In addition, we employed the Toyota HSR
standard robot platform to deploy our framework and conduct our experiments.

To sum up, our contributions are the following:

– We present a unified framework to open doors while our robot navigates
through an unmodified house. We suppose no prior knowledge of the property
of the doors or the handles, as these characteristics are estimated at run-
time. Our robot autonomously recognizes doors and handles, it performs
automatic door type detection, and it executes appropriate actions to open
and to traverse it.

– We describe our framework using a hierarchical automata model. The model
is adopted to decompose the overall task into sub-tasks and to perform
proper error recovery during all main phases. A deep learning neural network
is used to detect doors and handles in the unknown environment.

– We implement our framework into a standard general purpose robot, the
Toyota Human Support Robot. We analyze our robot’s behavior during the
“Help Me Carry” task in a realistic scenario, and we check it with several
type of doors and handle. Overall, we prove the high reproducibility and the
broad applicability of our approach.

1.2 Roadmap

The remainder of the paper is organized as follow. Section 2 reports details on
related and recent works in the same area. Section 3 describes our hardware
and software platforms, and our semantic navigation framework. Section 3.4
overviews our solution from the point of view of an automata model. It also
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presents the door opening problem, and it explains our solutions to solve all
sub-tasks, It finally introduces a realistic scenario, i.e., the “Help Me Carry”
task, which we take as a reference. before and after making contact with the
door. Section 5 describes the experiments we run to evaluate our framework.
Finally, Section 6 summarizes our conclusions, and it discusses future research
lines.

2 Related Works

In the field of computer vision, many research groups have proposed solutions to
the problem of navigating an environment and interacting with it. Other works
have focused more on recognizing door frameworks and handles, and moving
through the doorways. The challenging task of door opening while navigating
the environment has also received a lot of attention.

Rhee et at. [25] develop an indoor service robot equipped with a manipulator,
with 6 degree of freedom and a multi-fingered hand, specifically adapted to
door opening. As appropriately managing sensors and motions is essential for a
service robot system, the authors propose active sensing methodologies in order
to overcome uncertainty problems in real environments.

Kim et al. [6] employ cheap three-axis force sensors to successfully open
a door using a home service robot called Hombot, which is equipped with an
anthropomorphous manipulator arm.

Petrovskaya et al. [24] present a unified, real-time, algorithm that simulta-
neously models the position of the robot within the environment, as well as the
objects to be manipulated. The approach is motivated by the fact that the state
of an object significantly impacts the navigation task, thus the authors’ goal is
to simultaneously model a dynamic environment and to localize the robot within
it.

Aude et al. [2] propose a new algorithm to enable a robot to autonomously
find and cross doors within an unknown environment based on two main fea-
tures: The identification of long straight lines and the determination of the base-
board’s angle and position. They also restrict the robot’s knowledge about the
environment to the door’s width and they detect door frames through image
manipulation based on Gaussian and Sobel Filters and Hough Transforms.

Ott et al. [22] focus on the task of opening a door with no previous knowledge
of the door size or on the door opening trajectory. The whole application is
divided into three sub-tasks: The localization of the door handle, the turning
and opening of the door handle, the movement through the door hinge until the
door is sufficiently wide open. The exact localization of the door handle with
respect to the mobile platform is done by using an on-board laser range scanner
and a vision system.

Andreopoulos et al. [1] try to solve the door opening problem using a robotics
wheelchair. They used a computer vision approach based on Viola-Jones for door
and handle recognition. However, they only study handle detection and grasping,
without proposing a method for door opening.

Jain et al. [10] roughly estimate the handle position using a laser scan. After
that, the robot haptically searches for the door handle over the surface of the
door. After the handle unlatching, the door is pushed to be opened. They do
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not study the case of pulling door and they do not move the robot through the
door.

Rusu et al. [28] present a laser-based approach for door and handle identifi-
cation. The approach builds on a 3D perception pipeline to annotate doors and
their handles solely from sensed laser data, without any a priori model learning.
In particular, the authors segment the parts of interest using robust geometric
estimators and statistical methods applied on geometric and intensity distribu-
tion variations in the scan.

Klingbeil et al. [15] combine a visual algorithm with laser data to locate the
handle in the space. However, after handle unlatching, they do not tackle the
problem of door opening.

Similar considerations can be made for Chitta et al. [5], where a planning
algorithm is proposed for opening (pulling and pushing) doors, but the robot
needs to know in advance if the target door is a pulling or a pushing one.

Meeussen et al. [21] propose a framework that integrates autonomous naviga-
tion and door opening. For door detection, they use a point cloud representation,
while for handle recognition, they combine laser scans and a computer vision ap-
proach. Although they analyzed the entire navigation and door opening problem,
their approach requires the knowledge of several details on the environment, such
as the door width and the door type.

Kim et al. [14] detect doors using a context-based object recognition. The
authors use the robotic context, such as the robot’s viewpoint and the average
height of doorknobs, to enhance the efficiency of object recognition. Robotic
context is applied in the pre-processing step of object recognition to speed up
the process and to reduce the false-positive rate by restricting the search space
in the captured image. This approach, albeit applying for the first time both
robotic context and shape-based object recognition to door detection, has a
limited applicability due to the necessity to known the environment.

Gray et al. [8] present a framework that handles non-spring and spring-loaded
doors, in cluttered or confined work-spaces, planning the approach to the door,
pushing or pulling it open, and passing through. These task remain challenging
as spring-loaded doors require making and breaking contacts with the door and
preventing the door from closing while passing through. In order to plan a door-
opening procedure quickly and reliably, the author start the planning using a low-
dimensional, graph-based representation of the problem. However, the author do
not analyze the entire problem flow. Moreover, their opening strategy requires
to store additional information about the doors.

Shalaby et al. [30] build a navigation assisting tool for visually impaired peo-
ple. Their based this tool on an inexpensive digital camera, such as the one used
by tablets or mobile devices, able to gather information from the surrounding
environment. The author also present a technique for reliable and robust door
identification pairing visual information and door geometric description seen as
a 4-side polygons. They implement and test the algorithm using MATLAB and
its large image processing library. However, the approach requires a prior knowl-
edge of doors details (such as the height of the handle), limiting the method
applicability to only well-known scenarios.

Vertical edges have long been used by the robotics community as a first step
for door detection. Fernández et al. [7] concentrate on high-level features, like
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doors and corridors, which are considered as key elements in urban buildings to
achieve a localization with a high semantic or symbolic processing capabilities.
The authors evaluate the position of the surrounding doors by fusing the infor-
mation from a monocular web-cam and a 2D laser rangefinder. By considering a
real-world environment, the authors demonstrate that their technique may per-
form the door detection task very reliably with a computational cost that allows
the procedure to be used with light on-board computers and end-user cameras.

Lee et al. [18] develop a motion planning algorithm to enable humanoids to
remove an object that is blocking its path. To remove an object in its path, a
humanoid must be able to reach it. Unfortunately, stretching the arms (which
are shorter than the body and the legs) is not sufficient to reach an object
located at some distance away or on the ground. Therefore, the authors ensured
reachability by a combination of motions that include kneeling and orienting the
pelvis. Indeed, they focus on the optimization of the posture of a humanoid that
is reaching toward a point, which depends on the initial posture, the location of
the point, and the desired manipulability of the humanoid’s arms.

The Defense Advanced Research Projects Agency (DARPA) Robotics Chal-
lenge (DRC) [17] was motivated by the 2011 nuclear disaster at Fukushima, in
Japan. This event illuminated society’s vulnerability to natural and man-made
disasters and the inability of existing robot technology to help avert or amelio-
rate the damage. Given this framework, Johnson et al. [11] discus the challenges
they faced in transitioning from simulation to hardware. They also illustrate
the lessons learned both during the training period and the competition, ad-
dressing the value of reliable hardware and solid software practices. Given the
same framework, Jeongsoo et al. [19] run experiments on robots performing tasks
in a nuclear disaster situation. The authors concentrate on a humanoid robot
platform (i.e., the DRC-HUBO+) able to solve complex tasks under restricted
communication conditions, as the ones in a region filled with radiation. They pre-
sented a survey of their platform including the overall hardware configuration,
software architecture, various control methods for operating the robot, and the
vision system. They also provide details on the task-oriented vision algorithms
that were used to solve the given tasks.

Boston Dynamics [3] presented a solution based on the cooperation of two
SpotMini robots. However, given the robot structure (i.e., a four-legged robot),
it is hard to transfer the approach to common service robots. Moreover, their
approach is not public.

3 Configuration

3.1 Hardware Platform

As our development platform, we used the Toyota Human Support Robot (HSR).
The robot is aimed at helping elderly people and people with disabilities. Given
its design, HSR is optimal for operating in home settings without any modifica-
tion that facilitates its tasks (e.g., automatic doors). Toyota also provides some
primitives and some basic software routine for controlling the robot.

The HSR body is cylindrical with a set of wheels that makes the robot mov-
able in all directions. It is equipped with a folding arm capable of grabbing
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objects, manipulating handles and even grasping paper sheets from the floor.
Thanks to its microphone array and its speakers, HSR is able to receive voice
commands and communicate with the user. Several sensors allow the robot in-
teracting with the surrounding environment. The HSR head is equipped with
a stereo video camera and a depth camera. The robot base is equipped with
a collision detector. The Robot Operating System (ROS)4 is installed on the
robot, allowing communicating with the hardware layer. This way, writing low
level controlling algorithms is not necessary.

3.2 Software Architecture

Fig. 1 shows our software architecture. We designed it to implement the robot’s
functionality, and it is the backbone of the entire system. It allows managing
several basic tasks, the human-robot interaction, and easily adding new function-
ality on-demand (e.g., replacing voice commands with visual QR-code inputs).
This improves system versatility, but it is not essential for the paper’s goal.
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Fig. 1. Our Robot Software Architecture consists of three layers: A speech to text layer
for command processing, a state machine container layer that activates state machines
according to the task, and a text to speech layer for result conveying.

We defined three different layers:

– A command processing layer (speech-to-text). We use the HSR’s microphone
array to capture the user command, and then we internally process it.

– A container (state machine container). State machines are deployed to solve
different tasks.

– A user-friendly communication layer (text-to-speech). This is used to convey
the operation results to the user.

The first layer processes the user’s voice command, and it forwards the result
to the second layer. To interpret the voice command, and generate a command,
we used the Google Cloud Speech-to-Text API5. This tool allows developers
to convert speech into text exploiting the power of neural networks and using
the Google Cloud suite. Depending on the given command, the second layer
activates the proper state machine to execute the task required by the user. The
third layer receives the results of the state machines, which are interpreted and
communicated to the user in a user-friendly fashion. The state machine container

4 http://www.ros.org.
5 https://cloud.google.com/speech-to-text.
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is the element that provides flexibility to the entire architecture. It is possible, in
fact, to embed new state machines for executing tasks. We implement all state
machines using SMACH6.

3.3 Semantic Navigation Framework

For the path planning we rely on the ROS global and local path planners. These
modules receive the desired coordinates in the space, and they convert these
coordinates into commands to move the robot. Using the ROS navigation stack
built-in Hector-SLAM algorithm [16] we can create a map describing the envi-
ronment and the obstacles. This map allows the robot to receive coordinates
and reach specific locations by automatically choosing an optimal path free of
obstacles. However, semantic navigation requires a richer description of the en-
vironment to convert human understandable locations (e.g., the kitchen table)
into suitable coordinates for the robot. As a consequence, additional information
needs to be added to the map to improve the knowledge about the environment.
We propose a framework for creating and managing semantic maps. This frame-
work works as an interface layer, converting the location sent by the user to a
location understandable by the motion planning module. Using RVIZ7 we man-
ually associate coordinates in the path planner map to human understandable
locations. The association among coordinates and locations are stored as meta-
data into an xml, and a csv files.

We manage two different types of entities in the environment: Rooms and
locations. A room is a portion of the map identified by walls or boundaries. Loca-
tions are places inside rooms. Each room can contain multiple locations. A room
entity is identified by its name and it is represented by a list of corners, arranged
as a polygon, plus a room center. To manage polygons and coordinates we use the
python package matplotlib.path. A location, on the other hand, is represented by
a location name, its coordinates in the map and some attributes describing the
place (e.g., “isStorage” is a Boolean attribute stating if the location is a storage
area). The hierarchical relationship between rooms and locations are stored in
xml format while the room and location names with their respective coordinates
are stored in csv format.

Fig. 2 reports an example of the files we use to store the semantic informa-
tion (left and middle) and a graphical representation of a possible environment
map (on the right). The hierarchical relationship between rooms and locations
are stored in xml format while the room and location names with their respec-
tive coordinates are stored in csv format. In the graphical representation of a
possible environment map, R1–R5 designate rooms and D1–D4 indicate doors.
R3 and R5 are not separated by a wall. The position of elements in the map is
retrieved with respect a fixed reference system as represented in the figure. The
origin of the Cartesian system is the robot initial position, from where the entire
process starts. Even though the location of the doors is indicated, the robot
keeps checking for the door while approaching it, to calibrate its position and

6 SMACH is a ROS-independent Python library for building hierarchical state ma-
chines.

7 RVIZ is a tool for displaying sensor data using ROS.
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its state (open/closed, etc.). The semantic navigation framework is also used for
completing other tasks, such as localizing a person or an object.

<?xml version="1.0" encoding="utf8"?>

<rooms>

  <room name="R2">

    <location name="bed" 

               isPlacement="False"/>

    <location name="wardrobe" 

               isPlacement="True"/>

  </room>

</rooms>

Name   Type      X         Y         Th

R1,    corner,   0,        0,        0

R1,    corner,   0,        3,        0

R1,    corner,   6,        3,        0

R1,    corner,   6,        0,        0

R2,    bed,      7.2,      0.75,   1,5708

 

Fig. 2. The file on the left (in xml format) is an example of the rooms-to-locations
relationship. The file in the middle (in csv format) is an example of the associations
between rooms and locations and coordinates in the map. The map on the right, is the
one for the navigation environment, with rooms (R), doors (D), and locations (Bed).

To gain planning stage flexibility, we also developed a way-points based nav-
igation approach. In this way, to move the robot between two locations in the
map, we can force it to follow intermediate points not belonging to a specific or
optimal path. This is particularly useful to test motion features in specific parts
of the scenario, or to reach specific places during the trajectory (e.g., to force the
robot to pass through a specific door). The path between intermediate points
is computed by the ROS path planner. A dictionary data structure is used to
represent way-points paths: The keys are entity pairs (i.e., the source and the
destination in the map), and the values are the list of places reached along the
path. The way-points dictionary is stored as a json file. The way-points based
navigation is activated if the pair source-destination is present in the dictionary.
Fig. 3 is an example of dictionary to reach each room in Fig. 2, starting from
room R1 and using doors as way-points.

(R1, R2)

(R1, R3)

(R1, R4)

(R1, R5)

D1

D1

D1

D1

D2

D3

D3 D4

KEY VALUE

Fig. 3. Dictionary representing paths based on way-points.

3.4 The “Help Me Carry” context

As a realistic scenario for door opening, we based our study on the “Help Me
Carry” task included in Robocup 2018. To complete it, the robot has to memorize
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locations, move following user commands, avoid obstacles, and open doors. The
task description is as follows. The user went shopping, and needs the robot’s
help for bringing inside all the bags. To complete the task the robot will:

1. Follow the owner to the bags.
2. Memorize the bags location.
3. Understand the owner’s command to bring the bags to a specific different

location.
4. Bring all bags to that desired specified location.

Wait Cmd

Track
People

Save
Location

Pick Up
Bag

Drop Bag

Door
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Ask To
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Fig. 4. Automaton representing the “Help Me Carry” task. It shows the problem of
door opening in the context of a more complex task, which involves human interaction
and navigation.

The automaton designed to perform the task is shown in Fig. 4. Blue circles
indicate operational states, green ones are initial states, and yellow ones represent
ending states. The red color represents error recovery states. Black and red
dashed arrows indicate transitions between states and transitions between a state
and the error recovery state, respectively. The red lines are bi-directional because
after the error handling the control may be given back to the calling state. The
text on the arrows represent the event causing the transition. Each state is
implemented as an automaton, hence the overall architecture is a hierarchical
state machine. For the sake of readability, we did not used the often used “double
border” notation to identify nested state machines. This structure is quite flexible
and it is easy to maintain.

As an example of behavior, the robot is activated in the state named “Wait
Cmd” (wait for command). In this state the robot simply waits for commands
coming from the user. If the command for following the user is received, the state
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machine transit to the “Track People” state. Otherwise, if the command cannot
be correctly interpreted, the state machine transits to the “Error Recovery”
state. The general policy of the “Error Recovery” state is that, if the error is
rectified, the control is given back to the incoming state. If the error cannot be
rectified, the state returns the control to a higher level state machine or directly
interacts with the user asking for help.

4 Nesting Automata

Detecting, opening and navigating through doors is a complex problem that
involves many algorithms. In our approach, we decomposed the problem into
different stages. The flowchart in Fig. 5 (left-hand side) describes the algorithmic
approach we followed.
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Fig. 5. On the left, we report the operational flowchart for door opening. It includes
the entire flow from the moment if which the robot detects a door to the one in which
it crosses the door or it understands that the door is locked. On the right, we illustrate
our automaton for door opening. The names over the red dashed lines indicate the type
of transition between a state and the “Error Recovery” state.
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Each block involves different technologies and techniques. The top part repre-
sents the overall door/handle detection, and the door parameters estimation. The
door type (pulling or pushing) is checked in the central part, whereas the opening
phase is executed at the bottom part. In summary, the robot autonomously rec-
ognizes the door, it localizes the handle for grasping, and it decides the opening
action (i.e., pulling or pushing). To open the door, the robot needs to know two
parameters, i.e., the opening direction (pushing or pulling), and the door width.
Following many other approaches, these characteristics could be annotated in
advance in the environment description. However, we want to achieve a flexi-
ble and completely autonomous interaction with the door. Therefore, our robot
computes the door width and the opening direction at run-time. The automa-
ton implementing our door opening approach is shown on the right-hand side of
Fig. 5. Notice that this state machine is nested in the automaton designed for
the overall “Help Me Carry” task and previously described in Fig. 4. The door
opening state machine is launched when the robot detects a closed door. In the
first state the current location is memorized. The following states complete the
entire process described in the flowchart. The automaton has 3 ending states:

– “Door Opened”: Reached when the door is open.
– “Door Locked”: Reached if the door is locked.
– “Error Not Recovered”: Reached if an error that prevents door opening oc-

curs.

If the “Door Locked” or the “Error Not Recovered” states are reached, the door
can not be opened. This situation is managed by the state machine working at
a higher hierarchical level (i.e., the one in Fig. 4). Our error recovery approach
plays an essential role to reach robustness and flexibility against unexpected
situations. First of all, the error is handled locally within the state in which
occurs. For the sake of usability, the robot should not rely on human help for
solving minor issues. Thus, in our framework, each state stores enough knowledge
of the situation to handle minor problems. Examples of minor errors are: A
wrong handle recognition in the 3D space, a grasping failure, a wrong location
spelling from the user, etc. If local error correction is not possible, the control
flow jumps to the previous (higher) hierarchical level, in which the error recovery
state tries more drastic error rectification procedures. Only after the system has
attempted all error recovery procedures, the robot will ask for help from the
human operator.

4.1 Door and Handle Detection

For the door and handle detection we use a deep learning approach. Several deep
neural networks have been proposed for object detection, and more specifically
for door and handle recognition. Among state-of-the-art networks, we decided to
exploit the Single Shot MultiBox Detector (SSD) neural network [20]. Authors
proved that this network outperforms other well know networks, like Yolo and
Faster R-CNN in terms of speed and accuracy. Moreover, since SSD performs
better on embedded systems, the network can work correctly at run-time, and
it guarantees a fast interaction with the environment. Compared to other single
shot methods, SSD provides a much better accuracy, even with a smaller input



14 F. Savarese et al.

image size. The input to SSD is a monocular color image, and the output is a
list of bounding boxes containing the detected objects in the image, namely, the
top left angle of each detected object plus its height and width (object detection
part). Each detected object has an associated label indicating which class the
object belongs to (object recognition part).

In our version of SSD, the object recognition part is based on the VGG16
model pre-trained on the ILSVRC CLS-LOC data-set [27]. Then, we trained the
object detection part, and fine-tuned the object recognition part, by constructing
our own data-set, the “MIL-door” data-set. The “MIL-door” data-set consists
of images of “doors” and “handles” crawled from Google Images. After filtering
the erroneous results, MIL-door contains 462 images of doors and 318 images
of handles, for a total of 780 images. The height and width of the images range
from 400 to 1200 pixels. For each image, we manually annotated bounding boxes
delimiting the area corresponding to doors and handles. Annotations are not
inserted on top of the images, but stored in a separate text file. Fig. 6 shows
three example images extracted from our annotated data-set.

Fig. 6. Sample images from the “MIL-door” data-set.

When training our SSD network with the MIL-door data-set, we performed
data augmentation on the training data, namely, 90 degrees rotations and hor-
izontal flips. This increases the size of our data-set eight times, for a total of
6240 images. Considering that the object detection part of the original SSD
was trained with 9963 images for 20 object classes, we believe our data size is
reasonable for our 2 object class detection problem.

As training parameters, we used the following configuration (please refer
to [20] for more details on the meaning of these parameters): Batch size 32,
maximum iterations 120, 000, learning rate 0.001 (the original learning rate is
decayed by 10 at iterations 80, 000, 100, 000 and 120, 000), weight decay 0.0005,
γ 0.1, momentum 0.9.

We used a low learning rate to assure convergence during training and we
selected it empirically. We evaluated our door and handle detection with our
MIL-door data-set using a 10-fold cross-validation setting. We consider that the
door (or handle) has been correctly detected if the intersection over union (IoU)
between the estimated bounding box and the annotation is greater than 85%.
The detection accuracy in this controlled setting is of 94.7% for doors, and 86.3%
for handles. However, during the evaluation in a real setting, the IoU recognition
accuracy was slightly lower than using the data-set images. This was mainly due
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to three factors: The large diversity of doors that exist in the real world, the
small size of some handles, and sporadic image quality loss due to poor lighting
conditions.

Since there are cases in which the door is detected but the handle is not, we
designed an error recovery algorithm to add robustness. When a door is detected
but the handle is not, the robot moves slightly forward, backwards, and laterally
to change the perspective until the recognition succeeds. If the handle is not
detected after a certain number of trials (5 in our case), the error is passed to
the above error recovery state in the state machine hierarchy.

4.2 Door Width Computation

The door width is an important parameter to correctly estimate the robot’s
trajectory. To compute it, we combine the door size in the image, taken from
the robot camera, and the door to robot distance computed using the depth
camera. Assuming that the object width on the image is widthimage, and the
detected distance is d, we can obtain the relative size in the real world using the
following formula:

widthreal [pixel] = widthimage · d. (1)

However, Equation 1 measures the door size using the pixels as measurement
unit. To transform the computed value from pixel into centimeters, we empiri-
cally calibrated our camera and we computed a conversion factor conversioncoeff .
The door width, expressed in length units (centimeters), is thus given by:

widthreal [cm] = d · conversioncoeff · widthimage. (2)

We measured the quality of our method by comparing our estimated widths
against ground truth values, on four different types of doors. These doors differ
in terms of color, surface material, and shape. We also varied the distance of the
robot from the door from 1 m to 3 m, measures that are somehow reasonable in
a home environment. We used the root mean square error to evaluate the error.
Our results show that we reached an average error of ± 6 cm. As observed in
our experiments, this value does not affect the door opening noticeably.

4.3 Opening Direction

To open the door, the robot should move backward from left to right if the
hinges are on the right, and vice-versa. Anyway recognizing the hinge position is
not robust enough, since hinges are often undefined or barely visible. However,
our handle and door detector provides the handle location with respect to the
door, and thus, inferring the opening direction is straightforward. The opening
direction is used to compute the opening trajectory for both pulling and pushing
doors (see Sections 4.7 and 4.8, respectively).

4.4 Closed Door

The door detected in the door recognition phase may be already open. To check
this, we use the HSR’s RGB-D sensor, the Xtion PRO LIVE. First, we obtain
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the depth image corresponding to the frame where the door has been located.
Then, we take two horizontal rows (e.g., one in the lower half and one in the
upper). Finally, we compute the Sobel derivative along the horizontal direction
of these lines, and we check if it contains values above a certain threshold t.
This allows our method to detect if there are edges where the depth suddenly
increases, which translates into the door being open.

We experimentally established that the door can be considered open if the
log10 of the derivatives exceed a threshold t = 3.5.

4.5 Handle Grasping and Unlatching

Once the door opening direction has been established, and the distance from
the door d evaluated, the robot can approach the handle enough to get a more
precise measure of its location with the depth sensor. If some error occurs while
evaluating the handle position, we retrieve a new depth measurement from the
sensor to get the right location. The robot, with its grip open, gets in front of
the door, and when it reaches the handle location, the grip closes and the robot
grasps the handle. To unlatch the handle, we combine the robot hand rotation
with a downward movement. We rotate the hand 20 degrees, and we move it
downwards 10 cm. We empirically found that HSR does not have a strong grip
and a rotation plus a downward movement can improve the pressure that the
hand can apply to the handle. This allows a robust unlatching even if the handle
is not grasped perfectly at its end, or the surface of the handle is slippery (e.g.,
metallic).

4.6 Door Type Checking

Before computing the opening trajectory the robot has to understand the door
type, i.e., whether the door is a pulling or a pushing door. To discriminate
between the two categories, after the grasping and the unlatching, the robot
tries to move backwards and forward to test the opening type. First, it attempts
to pull the door back 5 cm while monitoring the force acting on the wrist torque
sensor. The measure of 5 cm has been heuristically selected as a good compromise
among several requirements. If during this movement, the torque on the wrist
sensor grows continuously, the door cannot be pulled. In this case, the HSR
attempts to push the door by moving forward and it checks the force acting on
the wrist sensor as before. In case the torque force does not increase in one of
these two attempts, the robots start the opening phase (see Sections 4.7 and 4.8).
On the other hand, if the door cannot be pulled or pushed, the robot assumes
that the door is locked. The “Error Recovery” state handles this case by calling
for human help.

We also considered other approaches for testing the door type. One of those
involves monitoring movement of the robot’s base while performing the test. This
approach did not succeed mainly because, to measure a significant movement of
the base, we have to move the robot more than 5 cm. This in turn can damage
both the robot and the door (e.g., by pulling a pushing door too hard). Another
approach implies the classification of the door type using a computer vision
approach. However, this solution depends largely on the size of the training data-
set, which should contain a wide variety of doors and annotations indicating their
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type. Unfortunately, many available images are not annotated, and manually
create a large data-set is very time consuming.

Fig. 7. A visual example of our door opening approach. The HSR first grasps the handle
and then it unlatches it. After that, HSR tries to move back for 5 cm to pull the door. If
the door cannot be pulled, the robot moves the handle back to its neutral position, and
the door is opened by moving backwards and drawing an angle with respect to the door
closing position. During the entire process the door-to-robot distance is maintained
constant.

Notice that all checks performed by our approach are done to assure robust-
ness and to minimize the number of errors. We emphasize the importance of
robustness in such a complicated scenario, since an error in door type recogni-
tion could lead to hard-to-manage situations or risks for the robot or the handle
and the door integrity.

4.7 Door Pulling

Fig. 7 shows the entire flow for opening a pulling door, from the moment the
robot must grasp the handle to the one in which the door is open. Fig. 8 shows
the corresponding code flow.

When the robot stands in front of the door, and before starting the door
pulling phase, the application stores the current robot position. These coordi-
nates will be used when the door is open, as the robot will move back to the
stored position to pass through the door. The first three images, from left to
right, are part of the door type understanding process described in Section 4.6.
In the latter phase, the robots moves backward 5 cm to check whether the door
is a pulling one. In the affirmative case, the robot moves the handle back to its
neutral position. A visual representation is given in the forth picture. This ac-
tion emulates typical human behavior, and it effectively reduces the load on the
robot wrist that does not need to hold the handle down. At this point, the robot
computes the pulling trajectory as shown in the fifth image. The final trajectory
is an arc-shaped sequence of map coordinates that form an angle of 80 degrees
with respect to the door hinges. In this way, the door is opened wide enough for
the robot to pass through it.

Because the HSR’s arm has less than six degrees-of-freedom (DoF), we have
to move the base and the arm together, keeping the robot hand in a fixed po-
sition. As a consequence, the door-to-robot distance remains constant. In this
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Fig. 8. Schematic code flow for opening a pulling door (left), and opening a pushing
door (right). The code flows are encoded as SMACH state machines, and they are fully
integrated in our software framework.

way, we do not need to continuously check for collision between the robot and
the door. This situation is shown in Fig. 7(e). Once the robot completes the tra-
jectory, it releases the handle, and it moves back in front of the door to continue
the navigation toward the final goal. The robot position saved in the first state
is used as a target position to cross the door.

4.8 Door Pushing

Following the flowchart of Fig. 5, if the robot detects that the door cannot be
pulled, it checks whether it can be pushed, and, in this latter case, the pushing
process starts. The pushing door action flow is detailed on the left-hand side
image of Fig. 8. As in the pulling door case, our robot attempts to push the door
to check the opening type. After the handle releasing phase, the robot moves
in front of the door at a fixed distance of 50 cm. Once this position is reached,
the robot first extends its arm to reach the door, which is already open a few
centimeters after pushing it to check its type. As the robot is going to move
forward, reaching the door is not strictly necessary. At the same time, we also
monitor the wrist sensor to assure that no unexpected collision occurs. During
the pushing phase, the HSR moves forward, and when the phase finishes, the
robot is on the other side of the door. The last action executed by the robot
before restarting the normal navigation, is to retract its arm into its original
and safer position.

To succeed in the pushing action, the handle position is an important pa-
rameter. When unlatching the handle, the robot faces it, but during the pushing
action, some collisions may occur. Since HSR is a left-handed robot, the most
unfavorable scenario is when the handle is on the right side. A schematic top-
view of this situation is given in Fig. 9. Since HSR is a left-handed robot, the
most unfavorable scenario is when the handle is on the right side of the door.

While pushing the door, a collision check is performed in the robot base to
prevent HSR from hitting the door frame. If a potential collision situation is
detected, the robot is moved slightly to the left with respect to the handle. If
a collision is detected, the “Error Recovery” state stops the robot and moves
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it back to the beginning of the pushing stage. These strategies were validated
empirically, and allowed for a safe and robust navigation through doors, as de-
scribed in the next section.

Fig. 9. The figure shows two ways of pushing a door and passing through it, depending
on the handle position (left or right-hand side). Since HSR is a left-handed robot, the
most unfavorable scenario is when the handle is on the right side of the door. In this
case the HSR may suffer a collision. To avoid hitting the door frame, the sensor on
the robot base is activated. If HSR detects a possible collision, its position is slightly
shifted to the left.

5 Experimental analysis

We evaluated our unified framework by means of two set of experiments. These
experiments were designed to verify two main aspects: 1) Our framework’s ro-
bustness in a real navigation scenario, and 2) The quality of the entire door
opening process with different doors, handles, materials, etc.

First, we evaluated the door opening process in a realistic navigation scenario
by using a simplified version of the “Help Me Carry” task previously described.
In this task, the user instructs the robot to fetch an object in a specific location
in a different room, and he awaits for the robot to return. We also imposed way-
points during navigation, i.e., we force the robot to follow a different path on
the way back. To run this scenario, we arranged a house environment similar to
the one in Fig. 2. Initially, the HSR robot is in a location within room R1. The
robot is supposed to reach room R4 by passing through doors D1, D2, and D4.
Then, it should go back to the initial position by passing through doors D3 and
D1. The doors in this task have different characteristics. When moving from R1
to R2, door D1 is a pushing door with the handle on the left. Door D2 is open.
when moving from R5 to R4, and door D4 is a pulling door with its handle on
the left. On the way back, when moving from R4 to R2, door D3 is a pulling
door with its handle on the left. Finally, when the robot moves back from R2 to
R1, D1 is still open. The robot detected the doors during navigation, following
a route determined by the ROS path planner. Since the experiment does not
involve any obstacles, we did not employed the way-points navigation approach.
Notice that the door type and handle position affects the door opening process
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in terms of the selected trajectories and the final success rate. In order to show
the robustness of our framework, the door and handle attributes are unknown
by the robot.

We commanded the robot to execute the task 50 times. In all cases, the
robot reached R4 without navigation errors, and it successfully detected and
discriminated between closed and opened doors. The accuracy of the door and
the handle detection in the real scenario does not vary significantly with re-
spect to the detection accuracy reported for our MIL-door data-set. Whenever
a handle was not initially recognized, the error recovery procedure forced the
robot to move slightly forward, backwards, and laterally to change the perspec-
tive until the recognition was successful. This procedure provided a recognition
success rate up to 95%. In the remaining 5%, the error persisted so the higher
hierarchical automata level dealt with it. Moreover, even if initially the location
of the detected handle was not aligned perfectly, the location was refined when
approaching the handle and using depth images. Regarding the handle grasping,
every time the HSR could not hold the grip on a handle, the error recovery pro-
cedure reactivated the detection phase and the “door opening” phase restarted
from the beginning.

In light of these results, we designed a second experiment with an emphasis
on the handle grasping sub-task. In this experiment, the HSR had to deal with
a variety of doors and handles, which differ in terms of door type (pushing or
pulling), handle position (left or right), and material (slippery or non-slippery).
We commanded the robot to move from room R1 to room R2 while modifying
the configuration of D1. The robot starts in front of the door ready to grasp the
handle, and it stops after the door is open (passing through is not required). As
above, the robot does not know the door and handle attributes. We conducted
20 runs for each door and handle configuration. Notice that the door type in-
fluences the robot trajectory, whereas the handle material influences the quality
of the handle grasp and its holding process. Moreover, some metallic handles
may cause noise in the depth image due to reflections. We separate the door
opening results for slippery handles (metallic), and non-slippery handles (wood
or plastic-like material), and their location with respect to the door (i.e., left or
right). Similarly, we also consider spring loaded doors, that is, doors that close
by themselves after they are open. We do not evaluate opening pushing spring
loaded doors since, once the robot arm releases the handle after the unlatching,
the door closes again before the HSR has the chance to push it.

Table 1 summarizes the results for this second experiment. The handle local-
ization using depth images proved to be robust with different handle shapes and
materials. After the handle grasping, our approach recognized in 100% of the
cases the door type, i.e., whether the HSR had to pull or push the door. As the
HSR grip did not have enough strength to hold slippery handles (in particular,
those in spring loaded doors) the door opening did not always succeed. However,
when an error arose, the robot was able to retry the task by itself by following
the error recovery procedure previously described. The robot asked for human
help only in a total of 3 occasions. This results are very promising for a practical
application, as the recovery procedure is able to rectify errors in most cases.
However, for the sake of fairness, Table 1 considers runs as failed whenever an
error arose, even if the robot recovered from the error autonomously. Overall,
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we reached a 98% of success rate for non-slippery handles, and 94% for slip-
pery metal-like handles. Notice that these results are influenced not only by the
robot’s grasping ability, but also by the handle detection under different types
of light reflection on the handle surface. Regarding pulling spring loaded doors,
holding the handle when opening was quite challenging for the robot, specially
in the case of slippery handles. This is due to the limited strength of the HSR’s
grip. Moreover, handles on the right side of pushing doors are more challenging
due to the reasons explained in Section 4.8.

Table 1. Results of our door opening approach. The table presents the number of
successes out of 20 opening attempts, with 4 different handle types. T1: Slippery handle
on the door left side. T2: Slippery handle on the door right side. T3: Non-slippery handle
on the door left side. T4: Non-slippery handle on the door right side.

Action Type
Handle Type
T1 T2 T3 T4

Pulling non-spring loaded door 16 18 18 19
Pulling spring loaded door 16 18 19 19
Pushing non-spring loaded door 20 18 20 17

5.1 Final Considerations

As seen in the evaluation, the door opening task takes advantage of the proposed
framework in multiple ways:

– The benefit of our unified structure: The proposed framework encompasses
the entire task of opening a door, from the start of the navigation to the goal
after the door is traversed. It provides a comprehensive view of the task and
the connection between subtasks, and the modules that implements them.

– The benefit of our door detection module: Our deep learning-based door
detection module trained with our MIL door dataset allows recognizing a
more variety of doors than rule-based methods. Moreover, it is possible to
fine-tune it for adaptation to other environments if necessary.

– The benefit of the error recovery module: Our error recovery procedure is
adapted to the layered structure of our state machine implementation. This
allows recovering from multiple errors in different parts of the framework,
making it possible to return to an upper layer if there is a problem in the
current subtask that cannot be overcome.

– The benefit of using a standard platform: To solve the door opening scenario,
we leverage the functionalities (e.g., sensors, navigation, etc.) of Toyotas
HSR, so our proposed solution can be easily reproduced for researchers using
the same or a similar platform. There is also a community for HSR8 that
supports developers and provides useful software.

8 https://newsroom.toyota.co.jp/jp/detail/8709536
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Most importantly, by evaluating the framework in an end-to-end manner, we
came across several errors and situations that cannot be observed when evaluat-
ing individual parts of the problem. For example, readjusting the door position
while approaching the door, collisions during door traversing, etc. Therefore,
this work is a valuable contribution to the community of software developers for
robots, in particular, those participating in robot competitions (e.g., Robocup),
who value practical application over theoretical discussion.

6 Conclusions

In this paper we present a unified robotic framework for approaching, opening,
and navigating through doors. The paper covers the analysis, design, and syn-
thesis of such a system and our experiments on a real scenario. To the best of our
knowledge, this is one of the first attempts to solve the door opening problem
in a navigation scenario.

Our unified framework integrates an automata model and its state machine
hierarchy. The state machine includes techniques for error recovery, enabling
a robust door opening framework. We propose a deep learning-based method
for door and handle detection. To appropriately train our neural network, we
create, and we made publicly available, a large door and handle image data-
set. To facilitate the reproducibility of our work, we implement our framework
on a standard platform, i.e., the Toyota Human Support Robot (HSR). Handle
grasping, door type checking, door unlatching and opening have been performed
with techniques optimized for our HSR framework, but they are extrapolable to
similar off-the-shelf platforms with moderate effort.

We evaluate our application in a challenging realistic scenario, named the
“Help Me Carry” task within the RoboCup 2018 challenge. To complete its
task, the robot was required to memorize locations, move around in an unknown
environment, follow user commands, avoid obstacles, and open doors. We tested
our platform against different types of doors, different types of handles, and both
door opening directions (inward and outward). The robot successfully identifies
the door state, distinguishing between totally open, widely open, slightly open
and closed doors. The robot is also able to judge if the doorway is suitable
for crossing and it is capable to drive itself across the door. Our results show
the robustness and flexibility of our approach and its high reproducibility on
standard service robotic platforms.

7 Future Works

Among the possible extensions of this work, we report the following.
Our current framework relies on all HSR features, such as the depth camera,

the base sensor, and the wrist torque sensor. Currently, a robot missing any
of these devices may not be able to perform its duty. We are working on some
specific steps of the overall framework to make the application even more flexible
in terms of hardware requirements.

As approaches that adapt well to changing environments are increasingly
important, we plan to improve the robustness and the flexibility of our applica-
tion against greater environment modifications, such as recognizing and opening
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a wider variety of doors and handles. Within this framework, we also have to
improve our robot’s ability to recognize and adapt its behavior to moving ob-
stacles. A recognition algorithm with the ability to identify removable obstacles
and determine the positions of grasping points is required to develop a fully
autonomous system. Crowded environments are also a potential target, as occa-
sional passersby cause small unmodeled effects which become more frequent in
highly crowded or cluttered environments.
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