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Abstract Electric vehicles are accelerating the world transition to sustainable
energy. Nevertheless, the lack of a proper charging station infrastructure in
many real implementations still represents an obstacle for the spread of such
a technology. In this paper, we present a real-case application of optimization
techniques in order to solve the location problem of electric charging stations
in the district of Biella, Italy. The plan is composed by several progressive
installations and the decision makers pursue several objectives that might
conflict each other. For this reason, we present an innovative framework based
on the comparison of several ad-hoc Key Performance Indicators (KPIs) for
evaluating many different location aspects.

Keywords Electric vehicles · Charging stations · Optimal Location · KPIs

1 Introduction

With the increasing pressure on the environment and resource shortage, en-
ergy saving has become a global concern. However, this issue is particularly
critical in the field of transportation for freight and people. In fact, it has been
estimated that motorized vehicles are responsible for 40% of carbon dioxide
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emissions and 70% of other greenhouse gas emissions in urban areas [12]. This
has led to the consideration of alternatives to the current mobility and, due to
the technology development, electric vehicles (EVs) have become a clean and
sustainable alternative to traditional fuel ones. However, one of the barriers
that still limits the desirable expansion of EVs industry is the lack of a proper
infrastructure for re-charging the vehicles or, more in general, of a structured
guideline for the administrations to decide where to locate the available charg-
ing stations so to optimize the quality of the service.

In this context, the company Ener.bit S.r.l.1 and the Dipartimento di Au-
tomatica e Informatica (Control and Computer Engineering Department) of
the Politecnico di Torino (Polytecnic University of Turin, Italy) have recently
developed a project for the sustainability of electric mobility in the district of
Biella, Piedmont (Italy). The project goal was to plan the type, number, and
location of the charging stations over a horizon of about 10 years (2019-2030).
According to PNire2, i.e. the Italian infrastructural plan for EV charge, the
possible infrastructures that can be build are slow charging (up to 7kW), quick
charging (between 7 and 22 kW), fast charging (between 22 and 50 kW), and
very fast charging (more than 50 kW) stations. Several strategic areas charac-
terized by different capacity as well as different stopping time (parking areas,
shopping centers, railway stations, etc.) have been identified as possible places
where to locate the charging stations. It is worthwhile noticing that the num-
ber of stations to locate depends on an economical analysis of the decision
process over the time horizon, whereas the type of charging stations mainly
depends on the features of the selected location and on the analysis of the
traffic flow (see [10], [9] and [11]).

For example, a charging station near working centers can have a slow
charging system (because workers are assumed to park their vehicle during
the working hours, almost eight), whereas a charging station near shopping
centers must be faster (cars must be recharged during the shopping time, up
to two hours). Therefore, the actual operational problem faced by our project
team was to identify an optimal location of the different charging stations in
the various municipalities of the district.

The good results obtained in this project have fostered a wider and deeper
analysis of the problem of locating charging stations for electric vehicles (see
the first results in [7]). In fact, location problems still attract great attention
from the research community (see, e.g., [3] and [16]).

Usually, the real decision maker despite defining a single objective (such
as cost minimization or gain maximization) are interested in several aspects
of the solution. Thus, it is not rare to evaluate the solution with respect to
several criteria not explicitly considered in the objective function (see, e.g., [6]
and [8]). In particular, location problems may consider several different (and
possibly conflicting) objectives, e.g., achieving a level of service proportional

1 Official website: http://www.enerbit.it/, last accessed: 2020-01-29.
2 https:http://www.governo.it/sites/governo.it/files/PNire.pdf, last accessed:

2020-01-29.
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to the importance of the location, reducing the worst-case service level, and
maximizing the average service level. Considering all those objectives in the
same mathematical problem may end up with a huge amount of solutions
that can confuse the decision maker instead of providing help. For this reason,
our study provides an innovative analysis based on the comparison of several
different aspects of a location solution through the use of a battery of Key
Performance Indicators (KPIs). Moreover, since charging infrastructures are
commonly supposed to be located through several progressive interventions
over a defined time-horizon, we also analyze the trend of the provided KPIs
over the interventions to generate long-term managerial insights.

The rest of this paper is organized as follows. In Section 2, a review of the
literature regarding location of electric vehicle is given. In Section 3, the case
study is presented. Section 4 is devoted to present the location model used
in the project. In Section 5, we propose and discuss several different KPIs of
interest for our application. In Section 6, we present the numerical results.
Finally, conclusions are drawn in Section 7.

2 Literature review

A great number of applications in the field of electrical vehicles have appeared
in the literature, and several aspects have been studied from the point of view
of optimization. In particular, the computation of an optimal location of the
charging stations seems of fundamental importance. In the following, we will
review the most important and recent works related to this problem.

In [12] the authors present a study on the location of electric-vehicle charg-
ing stations for the city of Lisbon (Portugal), characterized by a strong con-
centration of population and employment. This type of area is appropriate for
slow charging because vehicles remain parked for several hours within a 24h
period. The methodology is based on a maximal covering model to optimize
the demand covered within an acceptable level of service and to define the
number and capacity of the stations to be installed. They proposed a complex
model maximizing demand coverage, distinguishing between night-time and
day-time demand.

In [1] and [19] the authors develop a complex model that optimally lo-
cates the charging stations by considering the travel patterns of individual
vehicles. The model is applied to the city of Beijing (China) using vehicle tra-
jectory data of 11,880 taxis over a period of three weeks. They use the taxi
fleet as a case-study because public fleets are likely to be early adopters for
electric vehicles. Similarly, in [15] the authors consider a bi-level programming
model including electric vehicle driving range for finding an optimal location
of charging stations. Similar approaches can be found in [17] and [23].

Considering a very similar setting, in [25] the authors formulate a multi-
period optimization model based on a flow-refueling location model for strate-
gic charging station location planning. They consider that, although it is ex-
pected that a sufficient number of charging stations will be eventually con-
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structed, due to various practical reasons they may have to be introduced
gradually over time. They simultaneously optimize the problem of where to
locate the charging stations and how many chargers should be established in
each charging station. By considering both decisions together, the complex-
ity of the model increases, thus the authors propose a genetic algorithm-based
method for solving the expanded model. Almost the same approach is followed
by [2] for the city of Seattle (U.S.A.). In this paper, the authors consider a
p-center problem enriched by the parking capacity problem. Other similar
studies can be found in [21] and [24].

In [4], the authors propose a Mixed Integer Linear Programming (MILP)
model to solve the plug-in hybrid electric vehicles (PHEV) charging infras-
tructure planning problem for organizations with thousands of people working
within a defined geographic location and parking lots well-suited to charging
station installations. Finally, [13] proposes a maximum covering model to lo-
cate a fixed number of charging stations in central urban areas to maximize
the demand covered within a given distance, where the demand of each study
area is determined by estimating the number of vehicles in the area.

As the reader can notice, the majority of the works define an ad-hoc opti-
mization model describing some particular feature of the application. The goal
of the present paper is to revert that paradigm: consider a standard model and
measure the characteristic of the solution with respect to the performance in-
dicator usually considered as goals. This approach, to the author knowledge,
has been never considered in previous works.

3 An Italian case-study

The use-case considered deals with the location of electric charging stations in
the district of Biella (Italy). In particular, the potential locations considered
by the company are the 78 municipalities of the district. Thus, the main opti-
mization problem is to decide in which municipalities to locate some charging
stations. To do that, we first need to compute the total number of charg-
ing stations to be located, which is based on the expected number of electric
vehicles.

From 2016 the registration of electric vehicles in the world (including elec-
tric cars, plug-in hybrids and electric fuel cells) is increasing, with over 750,000
sales globally. With a market share of 29%, Norway is confirmed as one of the
leaders in the electric mobility revolution. It is followed by the Netherlands
(6.4%) and Sweden (3.4%) and then by China, France, and the UK (1.5%).
Despite promising estimates, there is strong uncertainty about the impact of
electric mobility. In Italy, the uncertainty about battery life is the main barrier
to the adoption of electric vehicles (35%), followed by the presence of charging
stations (34%) and the low presence of fast charging stations (17%). Thus,
the policies implemented by the regulator and the correct planning of the
charging infrastructure are of fundamental importance for the development of
electric vehicles. Against about 2 million vehicles sold in 2016, the penetration
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Fig. 1 Representation of the Sigmoid function.

of electric vehicles settles at less than 0.1%. Annual sales in Italy settle at
1400 units/year, with a fleet of 5,657 cars. In order to estimate the number
of electric vehicles in the district of Biella, we assume that the propensity to
use electrical technology in the district of Biella is the same as that of the
rest of Italy. By crossing this data with the vehicles sold in Piedmont and the
absorption by the district of Biella, we obtain an estimate of approximately 35
vehicles sold per year and 270 vehicles in the park circulating at the current
date, on a total of approximately 152,000 vehicles. In order to determine the
future number of electric vehicles, it is important to estimate the diffusion of
the technology. The most used model in the literature is the sigmoidal function
in Figure 1, obtained from the integration of a normal curve.

The curve can be divided into three different phases:

– a first phase, in which the curve grows slowly, in which users are the so-
called innovators;

– a phase of rapid adoption, in which users are the so-called early adopters
and early majority, that is users who require mature technology, but are
willing to pay more than others for its access;

– a last phase of reduction of market penetration (due to the saturation of
the same), in which users want a service with maximum efficiency and
minimum cost (the so called late majority and laggards).

The estimate of the parameters of the diffusion curve starting from histori-
cal data therefore makes it possible to estimate the effective size of the market
and the adoption factors. A universally recognized approach is that of the
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so-called Bass diffusion model (see [18]). To this end, we have set up a model
for estimating parameters using the R statistical software and the Diffusion
package, starting from the sales data of electric vehicles in Italy 2009-2016
[20]. The electric car fleet in the district of Biella in 2030 can therefore be
estimated at 56,000 cars, equal to about 30% of the car fleet in circulation
at that time and an electricity market share of 13%. The impact of freight
transport (no more than 100 expected electric vehicles) is considered limited
and then disregarded.

Since the key factor for the adoption of electric mobility is the availabil-
ity of fast charging stations (and some ultra-fast charging ones), making the
hypothesis of an average charge of 2 hours and a use for about 16 hours a
day of the recharging and that only 70% of the circulating car fleet use public
stations, an estimate of around 4,900 fast recharging stations is reached. By
dividing all these stations proportionally to the population in each municipal-
ity, we obtain the number of charging stations to locate in each city (from a
minimum of 72 in the smallest municipality to a maximum of 41,139 in Biella).
From an economical analysis of the company’s economic flow, the optimal way
to proceed is to install charging stations in just one municipality by the end
of 2019, in 10 municipalities by the end of 2022, in 37 by the end of 2025, and
in all remaining municipalities by the end of 2030.

We remark that each station may have different size, number of plugs, and
capacity in terms of charging. However, we just focus on selecting the munic-
ipalities of the Biella district where to locate at least one charging station,
while the real characteristics of the stations will be derived in a successive
phase. For example, the number of plugs for each municipality can be calcu-
lated as a proportion to the demand rate of that particular municipality (and
its surroundings).

4 Mathematical models for optimal location

In this section, we describe the classical p-median, p-center, and p-centdian
models to find the optimal location for the charging stations since, despite of
their simplicity, they well describe the main goal of the company. Furthermore,
since these models are easy to solve in practice, it is possible to compute several
solutions with different inputs in a short amount of time.

In the rest of this section and throughout the whole paper we use the
following notation:

– G = (N,E): complete undirected graph with a set of nodes N repre-
senting possible locations for the charging stations and a set of edges
E = {(i, j)|i, j ∈ N, i ≤ j};

– dij : distance between node i and node j ∈ N (note that distance dii may
be non-null since it represents the internal distance to travel within mu-
nicipality i ∈ N);

– Qi: service demand in node i ∈ N ;
– hi = Qi/

∑
j∈N Qj : demand rate of node i ∈ N ;
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– p: predefined number of stations to locate, with p ≤ |N |;
– d̄: coverage radius, i.e. the threshold distance to discriminate the covering.

It represents, e.g., the maximum distance that an EV can travel (due to
the battery capacity) or that a user is willing to drive to reach a charging
station;

– Ci = {j ∈ N, dij ≤ d̄}: covering set of i ∈ N , i.e. the set of all stations
nearer than d̄ from node i.

4.0.1 p-median

The p-median problem is to find p nodes of the network in which to locate
a charging station so to minimize the weighted average distance between the
located stations and the demand nodes. It can be stated as

min
∑
i∈N

hi
∑

j∈N |(i,j)∈E

dijxij (1)

subject to ∑
j∈N |(i,j)∈E

xij = 1 ∀i ∈ N (2)

∑
j∈N

yj = p (3)

∑
i∈N |(i,j)∈E

xij ≤ |N |yj ∀j ∈ N (4)

yj ∈ {0, 1}, ∀j ∈ N (5)

xij ∈ {0, 1}, ∀(i, j) ∈ E (6)

where xij is a binary variable for each edge (i, j) ∈ E that takes value 1 iff the
demand of node i ∈ N is served by a charging station located in j ∈ N . The
objective function (1) consists of minimizing the average distance traveled by
the total demand flow towards charging stations. Constraints (2) ensure that
each demand node is served by exactly one station. Constraint (3) ensures
to locate exactly p stations. Logical constraints (4) ensure to locate a station
in j (i.e., yj = 1) if it is assigned to serve at least one demand node (i.e.,∑
i∈N |(i,j)∈E xij > 0). Finally, (5) and (6) state binary conditions on the

variables.
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4.0.2 p-center

The p-center problem is to find p nodes where to locate charging stations so
to minimize the maximum distance between a demand node and its closest
station. In the proposed version of the problem, sometimes called vertex re-
stricted p-center problem, the stations can be located only in the nodes of the
graph. Obviously, the problem is focused on the worst case in terms of distance
and can be stated as

minM (7)

subject to

M ≥
∑

j∈N |(i,j)∈E

hidijxij ∀i ∈ N (8)

and the already presented constraints (2)–(6). The objective function (7) aims
at minimizing an auxiliary variable M that, according to constraints (8), will
take the maximum value of the expression

∑
j∈N hidijxij over all the nodes

i ∈ N .

4.0.3 p-centdian

The p-centdian problem is to find p nodes where to locate charging stations
so to minimize a linear combination of the objective functions of the p-median
and p-center problems. Thus, the p-centdian has characteristics in between
the the p-center and p-median. The formulation is as follows

minλM + (1− λ)
∑
i∈N

hi
∑

j∈N |(i,j)∈E

dijxij (9)

subject to

M ≥
∑

j∈N |(i,j)∈E

hidijxij ∀i ∈ N (10)

and the already presented constraints (2)–(6). Through the parameter λ, with
0 ≤ λ ≤ 1, it is possible to define the relative importance of one objective with
respect to the other one. In this work, we set the parameter λ dynamically by
using the optima of the p-center and p-median subproblems and calibrating
their combination in order to have the two terms with the same magnitude.

5 Key Performance Indicators

In this section, we define the set of KPIs that were used in the project in
order to measure the performance of the solution provided by the model. For
simplicity, we define Li = {j ∈ Ci | yj = 1} as the set of nodes where a
charging station has been located that covers demand node i, and C = {i ∈
N | ∃j ∈ Ci such that yj = 1} as the set of demand nodes covered by at least
one charging station.
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The proposed KPIs consider topological, coverage, and accessibility mea-
sures. They are summarized in Table 1 and detailed explained in the following:

Table 1 KPIs definition.

Description Name Formula

Worst-case distance Dmax max
i∈N

min
j∈L

dij (11)

Weight of the worst-case distance Dh
max

hi such that arg max
i∈N

min
j∈L

dij (12)

Best-case distance Dmin mini∈N min
j∈L

dij (13)

Weight of the best-case distance Dh
min

hi such that arg min
i∈N

min
j∈L

dij (14)

Average distance Davg
1

|N |
∑
i∈N

min
j∈L

dij (15)

Weighted average distance Dh
avg

1

|N |
∑
i∈N

min
j∈L

hidij (16)

Dispersion Disp

∑
i∈L

∑
j∈L

dij (17)

Accessibility Acc

∑
i∈N

hiAi, with Ai :=
∑
j∈L

e−βdij (18)

Coverage C |C|/|N | (19)

Weighted coverage Ch
∑
i∈C

hi (20)

Weight of redundant coverage RCh
∑
i∈N

∑
j∈Li

hi (21)

Worst-case coverage Cmin min
i∈N

|Li| (22)

Weight of the worst-case coverage Chmin
hi such that arg min

i∈N
|Li| (23)

Best-case coverage Cmax max
i∈N

|Li| (24)

Weight of the best-case coverage Chmax hi such that arg min
i∈N

|Li| (25)

Average coverage Cavg
1

N

∑
i∈N

|Li| (26)

Weighted average coverage Chavg
1

N

∑
i∈N

hi|Li| (27)

– Worst-case distance: Eq. (11) represents the maximum distance between a
demand node and its closest charging station.

– Weight of the worst-case distance: Eq. (12) represents the demand rate
that is affected by the worst-case scenario in terms of distance.

– Best-case distance: Eq. (13) represents the minimum distance between a
demand node and its closest charging station.
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– Weight of the best-case distance: Eq. (14) represents the demand rate that
is affected by the best-case scenario in terms of distance.

– Average distance: Eq. (15) represents the average distance between a de-
mand node and its closest charging station.

– Weighted average distance: Eq. (16) represents the average distance in
which each node is weighted by its demand rate.

– Dispersion: Eq. (17) represents the sum of the distances between all the
located stations. It is a measure of homogeneity of the service from a purely
topological point of view.

– Accessibility: Eq. (18) is the total accessibility of the charging service,
where

Ai :=
∑
j∈L

e−βdij (28)

is the accessibility of a facility in the sense of [14]. The parameter β > 0
must be calibrated and represents the dispersion of the alternatives in the
choice process (the calibration has been performed according to [22] and
[5]).

– Coverage: Eq. (19) represents, in percentage, the number of covered loca-
tions with respect to the total.

– Weighted coverage: Eq. (20) represents, in percentage, the demand rate of
the covered locations with respect to the total demand (we remark that,
by definition,

∑
i∈N hi = 1).

– Weight of the redundant coverage: Eq. (21) represents, in percentage, the
demand rate of the covered locations multiplied by the times that such
locations are covered. This indicator measures the weighted redundancy of
the coverage.

– Worst-case coverage: Eq. (22) represents the minimum number of charging
stations covering a demand node.

– Weight of the worst-case coverage: Eq. (23) represents the demand rate
that is affected by the worst-case scenario in terms of coverage.

– Best-case coverage: Eq. (24) represents the maximum number of charging
stations covering a demand node.

– Weight of the best-case coverage: Eq. (25) represents the demand rate that
is affected by the best-case scenario in terms of coverage.

– Average coverage: Eq. (26) represents the average number of charging sta-
tions covering a demand node.

– Weighted average coverage: Eq. (27) represents the average coverage in
which each node is weighted by its demand rate.

6 Numerical Experiments

The instances of the Biella problem are generated according to real data. In
particular, the matrix of distance dij considers the time, in minutes, to travel
from i to j. The diagonal elements (i.e., dii,∀i ∈ N) are estimated according
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to the geographical extension of the city. The estimations are considered from
the Istat (Istituto Nazionale di Statistica) website3

Among the three proposed and described in Section 4, the model chosen
by the company for the solution of the problem is the p-centdian. This choice
is due to its flexibility with respect to the company goal and to its global per-
formance in terms ok KPIs (which has appeared to be better than the one of
the p-center and p-median models in some preliminary experiments). The p-
centdian model, accurately instantiated with the data deriving from the Biella
district case study, can be easily solved by exact algorithms as the branch-
and-cut implemented in the available commercial and academic solvers. In
our particular case, we used the GUROBI solver v.8.1.0. The resolution was
performed on a common PC (Intel Core i7-5500U CPU@2.40 GHz with 8 GB
RAM) and took on average 12 seconds. Notice how the resolution efficiency ob-
tained allows to possibly perform a large number of experiments with different
input data, thus refining the analysis.

The solutions for the different time thresholds studied, obtained using the
p-centdian model, are the following (clearly, at each intervention, the locations
chosen in the previous steps are forced to remain in the solution):

– one municipality (p = 1) by the end of 2019: the only municipality chosen
is Biella, the chief town (see the first map of Figure 2). This was expected
since Biella is the most important city in terms of demand.

– 10 municipalities (p = 10) by the end of 2022: some small municipalities
close to and other big ones far from Biella are chosen (see the second map
in Figure 2).

– 37 municipalities (p = 37) by the end of 2025: the solution tends to select
municipalities close to the previously selected ones, creating clusters (see
the third map in Figure 2)

– all municipalities (p = 78) by the end of 2030 (this corresponds to the
trivial solution with yi = 1,∀i ∈ N).

The value of all the KPIs, in the various steps of intervention, is calculated
and shown in Table 2. Note that the last column, corresponding to the case
in which all the locations are chosen, contains the best possible value for each
KPI. Several observations can be done:

– Dmax decreases with the increase in the number of municipalities in which
at least one charging station has been located and, as it can be seen, it
reaches reasonable values from p = 10 onward.

– Dh
max increases with the increase in the number of municipalities in which

at least one charging station has been located. This KPI is complementary
to the Dmax since it is the importance of the node most distant from a
server. Hence, its monotonicity is not a standard feature of the model and
it strongly depends on the instance considered.

– Dmin decreases as the number of municipalities in which at least one charg-
ing station has been located increases, and it stabilizes at the best value
already with p = 10.

3 http://www.istat.it/storage/cartografia/matrici_distanze/Piemonte.zip
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Fig. 2 Optimal location for p = 1, 10 and 37 (2019). Chosen locations in red.

– Dh
min decreases as the number of municipalities in which at least one charg-

ing station has been located increases. This KPI is complementary to the
Dmin since it is the importance of the node nearest to a server. Hence, its
monotonicity is not a standard feature of the model and it strongly depends
on the instance considered. Usually, the smallest distance is achieved by the
internal distance of the node in which an electric station is located. In fact,
if just 1 location is considered, the node nearest to a facility is the most
important (Biella). Then, if more stations are located, the nearest node has
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a lower importance, this is reasonable since node with a smaller internal
distance usually are less important (they have a smaller population, hence
a smaller demand).

– Davg decreases as the number of municipalities in which at least one charg-
ing station has been located increases. It is interesting to note that the per-
centage improvement in the indicator decreases as the number of selected
municipalities increases.

– Dh
avg decreases as the number of municipalities in which at least one charg-

ing station has been located increases. It reaches its asymptotic value al-
ready when p=10 (faster than Davg). This is reasonable since the model
considers the weighted distances.

– Disp increases as the number of municipalities in which at least one charg-
ing station has been located increases. Its growth is very marked due to
the factorial growth of the number of pairs of selected municipalities. The
starting value is set to zero since with a single municipality the summation
in the definition cannot be calculated.

– Acc increases as the number of municipalities in which at least one charging
station has been located increases. Also in this case the improvements are
less marked as the number of selected municipalities increases.

– C increases as the number of municipalities in which at least one charg-
ing station has been located increases. It can be seen that with only 10
selected municipalities, the coverage reaches very high levels (96% of the
municipalities are covered).

– Ch increases as the number of municipalities in which at least one charg-
ing station has been located increases. Its convergence is faster than the
convergence of C because the nodes that are not covered until p = 78 have
less importance.

– RCh increases as the number of municipalities in which at least one charg-
ing station has been located increases. It is important to note that the
largest part of this KPI is provided by the multiple coverage of the most
important nodes. As the reader can notice, the increment of the value is
very fast.

– Cmin increases with the number of municipalities where at least one charg-
ing station has been located. Since this is the most pessimistic case, this
indicator remains at zero when 1, 10, and 37 selected municipalities are
considered. The data then verifies the non-total coverage shown by the
KPI previously discussed.

– Chmin decreases as the number of municipalities in which at least one charg-
ing station has been located increases. As the reader can notice, the least
covered nodes have always a very low importance.

– Cmax increases as the number of municipalities in which at least one charg-
ing station has been located increases. It can be seen that the increase in
value grows with the number of selected municipalities. However, it can be
noted that already with 10 municipalities the most covered municipality
has the choice between 7 charging stations within a 25 kilometers radius.
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– Chmax is constant with respect to the number of municipalities in which at
least one charging station has been located increases. This is due to the
fact that at each iteration, the node that is covered the greatest number
of times is the most important node, i.e, the city of Biella.

– Cavg increases with the increase in the number of municipalities in which
at least one charging station has been located and, as it can be seen, has a
much lower value than the Cmax. This implies a heterogeneous situation in
terms of coverage of the various locations. In fact, we have a large number
of municipalities covered by a few charging stations and a small number of
municipalities covered by many charging stations. Since the towns that are
not covered are those with a lower demand (i.e., with less electric vehicles)
this feature is in line with the technical specifications of the problem.

– Chavg increases with the increase of the number of municipalities in which
at least one charging station has been located. The increase rate of this
value is similar to the one of Cavg, except for the first step p = 1→ p = 10.

Table 2 KPIs value in the four intervention p-centdian.

KPI p = 1 (2019) p = 10 (2022) p = 37 (2025) p = 78 (2030)

Dmax 53 24 20 11

Dh
max 0.001 0.001 0.001 0.002

Dmin 5.7 2 2 2

Dh
min 0.285 0.005 0.005 0.001

Davg 20.3 8.9 5.8 4.4

Dh
avg 0.19 0.08 0.06 0.06

Disp 5.73 2158.2 34663.9 167201.3
Acc 0.024769 0.115986 0.329689 0.456748
C 55% 96% 98% 100%

Ch 0.781 0.993 1 1

RCh 0.062 4.44 14.32 29.41
Cmin 0 0 0 1

Chmin 0.002 0.002 0.001 0.001
Cmax 1 8 23 43

Chmax 0.285 0.285 0.285 0.285
Cavg 0.089744 2.653846 8.833333 19.28205

Chavg 0.01 0.06 0.21 0.38

A common trend of almost all the KPIs is that the second intervention is
the one providing the highest proportional change with respect to the previous
one (e.g., C almost doubles its value for p = 10 while it gains only few units
for p = 37 and p = 78). Interesting enough, Dmin reaches its optimal value
even for p = 10. This represents a very important insight for the company
for two main reasons. First, it means that the users will perceive the biggest
improvement in terms of service in relatively small amount of time (the first 3-
5 years) and in response to a small effort in terms of installed stations. Second,
it means that the last interventions, which are the ones affected by the most
uncertainty (e.g., in terms of economical sustainability), are not very critical
for the process overall quality.
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7 Conclusions

In this paper, we have conducted an extensive comparative analysis of models
and Key Performance Indicators concerning the optimal location of charging
stations for electric vehicles. Motivated by a real case-study concerning the
district of Biella in Italy, we highlighted the fact that a perfect location model
does not exist but, instead, different models might be jointly considered to face
a certain set of requirements and objectives. Therefore, a battery of topological
and coverage Key Performance Indicators have been identified and calculated
for the solutions given by the different models. The analyzed KPIs include
measures about the covering capabilities, the robustness, the dispersion, and
the accessibility of the resulting solutions.

Several future research lines can be defined. First, a similar analysis can
be performed by explicitly including stochasticity into the decision process.
Given the application at hand, the demand rate hi of node i is the parameter
that makes more sense to represent as a stochastic variable. This is due both
to the difficulty of estimating the service demand Qi for any node according
to a static vision (e.g., number of EV users living around a demand node) and
for the unpredictable dynamics of traffics flows and their issues. Second, as
already mentioned in the Introduction, a comparative study can be performed
for several other location models.
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16. Labbé, M., Leal, M., Puerto, J.: New models for the location of controversial facilities: A

bilevel programming approach. Computers & Operations Research 107, 95–106 (2019).
DOI 10.1016/j.cor.2019.03.003

17. Lee, C., Han, J.: Benders-and-price approach for electric vehicle charging station lo-
cation problem under probabilistic travel range. Transportation Research Part B:
Methodological 106, 130–152 (2017). DOI https://doi.org/10.1016/j.trb.2017.10.011.
URL http://www.sciencedirect.com/science/article/pii/S0191261517305052

18. Massiani, J., Gohs, A.: The choice of bass model coefficients to forecast diffusion
for innovative products: An empirical investigation for new automotive technolo-
gies. Research in Transportation Economics 50, 17–28 (2015). DOI https://doi.org/
10.1016/j.retrec.2015.06.003. URL http://www.sciencedirect.com/science/article/

pii/S0739885915000220. Electric Vehicles: Modelling Demand and Market Penetration
19. Quiliot, A., Sarbinowski, A.: Facility location models for vehicle sharing systems. Pro-

ceedings of the 2016 Federated Conference on Computer Science and Information Sys-
tems 8, 605–608 (2016). DOI http://dx.doi.org/10.15439/2016F10
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