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The Frankel property for self-shrinkers from
the viewpoint of elliptic PDEs

By Debora Impera at Torino, Stefano Pigola at Milano and Michele Rimoldi at Torino

Abstract. We show that two properly embedded self-shrinkers in Euclidean space that
are sufficiently separated at infinity must intersect at a finite point. The proof is based on a local-
ized version of the Reilly formula applied to a suitable f -harmonic function with controlled
gradient. In the immersed case, a new direct proof of the generalized half-space property is also
presented.

1. Basic notation and purpose of the paper

1.1. Weighted manifolds. By a weighted manifold (also called manifold with density,
or smooth metric measure space) we mean a triad

Mf D .M; g; dvf /;

where .M; g/ is an m-dimensional Riemannian manifold with volume element dv,

dvf D e
�f dv

and f WM ! R is a smooth weight function. The (obviously intrinsic) geometric analysis of
Mf is related to bounds on its Bakry–Émery Ricci curvature

Ricf WD RicCHess.f /

combined with the analysis of its weighted Laplacian

�f u D divf ru D �u � g.rf;ru/;

where the weighted divergence is the operator

divf X D e
f div.e�fX/:
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An important example of weighted manifold is represented by the Gaussian space

RmC1
f

D .RmC1; h � ; �i; e�
1
2
jxj2dx/:

Since the weight function is f .x/ D 1
2
jxj2, we have that the Bakry–Émery Ricci curvature is

RicRmC1

f � 1;

hence RmC1
f

is called a shrinking Ricci soliton. Moreover, the weighted Laplacian is the
Ornstein–Uhlenbeck operator

�f u D �u � hru; xi:

1.2. Self shrinkers of the MCF. Given an isometrically immersed hypersurface in the
weighted manifold MmC1

f
x W †m !MmC1

f
;

we introduce the corresponding weighted mean curvature vector field of the immersion as

Hf WD HC .rf /?;

where we are using the convention H D tr† A, A being the vector-valued second fundamental
form. Here . � /? denotes the orthogonal projection on the normal bundle of †. We say that
x W †m !MmC1

f
is f -minimal if Hf � 0.

A self-shrinker of the mean curvature flow (MCF) in the Euclidean space RmC1 is an
f -minimal hypersurface of the Gaussian space RmC1

f
. This is completely equivalent to require

that the mean curvature vector field satisfies the equation

x? D �H:

1.3. Intrinsic vs. extrinsic weighted structure. Clearly, the self-shrinker †m inherits
the weighted structure of the ambient space. Thus, intrinsically, we can consider the manifold
with density

†m
Qf
D .†m; g D x�h � ; � i; dv Qf /;

where Qf D f ı x. It is customary to drop the “tilde” in the weight function and to write †m
f

.
An important relation between the (intrinsic) Bakry–Émery Ricci tensor of †m

f
and the extrin-

sic geometry of the f -minimal hypersurface †m comes from the Gauss equations. Indeed, it
was observed in [22] that

Ric†f � 1 � jAj
2:

As in the usual minimal surface theory, another important link between the intrinsic weighted
geometry and the extrinsic properties of the self-shrinker comes from the f -Laplacian of the
immersion. We have the following identity (see e.g. [4])

(1.1) �†f x D �x

and its direct consequence
�†f jxj

2
D 2.m � jxj2/:

1.4. Properly immersed self-shrinkers. In this paper, we are mainly interested in
properly immersed self-shrinkers. A remarkable result by Q. Ding and Y. L. Xin [5] states that
a properly immersed self-shrinker x W †m ! RmC1

f
has extrinsic Euclidean volume growth

(1.2) j†m \ BmC1R j D O.Rm/
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and, hence, finite weighted volume

volf .†
m/ < C1:

This latter condition implies that the complete weighted manifold †m
f

is f -parabolic, i.e., for
any u 2 C 0.†/ \W 1;2

loc .†/, 8<:�
†
f u � 0;

sup
†

u < C1;
H) u � const:

It is well known that parabolicity is a kind of compactness from several viewpoints, includ-
ing global Stokes theorems and maximum principles, as it is already visible from the above
definition.

1.5. The Frankel property. In many instances, properly immersed self-shrinkers
behave like compact minimal hypersurfaces of the standard sphere. In this latter setting, it
is well known that any two closed minimal immersed hypersurfaces must intersect. Actually,
the ambient space can be generalized to a compact Riemannian manifold with strictly positive
Ricci curvature. This is called the Frankel property after the celebrated paper by T. Frankel [6].
The original proof gives an estimate of the (positive) distance between non-intersecting com-
pact hypersurfaces in terms of their mean curvatures and it is based on the second variation of
length along a geodesic realizing the distance. New arguments and further extensions of the
Frankel property to other geometric contexts are now available. Most notably, and relevantly
for the development of the present paper, we mention [18] by P. Petersen and F. Wilhelm, where
the maximum principle for the hypersurface-distance function is used, and [7] by A. Fraser and
M. M.-C. Li, where the Frankel property is investigated in the setting of compact embedded free
boundary minimal surfaces in a manifold with non-negative Ricci curvature. We shall comment
on these works later on, in Section 3. It is natural to ask:

Problem. Let xj W †mj ! RmC1
f

for j D 1; 2 be complete, properly immersed self-
shrinkers. To what extent is it true that x1.†m1 / \ x2.†

m
2 / 6D ;?

Starting from the work by G. Wei and W. Wylie, [26], where the case of compact hyper-
surfaces is considered (actually what is really needed is that the positive distance between the
hypersurfaces is realized at finite points), few partial positive answers to this question appeared
in the literature. They are mostly related to (generalized) half-space properties of the shrinkers;
see Section 2.

During the summer school “Geometric Analysis on Riemannian and Singular Metric
Measure Spaces”, held in Como in July 2016, http://arms.lakecomoschool.org, Profes-
sor Tom Ilmanen suggested (and kindly outlined the main steps of the parabolic proof) that
the Frankel property can be proved in the general framework of the motion by level-sets in
Euclidean space.

1.6. Purpose of the paper. In the present paper, by taking the purely elliptic viewpoint,
we give the first general result in the literature about the validity of the (smooth) properly
embedded Frankel property for self-shrinkers of the MCF. To this end, we shall collect results

http://arms.lakecomoschool.org
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and techniques that, we feel, will be interesting also in other settings. The main contributions
are the following:

� With a new direct argument, based on the potential theory of weighted manifolds, we
recover the main result of [1], namely we show that a properly immersed self-shrinker
cannot be located neither inside nor outside a self-shrinker cylinder; see Theorem A in
Section 2.

� We apply a localized version of the Reilly formula to a suitable f -harmonic function
with controlled gradient in order to show that two properly embedded self-shrinkers that
are sufficiently separated at infinity must intersect at a finite point; see Theorem B and
Theorem C in Section 3.

2. Immersed shrinkers: Half-space-type properties

After the celebrated paper by D. Hoffman and W. Meeks, [10], one says that the (weak)
half-space property holds for a certain family F of immersed hypersurfaces if any † 2 F

cannot be confined in certain half-spaces unless it is a totally geodesic hyperplane.
The first half-space property for Euclidean properly immersed self-shrinkers of the MCF

was observed in [20, Theorem 3].

Theorem. Let x W †m ! RmC1 be a properly immersed self-shrinker. If x.†/ is con-
tained in a closed half-space of RmC1 determined by a hyperplane … passing through the
origin, then x.†/ D ….

In the same paper, the authors started the investigation on the possible regions where
a properly immersed self-shrinker (with various geometric assumptions) can be located. The
proof of the half-space property proposed in [20] is a simple application of the f -parabolicity
of the self-shrinkers. Soon after, P. Cavalcante and J. Espinar, [1, Theorem 1.1], obtained the
same result using the touching principle, following closely the original proof by Hoffman and
Meeks. The role of the catenoid is now played by a rotational self-shrinker discovered by
S. Kleene and N. Møller [14]. With a different analytic technique, based on a perturbation
argument that exploits the instability of the Jacobi operator associated to a cylinder, they were
also able to replace the half-space by the interior or the exterior region of a cylindrical self-
shrinker; [1, Theorem 1.2 and Theorem 1.3]

In the next result we use potential theoretic arguments to recover [1, Theorem 1.2 and
Theorem 1.3] in a very succinct way.

Theorem A. Let x W †m ! RmC1 be a complete properly immersed self-shrinker. If
x.†/ is confined inside either one of the connected regions of RmC1 determined by the self-
shrinker cylinder Skp

k
�Rm�k � RmC1, 1 � k � m � 1, then x.†/ D Skp

k
�Rm�k .

Proof. Letting ¹eAºmC1AD1 be an orthonormal frame of RmC1, we will denote the coordi-
nate functions of x by xA WD hx; eAi and by N the chosen (local) Gauss map of the immersion.
Fix 1 � k � m � 1 and consider a self-shrinker cylinder

Ckp
k
WD Skp

k
�Rm�k � RmC1:
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Let u W †! R be the smooth function defined by

u D

kC1X
AD1

x2A:

Clearly, for every p 2 †,

u.p/ D
�
distRmC1.x.p/;C

kp
k
/C
p
k
�2
;

where distRmC1.x.p/;C
kp
k
/ denotes the signed distance. Here, we are using the convention

that such a distance is negative inside Ckp
k

. Note that

1

4
jr
†uj2 D u �

 
kC1X
AD1

xAheA;N i

!2
(2.1)

D u � hx;N i2

D u

�
1 �

�
x

jxj
;N

�2�
;

where we are using the notation

x D

kC1X
AD1

xAeA and N D

kC1X
AD1

heA;N ieA:

By equation (1.1), we have that

1

2
�†f x

2
A D xA�

†
f xA C jr

†xAj
2
D �x2A C je

T
A j
2:

Hence,

1

2
�†f u D

kC1X
AD1

jeTA j
2
� u(2.2)

D k C 1 �

kC1X
AD1

heA;N i
2
� u

D k C 1 � jN j2 � u:

A direct consequence of (2.2) is that

1

2
�†f u � k � u:(2.3)

On the other hand, using (2.1) and (2.2), we deduce the estimate

(2.4) �†f
p
u D

�†
f
u

2
p
u
�
jr†uj2

4u
3
2

D
k � u
p
u
C

˝
x
jxj
;N

˛2
� jN j2

p
u

�
k � u
p
u
:

Assume now that x.†/ is confined in the closed exterior region determined by the self-
shrinker cylinder Ckp

k
�RmC1. Thus, u � k and, by inequality (2.4),

p
u is f -superharmonic.

On the other hand, since † is properly immersed, †f is parabolic in the sense of (1.4). It fol-
lows that

p
u � C for some constant C �

p
k and using this information into (2.4) yields that,

in fact, u � k, i.e., x.†/ � Ckp
k

. The desired equality now follows by geodesic completeness.
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Similarly, suppose that x.†/ is confined inside the solid cylinder bounded by the self-
shrinker Ckp

k
� RmC1. Then, we see from (2.3) that the function u is f -subharmonic. Since

u � k it follows that u must be constant by f -parabolicity. Whence, reasoning as in the previ-
ous case, we reach once more the conclusion that x.†/ D Ckp

k
.

3. Embedded shrinkers with controlled asymptotic distance: Main results

As we have alluded to in the introduction, a new approach to the traditional Frankel
property that could be relevant in our setting was proposed by Petersen-Wilhelm in [18]. As all
of the other proofs of Frankel-type properties, it proceeds by contradiction, assuming that two
properly embedded minimal hypersurfaces †1; †2 do not intersect. Then one considers the
function u D r1 C r2 on the open set � bounded by †1 and †2, where rj .x/ D dist.x;†j /,
j D 1; 2. At points x where the normal exponential map exp?†j is a diffeomorphism onto its
image, and denoting with j the geodesic segment connecting †j with x, from the Riccati
equation one obtains

d

dt
.�rj ı j .t// D �1 � jHess.rj /jj .t/j

2
� �1;

which, once integrated, gives that u satisfies, in the barrier sense of Calabi,

�u � �u on �:

Now, if dist.†1; †2/ > 0 is attained at some pair of points .p; q/ 2 †1�†2 a segment 1 D 2
connecting p and q is a curve of interior minima for u, contradicting the maximum princi-
ple. Similar arguments can be used when †1; †2 are compact f -minimal hypersurfaces in the
Gaussian space up to replacing the Laplace–Beltrami operator with the corresponding weighted
Laplacian �f ; see [26, Theorem 7.3, Theorem 7.4]. However, if infu is not achieved, i.e.,
dist.†1; †2/ is either zero or realized at infinity, things are much more subtle. Since � is an
f -parabolic manifold with boundary, a natural attempt is to apply global forms of the maxi-
mum principle. Unfortunately, a formal computation suggests that the normal derivative of u in
the exterior direction � satisfies, in a suitable weak sense, à�u � 0 on à�. Thus, it is unlikely
that the potential theory for parabolic manifolds with boundary developed in [12] could be
applicable directly to u or to variants thereof.

In the recent paper [7], A. Fraser and M. Li proved that the Frankel property holds for
compact embedded free boundary minimal surfaces in a compact manifold with non-negative
Ricci curvature. They supplied two different arguments: the first one is a small variation of the
original proof by Frankel whereas the second one, to the best of our knowledge, is completely
new. It relies on the Reilly’s formula applied to a harmonic function that separates the two sur-
faces. Inspired by this latter proof we shall obtain that if two properly embedded self-shrinkers
are separated enough at infinity then they must intersect at some finite point. To make this
claim more precise, we first observe that two properly embedded shrinkers cannot be a positive
distance apart.

Theorem B. Let †m1 ; †
m
2 be properly embedded f -minimal hypersurfaces inside the

complete weighted manifold MmC1
f

with Ricf � K2 > 0. Assume that each of †1 and †2
separates Mf . Then †m1 cannot be a positive distance apart from †m2 .
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We note that this result, in the setting of embedded hypersurfaces, extends [26, Theo-
rem 7.4] since it covers also the case where the two hypersurfaces realize their positive distance
at infinity. It remains to rule out the situation where†1 and†2 intersect at infinity. We achieve
the goal in the following assumptions:

Asymptotic Distance Condition. The two hypersurfaces †1 and †2 are separated
“enough” at infinity.

Tubular Neighborhood Condition. One of the hypersurfaces, say †2, is separated
“enough” from itself at infinity.

In both cases, “enough” is quantified in exponential terms. More precisely:

Theorem C. Let †m1 and †m2 be properly embedded connected self-shrinkers in the
Euclidean space RmC1. Assume that

(3.1) lim inf
jzj!C1
z2†2

distRmC1.z;†1/

e�bjzj
2P.jzj/�1

> 0;

and that the ray R.z/ > 0 of a regular normal tubular neighborhood T .†2/ at a point z 2 †2
decays in the following controlled way:

(3.2) lim inf
jzj!C1
z2†2

R.z/

e�cjzj
2P.jzj/�1

> 0

for some polynomial P 2 RŒt � and some constants b; c > 0 satisfying 0 < mc C b < 1
2

. Then

†1 \†2 6D ;:

Example 1 (2-dimensional). Let us briefly illustrate a concrete situation where our
results could be applied. Let †1; †2 ,! R3 be properly embedded self-shrinkers with finite
topology.

By [25], the ends of each surface †j are smoothly asymptotic either to a cylinder or to
a cone over a link in S2. Examples with exactly one conical end are constructed in [13].

Assume that each surface †j has only one end Ej , asymptotic to the cone Cj , j D 1; 2.
Then, by [2, 24], we know that Ej has a uniform normal tubular neighborhood. Indeed:

(i) Ej D GraphCj
.wj / is a normal graph over Cj with jrkwj j ! 0 at1, for all k � 0.

(ii) Ej has unit normal �j asymptotic to the unit normal �Cj of Cj at1.

Now, the following possibilities can occur:

(a) If C1 D C2, then, by [24], E1 D E2 and in particular †1 \†2 6D ;.

(b) If C1 \ C2 D ¹0º, i.e., the links of C1 and C2 are disjoint, then E1 and E2 are very much
separated and, hence, †1 \†2 6D ;.

(c) If C1 intersects transversally C2 outside ¹0º, i.e. the links of C1 and C2 intersects transver-
sally, then E1 \ E2 6D ; and in particular †1 \†2 6D ;.

(d) If C1 intersects C2 tangentially, i.e. the links of C1 and C2 are tangential, then we can
still conclude that †1 \†2 6D ; provided that E1;E2 are e�bjzj

2

-separated at1.
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Both Theorem C and Theorem B, can be considered as concrete realizations of the fol-
lowing abstract result.

Theorem D. Let †m1 ; †
m
2 be properly embedded f -minimal hypersurfaces inside the

complete weighted manifold MmC1
f

with Ricf � K2 > 0. Assume that †1 \†2 D ; and
that each of †1 and †2 separates Mf . The domain enclosed by the two hypersurfaces is
denoted by �. If u 2 C1.�/ is a solution of the following problem:

(3.3)

8̂<̂
:
�f u D 0 in �;

u D 0 on †1;

u D 1 on †2;

then

lim
R!C1

R
BMR \�

jruj2 dvf

R2
D C1:

The rest of the paper is organized as follows:

� First, in Section 4, we prove the abstract Theorem D using a localized version of the
Reilly’s formula that, we feel, is of independent interest.

� Next, in Section 5, we assume by contradiction that the two self-shrinkers do not intersect
and we prove that a bounded solution of (3.3), with finite Dirichlet f -energy, exists
provided the assumptions of Theorem C are met. This contradicts Theorem D.

� Finally, in Section 6, using a variational viewpoint, we still assume by contradiction that
the two self-shrinkers do not intersect and we show that a bounded solution of (3.3),
with finite Dirichlet f -energy, exists without any restriction on the extrinsic geometry
of †2, provided the distance between the two self-shrinkers is strictly positive. This,
again, contradicts Theorem D.

4. Localized Reilly’s formula and a proof of Theorem D

Reilly’s formula is a celebrated integral formula first introduced in [21] to study isometric
immersions and geometric bounds on the first Neumann eigenvalue of a compact manifold
with boundary; see also [3] and the survey paper [19] for more applications. A version of this
formula for the weighted Laplacian is obtained in [16] following the arguments in [3]. We
are going to prove a localized version of the Reilly’s formula that holds in the non-compact
weighted setting.

Lemma 2. Let � be a domain with smooth boundary † D à� in the (possibly incom-
plete) smooth metric measure space MmC1

f
and let � 2 C1c .M/. Then, for any u 2 C 2.�/,Z

�

�2
�
jHessuj2 � .�f u/

2
C Ricf .ru;ru/

�
dvf(4.1)

C

Z
�

hr�2;
1

2
rjruj2 ��f urui dvf

D

Z
†

�2
�

A†.r†u;r†u/Cr†u
�
àu
à�

�
�

�
�†f u �Hf

àu
à�

�
àu
à�

�
dv†f ;
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where � is the exterior unit normal to † and A† is the corresponding second fundamental
form, and dv†

f
is the weighted measure of the boundary †.

Proof. Let � 2 C1c .Mf / and let Z D r jruj
2

2
��f uru. Then, using the f -Bochner

formula, we get

divf .�
2Z/ D �2

�
divf

�
r
jruj2

2

�
��f u divf .ru/ � hr�f u;rui

�
C

�
r�2;r

jruj2

2
��f uru

�
D �2

�
�f
jruj2

2
� .�f u/

2
� hr�f u;rui

�
C

�
r�2;r

jruj2

2
��f uru

�
D �2

�
jHessuj2 C hr�f u;rui C Ricf .ru;ru/ � .�f u/

2
� hr�f u;rui

�
C

�
r�2;r

jruj2

2
��f uru

�
D �2

�
jHessuj2 C Ricf .ru;ru/ � .�f u/

2
�
C

�
r�2;r

jruj2

2
��f uru

�
:

Applying the f -divergence theorem, we getZ
†

�2hZ; �i dv†f D

Z
�

divf .�
2Z/dvf(4.2)

D

Z
�

�2
�
jHessuj2 C Ricf .ru;ru/ � .�f u/

2
�
dvf

C

Z
�

�
r�2;r

jruj2

2
��f uru

�
dvf :

Let ¹EiºmiD1 be a local orthonormal frame on †. Letting Hf WD H C hrf; �i and using the
identity

ru D r†uC
àu
à�
�;

one gets that

�f u D

mX
iD1

Hessu.Ei ; Ei /C Hessu.�; �/ � hrf;rui

D �†f uC Hessu.�; �/ �Hf
àu
à�

and �
r
jruj2

2
; �

�
D Hessu.r†u; �/C

àu
à�

Hessu.�; �/

D �hrr†u�;r
†ui C

�
rr†u

�
àu
à�
�

�
; �

�
C
àu
à�

Hessu.�; �/

D A†.r†u;r†u/Cr†u
�
àu
à�

�
C
àu
à�

Hessu.�; �/:

Inserting these two relations in (4.2), we obtain the desired conclusion.

Theorem D is a direct consequence of the localized Reilly’s formula.
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Proof of Theorem D. Let u 2 C1.�/ be a solution of8̂<̂
:
�f u D 0 in �;

u D 0 on †1;

u D 1 on †2:

Applying (4.1) to u and using Young’s and Kato’s inequalities, we get that for any " > 0,

0 �

Z
�

�2.jHessuj2 CK2jruj2/C
�
r�2;

rjruj2

2

�
dvf

D

Z
�

�2.jHessuj2 CK2jruj2/C 2�jrujhr�;rjruji dvf

�

Z
�

�2.jHessuj2 CK2jruj2/ �
�2

"

ˇ̌
rjruj

ˇ̌2
� "jr�j2jruj2 dvf

�

Z
�

�2
�
1 �

1

"

�ˇ̌
rjruj

ˇ̌2
dvf C

Z
�

.K2�2 � "jr�j2/jruj2 dvf :

Choose now " > 1 and let �R be smooth cut-offs such that �R D 1 on BMR , supp.�R/ � BM2R
and jr�j2 � 4

R2
. Then we get

K2
Z
�\BMR

jruj2 dvf � K
2

Z
�\BM2R

�2jruj2 dvf � "

Z
�\BM2R

jr�j2jruj2dvf

�
4"

R2

Z
�\BM2R

jruj2 dvf :

By taking the limit as R!C1, this yields that

(4.3)
Z
�

jruj2 dvf �
4"

K2
lim inf
R!C1

1

R2

Z
�\BM2R

jruj2 dvf :

Since, obviously, u is non-constant, we must have

lim inf
R!C1

1

R2

Z
�\BM2R

jruj2 dvf > 0:

In particular, jruj 62 L 2.�; dvf / and from inequality (4.3) we conclude

lim
R!C1

1

R2

Z
�\BM2R

jruj2 dvf D C1;

thus completing the proof.

5. Construction of special f -harmonic functions and proof of Theorem C

The strategy of the proof of Theorem C goes as follows:

� By contradiction we assume that the hypersurfaces†1 and†2 are disjoint. Recall that, by
the Jordan–Brouwer Separation Theorem, each hypersurface†j separates RmC1; see [9].
Therefore it is well defined the region � of RmC1 in between †1 and †2.
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� We construct on � a (unique) bounded positive f -harmonic function u with Dirichlet
boundary conditions 0 and 1, respectively, on †1 and †2. To construct u, we solve
a mixed boundary value problem along an exhaustion of � where a Neumann condi-
tion is imposed on the “free” part of the boundary. An application of interior and bound-
ary Schauder estimates enables us to extract a subsequence converging in C 2 on every
compact set to the desired global solution.

� We use the asymptotic distance assumption (3.1) and the condition on the extrinsic geom-
etry of†2 to obtain that, in fact, jruj 2 L 2.�; dvf /. To this end, a Caccioppoli inequal-
ity up to the boundary reduces the problem to an estimate of jruj on the hypersurface
†2. Thanks to the control on the extrinsic geometry of †2, a pointwise estimate of jruj
on †2 is obtained using maximum principle arguments.

� We use Theorem D to get a contradiction.

Accordingly, the main purpose of the present section is to prove the following.

Lemma E. Let †m1 and †m2 be disjoint, properly embedded hypersurfaces in the com-
plete weighted manifold MmC1

f
satisfying Ricf � K2 > 0. Assume that †1; †2 separate M

and let � �M be the domain enclosed between these hypersurfaces so that à� D †1 [†2.
Then there exists a unique bounded solution u 2 C1.�/ of the problem

(5.1)

8̂<̂
:
�f u D 0 in �;

u D 0 on †1;

u D 1 on †2;

satisfying
0 < u < 1 on �:

Moreover, assume thatMmC1
f

D RmC1
f

is the Gaussian space and that†2 satisfies the asymp-
totic distance condition (3.1) and the normal neighborhood condition (3.2). Then u has finite
f -energy:

(5.2) jruj 2 L 2.�; dvf /:

As we have outlined above, we split the proof in several steps.

5.1. Uniqueness of the solution. Following [12], it is convenient to set the following:

Definition 3. Let Mf be a smooth metric measure space with boundary àM 6D ;.
Say that Mf is f -parabolic in the sense of Dirichlet if every bounded f -harmonic function
u 2 C1.intM/ \ C 0.M/ is uniquely determined by its boundary values.

Adapting to the framework of manifolds with density what is known from [12] (see
also [11]), we have the following:

Lemma 4. LetMf be a complete weighted manifold with boundary such that, for some
origin o 2 intM ,

volf .BR.o// D O.R2/:

Then Mf is f -parabolic in the sense of Dirichlet.
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Since, in the setting of Lemma E, volf .�/ � volf .M/ < C1, the complete manifold�
with boundary à� 6D ; is f -parabolic in the sense of Dirichlet. Hence a bounded solution
of (5.1), if any, must be unique.

5.2. Existence of the solution by exhaustion. As in the statement of Lemma E, let
MmC1
f

be a complete smooth metric measure space and let � �M be the domain whose
boundary is given by à� D †1 [†2. LetDk %M be an exhaustion ofM by relatively com-
pact domains with smooth boundary àDk intersecting transversally †1 and †2; see e.g. [17].
Let �k % � be the Lipschitz domains defined by �k D Dk \�. Note that

à�k D †1;k [†2;k [ �k;

where †i;k � †i , i D 1; 2, and �k � àDk . The singular set of �k is denoted by Sk . Then
¹�kº is a “good” exhaustion of � with respect to mixed boundary value problems. Consider
the solution uk to the problem

(5.3)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�f uk D 0 in �k;

uk D 0 on †1;k;

uk D 1 on †2;k;
àuk
à�k
D 0 on �k;

where �k is the outward unit normal to �k . It follows from the Perron construction in [15], and
the well-known local regularity theory, that uk 2 C 0.�k/ \ C1.�k n Sk/. Furthermore, by
the strong maximum principle and the boundary point lemma,

0 < uk < 1 on �k :

For any fixed k0 2 N, let us consider the sequence of solutions of (5.3):

Uk0C2 D ¹uk W k � k0 C 2º � C1.�k0C1/:

We claim that, given ˛ > 0, there exists a constant Ck0 > 0 such that

(5.4) sup
uk2Uk0C2

kukkC 2;˛.�k0 /
� Ck0 :

To this end:

� We apply [8, Corollary 6.7] with the choices � WD �k0C1, T WD †1;k0C1, L WD �f ,
' WD 0, f WD 0 and we obtain that there exist a ray ı1;k0 > 0 and a constant C1;k0 > 0
such that, having defined the ık0-neighborhood of †1;k0 as

Tı1;k0
.†1;k0/ D

[
p2†1;k0

BMı1;k0
.p/ \�k0C1;

it holds
kukkC 2;˛.Tı1;k0

.†1;k0 //
� C1;k0

for every uk 2 Uk0C2.
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� Similarly, we apply [8, Corollary 6.7] with the choices � WD �k0C1, T WD †2;k0C1,
L WD �f , ' WD 1, f WD 0 and we obtain that there exist a ray ı2;k0 > 0 and a constant
C2;k0 > 0 such that

kukkC 2;˛.Tı2;k0
.†2;k0 //

� C2;k0

for every uk 2 Uk0C2.

� Set
ık0 D min.ı1;k0 ; ı2;k0/ > 0

and define the compact set

Kk0 D �k0 n
�
T ık0

2

.†1;k0/ [ T ık0
2

.†2;k0/
�
� �k0C1:

By [8, Theorem 6.2] with � WD �k0C1 and L WD �f , there exists a constant C3;k0 > 0
such that

kukkC 2;˛.Kk0
/ � C3;k0

for every uk 2 Uk0C2.

� Since

�k0 � Tık0
.†1;k0/ [ Tık0

.†2;k0/ [Kk0 and Uk0C2 � C1.�k0C1/;

the claimed estimate (5.4) follows by taking Ck0 D max.C1;k0 ; C2;k0 ; C3;k0/.

Now, for 0 < ˛1 < ˛2, the embedding C 2;˛2.�k0/ ,! C 2;˛1.�k0/ is compact. Therefore,
possibly passing to a subsequence, we obtain that Uk0C2 converges in C 2.�k0/ to a solution
uk0 2 C 2.�k0/ (actually uk0 2 C1.�k0/ by higher elliptic regularity) of the problem8̂<̂

:
�f uk0 D 0 in �k0 ;

uk0 D 0 on †1;k0 ;

uk0 D 1 on †2;k1 :

Moreover,
0 � uk0 � 1:

To conclude the construction, we let k0 increase to C1 and we use a classical diagonal
argument. This yields the desired solution u 2 C1.�/ of8̂<̂

:
�f u D 0 in �;

u D 0 on †1;

u D 1 on †2;

satisfying
0 � u � 1:

5.3. The finite f -energy condition. From now on, unless otherwise specified, we
assume that Mf is the Gaussian space RmC1

f
. We want to obtain the finiteness of the Dirichlet

f -energy of the solution u of (5.1): krukL 2.�;dvf /
< C1. A standard Caccioppoli inequal-

ity up to the boundary reduces the problem to an estimate of jruj along †2 (the boundary
hypersurface where the datum 1 is imposed). This latter, in turn, can be carried out by maxi-
mum principle considerations.
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5.3.1. A Caccioppoli inequality up to the boundary. We prove the following:

Lemma 5. Let u W �! R be a solution of (5.1). Then

(5.5)
Z
�

jruj2 dvf � 2

Z
†2

jruj dv2If2 ;

where dvi Ifi is the weighted measure of the boundary hypersurface †i;fi and fi D f j†i ,
i D 1; 2.

Proof. Let ' D 'R 2 C1c .RmC1/ be a family of standard cut-off functions satisfying
the following conditions:

(i) 0 � ' � 1,

(ii) ' D 1 on BmC1
R=4

.x/,

(iii) ' D 0 on RmC1 n BmC1
R=2

.x/,

(iv) kr'k1 � 2
R

.

Consider the vector field
X D '2uru:

Observe that the f -divergence of X is given by

divf X D 2u'hru;r'i C '
2
jruj2:

Integrating X on �, using the f -divergence theorem, the Young inequality and recalling the
(Dirichlet) boundary conditions satisfied by u, we getZ

�

'2jruj2 dvf D �

Z
�

2u'hru;r'i dvf C

Z
†2

'2
àu
à�2

dv2If2

� "

Z
�

u2jr'j2 dvf C "
�1

Z
�

'2jruj2 dvf C

Z
†2

'2
àu
à�2

dv2If2 ;

where " > 0 is any fixed constant. Whence, if " D 2, we deduceZ
�

'2jruj2 dvf � 2

²
2

Z
�

u2jr'j2 dvf C

Z
†2

'2
àu
à�2

dv2If2

³
:

Now, by the boundary point lemma and the maximum principle we have

†2 D ¹u D 1º; ru 6D 0 on †2

and the outward unit normal to the hypersurface †2 is given by

�2 D
ru

jruj
:

Inserting this information into the above integral inequality, and recalling property (iv) of ',
we deduce Z

�

'2jruj2 dvf �
16

R2

Z
�\BmC12R

u2 dvf C 2

Z
†2

'2jruj dv2If2 :

Whence, using once again the properties of ' D 'R, the fact that the function u is bounded,
hence L 2.�; dvf /, on the finite f -measure domain �, and letting R!C1 we conclude
the validity of (5.5).
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5.3.2. Pointwise gradient estimates at the boundary. It remains to estimate the inte-
gral

R
†2
jruj dv2If2 . Since the self-shrinker †2 is properly embedded, it has polynomial

(actually Euclidean) extrinsic volume growth. Assuming that †2 has bounded extrinsic geom-
etry, we can estimate jruj pointwise along †2 by maximum principle arguments. This is done
in the next Lemma. Whence, using (3.1) we shall deduce immediately the desired L 1 integra-
bility of jruj on †2, thus completing the proof of Lemma E.

Lemma 6. Let u 2 C1.�/ be a solution of (5.1). Assume that †2 satisfies an exterior
R-sphere condition at some point z 2 †2. Then

(5.6) jruj.z/ �
.RC 1/m

Rm
ejzj

distRmC1.z;†1/
:

Recall that a connected component† of the boundary à� of a domain� � RmC1 is said
to satisfy the exteriorR-sphere condition at z 2 � if there exists a ball BmC1R .y/ � RmC1 n�
such that B

mC1

R .y/ is tangent to † at z. Clearly the exterior R-sphere condition at z implies
that the (scalar) second fundamental form A† D hA†; �i of†, with respect to the exterior unit
normal �, satisfies A†.z/ � 1

R
in the sense of quadratic forms. More importantly, we point

out the following simple fact that gives the link between the exterior sphere condition and the
tubular neighborhood assumption in Lemma E.

Fact. The exterior R-sphere condition at z 2 † is implied by the existence of a regular
normal neighborhood of † whose width at z is at least R.

Proof. Indeed, start with a small ball BmC1a .y/ touching † only at z and let the ray
a > 0 increase by keeping the same tangent property. The corresponding balls are all centered
along the normal line to † passing through z. Let T .z/ 2 R>0 [ ¹C1º denote the supremum
of such rays and assume T .z/ < C1, for otherwise there is nothing to prove. Then BmC1

T.z/
.y0/

is tangent to † at two distinct points z; z0 2 †. The (closed) segments normal to †, of length
2T .z/ and centered respectively in z and z0 meet precisely at the center y0 of the ball. Therefore,
by definition, the ray R.z/ of the normal regular tubular neighborhood of † at z must satisfy
R.z/ � T .z/. The conclusion now follows trivially.

Proof (of Lemma 6). We use the technique developed in [23] (see also [8, Chapter 14]).
Keeping the notation introduced in the previous section, we let

v D u � 1:

Thus, v is a smooth solution of

(5.7)

8̂̂̂̂
<̂
ˆ̂̂:
�f v D 0 in �;

v D �1 on †1;

v D 0 on †2;

�1 < v < 0 in �:

Fix z 2 †2. Let BmC1R .y/ � RmC1 n� be an exterior ball tangent to †2 at z. We assume that

àBmC1RCa.y/ \†1 D ;;
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for a suitable a > 0. Namely, we choose

0 < a < distRmC1.z;†1/:

Define the domain
WR;a D

�
BmC1RCa.y/ n B

mC1

R .y/
�
\�:

Let
r.x/ D jx � yj and d.x/ D r.x/ �R

so that
d.x/ D distRmC1.x; àB

mC1
R .y//:

We construct a smooth function

 .d/ W Œ0; a�! Œ0;C1/

satisfying the following conditions:

(i) �f  .d.x// � 0 on WR;a,

(ii)  .0/ D 0,

(iii)  .a/ D 1,

(iv)  0 > 0.

To this end, note that, if (iv) is satisfied, then

�f  D  
00
C  0

²
m

d CR
� hx;rri

³
�  00 C  0

²
m

d CR
� jx � yj C jy � zj C jzj

³
D  00 C  0

²
m

d CR
� d C jzj

³
:

Therefore, we are led to impose

 00 C  0
²

m

d CR
� d C jzj

³
D 0:

Integrating on Œ0; d � � Œ0; a� and recalling (ii), we get

 .d/ D Rm 0.0/

Z d

0

e
t2

2 dt

.t CR/mejzjt
:

This definition satisfies (i), (ii) and (iv) provided  0.0/ > 0. Finally, we impose the validity
of (iii). This implies the choice

(5.8)  0.0/ D
1

Rm
R a
0

et
2=2 dt

.tCR/mejzjt

and we conclude that, the desired function  has the expression

 .d/ D

R d
0

et
2=2 dt

.tCR/mejzjtR a
0

et
2=2 dt

.tCR/mejzjt

:
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We observe explicitly from (5.8) that the following rough estimate holds:

(5.9) 0 <  0.0/ � C.R; a/eajzj;

where

C.R; a/ D
.RC a/m

Rma
:

Summarizing we have obtained that8̂̂̂̂
<̂
ˆ̂̂:
�f  .d.x// � 0 in WR;a;

 D 0 D v at z;

 D 1 > 0 � v on àWR;a \�;

 � 0 D v on à� \W R;a D †2 \W R;a;

and, similarly, 8̂̂̂̂
<̂
ˆ̂̂:
�f .� .d.x/// � 0 in WR;a;

.� / D 0 D v at z;

.� / D �1 � v on àWR;a \�;

.� / � 0 D v on à� \W R;a D †2 \W R;a:

In view of (5.7), (5.9) and the fact that àvà� D jruj on †2, arguing as in [23] we conclude that

jruj.z/ �  0.0/ � C.R; a/eajzj:

This latter implies the validity of (5.6) by choosing a D min.1; distRmC1.z;†1/ � �/ and let-
ting � & 0.

5.4. Proof of Lemma E. Recall from Section 5.1 and Section 5.2 that, in any complete
weighted manifold MmC1

f
with

Ricf � K
2 > 0;

the Dirichlet problem (5.1) has a unique solution u 2 C1.�/ satisfying 0 � u � 1. Assume
now that MmC1

f
D RmC1

f
is the Gaussian soliton and that †m1 ; †

m
2 ,! RmC1

f
are f -minimal.

Then, by Lemma 5, Z
�

jruj2 dvf � C1

Z
†2

jruj dv2If2 :

On the other hand, in view of the asymptotic distance condition (3.1) and the normal neighbor-
hood condition (3.2), from (5.6) of Lemma 6 we know that

jru.z/j � C2e
Qbjzj2 on †2

for some constants C2 > 0 and 0 < Qb < 1
2

. Since†2 is properly immersed, it has a polynomial
extrinsic volume growth; see (1.2). Recalling e.g. [20, Lemma 25], we deduce that

jruj 2 L 1.†2; dv2If2/

and, therefore, jruj 2 L 2.�; dvf /, as required. The proof of Lemma E is completed.
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6. Variational considerations and proof of Theorem B

6.1. The finite f -energy condition from a variational viewpoint. There is (at least)
an alternative way to deduce the finiteness condition of the f -energy (5.2) for the bounded
solution of (5.1). It relies on a variational argument that however seems to need the validity of
the asymptotic distance assumption (3.1) with the more demanding condition

(6.1) 0 � b <
1

4
:

We briefly outline the argument.
Let †1 \†2 D ; be properly embedded hypersurfaces that separate the complete am-

bient space .MmC1; h � ; � i/ and let � be the enclosed region of M so that à� D †1 [†2.
Consider the orthogonal projection …1 W �! †1 and note that

distM .z;…1.z// D distM .z;†1/:

Now, let  W R! Œ0; 1� be the Lipschitz function

(6.2)  .t/ D

8̂<̂
:
0; t � 0;

t; 0 < t < 1;

1; t � 1:

Define a locally Lipschitz function ‰ W �! Œ0; 1� by

(6.3) ‰.z/ D  

�
distM .z;†1/

distM .…1.z/;†2/

�
:

Obviously,

(6.4) ‰ � 0 on †1:

Moreover, since

distM .z;†1/ D distM .…1.z/; z/ � distM .…1.z/;†2/ for all z 2 †2;

we have

(6.5) ‰ � 1 on †2:

Finally,

LipŒ‰�.z/ � C
1C LipŒ…1�.z/

distM .…1.z/;†2/
for some constant C > 0. This follows from the fact that distances are globally Lipschitz func-
tions and, furthermore,

distM .z;†1/
distM .…1.z/;†2/

> 1 H) LipŒ‰�.z/ D 0:

Thus, if we now specify the situation to properly embedded self-shrinkers in RmC1
f

and assume
the validity of the asymptotic distance condition (3.1) with b satisfying (6.1), then

(a) ‰ 2 W 1;2.�; dvf /,

(b) ‰ � 0 on †1,

(c) ‰ � 1 on †2.

Note now that the solutions uk to (5.3) over the exhaustion �k % � and constructed using
Lieberman approach coincide with those obtained by applying the direct calculus of variations
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to the weighted energy functional

Ek;f .v/ D
1
2

Z
�k

jrvj2 dvf

on the closed convex space

W 1;2
D

.�k; dvf / D
®
v 2 W 1;2.�k; dvf / W vj†1 � 0 and vj†2 � 1

¯
:

Here, Dirichlet data are understood in the trace sense. Thus, each uk is a minimizer of Ek;f
over W 1;2

D
.�k; dvf /. Thanks to the global W 1;2-regularity established in [12, Proposition 1.2],

this follows from [12, Remark 1.3] by a suitable choice of the domains � and D b �.
With this preparation, let‰k D ‰j�k be the restriction to�k % �1 D � of the barrier

function (6.3) and let uk be the solution of problem (5.3). Recall that, up to subsequences,
uk C 2-converges on compact subsets of � to the bounded solution u of problem (5.1). Since
‰k 2 W 1;2

D
.�k; dvf /, we deduce

Ek0;f .uk/ � Ek;f .uk/ � Ek;f .‰k/ � E1;f .‰/ < C1

for every k0 < k. Whence, recalling that ruk ! ru uniformly on compact subsets of � and
using the Fatou lemma, we conclude that jruj 2 L 2.�; dvf /.

6.2. Proof of Theorem B. If on the one hand the previous arguments require a more
stringent condition on the asymptotic behavior of †1 and †2 and, thus, cannot be used to
recover Theorem C, on the other hand they suggest a way to obtain the intersection property
when no extrinsic condition on †2 is imposed. Indeed, note that if the two f -minimal hyper-
surfaces †m1 ; †

m
2 of MmC1

f
are a positive distance apart (but their positive distance could be

realized at infinity), then we can consider the function defined by

‰.z/ D  

�
distM .z;†1/ � distM .z;†2/C distM .†1; †2/

2distM .†1; †2/

�
;

with  as in (6.2). It is easy to check that ‰ is a Lipschitz function satisfying conditions (6.4)
and (6.5). In particular, ‰ can be used as a global barrier function and reasoning as in the
previous subsection we deduce that, without any assumption on the extrinsic geometry of the
hypersurfaces, the bounded solution u of (5.1) satisfies jruj 2 L 2.�; dvf /. When combined
with Theorem D and Lemma E, this fact proves Theorem B.
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