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Summary 

Reducing building energy consumption while ensuring indoor comfort 
conditions is becoming everyday more important. Such challenges cannot be 
approached using traditional solutions, but require a change of paradigm. This 
transition has already started, as new concepts are arising: energy flexibility is 
gaining importance, demanding improvements in terms of the ability of a building 
to manage its demand and generation; responsive building concepts are replacing 
the static ones, pushing toward building adaptation to changing boundary 
conditions and requirements. 

In this context, adaptive building façades represent a promising solution to 
improve buildings flexibility and responsiveness, providing the building envelope 
the abilities to change its thermos-optical properties to respond to changing 
boundary conditions (e.g. weather, occupancy) or requirements (e.g. comfort 
levels). However, these technologies are rarely implemented in the current building 
stock. 

Control strategies play a central role in the exploitation of adaptive building 
façades. Despite the widespread use of advanced control strategies in many fields 
often related to industrial applications, little has been explored for applications 
involving adaptive façade components. 

In this framework, this doctoral dissertation sets out to investigate the 
opportunities arising from using advanced control strategies to operate adaptive 
building components. This endeavour involved different steps. Adaptive building 
technologies and control strategies were explored through a literature review, with 
particular focus on components for solar gains modulation and advanced predictive 
control strategies. Following a pragmatic approach, a Hybrid Model Predictive 
Control strategy (HMPC) for the operation of an active façade based on 
electrochromic windows was designed and implemented in two case studies. This 
activity involved the development of physical models (white-box) and simplified 
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data-driven models (grey-box) to accurately describe and predict the thermal 
dynamics of the systems. Characterization and monitoring of the real case study 
were carried out to validate the respective physical model and enable the 
implementation of a real-time control system. A toolchain structure was conceived 
for the co-simulation and control implementation. 

In the first case study, different HMPC strategies were designed to control an 
electrochromic window with the aim of reducing the heating and cooling energy 
need. Results based on Key Performance Indicators demonstrated how HMPC 
strategies outperformed Rule Based Control (RBC) strategies used as baseline and 
that the possibility to tune HMPC adds flexibility to the controller, which can be 
regulated according to specific objective functions. 

In the second case study, an electrochromic façade was installed in an outdoor 
test cell (TWINS). The HMPC designed in this case aimed at minimizing the energy 
need considering the heating, cooling and lighting system. Comparing the HMPC 
with the baseline strategies, it was demonstrated that the predictive controller was 
able to better exploit the physical phenomena driving the system evolution, given 
its prediction abilities and the opportunity to manage contrasting needs  

This thesis defines a novel methodology to control active building components 
using HMPC strategies, able to merge feedback control principles with numerical 
optimization and to manage both continuous and discrete state variables. 

The outcomes of the research activities undertaken in this PhD highlight the 
importance of control strategies on active building components, showing how an 
advanced control strategy such as the MPC, on the one hand opens a new set of 
possibilities (e.g. managing contrasting needs, account for constraints) and on the 
other hand enhances the performance of these systems. 
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Chapter 1 

1. Introduction 

This Chapter introduces the PhD thesis delineating the background and clarifying 
the research aims and objectives. 
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1.1. Background and motivation 

During the last decades, the scientific debate has increasingly focused on the 
need to reduce the global energy consumption, which represents the largest source 
of greenhouse gas emissions from human activities [1,2]. As stated in many studies 
and reports, buildings account for up to 40% of the global energy consumption 
[3,4]. Moreover, an increase in the comfort requirements and the growing 
accessibility to comfortable buildings pushes the building sector to be more and 
more energy intensive, both in terms of total energy need and peak loads 
requirement. To this extent, the concept of energy flexibility is gaining importance 
over the last years, defined in the IEA EBC Annex 67 as “the ability [of a building] 
to manage its demand and generation according to local climate conditions, user 
needs and grid requirements. Energy Flexibility of buildings will thus allow for 
demand side management/load control and thereby demand response based on the 
requirements of the surrounding grids.” [5,6]. These concepts were also developed 
in the framework of an increasing need of managing and exploiting energy 
generation from renewable energy sources (RES), which, because of their 
discontinuous nature, could jeopardize the energy system stability or at least curb 
RES market penetration. 

Building envelopes account for a significant portion of the overall building 
energy need. The outdated approach of perceiving the envelope as a barrier that 
needs to seek a disconnection between the indoor and outdoor environment, can no 
longer be seen as a viable solution to the current needs. A change of paradigm is 
increasingly leading to a shift from a static conception of the building envelope to 
adaptive concepts [7]. Over the last years, this concept is rapidly meeting reality, 
given the significant improvements in the building façade systems, which are 
increasingly able to adapt and respond to changing boundary conditions, in order to 
meet the users’ comfort needs while reducing the building energy demand. 

This is made possible by building technologies that are able to modulate heat 
and mass transfer between the indoor and outdoor environments in many different 
ways, for example: 

 adaptive cladding in opaque façades can exploit variable solar 
absorption coefficient to control heat fluxes through the opaque 
building envelope or even energy storage in massive opaque 
components [8]; 

 dynamic insulation modulates heat fluxes through the opaque building 
envelope, with the possibility of allowing or reducing heat gains and 
heat losses [9]; 

 double skin façades of advanced multifunctional façades can operate in 
different modes, exploiting wind action or solar radiation to accumulate 
or dissipate heat [10,11]; 

 smart glazing technologies can allow solar gains modulation, with 
effects on both thermal and lighting [12]. 
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Amongst the many available technologies, active building components are 
particularly promising, since ad-hoc control strategies can be designed to shape the 
desired behaviour. However, ineffective control strategies applied to powerful 
active building components could lead to not only nullify the advantages potentially 
brought by the component, but even worsen the overall performances of the 
considered system with respect to a traditional, static technology. 

Despite the advances in the hardware solutions, little is explored on the 
software side [13]. Many advanced control strategies have been used and are 
currently applied in various fields, often linked to production processes or 
mechanical systems. A great potential resides in declining these software solutions 
for the previously introduced hardware (i.e. active building components). This 
potential is boosted by the increasing availability of affordable electronic 
components, powerful computational devices, reliable weather forecast data and 
data-analytics tools, that provide the needed information and sub-structure to 
support the application of advanced control strategies in active building elements. 

 

1.2. Research aims and objectives 

Nowadays, the need of reducing building energy consumption while 
guaranteeing comfort condition, better exploiting energy generation from RES and 
increasing building flexibility is becoming more and more urgent. 

A significant contribution in meeting these requirements can come from active 
building components, which are gaining importance in a world where technology 
is opening to new possibilities and electronic components are becoming every day 
more accessible. The inherent potential of active building components systems is 
enormous, especially if compared with the traditional, static ones. 

Today’s challenge is that of exploring advanced control strategies in order to 
fully exploit adaptive building components potential and overcome the cost-
effectiveness barrier. 

In this context, the presented PhD thesis aims at investigating the new 
possibilities arising from merging the adaptive abilities of modern building 
components technologies with powerful advanced control strategies. This 
endeavour can be summarised as follows: 

• Investigation on adaptive (active) building components and building 
control systems, with a particular focus on advanced predictive control 
strategies; 

• Development of validated physical models (white-box) and calibrated 
simplified models (grey-box), able to describe and predict the thermal 
dynamics of the considered systems; 

• Characterization and monitoring of a real case study, which allowed the 
validation of the respective physical model and the implementation of 
real-time control strategies; 
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• Conception of a toolchain structure to enable the co-simulation of 
building systems equipped with active components under advanced-
control based operation; 

• Definition of a novel methodology to control active building 
components using Hybrid Model Predictive Control (HMPC) 
strategies, able to merge feedback control principles with numerical 
optimization and to manage both continuous and discrete-state 
variables. 

Summarising, this PhD thesis sets out to investigate the use of advanced control 
strategies for active building components. The design and implementation of 
HMPC strategies for active façades represent a novel approach to better exploit 
promising active technologies while considering all these hybrid systems key 
characteristics. 

 

1.3. Thesis outline 

Chapter 2 provides an overview of the current advances in the fields of active 
building components and building control systems and strategies. The state-of-the-
art is described and new opportunities are identified. This literature review 
constitutes the basis from which the following parts of the thesis developed. 

Chapter 3 describes the workflow of the first application of an advanced Model 
Predictive Control strategy in a simulative case study. An electrochromic window 
was considered as the active component to be controlled, and results show 
comparisons between different MPC strategies and between Rule Based Control 
(RBC) strategies and MPC. This work was developed in the framework of a visiting 
research program at the Sustainable Buildings Research Centre (SBRC) of the 
University of Wollongong (UOW), during which, the development of the presented 
work ran in parallel with the design of a comparative experimental facility 
composed of two test cells, now built and functioning. 

Chapter 4 presents a second case study, characterized by both numerical and 
experimental activities. The case study considered is a test cell part of the TWINS 
(Testing Window Innovative System) facility of Politecnico di Torino. In particular, 
the test cell was equipped with next-generation electrochromic glazing units, 
characterized by reduced faster transitions between states and improved aesthetics 
(more neutral colour rendering) and provided in the framework of a research 
collaboration with a cutting-edge smart-glazing manufacturer. A similar 
methodological approach of the one carried out in Chapter 3 was applied, resulting 
in the implementation of a Model Predictive Control strategy considering thermal 
and lighting requirements. Also in this case, results compare different MPC and 
RBC control strategies. 

Chapter 5 concludes the present thesis, providing an overview on the main 
findings and results and suggesting perspective for future works. 

A schematic of the thesis outline is shown in Figure 1.1. 
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Figure 1.1. PhD thesis outline 
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Chapter 2 

2. Literature Review 

This Chapter provides the literature background in which the thesis is 
developed. Literature review on adaptive building components and building control 
is reported. 
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2.1. Introduction 

This chapter provides an overview of the literature review carried out in this 
thesis with the aim of providing a background in the fields of adaptive building 
components and building control. 

A first section focuses on the state-of-the-art building adaptive components, 
particularly on active components. Specifically, active technologies able to actively 
modulate solar radiation by means of variable thermo-optical properties are 
investigated. 

A second section reviews current advances on building control including 
existing hardware architectures, control algorithms and control-oriented modelling. 
Particular attention was given to papers related to Model Predictive Control, as this 
control approach was used by the author in this thesis. 

2.2. Building adaptive components 

Adaptive building components include a variety of building-related 
technologies and many authors tried to provide a clear definition. Using the 
terminology of Climate Adaptive Buildings Shells (CABS), Loonen et al. defined 
it as an element “able to repeatedly and reversibly change some of its functions, 

features or behavior over time in response to changing performance requirements 
and variable boundary conditions, and does this with the aim of improving overall 
building performance” [14]. This definition describes precisely the key features of 
an adaptive building component while being general enough to be applicable to the 
several ways in which these components can work as stated. From the technological 
point of view, many reviews have tried to provide classifications, separating them 
in sub-classes, including opaque components, solar façades, shape-morphing solar 
shadings, etc. [8,12,15–20]. These can also be divided in passive and active. Passive 
technologies naturally respond to changing environmental conditions, without the 
need of an external input. The mechanical or chemical processes that trigger this 
response can be influenced by different factors, as air humidity [21] or temperature 
[22]. The advantage of these components is that during operation they operate 
independently, reducing the system complexity and effort during operation. This, 
on the other side, is also a weakness: the inability control the adaptive component 
might lead to unwanted behaviours, which not necessarily always meet the design 
or occupants' expectations. 

Active components, change their properties in accordance with an external 
stimulus that acts as a control input. These technologies can be mechanically 
operated, such as shading devices, blinds, vents, or electrical/electronic systems, 
such as liquid crystal devices (LCD), electrochromic glazing and suspended particle 
devices (SPD). This category of adaptive components is more flexible than the 
passive ones, since their behaviour can be altered in accordance to specific needs 
during operation as they change over time. However, there are several additional 
installation requirements and precautions to be implemented for the correct 
integration of these components in a building. An appropriate control infrastructure 
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needs to be designed in order to connect the active technology with the Building 
Automation and Control Systems (BACS); the control strategy implemented needs 
to choose the correct control actions to be delivered to the active component and 
the necessary sensors to provide feedback to the control algorithm need to be 
installed in the right location. The increasing presence of automation in buildings 
is a sign that also the building sector is moving in the direction of the current digital 
revolution. Information and Communication Technologies (ICT) are getting more 
and more applied in the building sector and new concepts as the Internet Of Things 
(IoT) are shaping the new ways in which physical problems are approached. In this 
framework, active building components can help pushing this industry in the same 
direction, finding fertile ground for their application. 

2.2.1. Active modulation of solar radiation 

Active building components that able to modulate solar radiation affect 
multiple physical domains, such as thermal comfort, visual comfort and building 
energy performance. Moreover, ad-hoc control strategies can be conceived to 
manage the component in order to achieve specific objectives. Furthermore, 
modulating the incoming solar radiation has both immediate and longer time-span 
effects on the system, which can both be exploited. For example, in the short term, 
solar gains can be modulated to affect the immediate effects on thermal comfort 
due to people exposed to solar radiation, or visual comfort issues; longer-term 
effects include the heating of the building thermal mass, and use it to allow better 
thermal comfort conditions while lowering the building energy demand [23]. Of 
course, this is possible if the control strategy implemented is able to take into 
account these delayed effects and sometimes conflicting objectives. 

Active glazing technologies change their thermo-optical properties in response 
to an electric impulse. Suspended Particle Devices (SPD) and Liquid Crystal 
Devices (LCD) require a continuous voltage application to be activated [20]. In 
SPD, when no potential difference is applied, randomly oriented dipolar particles 
suspended in an organic fluid block light transmission; when the voltage is applied, 
these particles align, thus increasing light transmission (Figure 2.1 a [24]). LCD 
work thanks to a layer made of nematic liquid crystal droplets dispersed in a 
polymer matrix; this composite material is constituted by two materials with 
different refractive index, which normally results in light scattering, but with a 
voltage application, the alignment of the crystals allow light transmission (Figure 
2.1 b [24]). One of the main differences between the devices is that while LCD 
scatter light and appears translucent when no voltage is applied, SPD absorb light, 
thus appearing darker. 
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Electrochromic materials mainly exploit oxidation and reduction chemical 

processes to change their optical properties. These materials can be organic-based 
(as bipyridilium systems, conducting polymers, phthalocyanines, 
tetrathiafulvalenes, quinones, terephthalates, and cyanobiphenyls) or inorganic- 
based (mostly W and Ni) [25]. When an external voltage is applied, these chemicals 
reactions drive electrons to move between the two electrochromic materials, 
causing a change in the way the solar radiation is absorbed and reflected. It is 
particularly interesting to observe that when there is no electric voltage applied, the 
electrochromic glazing maintains the optical properties (Figure 2.2 [24]). This 
means that energy is required only to drive a state change, making this technology 
way less energy intensive than the previously described LCD and SPD. The 
transition time between two states, however, are slower in electrochromic than in 
LC and SP devices. Nonetheless, from one side advances in the technology are 
reducing time response (in the order of few minutes), and from the other side 
applications in architecture can more easily accept these responses because of the 
usually slow building thermal dynamics. 

 

 
Photovoltachromic couple electrochromic and photovoltaic materials, allowing 

solar radiation modulation and energy generation. However, further development 
is needed for these technologies to be implementable for building purposes [26,27]. 

a) b) 

Figure 2.1. Working schematics of a) SPD and b) LCD [24] 

Figure 2.2. Working schematic of an electrochromic glazing [24] 
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Many technologies are available for solar radiation modulation in buildings. 
Each has its advantaged and drawbacks, but electrochromic seems to hold the most 
potential in the short-mid term: a low energy expense is needed during operation, 
the adaptation range allows potentially high energy savings and better comfort 
conditions and the technological readiness level is already mature. Many studies 
have analysed the electrochromic technology according to the material used ([28–

30]), the glazing colour rendering [31] and building applications [32]. 
Granqvist [33] defines the electrochromic-based fenestration as the most 

advanced and currently being used in innovative buildings, with the ability of 
improving energy efficiency, enhancing indoor comfort and providing financial 
benefits. 

Baetens et al. [12] reviewed smart windows technologies for daylight and solar 
energy control in buildings, concluding that electrochromic windows seem the most 
promising technology for daylight and solar energy purposes. They also highlight 
how control affects the effectiveness of electrochromic windows. 

As pointed out in literature, control strategies dramatically affect performances 
in terms of energy consumption and comfort levels. As a result, there is a clear 
necessity of adopting advanced control strategies to fully exploit the potential of 
the presented active technologies [12,27,34–36].  

 

2.3. Overview and general description on building control 

Active building components are generally controlled using relatively simple 
Rule Based Control (RBC). As will better discussed in the next subsection, RBC 
consists of simple if-then rules based on endogenous or exogenous parameters 
which are expected to influence the building performance in terms of indoor 
comfort conditions or energy consumption. However, more advanced control 
strategies, which are already been studied in other building systems contexts, can 
provide an opportunity for a more effective operation of adaptive building 
components. The following subsections outline the main characteristics and 
features of building control system and strategies. 

2.3.1. Rule Based Control strategies 

Rule Based Control (RBC) strategies are currently the most widespread control 
algorithms applied to building active glazing systems. They are formulated to 
enable operations that, if a condition occurs, then a given control action is applied; 
this is translated in practice by choosing certain parameters and the relative 
thresholds to establish which conditions lead to what actions are to be applied. 
While the control actions are related to the technology used (e.g. glass tinting states 
in case of electrochromic windows), the controlled parameters, acquired via the 
sensing system, can encompass endogenous (e.g. indoor temperature) and 
exogenous (e.g. solar radiation) variables. These can also result from a 
mathematical elaborations of multiple measurements (e.g. comfort indices such as 
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the Predicted Mean Vote). The most used parameters are the indoor temperature 
[37,38], outdoor temperature [39], solar radiation [34,35,37,38,40–42], illuminance 
[35,37–39,43], heating or cooling need [40] and occupancy levels[35,40]. 

Karlsson [44] applied two control strategies to for switchable glazing control 
in an office module. One strategy is based on solar radiation, linearly varying the 
switchable glazing between 50 and 300 W/m2; the other strategy is based on indoor 
air temperature and occupancy presence. 

Scorpio et al. [38] used three strategies to control a crystal based electrical 
driven window, which could switch from a transparent to an opaque (translucent) 
state. The control strategies were based on the indoor air temperature (thermal 
strategy), the daylight illuminance inside the room (daylight strategy) and the solar 
radiation on the vertical surface (solar strategy). 

Jonsson and Roos [40] tested four control strategies: one based on the heating 
or cooling need, one on transmitted solar radiation and two strategies based on 
schedules and combining the previous logics with information on occupancy. 

Ritter et al. [37] based their five control strategies on solar radiation, internal 
illuminance, indoor air temperature and two controls based on the PMV-index. 

Gugliermetti et al. [34] developed an ON-OFF and a linear controller based on 
the incident solar radiation. 

Lee et al. [45] modulated the tinting level of an electrochromic window based 
on the incident solar radiation or on the work plane illuminance. 

Fendandes et al. [43] controlled an elecrochromic window with blinds to satisfy 
visual comfort parameters. 

Assimakopoulos et al. [36] used a learning-based approach, different from Rule 
Based Control. They implemented adaptive neuro-fuzzy inference system (ANFIS) 
using window and work-plane illuminance, vertical solar radiation, and room 
temperature. 

Lee et al. [46] used a simulation-based optimal control to operate 
electrochromic glazing in commercial buildings considering different climatic 
conditions. The optimization is based on the minimization of an objective function 
containing the cooling and heating needs over the year. 

All these studies have shown that even using simple rules it is possible to obtain 
satisfactory results. However, more advanced control strategies as Model Predictive 
Control have a great potential in further improving the effectiveness of these 
technologies while allowing more flexibility in operation. 

2.3.2. Model Predictive Control strategies 

Model Based Control strategies approach the control problem in a completely 
different way compared to RBC. In MBC, the controller uses a generally linear and 
differentiable model of the system, used to simulate the behaviour of the system to 
choose the best strategy to reach predefined goals. This result in a much higher 
flexibility compared to RBC strategies, since instead of using pre-defined 
strategies, an indirect logic approach is exploited, which consists of employing 
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models to simulate the system behaviour under different control strategies and 
choose the best one [47,48]. 

When MBC strategies are enhanced with predictive abilities, future scenarios 
can be taken into account, potentially increasing the controller performance. This 
formulation, called Model Predictive Control (MPC), is considered one of the most 
promising advanced control strategies [47,49]. 

Serale et al. [49] developed an extensive review on MPC for building and 
HVAC system energy efficiency. 

In MPC, the underlying model is able to predict the response of the dynamic 
system, called outputs, from information on the manipulated variables (inputs) and 
uncontrolled inputs (disturbances). The MPC looks for the best sequence of future 
inputs to minimize a given cost function. This optimization procedure is performed 
for a pre-defined prediction horizon, and constraints on inputs and outputs are taken 
into account by the controller. The first inputs of the optimized sequence are 
applied, and the procedure repeats itself at the following control time-step. This 
makes the MPC a feedback, closed-loop control, and the peculiar procedure of 
moving the prediction horizon forward at each time-step is known as receding 
horizon (Figure 2.3 [49]). 

In Figure 2.3 [49], k is the current moment, the control time-step is the time at 
which the control is updated, the control horizon is the time in which the 
manipulated variables can assume different values and the prediction horizon refers 
to how much ahead in the future the looks to optimize the cost function. Often the 
control horizon and the prediction horizon can be found equal. 

Figure 2.3. Receding horizon schematic [49] 
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An exhaustive framework pointing out all the elements composing an MPC is 
found in [49] and reported in Figure 2.4.  

 
From Figure 2.4 it is clear that MPC is much more complex to design than 

direct RBC strategies. The dark grey rectangles point out all the working elements 
of an MPC, specifically conceived for building and HVAC system. If adaptive 
components are also considered, the overall complexity of the MPC formulation 
increases, but the same constituting blocks are needed. The functional pieces of an 
MPC strategy are now described. 

Disturbances 

Disturbances are related to all the input variables affecting the system that 
cannot be controlled; in the case of building applications, weather conditions are 
always considered, but additional disturbances as occupancy levels, energy pricing 
and occupants’ behaviour can be considered. On one side, this increases the 
complexity of the problem and adds uncertainties to the future prediction on the 
used disturbances; on the other side, however, improvements in the controller 
performance could be seen. This because a better exploitation of potential benefits 
provided by the disturbances or a better planning to anticipate unfavourable changes 
can be foreseen by the controller. 

Objective function 

The objective function defines the goal to be sought; multiple factors can be 
taken into account at once, even contrasting. This feature makes the MPC 

Figure 2.4. Framework of the MPC optimization problem [49] 
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particularly interesting for applications in buildings with adaptive components, in 
which the multiple needs to satisfy are often in contrast. For example, increasing 
the transparency of a switchable glazing, leads to an increase of natural daylight in 
the indoor environment, thus reducing the energy needs for artificial lighting; on 
the other hand, an increase in exogenous heat gains via solar radiation occurs, 
leading to potential increases in cooling energy needs. It is indeed essential to find 
a trade-off solution to satisfy the overall need of energy reduction. This is possible 
to be defined in the objective function of the MPC, with the added feature of 
associating a weight to each involved controlled variable, allowing to tune a given 
MPC strategy according to specific needs. Following the previous example, by 
tuning in different ways the relative weights associated with the energy usage and 
the transparency level of the switchable glazing, the MPC will find different 
strategies while seeking the same goal. If the energy usage is associated a much 
higher cost (or weight) than the related to the transparency level of the switchable 
glazing, MPC will consume as little energy as possible, almost regardless of the 
transparency level. However, if a lower cost is associated with energy usage, the 
MPC strategy will allow a higher energy usage than the previous case, but ensuring 
higher transparency levels. 

The objective function can be written in the form [50]: 
 

𝑚𝑖𝑛 ∑ [𝑊𝑥‖𝑥(𝑘) − 𝑥(𝑘)𝑟)‖𝑛𝑥
+ 𝑊𝑦‖𝑦(𝑘) − 𝑦(𝑘)𝑟)‖𝑛𝑦

]

𝑁𝑝

𝑘=1

+ ∑ [𝑊𝑢‖𝑢(𝑘) − 𝑢(𝑘)𝑟)‖𝑛𝑢

𝑁𝑝−1

𝑘=0

+ 𝑊Δ𝑢‖𝑢(𝑘) − 𝑢(𝑘 − 1))‖Δ𝑢] 

(2.1) 

 
 Where: 

 𝑥(𝑘) is the vector of the system states 
 𝑦(𝑘) is the vector of the outputs 
 𝑢(𝑘) is the vector of the manipulated inputs 
 𝑟 (use as subscript) refers to the reference values of the relative vector 
 𝑊𝑥 , 𝑊𝑦 , 𝑊𝑢 , 𝑊Δu  are the weight matrices 
 𝑁𝑝 is the prediction horizon 
 𝑘 is the discrete time step 

Receding horizon problem 

The receding horizon parameters need to be conceived as a function of the 
specific needs, the time-span in which the system physical phenomena take place 
and the characteristics of the controlled components. For example, the control time-
step for a switchable glazing needs to be chosen considering the time needed for 
the change in state to occur. At the same time, the prediction horizon depends on 
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the time-spans involved in a specific case, so strategies designed for high thermal 
mass buildings will need to consider longer (minimum) prediction horizons than 
cases related to lightweight buildings. It is worth to be noted that setting long 
prediction horizons and short control time-steps will lead to high computational 
effort, which could result in needing more time to compute a single control time-
step than its real duration (i.e. impossible to implement). 

Constraints 

Constraints are a key characteristic of MPC strategies, and allow to put 
boundaries on the manipulated inputs and the system states. Constraints on 
manipulated inputs can include physical limitations, as the maximum power of a 
HVAC system, or preferences, as avoiding switchable glazing state variation during 
the night. Constraints on the system states are usually used to define the target 
conditions, as the indoor air temperature. Another feature adding flexibility to MPC 
is the possibility to define hard constraints and soft constraints. Hard constraints set 
strict boundaries that cannot be violated; soft constraints, instead, allow the 
violation of the boundary, penalizing the cost function by means of a slack variable 
that measures the entity of this violation. Since the slack variable plays a role in the 
cost function, also in this case a relative weight is associated. Relatively high 
weights associated with the slack variable result in a soft constraint behaving as a 
hard one. 

Control-oriented models 

Control-oriented models are used to predict future system states based on future 
disturbances and controlled inputs. It is thus of paramount importance to conceive 
reliable control-oriented models, since otherwise the MPC strategy would be based 
on wrong future predictions, resulting in failing of achieving the goal or even to 
find feasible solutions at all [51,52]. Building models are generally dived in three 
categories: white-box, grey-box and black box models [47,49,51,53]. White-box 
models describe the physical model through detailed physical laws, thus solving 
algebraic and differential equations to assess the system dynamics. On the opposite 
end, black-box models are empirical, data-driven models that are not based on the 
laws governing the physical system. Grey-box models can be considered as in-
between the two previous groups, since they are based on a simplified physics of 
the system, which can be solved through algebraic or first order differential 
equations (ODE). The parameters used to describe the simplified physical model 
need to be identified using measured data or data obtained from white-box 
simulations. An overview of the positive and negative aspects of these models is 
presented in Table 2.1.  
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Table 2.1. Main Advantages and Disadvantages of the different model typologies for control 
applications (adaptation from [47]) 

Models Advantages Disadvantages 

White-box 

Accuracy 
Reliability 

Describe detailed physical 
phenomena 

Computational effort 
Error-prone modelling 
Not suitable for control 

and real-time applications 

Grey-box 

Describe physical 
phenomena in a simplified 

way 
Easy to implement 

Low computational effort 
Suitable for control and 
real-time applications 

Lower accuracy than 
white-box 

Not generalizable 

Black-box 

Low computational effort 
Flexibility 

Suitable for control and 
real-time applications 

Physical phenomena are 
not described 

Application specific 

 
In Figure 2.5 a comprehensive schematic of this classification, according to 

ASHRAE [53], is provided.  
 

 
As Aste et al. suggest, “the basic conditions that a model for MPC should 

satisfy are simplicity, stability, accuracy and precision in the estimation of system 
dynamics” [47]. For these reasons and for the effectiveness in modelling the 
thermal response of a building [54], grey-box models are widely used in MPC 
applications [55–57]. Grey-box models “retain the physical description of the 

system they represent and their parameters can be estimated using system 
identification methods” [49]. The “retained physical description” is approached 

using the analogy between the thermodynamics of a system and an analogue 
Resistance-Capacitance (R-C) electrical network. 

Figure 2.5. Schematic of the different modelling approaches according to ASHRAE 
classification [49] 
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An example of the R-C analogy is presented in: 
 

 
Figure 2.6 represents an example of the R-C analogy, as described by Bacher 

et al. in a research work aimed at identifying suitable models for the heat dynamics 
of buildings: increasingly complex grey-box models were considered in a case 
study and statistical and physical analyses were used to evaluate the models. It was 
found that starting from a certain level of complexity (specifically, from the model 
called TiTeTh), that residuals were found similar and the models were able to well 
describe the dynamics of the system [58]. The outcome of this study was greatly 
considered in the case studies presented in this thesis. 

 
Grey-box models are usually written using a state-space representation of 

Linear Time Invariant systems (LTI) [50]: 
 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + 𝐵𝑣𝑣(𝑘) + 𝐺𝑤(𝑘) (2.2) 
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢𝑢(𝑘) + 𝐷𝑣𝑣(𝑘) + 𝑑(𝑘) (2.3) 

 
Where: 

 𝑥(𝑘) is the vector of the system states 
 𝑦(𝑘) is the vector of the outputs 
 𝑢(𝑘) is the vector of the manipulated inputs 
 𝑣(𝑘) is the vector of the uncontrolled inputs (disturbances) 
 𝑤(𝑘) is the random noise on the states measurement 
 𝑑(𝑘) is the random noise on the outputs 

The matrices 𝐴, 𝐵𝑢 , 𝐵𝑣 , 𝐶, 𝐷𝑢 , 𝐷𝑣 and 𝐺 are, respectively, the state matrix, the 
manipulated input matrix, the disturbances matrix, the output matrix, the direct 
transmission matrix for manipulated inputs, the direct transmission matrix for 
disturbances, the matrix of the random noise on states. These matrices are estimated 
through system identification techniques. 

Figure 2.6. An example of an R-C network describing a building thermal system [58] 
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2.3.3. Applications of MPC for buildings 

In literature, many research studies have involved the application of MPC 
strategies in buildings, receiving a continuously increasing interest in the scientific 
community. It is in fact widely accepted that MPC strategies can lead to significant 
performance improvements, depending on the specific application, if compared to 
conventional control strategies. 

A demonstration of the increasing interest in this control approach for building 
applications is the emergence of tools as MPCPy [59], an open-source software 
platform for allowing non-experts of MPC to apply these strategies in buildings. 

Building systems 

Simulative and experimental applications involve MPC strategies for the 
control and operation of building HVAC systems. 

Oldewurtel et al. [60], for example, designed a Stochastic Model Predictive 
Control strategy for building climate control through a HVAC system and 
considering weather prediction and the relative uncertainty. 

Experimental studies were conducted by Sturzenegger et al. [61], which applied 
linear and non-linear MPC strategies in test rooms and buildings with different 
heating and cooling systems (as HVAC, TABS, radiators, fan-coil). 

The Czech Technical University (CTU) has implemented an MPC strategy for 
the control and operation of the heating system of the university building. Their 
extensive research activity demonstrated how MPC strategies, compared to 
weather-compensated control systems, improved energy savings up to 24% [62–

64]. 
Researchers at the University of California, Berkeley have been developing 

different MPC strategies for building temperature regulation. Morosan et al. used a 
distributed predictive control approach considering intermittently operating mode, 
and the occupation profile [65]. A non-linear stochastic approach was used by Ma 
& Borrelli, considering prediction of weather and occupancy, with energy savings 
of 30% compared to conventional RBC and PID strategies [66]. MPC strategies for 
cooling systems with thermal energy storage were also experimentally tested, 
showing improvements in the system COP with respect to the baseline control logic 
[57,67]. 

Adaptive components 

There are few examples of MPC strategies used to control active building 
components. 

An extensive research activity was developed by ETH Zurich and other 
commercial partners in the OptiControl project [68]. An integrated control of 
blinds, lighting and HVAC system was considered for different buildings, climates 
and systems. The most significant energy saving potentials were found in high 
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thermal mass buildings and in climates with high and variable energy fluxes (as 
solar gains). 

Favoino et al. used a non-linear Receding Horizon Control (RHC) strategy to 
control photovoltachromic glazing in different climates and demonstrates the 
energy saving advantages compared to RBC strategies [26] 

One of the most active contributor in the field is the LNBL of the University of 
California, Berkeley. Coffey used a near-optimal MPC to control a dynamic façade 
and radiant slab heating and cooling system for energy use minimization. Near-
optimal rules for some class of buildings are developed by extrapolating from the 
results of optimal offline control results from prototypical buildings [69]. In recent 
publications by Gehbauer et al., an MPC approach was developed [70] and used 
[71] to control a dynamic façade. A gradient-based, non-linear programming 
problem solver derives the control strategy, and a second step is needed to convert 
the solution to a discrete state for façade actuation. As declared by the authors, 
weaknesses of the approach include that continuous and differentiable models are 
required, precluding “the use of integer variables, tables, and other complex 
modeling structures such as if-statements” [70]. 

The possibility to take into account discrete and continuous variables can be 
provided by the Hybrid Model Predictive Control, the MPC formulation used in the 
case studies of this PhD thesis. 

2.4. Discussion 

Technological advances in the field of adaptive components is leading to 
increasingly performing solutions to be integrated into buildings. In particular, 
active components can be exploited to explicitly control their thermos-optical 
properties changes, potentially improving their effectiveness. The use of active 
components in buildings implies appropriate control infrastructures (as BACS), 
which are increasingly widespread in modern buildings. Active components consist 
of a plethora of different technologies with different properties and adaptability 
ranges, and although many are still in their early stages of prototyping, many mature 
technologies are ready to be implemented. Many studies have explored the 
opportunity of implementing these technologies, with the result of a promising 
future for many of those. As it has been clearly stated by many researchers, control 
strategies greatly affect the performance of active building components. However, 
the majority of the studies use conventional RBC strategies to control these systems. 
Moreover, by controlling active building components, multiple physical domains 
can be affected, as thermal comfort, visual comfort, lighting energy need, heating 
or cooling energy need and so on. This leads to the necessity of considering 
different and often contrasting needs while designing a control strategy, which it is 
not possible to be achieved using simple rule-based strategies. 

On the other hand, extensive research has exploited the potential of advanced 
control strategies to control building systems. In particular, MPC has demonstrated 
to be particularly suitable for building applications. Despite the many applications 
for building mechanical systems, very few studies have explored the opportunities 
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to exploit MPC strategies for active building components. However, these 
applications are characterized by weaknesses linked to the adoption of sub-optimal 
solutions or limitations as the preclusion of using certain variables. 

This PhD thesis aims at exploring the opportunities to control active building 
components using advanced control strategies. In particular, the electrochromic 
technology was taken into account given its potential in terms of performance and 
development stage. Since Model Predictive Control strategies are widely 
considered to hold great potential in buildings, and given the importance of 
predicting future disturbances when controlling active building components, these 
strategies were identified as the most suitable. This thesis goal is to cover the 
literature gap of using promising and advanced control strategies as MPC for an 
active building component technology which demonstrated great performances in 
building applications as electrochromic glazing. In particular, Hybrid Model 
Predictive Control strategies were used, which enabled to merge feedback control 
principles with numerical optimization and to manage both continuous and discrete-
state variables. This study represents a first attempt to fully decline MPC strategies 
to intrinsically hybrid systems, which need both continuous and discrete variables 
to be considered. 
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Chapter 3 

3. MPC formulation in a case study: 
a methodological approach 

This chapter introduces the first case study in which a Model Predictive 
Control strategy was designed and applied. 
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3.1. Introduction 

In the framework of a research collaboration between the Politecnico di Torino 
and the Sustainable Buildings Research Centre (SBRC) of the University of 
Wollongong (UOW), an outdoor experimental facility consisting of a set of two 
identical test cells has been designed with the aim of running comparative testing 
on different envelope components or systems in a real outdoor environment. 

During the design phase of the test cells, a research activity on electrochromic 
glazing was specifically carried out, with a particular focus on the control strategy 
applied to the glazing system. The short-term objective was to test Model Predictive 
Control strategies in a numerical simulation environment, with a longer-term 
objective of testing those outcomes through experimental campaigns. Control 
strategies play a central role in the performance of adaptive façades (as stated in 
literature and in Chapter 2 of the present thesis). To this purpose, different control 
strategies were designed, belonging to two groups: Rule Based Control (RBC), 
conceived as benchmark cases, and Model Predictive Control (MPC) strategies. 

In order to accomplish the aforementioned objective, a first step focused on the 
development of a building simulation model of the designed test cell, to enable an 
accurate energy performance simulation of the system. A dataset with the input and 
output variables of the test cell system (e.g. glass state, internal temperature, 
transmitted solar radiation, etc.) was then generated via the simulation of this 
model. In a third step, a state space formulation of the system was developed and, 
using a Resistance-Capacitance (RC) analogy of the thermal system, a second order 
grey-box model of the system was developed. With a reliable reduced complexity 
model, it was then possible to design different MPC strategies, which were later 
implemented using co-simulations tools. This was achieved by coupling via the 
Building Controls Virtual Test Bed (BCVTB) [72] the physical model (in 
EnergyPlus), used to obtain the most reliable results on the test cell response to 
changing boundary conditions, and an advanced numerical computing tool 
(Matlab), to solve the designed MPC problems and embed the reduced grey-box 
model.  
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3.2. Case study description 

The case study experimental facility consists of two identical test cells, 
allowing comparative tests to be performed [73–75], located at the University of 
Wollongong, New South Wales, Australia (Innovation Campus - Latitude: 
34°24′01″S; Longitude: 150°53′58″E). Each test cell consists of a cube with internal 

sides’ length of 2.4 m (Figure 3.1). 
The three walls and the roof are made of an external layer of Cement board, an 

insulation layer made by three panels of Expanded Polystyrene (EPS) (for a total 
thickness of 30 cm) and an internal layer made of two plasterboards. The floor is 
made similarly, but with a plywood inside layer instead of the plasterboard, to 
provide a walkable surface. The thermal transmittance of each side of the cube 
(Uwall) is approximately 0.127 W/m2K. 

The faces that are not used for façade testing and are exposed to direct or 
indirect solar radiation (the three sides and the roof) are shaded using external metal 
cladding panels. The surface that hosts the test façade faces north in order to 
maximize its incident solar radiation. A frame was designed to support the test 
façade and to be attached to the test cell in an airtight manner, using multiple air 
gaskets. 

The cell sits on a steel frame structure, which provides proper support, the 
possibility to anchor the whole structure to the ground in various ways and enables 
the transportability of the test cell using a forklift. These features were required as 
the test cells are expected to be moved in different locations for testing and 
operational reasons.  

During the author’s stay at UOW, one of the undertaken activities involved the 

test cells design process, starting from the basic requirements definition to the 
detailed design and construction procedures. Figure 3.2 shows some of the details 
of the test cells. For example, the assembly methods to limit air permeability can 
be noticed: the red airtight sheets covering the sides of the test cells and the black 
gasket in the interface between the movable frame hosting the test façade and the 

Figure 3.1. Test cell 3D model developed during the design phase 
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rest of the structure. In the same figure the substantial thickness of the walls can 
also be noticed, mostly due to the thermal insulation requirements. 

Figure 3.3 shows a picture of the test cells completed. It can be noticed how 
the metal cladding shades all the sides and except the test one (green ones in this 
figure). The test façades presented here are not the one described in this Chapter, as 
they were only used to run preliminary performance tests on the test cells 
(airtightness, oscillation of the inside temperature, consistency of the results 
between the two cells, etc.). 

Figure 3.2. Assembly of the test cells. On the left, a test façade is being fixed to the test cell 
with the help of a forklift. On the right, the interior of the test cell. 

Figure 3.3. Completed test cells 
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The case study presented in this chapter considers the test cell energy model as 
developed to support the design phase, thoroughly described in the next paragraph. 
The test façade is composed of an opaque and a transparent part. The opaque part 
is identical to the other faces of the test cell, while the transparent part is made of 
two SageGlass Insulated Glazing Units (IGUs) with dimensions of 1.1 x 0.42 m 
(Figure 3.4). The IGU is composed of two glass panels separated by a gas gap: an 
electrochromic panel is placed on the external side (7 mm laminated), a low-
emissivity glass pane (4 mm) on the inside, divided by 12 mm of Krypton gas. Its 
thermal transmittance (Uwindow) is 1.267 W/m2K. 

3.3. Energy model definition 

An energy model of the above described test cells was developed using the 
building energy simulation software EnergyPlus [76,77]. 

The test cell was modelled as the final design, considering the three fixed walls 
and the roof as not exposed to solar radiation, due to the metal cladding designed 
and built to shade those surfaces. 

As previously stated, the opaque part of test façade under investigation consists 
of the same layers of the fixed test cell faces. These surfaces are characterised by a 
thermal transmittance (Uwall) of 0.127 W/m2K and thickness of about 33 cm 
(excluding the metal cladding). 

Being the transparent part of the test façade adaptive, it was necessary to model 
it differently than the opaque, static part: multiple Constructions, as defined by 
EnergyPlus, were used in order to take into account all the possible states that the 
adaptive component could assume. Each Construction is made of up to 10 layers, 
consisting of the defined materials (which, for windows, are divided in 
WindowMaterial:Glazing and WindowMaterial:Gas). 

In this case, the IGU is composed by two static components and one adaptive 
component: the internal clear glass panel and the 12 mm gas spacing are static, 
while the external electrochromic glazing can change state, assuming different light 
and solar transmission properties. Hence, for each possible state that the 
electrochromic layer could assume, a different Construction needs to be defined. 
For each Construction object, the static layers are the same, but different 
WindowMaterial:Glazing objects are used to describe the electrochromic layer. 

Figure 3.4. SageGlass Insulated Glazing Unit (IGU) 
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To perform accurate simulations, the glazing spectral data sets were necessary. 
These data specify the normal-incidence measured values of transmittance, front 
reflectance and back reflectance at 800 wavelengths covering the solar spectrum 
(from about 0.25 to 2.5 μm). These datasets were exported from the International 
Glazing Database (IGDB) published by the Lawrence Berkeley National 
Laboratory (LBNL). 

In this database, the SageGlass_Classic panel properties are referred to five 
different states: 

Table 3.1. SageGlass states in the IGDB with the relative optical properties 

State g-value [-] τvis [-] 
Fully clear 64% 0.548 0.728 

Int state 18% 0.287 0.203 
Int state 11% 0.260 0.119 
Int state 6% 0.244 0.063 

Fully tinted 1% 0.228 0.014 
 
The g-value (or SHGC) and τvis (visible solar transmission) were evaluated for 

the single panel using the LBNL Window program, while the states were named as 
in the database. 

The g-value span for the tinted and intermediate states is quite uniform. 
However, there is a big gap between Int state 18% and the Fully clear state. A new 
intermediate state, named Int state 41%, was created to fill the gap. This was done 
by creating a new spectral data set obtained by linearly interpolating each spectral 
value of the two adjacent states (Fully clear and Int state 18%). 

To simplify the problem while considering the wide adaptability range of the 
electrochromic glazing, four states were selected: the two extremes (Fully clear and 
Fully tinted) and two intermediates (Int state 18% and Int state 41%). 

In the Construction section of EnergyPlus, therefore, four different objects 
representing the electrochromic window were considered. These objects differ one 
another from the external layer, which corresponds to each of the four considered 
states of the electrochromic layer. 
The constructions that were used are reported in Table 3.2: 

Table 3.2. Correspondence between the chosen construction states and the glazing properties 

State name Electrochromic state g-value [-] τvis [-] 
Clear Fully clear 64% 0.436 0.634 
Int1 Int state 41% 0.287 0.405 
Int2 Int state 18% 0.138 0.176 
Dark Fully tinted 1% 0.066 0.012 

 
To know how each surface of the building is made, EnergyPlus associates a 

Construction name to each surface object. Thus, whenever a glass state change is 
wanted, the Construction object associated with the window needs to be changed. 
This can be done through: 
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 predefined schedules; 
 simple rule-based instructions; 
 external inputs. 

Obviously, predefined schedules are not a solution when control purposes are 
sought, but can be extremely useful to perform tests and generate surrogate datasets. 

A very useful feature of EnergyPlus is the Energy Management System (EMS), 
which allows giving simple instruction to the simulated models. As described in the 
EnergyPlus documentation, “EMS provides high-level, supervisory control to 
override selected aspects of EnergyPlus modelling” [78]. The instructions were 
written using the EnergyPlus Runtime Language (Erl), which allows simple Rule 
Based Control (RBC) strategies to be implemented directly into the simulation 
program. 

Another crucial feature in EnergyPlus is the ExternalInterface class. It “allows 

coupling EnergyPlus to the Building Controls Virtual Test Bed (BCVTB)” [79]. 
BCVTB is a software that can link different simulation programs (as EnergyPlus, 
Matlab, Modelica, etc.) in order to run co-simulations. In this particular case, while 
EnergyPlus simulates the energy model, powerful numerical software as Matlab 
can run complex control algorithms to choose the most appropriate electrochromic 
window state as a result of an optimisation process. This is possible because 
BCVTB ensures data exchange between the two programs as the simulation moves 
forward. This last option is clearly the most complex one, but surely the one that 
unlocks a whole new set of possibilities from a control perspective. 
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3.4. Simplified model and System Identification 

Complex model-based control algorithm as Model Predictive Control need fast-
to-solve yet reliable numerical models. 

Grey-box models are often used for these purposes, since they carry the basics 
of the thermal interactions happening in the described model, they can be identified 
using real datasets, and they are sufficiently accurate without carrying the 
complexity and non-linearity of the complete physical equations that describe all 
thermal phenomena occurring in a building. 

 In this case, following the most commonly used approach, the R-C network 
analogy and the state-space representation are used to describe the grey-box model 
[58,80,81]. 

3.4.1. R-C network definition 

As in [58], different R-C networks were developed in order to find the one that 
best described the real system dynamics. It is in fact true that increasing the system 
complexity enriches the description of the underlying thermal phenomena, but at 
the same time leads to an increase of the number of parameters to be identified, 
undermining the system identification process. 

Figure 3.5 represents the R-C model used to describe the test cell. 
 

Figure 3.5. Second order R-C network chosen to the describe the test cell 

Where: 

 Ti – average inside temperature; 
 Tw – equivalent wall temperature; 
 Ta – ambient temperature; 
 Rv – equivalent infiltration resistance; 
 Riw – internal half of the wall equivalent resistance; 
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 Rew – external half of the wall equivalent resistance; 
 Ci – equivalent internal capacitance; 
 Cw – equivalent wall capacitance; 
 𝜙hc – energy flux from the heating/cooling system; 
 𝜙s – energy flux from solar radiation; 
 Aw – effective window area. 

The R-C network presented in Figure 3.5 is virtually divided in five parts: 
Interior, Heating/Cooling, Solar, Envelope and Ambient. 

The Interior part represents the inside of the test cell, with its average inside 
temperature node (Ti) and an equivalent internal capacitance (Ci) to describe its 
thermal inertia. 

The Heating/Cooling part includes an energy flux (𝜙hc) that is positive when 
sensible thermal energy is provided to the system (i.e. heating) and negative when 
sensible thermal energy is subtracted from the system (i.e. cooling). 

The Solar part represents the solar radiation entering the built environment 
through the transparent component. It is proportional to the effective area of the 
window (Aw) and to the energy flux of the solar radiation (𝜙s). It is thus affected by 
the electrochromic glazing state: as the electrochromic glazing reduced its solar 
transmission properties (becomes darker), the portion of solar radiation “entering” 

the built environment gets smaller. This can be taken into account in different ways; 
in this case, it was found that the most effective is to consider 𝜙s as the incident 
solar radiation to the considered façade (𝜙𝑠,𝑖) multiplied by the g-value of the 
transparent component that it needs to pass through. 

The opaque Envelope is represented as two resistances (one internal and one 
external, Riw and Rew), an equivalent capacitance (Cw), to take into account its 
thermal inertia and, consequently, a node describing the wall equivalent 
temperature (Tw). 

The outside environment is described in the Ambient section by the external 
(ambient) temperature (Ta). 

Lastly, the equivalent infiltration resistance (Rv) was taken into account to 
describe the “thermal connection” between the internal environment and the 

external one happening because of the infiltration/exfiltration phenomena. 
The stochastic differential equations describing the dynamics of the presented 

model are: 
 
𝑑𝑇𝑖

𝑑𝑡
=

1

𝑅𝑖𝑤𝐶𝑖

(𝑇𝑤 − 𝑇𝑖) +
1

𝑅𝑣𝐶𝑖

(𝑇𝑎 − 𝑇𝑖) +
1

𝐶𝑖
𝜙𝑠𝐴𝑤 +

1

𝐶𝑖
𝜙ℎ𝑐 

 
(3.1) 

𝑑𝑇𝑤

𝑑𝑡
=

1

𝑅𝑖𝑤𝐶𝑤

(𝑇𝑖 − 𝑇𝑤) +
1

𝑅𝑒𝑤𝐶𝑤

(𝑇𝑎 − 𝑇𝑤) (3.2) 

 
Where 𝑇𝑖 and 𝑇𝑤 are the state variables. 
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3.4.2. State-space representation 

A state-space representation was used to describe the Linear Time Invariant (LTI) 
system. It is defined by the following system of equations: 

 
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (3.3) 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (3.4) 

 
Where: 

 �̇�(𝑡) - state vector; 
 𝑦(𝑡) - output vector; 
 𝑢(𝑡) – input vector; 
 𝐴,𝐵, 𝐶, 𝐷 – time invariant matrices. 

In this case, using Equations (3.1) and (3.2): 
 

𝑥 = [𝑇𝑖,  𝑇𝑤]𝑇 
 

(3.5) 
 

𝑢 = [𝑇𝑎 , 𝜙𝑠, 𝜙ℎ𝑐]
𝑇 

 
(3.6) 
 

𝐴 =

[
 
 
 − (

1

𝑅𝑖𝑤𝐶𝑖
+

1

𝑅𝑣𝐶𝑖
)

1

𝑅𝑖𝑤𝐶𝑖

1

𝑅𝑖𝑤𝐶𝑤
−(

1

𝑅𝑖𝑤𝐶𝑤
+

1

𝑅𝑒𝑤𝐶𝑤
)
]
 
 
 

 

 

(3.7) 
 

𝐵 =

[
 
 
 

1

𝑅𝑣𝐶𝑖

𝐴𝑤

𝐶𝑖

1

𝐶𝑖

1

𝑅𝑒𝑤𝐶𝑤
0 0

]
 
 
 

 

 

(3.8) 
 

𝐶 = [1 0] 
 

(3.9) 
 

𝐷 = [0 0 0] 
 

(3.10) 
 

 
The parameters to be identified are: 𝑅𝑒𝑤, 𝑅𝑖𝑤, 𝑅𝑣, 𝐶𝑖, 𝐶𝑤 and 𝐴𝑤. 

3.4.3. System identification 

The system parameters need to be identified using simulated datasets, hence 
using the results of the EnergyPlus white-box model simulations.  

The simulation period was set to four-weeks. The first half of the dataset was 
used to estimate the grey-box parameters values and the second half to test the 
accuracy of the model. Random schedules for the Heating/Cooling system and for 
the electrochromic glazing states were generated, paying attention in having 
impulses of variable magnitude and duration, and ensuring a heating, cooling and 
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free-running period in both halves of the simulation period. In Figure 3.6 it is 
possible to see how the Heating/Cooling system forcing on the system is operating 
as the g-value is dynamically modified, with various durations and magnitude. In 
this way, the resulting dataset takes into account a wide range of possible situations 
that the modelled system cab encounter. 

Using the schedules shown in Figure 3.6, the input dataset used for the system 
identification was generated. 

Figure 3.7 shows the input dataset used to identify the LTI system, with the 
time evolution of the three input variables, Ambient temperature (𝑇𝑎), 
heating/cooling power (𝜙ℎ𝑐) and solar gains (𝜙𝑠). It is worth noting that 𝜙𝑠 is 
calculated as the solar radiation incident on the test façade (𝐺𝑔) multiplied by the 
window g-value, which changes according to the schedule shown in Figure 3.6. 

Figure 3.6. Heating/Cooling system and glass state schedules used to generate the input 
dataset 

Figure 3.7. Input dataset for the system identification of the grey-box model 
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The Linear Grey-Box modelling tools readily available in Matlab were adopted 
to estimate the parameters of the time invariant matrices. 

 

Table 3.3. Parameters identification 

 
𝑅𝑒𝑤 

(𝐾/𝑘𝑊) 
𝑅𝑖𝑤 

(𝐾/𝑘𝑊) 
𝑅𝑣 

(𝐾/𝑘𝑊) 
𝐶𝑖 

(𝑘𝑊ℎ/𝐾) 
𝐶𝑤 

(𝑘𝑊ℎ/𝐾) 
𝐴𝑤 

(𝑚2) 
Identified 

value 176.78 11.36 3796.49 0.011 0.1293 0.616 

Upper 
boundary 513.36 14.3 3800 0.0132 0.35 1.848 

Initial 
guess 256.68 7.15 1265.5 0.0053 0.175 0.924 

Lower 
boundary 128.34 3.58 421.83 0.0021 0.0875 0.462 

 
Table 3.3 shows the identified values for each parameter in the first row, along 

with the initial guess, a lower and an upper boundary. 
The parameters to identify are lumped, representing thermo-physical 

characteristics of the model. Some are more straight-forward, such as the equivalent 
internal capacitance (Ci), that can be estimated by calculating the thermal 
capacitance of whatever is enclosed in the built environment or as the equivalent 
window area (Aw), which is the area of the transparent component. 

Other lumped parameters are less straight-forward, as the equivalent thermal 
resistance of the walls (Rew, Riw), which represents an average resistance of the 
opaque and transparent areas, weighted on the respective areas. In this way, all the 
elements contributing to the wall resistance are lumped in a single element of the 
R-C network. Another way of considering this analogy is to see the opaque 
components as parallel resistors of an R-C network (𝑅1, 𝑅2, … , 𝑅𝑛), which can be 
simplified in one equivalent resistor (𝑅𝑤) as: 

 
1

𝑅𝑤
= ∑

1

𝑅𝑖

𝑛

𝑖=1

 (3.11) 

 
The internal half of the wall equivalent resistance (Riw) is much lower than the 

external half (Rew) because the wall section is not symmetrical, and the median 
capacitance point was estimated at the very internal part of the wall section. This 
means that the majority of the wall section is on the external side of the median 
capacitance point, resulting in a Rew much higher than Riw. 

The estimated parameters were compared using the second half of the dataset 
(testing data set), and the fit goodness evaluated using Matlab System Identification 
Toolbox through the Normalised Root Mean Square Error (NRMSE), resulted to 
be 89.19% in this case. 
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The simulated response comparison between the simulated data (EnergyPlus) 
and the identified model is shown in Figure 3.8. 

 

3.5. MPC formulation 

The presented case study can be seen as a dynamic system in which the output 
response is influenced by manipulated variables and disturbances. The manipulated 
variables are, as the name suggests, inputs that can be controlled, while the 
disturbances cannot be managed. In this case, the manipulated variables are the 
glass states and the heating/cooling energy, while solar radiation and ambient 
temperature are disturbances. 

The grey-box model previously described works as a control-oriented model, 
since it can be used by the controller to predict the system future response, which 
is a function of the future manipulated variables and disturbances. In particular, the 
MPC can choose the best sequence of manipulated variables, over a defined control 
horizon, according to a given cost function. MPC uses a numerical optimisation 
process to find the best control actions, taking into account the present system states 
and the future disturbances and constraints on both input and output variables. Once 
the optimal sequence is obtained, the controller applies the first set of values, 
discards the rest of the control sequence and the whole block moves one control 
time-step forward (the so-called “receding horizon”). 

Figure 3.8. Comparison of the simulated response of the identified grey-box model with data 
simulated in EnergyPlus 
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3.5.1.  Constraints 

Constraints can be defined as hard or soft. Hard constraints cannot be violated, 
while soft constraints are defined so to penalize the cost function whenever its limits 
are violated (but still allowing the inputs or outputs variable to exceed those limits). 

For example, hard constraints are useful to put limits on variables such as the 
heating/cooling system, which of course cannot exceed their maximum power 
supply. Soft constraints can be used to describe a preferable range of a certain 
variable; for example, the internal temperature (𝑇𝑖) can be defined as preferably 
ranging from 20°C to 26°C, meaning that whenever these limits are violated, the 
cost function increases proportionally to this violation. Since the cost function 
minimization is sought, these violations can occur if this increment is over-
compensated by another element in the cost function (e.g. allowing 𝑇𝑖 to rise above 
26°C but using less cooling energy 𝜙ℎ𝑐) 

The constraints adopted in this case study are summarised in the following 
equations: 

 
𝜙ℎ𝑐,𝑚𝑖𝑛 ≤ 𝜙ℎ𝑐 ≤ 𝜙ℎ𝑐,𝑚𝑎𝑥 

 (3.12) 

∼ (𝛿1 & 𝛿2) & ∼ (𝛿1 & 𝛿3) & ∼ (𝛿2 & 𝛿3) 
 (3.13) 

∼ (𝛿1 & 𝑛𝑖𝑔ℎ𝑡)& ∼ (𝛿2 & 𝑛𝑖𝑔ℎ𝑡)& ∼ (𝛿3 & 𝑛𝑖𝑔ℎ𝑡) 
 (3.14) 

𝑇𝑖,𝑚𝑖𝑛 − 𝑒 ≤ 𝑇𝑖 ≤ 𝑇𝑖,𝑚𝑎𝑥 + 𝑒 
 (3.15) 

In Equation (3.12), an upper and a lower limit to the heating/cooling load 
(assuming heating as positive and cooling as negative) are set. Equation (3.13) 
states the not possible to activate two different window states at the same time (the 
Boolean variables 𝛿1, 𝛿2, 𝛿3 are better explained in the next section). Equation 
(3.14) forces the system to choose the clear window state at night time, where 𝑛𝑖𝑔ℎ𝑡 
is a Boolean value that is equal to 1 when solar radiation is below a predefined 
threshold. Equation (3.15) sets a soft constraint on the internal temperature 𝑇𝑖: it is 
in fact possible for the system to violate the boundaries 𝑇𝑖,𝑚𝑖𝑛 and 𝑇𝑖,𝑚𝑎𝑥, but in 
those cases the slacking variable 𝑒 will penalize the objective function. Limits on 
the absolute value of 𝑒 are also defined. 
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3.5.2. Hybrid Model Predictive Control Problem formulation 

In the presented case, a Hybrid Model Predictive Control (HMPC) is defined, 
since both continuous and discrete variables are taken into account: solar radiation, 
ambient temperature, indoor temperature and the heating/cooling power are of 
continuous variables, while the electrochromic window state assumes discrete 
states. In these cases a Mixed Logic Dynamical formulation is required, that can be 
generally written as: 

 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2𝛿(𝑡) + 𝐵3𝑧(𝑡) (3.16) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷1𝑢(𝑡) + 𝐷2𝛿(𝑡) + 𝐷3𝑧(𝑡) (3.17) 
 
Where 𝑥(𝑡) = [𝑥𝑐

𝑇(𝑡) 𝑥𝑑
𝑇(𝑡)] is the state vector, with a continuous part (𝑥𝑐(𝑡) ∈

ℝ𝑛) and a discrete part (𝑥𝑑(𝑡) ∈ {0,1}𝑛𝑑); 𝑦(𝑡) = [𝑦𝑐
𝑇(𝑡) 𝑦𝑑

𝑇(𝑡)] is the output 
vector, with 𝑦𝑐(𝑡) ∈ ℝ𝑚 and 𝑦𝑑(𝑡) ∈ {0,1}𝑚𝑑  the respective continuous and 
discrete parts; 𝑢(𝑡) = [𝑢𝑐

𝑇(𝑡) 𝑢𝑑
𝑇(𝑡)] with 𝑢𝑐(𝑡) ∈ ℝ𝑙 and 𝑢𝑑(𝑡) ∈ {0,1}𝑙𝑑  the 

respective continuous and discrete parts; 𝑧(𝑡) ∈ ℝ𝑟 is a continuous auxiliary and 
𝑢𝑑(𝑡) ∈ {0,1}𝑟𝑑 represents discrete variables; 𝐴, 𝐵𝑖, 𝐶, 𝐷𝑖 are the real constant 
matrices [50,82]. 

3.5.3. Objective function 

Writing the problem using the Mixed Logic Dynamical systems, allows to take 
into account the discrete states of the electrochromic window, and can be seen as 
multiple linear systems that vary according to the discrete state variable. 

The objective function can be written as follows: 
 

𝑚𝑖𝑛{𝑢}0
𝑁−1 𝐽 = ∑‖𝑄(𝑥(𝑡) − 𝑥𝑟)‖𝑝 + ‖𝑅(𝑢(𝑡) − 𝑢𝑟)‖𝑝

𝑁−1

𝑡=1

 (3.18) 

 
Where 𝑄 is the weighted matrix of the states and 𝑅 is the weighted matrix of 

the controlled inputs; 𝑥(𝑡) is the state vector, 𝑥𝑟 the reference state vector, 𝑢(𝑡) the 
controlled inputs vector and 𝑢𝑟 the reference controlled input vector. 

In this case, only the controlled inputs are considered for the cost function. The 
controlled input vector is 𝑢 = [𝑒, 𝜙ℎ𝑐 , 𝛿1, 𝛿2, 𝛿3]

𝑇, where 𝑒 is a slacking variable 
used to define a soft constraint, 𝜙ℎ𝑐 is the heating/cooling energy, 𝛿1, 𝛿2, 𝛿3 are 
three Boolean variables related to the first intermediate (Int 1), second intermediate 
(Int 2) and dark states of the electrochromic window respectively. The following 
table summarizes the Boolean actions: 
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Table 3.4. Correspondence between the Boolean variables and the relative states action 

𝜹𝟏 𝜹𝟐 𝜹𝟑 State g-value 
0 0 0 Clear 0.436 
1 0 0 Int1 0.287 
0 1 0 Int2 0.138 
0 0 1 Dark 0.066 

 
The Boolean variables 𝛿1, 𝛿2, 𝛿3 can thus be activated one at the time and when 

none are active, the electrochromic window is in the Clear state. 
Summarizing, the cost function takes into account: 

 The slacking variable 𝑒, which depends on the violation of the soft 
constraint defined on the output (allowing the relaxation of the internal 
temperature 𝑇𝑖); 

 The heating/cooling energy 𝜙ℎ𝑐, which measures the energy needed to 
warm up or cool down the indoor environment in order to maintain the 
indoor temperature 𝑇𝑖 within the defined range; 

 The glass state, defined by the Boolean variables 𝛿1, 𝛿2, 𝛿3 according 
to the logic shown in Table 3.4. The glass state affects the window g-
value, which in turn influences the solar gains. 

In this study, a control (and prediction) horizon of 6 hours and a control time-
step of 30 minutes were chosen. The reasons behind this choice are both linked to 
the system dynamics and computational effort. It was in fact found that reducing 
the control time-step, the control horizon needed to be lowered to have reasonable 
solving durations. At the same time, with longer control horizons, a higher time-
step was necessary. The best compromise was found in the before mentioned values 
for control (and prediction) horizon and control time-step, since it allows the system 
to correctly deal with its dynamics and consider a sufficiently long horizon to take 
into account the external dynamics (solar radiation variation over the day). 
Moreover, lower control time-steps translates to potentially higher state-changes, 
that in this case study are not preferable considering a user’s comfort perspective 

(uniform conditions are usually considered preferable). 
A more precise description of the main characteristics is shown in Table 3.5, 

while the costs associated with the input variables (i.e. the weighting matrices) are 
shown in Table 3.6. With the aim of assessing the weight influence on the 
controller, different matrices were defined. In each matrix the proportion between 
the weights associated with the input parameters are different, therefore the cost 
function minimization will lead to different results from case to case. 
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Table 3.5. Input variables description 

Variable Description Variable 
typology 

Limits 
Lower Upper 

𝒆 Slacking Continuous 0 °C 2 °C 
𝝓𝒉𝒄 Heating/Cooling Continuous -100 W 100 W 
𝜹𝟏 Int1 State Boolean 0 1 
𝜹𝟐 Int2 State Boolean 0 1 
𝜹𝟑 Dark State Boolean 0 1 

 

Table 3.6. Weights associated with the input variables 

Variable  Weights 
 W1 W2 W3 W4 W5 

𝒆 [W/K] 1 1 1 1 0.1 
𝝓𝒉𝒄 [-] 10 10 10 100 1 
𝜹𝟏 [W] 3E-08 3E-02 3E-01 3E-08 3E-08 
𝜹𝟐 [W] 4E-08 4E-02 4E-01 4E-08 4E-08 
𝜹𝟑 [W] 5E-08 5E-02 5E-01 5E-08 5E-08 
 
In Table 3.6 is possible to notice that the chosen sets of weights follow this 

logic: starting from a given cost associated with the 𝜙ℎ𝑐 variable, the slacking 
variable 𝑒 weight is at least one order of magnitude lower and the Boolean variables 
𝛿1, 𝛿2, 𝛿3, that describe the glass states other than the clear one are, are various 
order of magnitude lower. This is because 𝜙ℎ𝑐 is directly linked to an energy cost 
(the higher the absolute value of 𝜙ℎ𝑐, the higher the energy consumption), while 
the slacking variable 𝑒 and the Boolean variables 𝛿1, 𝛿2, 𝛿3 are not. The difference 
between the slacking variable and the Boolean variables is determined by the fact 
that violating the preferred average inside temperature 𝑇𝑖 range, described by the 
variable 𝑒, was considered less preferable than changing the glass state towards 
lower solar transmission properties. Among the Boolean variables 𝛿1, 𝛿2, 𝛿3, a 
relatively small weight difference was associated in order to drive the controller to 
choose the clearest possible state, assuming this is preferable from a visual comfort 
point of view. An important remark is that the order of magnitude and the nature of 
the different input variables (summarised in Table 3.5) are very different from each 
other. This aspect influences the choice of the weights, since, as in Equation (2.1), 
the cost function is influenced by the multiplication between the weighting matrix 
and the input vector values. 

Another important remark is that, while in this study the main objective is to 
prioritize the energy consumption reduction (of course excluding the always-dark 
condition), in other applications different weighting matrices can be defined in 
order to prioritize other aspects. For example, by increasing the cost associated with 
the slacking variable 𝑒, so that the inside temperature control gains importance with 
respect to the energy consumption or choosing darker glass states. 
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3.5.4. Programs and setup 

The Mixed Logic Dynamical System was formulated in HYSDEL[83]. The 
MPC algorithm was developed using the Multi-Parametric Toolbox 3.0 (MPT3) 
[84] in Matlab. The optimization software CPLEX was installed to take care of the 
Mixed Linear Programming (MILP) problem. The machine in which all of the 
above was implemented and run is a DELL XPS15, with an Intel Core i7 @ 2.8Ghz 
processor and 16GB of RAM. 

3.6. Co-simulation infrastructure 

As anticipated in Section 3 of the present Chapter, co-simulations capability is 
a key factor for the presented study. Different simulation programs run 
simultaneously and multiple information needs to be exchanged between the 
different actors in a synchronised manner. In particular, the MPC algorithm runs on 
Matlab and uses the grey-box model; at each control time-step the updated state 
vector is required, along with the future weather conditions; lastly, the control 
actions chosen by the MPC need to be passed to EnergyPlus, that will apply it on 
the white-box model until the next control time-step. 

This synchronised information exchange, which also involves the pausing and 
running of different programs, was managed by BCVTB. A comprehensible 
workflow is shown in Figure 3.9. 
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In Figure 3.9, on the left side, the white-box model is represented, and 
EnergyPlus is its engine. All the physical laws describing the thermodynamics are 
taken into account, and its results can be seen as measures taken through sensors. 

On the right side, the MPC problem is formulated in Matlab (with the support of 
other programs, as stated in the previous section), where an optimization is run 
based on future estimations performed by means of a grey-box model, which 
embeds the thermal relationships between the elements, but can be solved rapidly. 
BCVTB ensures that: 

 when a new control time-step is reached, EnergyPlus pauses the 
simulation, 

 the new state measurements are provided to the MPC controller, 
 the optimization process takes place, resulting in a control action to be 

maintained until the next control time-step, 
 the control action (input vector) is passed to the physical model, 
 the Energy Management System of EnergyPlus implements the control, 
 the simulation continues until the next control time-step. 

Figure 3.9. Simulation Workflow 
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3.7. Baseline controllers 

To assess the effectiveness of the previously described MPC strategies, 
simulations using simple control strategies were performed to set a baseline for the 
MPC approach. 

Firstly, a base case with a static window in the Clear state was simulated 
Then, different RBC strategies were implemented, using widely adopted 

control algorithms. The majority of studies found in the literature consider 
thresholds on solar radiation or illuminance, while few on indoor temperature. 
Usually, energy consumption minimization or visual comfort are sought. These IF-
THEN strategies are typically implemented on commercial applications [85]. 

For these reasons, two RBC strategies were designed: one based on the incident 
solar radiation (𝜙𝑠,𝑖) and one based on the average inside temperature of the test 
cell (𝑇𝑖). In each case, three thresholds were defined, in order to exploit the full 
adaptability range of the electrochromic window, consisting of four different states 
as described before. Threshold values are summarised in Table 3.7. 

 

Table 3.7. Baseline control strategies summary 

RBC strategy Thresholds Electrochromic state 

𝝓𝒔,𝒊 

𝜙𝑠,𝑖 ≤ 100 W/m2 Clear 
100 W/m2 < 𝜙𝑠,𝑖 ≤ 150 W/m2 Int1 
100 W/m2 < 𝜙𝑠,𝑖 ≤ 400 W/m2 Int2 

𝜙𝑠,𝑖 > 400 W/m2 Dark 

𝑻𝒊 

𝑇𝑖 ≤ 24.5 °C Clear 
24.5 °C < 𝑇𝑖 ≤ 25 °C Int1 
25 °C < 𝑇𝑖 ≤ 25.5 °C Int2 

𝑇𝑖 > 26 °C Dark 
 

3.8. Results 

In this section, results are presented. Both results related to a given control 
application and radar charts comparing different control strategies are shown. 

Plots show the variation of the main variables over a week period. In particular, 
weather disturbances (incident solar radiation, 𝜙𝑠,𝑖  and ambient temperature, 𝑇𝑎) 
are plotted in the upper part of the figures, while the controlled inputs (glass state 
and heating/cooling system power, 𝜙ℎ𝑐) on the bottom. Glass states are represented 
through the g-value (the lower the g-value, the darker the glass state), while the 
heating (𝜙ℎ) and cooling (𝜙𝑐) powers were split for a better representation. 

Radar charts are used to compare different control strategies using five 
performance indicators: 
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 total energy consumption [Wh]: the energy request of the 
heating/cooling system over the week period; 

 peak power [W]: the peak load of the heating/cooling system over the 
week period; 

 dark states [%]: the amount of time in which the window was in dark 
states (i.e. Int 2 or Dark) with respect to the total simulation period; 

 Percentage of Discomfort Hours (PDH) [h]: as defined in EN 16978-
1:2019 [86], it is the percentage amount of time in which the operative 
temperature 𝑇𝑜𝑝 is above or below threshold values, in this case 20°C 
and 26°C respectively (Category II) 

 glass state changes [-]: total number of times in which the glass state 
changes. 

It is possible to notice that the most preferable situation is when all these 
performance indicators are the lowest possible. Therefore, the bigger the polygon 
shown in the chart, the worse the correspondent control strategy. The radar chart 
can rapidly provide an insight on how well certain control strategy behave with 
respect to some parameters (energy consumption, comfort, etc.) or on a comparison 
between different control strategies. 
To provide an additional tool to compare different control strategies, a new Key 
Performance Indicator (KPI) was defined. It consists of the normalised area of the 
polygon: each axis was normalised using its maximum value, so to have all axis 
ranging from 0 to 1; then, the polygon areas were evaluated for each case. The 
comparison between the calculated areas provides a fast tool to have an indication 
on which control strategy can work best: since all the radar charts parameters are 
best when closer to 0, smaller areas can be associated with better strategies. 
Whereas the areas of different strategies do not differ much, the radar chart can be 
analysed to get more insight. It is worth to be noted that similar areas do not result 
in similar strategies, but strategies with similar performances as long as all the 
previously described parameters are considered equivalent in terms of importance. 

3.8.1. Results – Summer week in Wollongong 

From Figure 3.10 to Figure 3.14, results of MPC strategies with the different 
weights matrices reported in Table 3.6 are shown for a typical summer week in 
Wollongong. 

In Figure 3.15, a radar chart is represented to compare these strategies. 
The results related with the control logics used as baseline are shown in Figure 

3.16 to Figure 3.18, while in Figure 3.19 a comparison between benchmark and 
best performing MPC results is displayed. 
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Figure 3.10. MPC control in Wollongong during a summer week. Weights W1 

 
Figure 3.11. MPC control in Wollongong during a summer week. Weights W2 
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Figure 3.12. MPC control in Wollongong during a summer week. Weights W3 

 
Figure 3.13. MPC control in Wollongong during a summer week. Weights W4 
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Figure 3.14. MPC control in Wollongong during a summer week. Weights W5 

 
Figure 3.15. Comparison between MPC controls in Wollongong during a summer week with 

different weight matrices 
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Figure 3.16. Static window (as Clear State) in Wollongong during a summer week 

 
Figure 3.17. Rule Based Control based on internal temperature (Ti) in Wollongong during a 

summer week 
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Figure 3.18. Rule Based Control based on incident solar radiation (𝜙𝑠,𝑖) in Wollongong 

during a summer week 

 
Figure 3.19. Comparison between MPC and RBC control strategies in Wollongong during a 

summer week 
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Results shown in Figure 3.15 are summarised in Table 3.8, along with the areas 
of each polygon. 

Table 3.8. Performance parameters and polygon areas - MPC controls in Wollongong during 
a summer week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [Wh] [W] [%] [%] [-] [-] 
Weights W1 107.19 6.97 33.95 15.32 49 0.334 
Weights W2 897.31 33.75 16.39 39.10 24 0.607 
Weights W3 2235.40 71.09 5.08 47.64 17 0.877 
Weights W4 97.81 6.78 34.25 14.48 51 0.324 
Weights W5 133.25 8.35 33.06 16.57 62 0.412 

 
Results shown in Figure 3.19 are summarised in Table 3.9, along with the areas 

of each polygon. 

Table 3.9. Performance parameters and polygon areas - MPC and RBC controls in 
Wollongong during a summer week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [Wh] [W] [%] [%] [-] [-] 

RBC 𝝓𝒔,𝒊 542.13 23.49 18.45 29.53 31 0.357 
RBC 𝑻𝒊 142.86 9.64 66.37 17.36 33 0.324 

Static Clear 3082.63 102.26 0.00 50.15 0 0.476 
MPC - W1 107.19 6.98 33.95 15.32 49 0.255 
MPC - W4 97.81 6.78 34.25 14.48 51 0.249 

 
From Figure 3.15 (and Table 3.8) it is clear that when the weights matrices are 

such that changing the glass state has a relatively high cost, as in W2 and W3, glass 
state changes and the percentage of time with dark states is significantly lower than 
in the other cases. However, unsatisfactory indoor conditions (PDH) increase as 
well as energy consumption and peak power, which are better managed in cases 
W1, W4 and W5. This conclusion is also supported by comparing the areas of each 
polygon, which results significantly higher in the cases W2 and W3. This outcome 
should be interpreted as a demonstration of the MPC flexibility: by tuning the 
weights, it is possible to obtain different results. This feature can be exploited to 
adapt the controller to specific and possibly changing requirements. For example, 
W2 and W3 cases could be temporarily preferred to enhance daylight. It is worth to 
note that a not correctly tuned MPC strategy could lead to trivial solutions: in this 
case, for example, choosing the darkest state in presence of solar radiation would 
certainly lower the energy consumption. On the other hand, balanced MPC 
strategies act as the previously shown ones, taking into account the contrasting 
goals of reducing the energy need and preferring clear states according to the 
relative weights. 
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Results relative to the best performing MPC strategies (W1 and W4) are then 
compared to the above described baseline strategies (Figure 3.19 and Table 3.9). 
Observing the polygon areas, it results clear that the MPC strategies perform better 
as far as the chosen KPIs are concerned. An average percentage of time in dark 
states (if compared with the RBC strategies), allows the system to lower the total 
energy consumption and peak power, while keeping the environment inside the 
comfort conditions for a longer period. Prediction plays an important role: 
foreseeing the system future states, the MPC is able to lower the cooling energy 
need by choosing darker states before RBC strategies. This curbs the increase of 
the indoor air temperature, resulting in reduced energy needs and peak loads. 

3.8.2. Results – Spring week in Wollongong 

From Figure 3.20 to Figure 3.24, results of MPC strategies with different weights 
are shown for a spring week in Wollongong. These results demonstrate how the 
previously shown control strategies behave in a period of the year in which both 
heating and cooling could be needed. In Figure 3.25, moreover, a radar chart is 
reported to compare these strategies. 
As in the previous case, also results related to the benchmark controllers are shown 
(Figure 3.26 to Figure 3.28), along with the comparative radar chart (Figure 3.29). 
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Figure 3.20. MPC control in Wollongong during a spring week. Weights W1 

 
Figure 3.21. MPC control in Wollongong during a spring week. Weights W2 
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Figure 3.22. MPC control in Wollongong during a spring week. Weights W3 

 
Figure 3.23. MPC control in Wollongong during a spring week. Weights W4 
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Figure 3.24. MPC control in Wollongong during a spring week. Weights W5 

 
Figure 3.25. Comparison between MPC controls in Wollongong during a spring week with 

different weight matrices 
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Figure 3.26. Static window (as Clear State) in Wollongong during a spring week 

 
Figure 3.27. Rule Based Control based on internal temperature (Ti) in Wollongong during a 

spring week 
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Figure 3.28. Rule Based Control based on incident solar radiation (𝜙𝑠,𝑖) in Wollongong 

during a spring week 

 
Figure 3.29. Comparison between MPC and RBC control strategies in Wollongong during a 

spring week 
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Results shown in Figure 3.25 are summarised in Table 3.10, along with the 

areas of each polygon. 

Table 3.10. Performance parameters and polygon areas - MPC controls in Wollongong 
during a spring week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [Wh] [W] [%] [%] [-] [-] 
Weights W1 422.82 44.20 10.44 9.40 43 1.055 
Weights W2 427.84 42.98 5.97 14.79 16 0.663 
Weights W3 913.86 55.09 1.81 26.79 7 0.779 
Weights W4 413.70 44.05 8.35 9.27 44 0.975 
Weights W5 446.46 44.17 8.95 9.69 48 1.086 

 
Results shown in Figure 3.29 are summarised in Table 3.11, along with the 

areas of each polygon. 

Table 3.11. Performance parameters and polygon areas - MPC and RBC controls in 
Wollongong during a spring week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [Wh] [W] [%] [%] [-] [-] 

RBC 𝝓𝒔,𝒊 1516.99 62.62 23.21 33.16 39 1.913 
RBC 𝑻𝒊 463.78 44.79 20.24 9.98 25 0.512 

Static Clear 1530.28 102.67 0.00 29.42 0 0.476 
MPC - W1 422.82 44.20 10.44 9.40 43 0.508 
MPC – W2 427.84 42.98 5.97 14.79 16 0.294 
MPC - W4 413.70 44.05 8.35 9.27 44 0.486 

 
From Figure 3.25 and Table 3.10 it can be observed that cases W1 and W4 

perform and act in a similar way, while W2 acts in a completely different way: 
being related to higher costs concerning the choice of darker states, it adopts an 
apparently trivial yet effective strategy to keep clear states for longer periods. It 
results in slightly higher energy consumption if compared with cases W1 and W4, 
but it is equilibrated by the other KPIs, so much so that it has the lowest polygon 
area. However, it is worth to notice that W2 is characterized by both heating and 
cooling needs throughout the week, which could be considered as a downside 
depending on the specificities of the relative system. On the other hand, strategies 
W1 and W4 were able to completely eliminate the cooling needs and to guarantee 
better indoor comfort conditions. As in the summer case, these different behaviours 
represent a useful resource to be exploited: W2 could be preferred when the system 
easily allows the switching between heating and cooling modes and when daylight 
is preferred to comfort conditions. Similarly, W1 and W4 could provide a better 
solution when switching between heating and cooling is not possible (or not 
preferred), and when comfort conditions are prioritized to daylight. 
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Although the conditions are very different from the summer case, since some 
heating is always required, MPC strategies were able to meet the goals and perform 
better than the benchmark cases. This can be observed from Figure 3.29 and Table 
3.11, which show how the MPC strategies are characterised by lower normalised 
polygon areas. The predictive control strategy proves to be able to prevent or 
mitigate from the over-heating phenomena, while exploiting solar gains when 
needed. 

3.8.3. Results – Summer week in Torino 

From Figure 3.30 to Figure 3.34, results of MPC strategies with different 
weights are shown for a summer week in Torino. 

In Figure 3.35, moreover, a radar chart is represented to compare these 
strategies. 

In Figure 3.36 to Figure 3.38, results on the benchmark controllers are plotted, 
compared in Figure 3.39 with the best performing MPC strategies. 

It is worth to be noted that, in this case, the control-oriented model needed to 
be identified again, given the different weather conditions. As Torino weather 
conditions are extremely different from the one found in Wollongong, it was 
preferred to perform the grey-box model system identification using as dataset 
simulation run using the climatic file of Torino. The same methodological approach 
described in the previous sections of the present chapter was followed. The new 
system identification leads to comparable fit results to the previous case (in terms 
of NRMSE) and identified parameters within the same range, which was defined 
based on the physical meaning of the lumped parameters. The slight changes in the 
grey-box parameters, however, resulted in a more suitable model for the presented 
application. 
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Figure 3.30. MPC control in Torino during a summer week. Weights W1 

 
Figure 3.31. MPC control in Torino during a summer week. Weights W2 
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Figure 3.32. MPC control in Torino during a summer week. Weights W3 

 
Figure 3.33. MPC control in Torino during a summer week. Weights W4 
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Figure 3.34. MPC control in Torino during a summer week. Weights W5 

 
Figure 3.35. Comparison between MPC controls in Torino during a summer week with 

different weight matrices 
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Figure 3.36. Static window (as Clear State) in Torino during a summer week 

 
Figure 3.37. Rule Based Control based on internal temperature (Ti) in Torino during a 

summer week 
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Figure 3.38. Rule Based Control based on incident solar radiation (𝜙𝑠,𝑖) in Torino during a 

summer week 

 
Figure 3.39. Comparison between MPC and RBC control strategies in Torino during a 

summer week 
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The results shown in Figure 3.35 are summarised in Table 3.12, along with the 

areas of each polygon. 

Table 3.12. Performance parameters and polygon areas - MPC controls in Torino during a 
summer week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [Wh] [W] [%] [%] [-] [-] 
Weights W1 792.74 34.08 48.53 30.65 46 0.853 
Weights W2 2008.93 46.11 25.32 51.25 24 0.869 
Weights W3 3669.14 79.59 14.60 58.04 32 1.423 
Weights W4 811.59 33.99 46.75 29.97 44 0.812 
Weights W5 776.70 33.74 47.94 32.55 34 0.752 

 
Results shown in Figure 3.39 are summarised in Table 3.13, along with the 

areas of each polygon. 

Table 3.13. Performance parameters and polygon areas - MPC and RBC controls in Torino 
during a summer week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [Wh] [W] [%] [%] [-] [-] 

RBC 𝝓𝒔,𝒊 1252.03 40.06 26.79 41.75 41 0.593 
RBC 𝑻𝒊 969.94 35.15 75.60 36.62 38 0.721 

Static Clear 6353.38 162.68 0.00 59.66 0 0.476 
MPC – W4 811.59 33.99 46.75 29.97 44 0.536 
MPC – W5 776.70 33.74 47.94 32.55 34 0.490 

 
Even though the same MPC strategies applied in Wollongong were applied in 

Torino, different results are found. Being the climatic conditions heavily 
influencing the MPC behaviour, this was an expected outcome. The flexibility of 
this approach is once again demonstrated, since the strategies are adapted according 
to the specific climatic conditions: in Torino, the incident solar radiation (ϕs,i) is 
characterized by higher peaks and the outdoor temperature is subjected to higher 
oscillations and similar peaks. 

From Figure 3.35 and Table 3.12 it is possible to notice that W4 and W5 
perform better than the other cases, being the relative areas smaller and being almost 
all the key performance indicators lower. Given the climatic conditions, strategies 
in which darker states are particularly penalized (as W2 and W3), resulted in 
penalizing too much the rest of the KPIs. 

When compared with the baseline cases, it can again be stated that the MPC 
strategies are able to reduce energy consumption and peak power while ensuring 
the desired indoor conditions. RBC strategies can be defined as less balanced: the 
RBC based on solar radiation ensures clear states for a longer period, but by doing 
so more cooling energy is required; the strategy based on the internal temperature 
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lowers the energy need for cooling by keeping dark states for a big portion of the 
time. 

 

3.9. Discussion 

This Chapter investigated the opportunity to apply advanced control strategies 
to adaptive façade components. The complexity of the thermal phenomena 
underlying even the simplest test cell had to be translated in an agile model for the 
Model Predictive Control strategy: a fast yet reliable control-oriented model able to 
predict future states from a series of future inputs and disturbances. 

This methodological approach starts with the energy model definition, and 
following a replicable path allows a reliable implementation of a Hybrid Model 
Predictive Controller for enhancing the performances of an active component for 
solar gains modulation integrated in the building façade.  

Moreover, the co-simulation toolchain presented enables the required 
benchmarking of the advanced controller by coupling at time-step level the physical 
model simulation and the controller itself. 

MPC strategies have demonstrated to be suitable for electrochromic façades, 
since a better performance if compared to traditional controllers was found in the 
presented cases. These findings can be seen as an opening to the possibility of 
applying predictive control strategies to transparent adaptive components or, more 
in general, solar gains modulators. The HMPC formulation allowed to capture the 
hybrid nature of the case study, characterized by an electrochromic glazing able to 
switch between discrete states and a continuous heating/cooling system.  

If these approaches are combined with specific cases particularly suitable for 
MPC applications, moreover, the described positive effects could be enhanced. This 
means, for example, largely transparent buildings with high thermal mass. 

Furthermore, the demonstrated flexibility of the MPC formulation can be 
exploited to achieve different goals: for example, in some scenarios comfort 
requirements are more important than the energy need, while in others energy 
saving has the priority. Using the same structure and simply changing the objective 
function weights (or using a different objective function altogether), it is possible 
to address the correct needs. This control flexibility can be also exploited to improve 
the overall building energy flexibility and demand management: considering 
variables as the availability of renewable energy resources, energy pricing, electric 
or thermal storages availability and so on within the objective function, it is possible 
to apply strategies beneficial to an electric grid. 
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Chapter 4 

4. Control application in the 
TWINS (Testing Window 
Innovative Systems) test facility 

This chapter describes the research activity carried out in a case study. 
Experimental and numerical activities were carried out to design Model Predictive 
Control strategies for the control of an electrochromic façade and a 
heating/cooling system taking into account thermal and lighting aspects. 
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4.1. Introduction 

The research activity presented in this chapter was carried out within the TEBE 
group (Technology Energy Building Environment) of the Department of Energy 
(DENERG) of Politecnico di Torino and in the context of a collaboration with a 
smart glass manufacturer, which provided next-generation electrochromic Insulated 
Glazing Units (IGUs), characterized by reduced time-responses for the transition 
between two states and improved, more neutral colour rendering. 

In particular, two electrochromic and one static IGUs were provided. The 
glazing units were installed on the Testing Window Innovative Systems (TWINS), 
an outdoor test facility located at the rooftop of the Department of Energy of 
Politecnico di Torino. These units were integrated on the east test cell, on its south 
facade. 

An extensive experimental campaign was carried out with the aim of 
characterizing the test cell and validating its relative numerical model. These 
activities were carried out in the framework of two master’s theses [87,88] (one of 
which co-tutored by the author) and a research grant funded by Prof. Alfonso 
Capozzoli. A closed-loop control system was set up to control the electrochromic 
IGUs. Since it was not possible to use the HVAC system of the test cell, the 
measurements were performed in free-running conditions or in heating conditions 
through a simple convection heater. 

With the validated EnergyPlus model of the test cell, it was then possible to 
simulate the test cell under different control strategies and same disturbances. 
Moreover, a detailed lighting simulation was performed to evaluate the energy 
required for lighting at each hour of the year and for each glass state. This 
information was used to design a predictive model strategy taking into account 
thermal aspects. 

4.2. Case study description 

4.2.1. Test cell 

The case study experimental facility consists of a test cell with internal 
dimensions of 1.6 m (width), 3.5 m (length) and 3 m (height). It is located on the 
rooftop of the Department of Energy of Politecnico di Torino (Latitude: 
45°03′28″N; Longitude: 7°39′23″E). 

The walls, the roof and the floor are made of sandwich panels composed by 
metal sheets and polyurethane insulation, for a total thickness of 48 mm. Only the 
floor has an additional layer of linoleum in the internal side to provide a walkable 
surface. The thermal transmittance of each side is approximately 0.5 W/m2K. 
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The south face of the test cell hosts the testing façade, in this case composed by 
three IGUs arranged as in Figure 4.1. 

The top unit is a static glazing system, while the central and lower ones are 
electrochromic. The static glazing unit has the same thermo-optical characteristics 
as the electrochromic units in their bleached state. The static IGU has dimensions 
of 1.3 m in width and 0.77 m in height, while the electrochromic IGUs of about 1.3 
m in width and 0.83 m in height. 

The width dimension of the glazing units was not enough to cover the entire 
width of the test cell façade, leaving a gap of about 10 cm. Plexiglas strips were 

Static IGU 

Electrochromic IGUs 

Figure 4.1. TWINS facility 
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used to cover those gaps, both on the internal and the external side of the façade. In 
Figure 4.1 it is possible to see these strips on the left side of the façade, while Figure 
4.3 provides an overall view from the inside of the test cell. 

On the north façade there is a door, and its thermal characteristics were assessed 
in the experimental campaign in order to take into account its influence on the 
overall heat exchange. 

The east façade is completely free from obstructions, while in the west façade, 
an obstruction of 2 x 2 x 2.2 m of dimensions casts a shadow on the test cell in the 
late afternoon. 

As visible in Figure 4.1, the whole structure sits on a steel frame structure that 
elevates the test cell of about 14 cm from the pavement. 

4.2.2. Data gathering 

The experimental setup of the test cell consists of several different sensors and 
a data logger: 

 Type T thermocouples, used to measure both surface and air 
temperatures (Figure 4.2 (a)-(e)); 

 Heat flux plates, to measure heat fluxes through every surface dividing 
the internal and external environment (walls, floor, door, windows, etc.) 
(Figure 4.2 (c)); 

 Pyranometers, to measure solar irradiance, located both inside the 
environment and outside and oriented both horizontally and vertically 
(Figure 4.2 (b)); 

 DataTaker DT85, a data logger used to collect data of every sensor used 
in the case study. 

The thermocouples used to measure the surface temperatures were placed on 
the indoor and outdoor surfaces of each envelope component, matching their 
relative positioning and trying to avoid singularities as corners or structural 
elements, which would lead to misleading measurements. The heat flux plates were 
positioned on the internal side of the envelope surfaces, next to the corresponding 
thermocouple; in this way the measured thermal flux and surface temperatures lead 
to better estimations of key parameters to be characterized (i.e. the envelope 
conductance). 

The outside air temperature was measured using one thermocouple placed 
outside the test cell and underneath it, in order to be naturally shielded from direct 
solar radiation. The internal air temperatures were measured using four 
thermocouples mounted on supports at 1.5m height, centred in the sense of the test 
cell width and spaced along its length. 

To measure the transmitted solar radiation through the test façade, one 
pyranometer was installed for each one of the three IGUs. The sensors were centred 
with each pane. To measure the external solar radiation, one pyranometer was 
positioned vertically on the south façade, using an angular steel frame as a support, 
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and a second pyranometer was installed horizontally. In this way, it was possible to 
obtain the solar radiation incident on the south façade and the global horizontal 
solar radiation, essential parameters to define the outdoor conditions. 

Given the extensive experience of the research group on experimental 
campaigns run on these test cells, some precautions were taken to avoid distorted 
measurements caused by direct or reflected solar radiation hitting the above 
described sensors [11,89–92]: 

 the thermocouples measuring the external surface temperatures were 
shielded from solar radiation using semi-cylindrical plastic tubes covered 
with aluminium tape (Figure 4.2 (a)); 

 the thermocouples measuring the internal surface temperatures were 
covered with a piece of aluminium tape (Figure 4.3); 

 the probes measuring the internal air temperatures were placed inside 
cardboard cylinders, so to allow air to freely circulate while shading the 
thermocouple (Figure 4.3); 

 the heat flux plates on the opaque components were shielded using 
aluminium tape on their exposed face (Figure 4.2 (c)); 

 the heat flux plates on the IGUs were shielded both on their exposed face 
(toward the inside of the test cell) and on their face toward the outside, using 
aluminium tape on the external surface of the IGU (Figure 4.2 (e) and 
Figure 4.3); 

 the internal pyranometers were shielded using a funnel internally covered 
with a matt black foil (Figure 4.2 (d)). 
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(a) (b) 

(c) 

(e) 

(d) 

Figure 4.2. (a) External surface temperature probe; (b) External vertical pyranometer; (c) 
Internal heat flux plate on an opaque envelope component; (d) Internal pyranometers with the 

funnel shield; (e) Thermocouple on the external IGU face and aluminium tape shielding the heat 
flux plate place on the internal face of the IGU. 
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Figure 4.3. Sensors placed on the internal side of the test cell. In each IGU are visible a 
surface thermocouple (on the right), a heat flux plate (in the centre) and a pyranometer (on the 

left). In correspondence of the central pyranometer is visible the cardboard cylinder shielding one 
of the internal air temperature probes. 
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A DataTaker DT85 [93] was used to acquire and record the readings from all 
the above mentioned sensors. In order to avoid data-loss and to allow a feedback 
control to be implemented, the DataTaker was connected to the Politecnico di 
Torino local network so that the measurements files could be transferred in a 
protected folder regularly. An automatized structure was designed to have, on one 
hand, the measured data to be transferred from the DataTaker to the network folder, 
where data would be pre-processed and saved in daily files, and on the other hand 
to frequently read the current measurements (e.g. every minute) to allow feedback 
control strategies to be applied. 

4.2.3. Test cell characterization 

The aim of the test cell characterization is assessing the most important thermo-
physical characteristics of the opaque components and to confirm the thermo-
optical properties of the transparent ones (with already known and detailed 
characteristics) using in-situ measurements. In this section, the results obtained 
during the characterization are summarised. 

Data was gathered from the 18th to the 22nd of February, at 5-minutes intervals. 
This data was used to characterize all the test cell components, in accordance with 
EN ISO 9869-1:2014 [94] and UNI EN ISO 6946:2008 [95]. 

The thermal characteristics of the opaque components are summarised in Table 
4.1. 

 

Table 4.1. Thermal conductance and transmittance of the opaque components 

Opaque component 𝑪 (𝑾/𝒎𝟐𝑲) 𝑼 (𝑾/𝒎𝟐𝑲) 
West Wall 0.523 0.480 
East Wall 0.523 0.481 
North wall 0.523 0.480 

Roof 0.523 0.487 
Floor 0.816 0.696 

 
The static IGU is a double glazing made of an external clear glass pane (6 mm 

thick), an internal low-e coated pane (8 mm thick) and a 16 mm gap filled with 
argon 90%. The electrochromic IGUs are made as the static one, but the external 
pane is made of a laminated glass (10 mm thick) with an electrochromic device in 
between (Figure 4.4). 
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The electrochromic glass optical properties were exported from the 

International Glazing Database (IGDB), while the thermos-optical properties of the 
IGUs were evaluated using the LBNL Window program [96]. 

Table 4.2. Optical properties of the electrochromic glass 

State 𝝉𝒗𝒊𝒔  [−] 𝝆𝒗𝒊𝒔 𝟏 [−] 𝝆𝒗𝒊𝒔 𝟐 [−] 𝝉𝒔𝒐𝒍 [−] 𝝆𝒔𝒐𝒍 𝟏 [−] 𝝆𝒔𝒐𝒍 𝟐 [−] 

EC73 0.731 0.142 0.119 0.529 0.176 0.173 
EC46 0.456 0.090 0.101 0.264 0.139 0.124 
EC28 0.278 0.071 0.078 0.138 0.133 0.112 
EC14 0.143 0.640 0.069 0.064 0.130 0.109 
EC8 0.083 0.061 0.069 0.036 0.129 0.112 
EC5 0.050 0.059 0.071 0.021 0.129 0.118 
EC2 0.023 0.058 0.075 0.010 0.129 0.126 

 
  

Figure 4.4. Electrochromic IGU section 
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Table 4.3. Thermo-optical properties of the electrochromic IGU 

State 𝝉𝒗𝒊𝒔   
[−] 

𝝆𝒗𝒊𝒔 𝒇  
[−] 

𝝆𝒗𝒊𝒔 𝒃  
[−] 

𝝉𝒔𝒐𝒍  
[−] 

𝝆𝒔𝒐𝒍 𝒇  
[−] 

𝝆𝒔𝒐𝒍 𝒃 
[−] 

𝒈 
[−] 

𝑼  
[𝑾/𝒎𝟐𝑲] 

EC73 0.671 0.158 0.162 0.393 0.232 0.324 0.471 

1.2 

EC46 0.414 0.097 0.133 0.211 0.148 0.301 0.321 
EC28 0.249 0.074 0.117 0.113 0.134 0.293 0.237 
EC14 0.127 0.063 0.111 0.053 0.130 0.291 0.186 
EC8 0.074 0.058 0.108 0.029 0.128 0.289 0.166 
EC5 0.045 0.055 0.107 0.017 0.123 0.290 0.156 
EC2 0.021 0.059 0.101 0.008 0.139 0.293 0.146 

 
In Table 4.2 the optical properties of the electrochromic glass are summarised 

for seven different glass states, named using the visible transmission value. 
Similarly, in Table 4.3 the thermo-optical properties of the whole electrochromic 
IGU are reported, considering the same tint states. 

Using the external incident solar radiation and the transmitted ones, it was 
possible to evaluate the solar transmission using the following equation: 

 

𝜏𝑠𝑜𝑙,𝑖(𝜑) =
𝑄𝑖𝑛

𝑄𝑖𝑛𝑐,𝑜𝑢𝑡
 (4.1) 

 
Where 𝑄𝑖𝑛𝑐,𝑜𝑢𝑡 is the outside incident solar radiation and 𝑄𝑖𝑛 the vertical 

internal one (transmitted through the IGU). The solar transmission depends on the 
incident angle 𝜑, which is equal to 0° (normal incidence) for the values in Table 
4.2 and Table 4.3, and changes depending on the sun position for the measured data. 

Experimental data was used to confirm that the windows optical properties 
matched with those stored in the database. Firstly, for each window state as in Table 
4.3, the solar transmission curves were calculated as a function of the incident angle 
using empirical polynomial regressions [97]. This enabled to generalize the solar 
transmission value stored in the database and valid only for solar radiation incident 
to the plane at a normal angle. Finally, measured solar transmission data obtained 
using Equation (4.1) was compared with the previously obtained curves. This 
comparison allowed the IGU characterization to be verified and to find a 
correspondence between the real tinting range and the one considered in the LBNL 
Window database. It was found that the bleached state perfectly corresponds to the 
state EC73 and the most tinted to EC5. These two states were considered as the 
extremes of the range for the successive simulations and calculations. The 
equivalence of the optical properties of the EC73 IGU and the static IGU was also 
confirmed. 

The test cell characterization was completed with a blower door test, which 
enables to assess the airtightness of the environment [98] (Figure 4.5). Air changes 
at 50 Pa in pressure and depression were assessed, and dividing results by a factor 
of 20, the average Air Changes per Hour (ACH) of the test cell were found to be of 
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around 1.5 h-1 (pressurization test) and 2.1 h-1 (depressurization test). These values 
were used as baseline when building the EnergyPlus model. 

 
 

 

  

Figure 4.5. Blower door test set-up 
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4.3. Control infrastructure setup 

This Section presents the solutions adopted to implement real-time data 
acquisition, pre-processing and management, paramount for control applications. 

4.3.1. Real-time data acquisition and management 

In Figure 4.6 a schematic of the architecture used for data acquisition and 
control is shown. As previously introduced, the DataTaker transfer its measurement 
files to a protected folder at a variable frequency, chosen in function of the specific 
needs. For example, for the test cell characterization or monitoring (left part of 
Figure 4.6), a typical approach was to set-up the DataTaker to register the 
measurements every 15 minutes (with a scan rate of 1 minute). It is worth to be 
mentioned that the data logger acquires data at a frequency equal to the scan rate, 
but it averages this data and registers it at a lower rate (15 minutes in this case). 

A Python script automatically retrieves this data directly from the local network 
folder and pre-process it into daily files, to allow faster analyses afterwards. In 
particular, the measured air temperatures are averaged in order to get one mean air 
temperature and the IGUs solar transmission properties are assessed to have 
feedbacks on the actual glass state. 

Figure 4.6. Control and data acquisition architecture 
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4.3.2. Control application 

The right section of Figure 4.6 presents the control system. The controllable 
equipment includes the electrochromic windows and a convection heater. 

The 2 kW convection heater was plugged to a power supply through a relay, 
controlled via a Raspberry Pi to allow remote control of the heater. The Raspberry 
Pi was also equipped with air temperature sensors, placed in the same position as 
the T-type thermocouples. These sensors were calibrated and were useful to enable 
the heater to operate “offline”. However, since Raspberry Pi features Wi-Fi 
connectivity, it was possible to read and write data in real-time. 

The electrochromic windows were controlled through a Python script provided 
by the manufacturer, which received the tint-level command on their server and 
send the command to the electrochromic windows (each identified with a unique 
code). The IGUs have a pigtail connection (as visible in Figure 4.3 and the scheme 
in Figure 4.4) which goes directly into a control box (Figure 4.7) 

 

4.4. Simulation setup 

As in the previous case study, the simulation setup involves the interaction 
between different software and the definition of different working pieces. 

Firstly, a physical model was defined in EnergyPlus and validated using 
experimental data. Then, this model was simplified using the R-C network analogy 
and the state-space representation, creating a grey-box model that was then 
identified. An evaluation of the required energy for lighting at each time of the year 
and for each electrochromic window state was performed, enabling the controller 
to consider also this factor. 

Figure 4.7. Electrochromic windows control box 
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4.4.1. EnergyPlus model definition and validation 

An EnergyPlus model of the test cell was developed. The geometrical model 
was built in SketchUp, where all the main components were defined: the opaque 
envelope components, the IGUs, the Plexiglas strips, the west-side obstruction, etc. 
Figure 4.8 shows the 3D model developed in SketchUp. 

All the characteristics of the test cell components were initially defined based 
on the results obtained during the characterization phase. Some uncertainties on the 
measured values are always present, and some not-negligible aspects as thermal 
bridges could not be measured beforehand. For these reasons, the test cell properties 
as defined in EnergyPlus needed to be tuned. This process lead to a validated white-
box model. The validation process was supported by the experimental data and was 
based on the internal mean air temperature. 

The validation was carried out considering experimental measurements with 
the test cell in free running and the electrochromic IGUs firstly in bleached state 
(EC74) and then in the most tinted state (EC5). It was then verified and adjusted 
using experimental data in heating conditions, where random schedules were given 
to both the convective heater and the electrochromic windows. The validation was 
based on the internal mean air temperature. However, also surface temperatures and 
transmitted solar radiations were considered, assessing the fit between the simulated 

Figure 4.8. SketchUp geometrical model 
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evolution of these physical quantities and the relative experimental measurements. 
In Figure 4.9 and Figure 4.10 [87], results from the model validation are shown. 
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Figure 4.10. Internal air temperature comparison between experimental and simulated data - 
Bleached state (EC73) 
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Figure 4.9. Internal air temperature comparison between experimental and simulated data - 
Tinted state (EC5) 
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The highlighted band in Figure 4.11 corresponds to a period in which the test 

cell door was opened because the access to the test facility was needed for small 
problem fixing. For this reason, the experimental air temperature curve drops, while 
the simulated one (which cannot take into account this event) does not. 

In accordance with ASHRAE Guideline 14:2002 [99], the NMBE (Normalised 
Mean Biased Error) and CV(RMSE) (Coefficient of the root-mean-square error) 
values were calculated and verified (Table 4.4). 
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Figure 4.11. Internal air temperature comparison between experimental and simulated data – 
Changing glass states and heating power 
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Table 4.4. Statistical parameters of the model validation 

Tint state Related 
figures Statistical index Model ASHRAE 

limits 
Bleached 
(EC73) Figure 4.9 

NMBE -1.3% ±10% 
CV(RMSE) 5% 30% 

Tinted 
(EC5) Figure 4.10 

NMBE -1.7% ±10% 
CV(RMSE) 8% 30% 

Variable 
Figure 4.11 NMBE -2.5% ±10% 
Figure 4.12 CV(RMSE) 7% 30% 

 
The statistical parameters evaluated in the last case (variable g-value and 

heating power) consider all the above shown data, also the biased period with the 
door opened. Since the values are within the limits, the model was considered 
validated. 

4.4.2. Simplified model and System Identification 

As in Chapter 3, a grey-box model was developed for this case study, with the 
aim of enabling the application of a Model Predictive Control strategy. The same 
approach of the previous case study was followed: an R-C network was chosen to 
describe the thermal behaviour of the case study in a simplified way, its dynamics 
are described through a state-space representation and its lumped parameters are 
identified via a system identification. 

R-C network definition 

As a first approach, the R-C network presented in Figure 4.13 was considered. 

 

Figure 4.13. R-C network considering solar radiation on the opaque envelope 
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It consists of a II order R-C network, which was found to be the best performing 
in the previous case study, with the following parameters: 

 Ti – average inside temperature; 
 Tw – equivalent wall temperature; 
 Ta – ambient temperature; 
 Rv – equivalent infiltration resistance; 
 Riw – internal half of the wall equivalent resistance; 
 Rew – external half of the wall equivalent resistance; 
 Ci – equivalent internal capacitance; 
 Cw – equivalent wall capacitance; 
 𝜙hc – energy flux from the heating/cooling system; 
 𝜙s – energy flux from solar radiation through the transparent 

components; 
 Aw – effective window area; 
 𝜙𝑠,𝑖 – energy flux from the incident solar radiation on the opaque 

envelope components; 
 Ae – effective opaque envelope area. 

Therefore, the equations describing the system dynamics are: 
 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝑅𝑖𝑤𝐶𝑖

(𝑇𝑤 − 𝑇𝑖) +
1

𝑅𝑣𝐶𝑖

(𝑇𝑎 − 𝑇𝑖) +
1

𝐶𝑖
𝜙𝑠𝐴𝑤 +

1

𝐶𝑖
𝜙ℎ𝑐 (4.2) 

𝑑𝑇𝑤

𝑑𝑡
=

1

𝑅𝑖𝑤𝐶𝑤

(𝑇𝑖 − 𝑇𝑤) +
1

𝑅𝑒𝑤𝐶𝑤

(𝑇𝑎 − 𝑇𝑤) +
1

𝐶𝑤
𝜙𝑠,𝑖𝐴𝑒 (4.3) 

 
The system identification process, however, highlighted an over-

parametrization problem. Considering the thermal dynamics occurring in the test 
cell, the R-C network was simplified by eliminating the 𝜙𝑠,𝑖 ∙ 𝐴𝑒  element: amongst 
the other elements of the network, the incident solar radiation on the opaque test 
cell components was considered the least influencing the overall dynamics. This 
because of two main reasons: 

 the first is that incident solar radiation acts only on the east façade, the 
roof and a small portion of the west façade (given the above-described 
obstruction); 

 the second is that the envelope external surface are smooth and light-
coloured, hence characterised by a low solar absorptance value. 

Moreover, the internal and external halves of the wall equivalent resistance 
were considered equal, given the perfect symmetry of the opaque test cell 
components. Therefore, instead of the parameters 𝑅𝑒𝑤 and 𝑅𝑖𝑤, a unique parameter 
(𝑅𝑤), which represents half of the wall equivalent resistance was introduced. 
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The II order R-C network taken into account is the one shown in Figure 4.14. 

The system dynamics of the network shown in Figure 4.14 are characterised by 
the following equations: 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝑅𝑤𝐶𝑖

(𝑇𝑤 − 𝑇𝑖) +
1

𝑅𝑣𝐶𝑖

(𝑇𝑎 − 𝑇𝑖) +
1

𝐶𝑖
𝜙𝑠𝐴𝑤 +

1

𝐶𝑖
𝜙ℎ𝑐 (4.4) 

𝑑𝑇𝑤

𝑑𝑡
=

1

𝑅𝑤𝐶𝑤

(𝑇𝑖 − 𝑇𝑤) +
1

𝑅𝑤𝐶𝑤

(𝑇𝑎 − 𝑇𝑤) (4.5) 

 
This simplification leads to a considerable improvement in terms of stability 

and equivalence between the R-C network and the real thermal dynamics, as 
demonstrated by the System Identification process. 

State-space representation 

The following state-space equations are used to describe the system dynamics: 
 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (4.6) 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (4.7) 

 
Where: 

Figure 4.14. R-C network considered in this case study 
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𝑥 = [𝑇𝑖,  𝑇𝑤]𝑇 
 (4.8) 

𝑢 = [𝑇𝑎 , 𝜙𝑠, 𝜙ℎ𝑐]
𝑇 

 (4.9) 

𝐴 =

[
 
 
 − (

1

𝑅𝑤𝐶𝑖
+

1

𝑅𝑣𝐶𝑖
)

1

𝑅𝑤𝐶𝑖

1

𝑅𝑤𝐶𝑤
−(

2

𝑅𝑤𝐶𝑤
)
]
 
 
 

 

 

(4.10) 

𝐵 =

[
 
 
 

1

𝑅𝑣𝐶𝑖

𝐴𝑤

𝐶𝑖

1

𝐶𝑖

1

𝑅𝑤𝐶𝑤
0 0

]
 
 
 

 

 

(4.11) 

𝐶 = [1 0] 
 (4.12) 

𝐷 = [0 0 0] 
 (4.13) 

Where: 

 �̇�(𝑡) - state vector; 
 𝑦(𝑡) - output vector; 
 𝑢(𝑡) – input vector; 
 𝐴,𝐵, 𝐶, 𝐷 – time invariant matrices. 

The parameters to be identified are: 𝑅𝑤, 𝑅𝑣, 𝐶𝑖, 𝐶𝑤 and 𝐴𝑤. 

System Identification 

Since the test cell only allowed free-running and heating conditions, it was not 
possible to obtain experimental during cooling. Therefore, the previously presented 
EnergyPlus validated model was used to generate the data-set needed for the 
System Identification process. 

As in the previous case study, a four-week period was considered, where the 
first two weeks were used to estimate the lumped parameters and the last two weeks 
were used to test the performance of the model. Being the controlled inputs the 
electrochromic state and the heating/cooling power, random schedules were 
generated in order to “train” the model on all the possible conditions. Heating, 
cooling and free-running were alternated and the heating or cooling power inputs 
were set so to have different durations and magnitude; the electrochromic state 
changed throughout the entire duration of the dataset. 
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Figure 4.15 shows the heating/cooling system and electrochromic state 
schedules. 

The resulting input dataset used for the identification is shown in Figure 4.16. 

The input dataset shown in Figure 4.16 includes the ambient temperature (𝑇𝑎), 
the heating/cooling power (𝜙ℎ𝑐) and solar gains (𝜙𝑠). Solar gains, as in the previous 
Chapter, are calculated as the solar radiation incident to the test façade multiplied 
by the transparent component g-value. In this case, since the façade is composed of 
one static unit and two electrochromic units, the g-value is calculated as a weighted 
average of the three IGUs. The g-value shown in Figure 4.15 is only related to the 
electrochromic windows. 
  

Figure 4.15. Heating/cooling system and electrochromic state schedule used to generate the 
input dataset 

Figure 4.16. Input dataset for system identification 
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Using the Linear Grey-Box Models (in Matlab), fed with the above defined 
dataset, the lumped parameters where identified (Table 4.5). 

Table 4.5. Parameters identification 

 
𝑅𝑤 

(𝐾/𝑘𝑊) 
𝑅𝑣 

(𝐾/𝑘𝑊) 
𝐶𝑖 

(𝑘𝑊ℎ/𝐾) 
𝐶𝑤 

(𝑘𝑊ℎ/𝐾) 
𝐴𝑤 

(𝑚2) 
Identified 

value 91.69 45.73 0.073 0.286 3.30 

Upper 
boundary 103.80 22.90 0.014 0.079 2.10 

Initial 
guess 25.95 68.71 0.041 0.236 3.16 

Lower 
boundary 6.49 206.12 0.122 0.709 4.74 

 
In Table 4.5 the identified parameters are shown along with the relative first 

guess value and its boundaries. 
Using the second half of the dataset, then, the grey-box model response was 

tested, and the graphical comparison is shown in Figure 4.17. 

The Matlab System Identification Toolbox was used to evaluate the fit between 
the grey-box model response and the simulated dataset. In particular, it evaluates 
the Normalised Root Mean Square Error (NRMSE), in this case equal to 86.08%. 

Figure 4.17. Simulated response comparison 
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4.4.3. Energy consumption for lighting evaluation 

In collaboration with a researcher of the TEBE group, expert in lighting 
evaluations, the energy need for lighting throughout the year for different 
electrochromic glazing states was identified. 

Figure 4.18 shows, in a random week, the normalised results of 𝜙𝐿 , which can 
be described as the power absorbed by the lighting system. It is normalised with 
respect to the nominal power of the lighting system, considered equal to 62 W. 

These results were obtained using the software DIVA for Rhino [100], where 
the geometrical characteristics of the test cell were the same as the one used in 
EnergyPlus. All the transparent envelope optical properties were taken into account, 
along with the optical parameters of the internal surfaces, since once the light enters 
the environment, it bounces multiple times along the internal surfaces in 
relationship with its optical characteristics (colour, specularity, etc). The goal of the 
lighting system is to keep 500 lx of illuminance in a hypothetical horizontal task 
area considered to be in the middle of the test cell [101]. These values were 
organized in a table, used by the MPC as a look-up table to take into account the 
effect of an electrochromic state choice on the lighting energy consumption. In this 
way, the controller can quantify and predict the implications of a sequence of glass 
state choices on the energy need for lighting. This is particularly interesting because 
of the contrasting nature that often exists between the thermal and lighting needs: 
during a cooling period, while solar gains need to be minimised (electrochromic in 
dark states) in order to save cooling energy consumption, the opposite would be 
desirable to save lighting energy (electrochromic in clear states). 
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Figure 4.18. Normalised power need for lighting during a week 



 

89 
 

4.4.4. Co-simulation infrastructure 

Figure 4.19 shows the workflow describing the co-simulations infrastructure. 
On the left, the white-box model developed in Energy Plus simulates the system 

dynamics, and given its validation can be considered representative of the real 
system. At each control time-step, the simulation is paused and states measurements 
are passed to the controller via BCVTB. The controller, developed in Matlab, uses 
the received states measurements as inputs, along with the prediction of future 
disturbances and information on the energy need for lighting. This last information 
consists of pre-calculated values stored in a look-up table. Specifically, the values 
related with energy need for lighting predictions up to the control horizon and 
related to every possible window state are passed to the controller. This set of data 
allows the controller to solve the optimization problem, using the grey-box model 
to perform the needed predictions. Once a solution is found, the control actions 
relative to the first control time-step are passed to EnergyPlus via BCVTB. Finally, 
the control actions are implemented in the model and the white-box simulation 
continues until the following control time-step. 

  

Figure 4.19. Simulation Workflow 
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4.5. Controller definition 

In this Section, the developed MPC strategy is presented. Moreover, the RBC 
strategies used as baseline are described. 

4.5.1. MPC formulation and simulative application 

Constraints 

A Hybrid Model Predictive Control (HMPC) was defined, because of the 
necessity to deal with continuous and Boolean variables. 

Both hard and soft constraints were used in this case study: 
 

𝜙ℎ𝑐,𝑚𝑖𝑛 ≤ 𝜙ℎ𝑐 ≤ 𝜙ℎ𝑐,𝑚𝑎𝑥 
 (4.14) 

∼ (𝛿1 & 𝛿2) & ∼ (𝛿1 & 𝛿3) & ∼ (𝛿2 & 𝛿3) 
 (4.15) 

∼ (𝛿1 & 𝑛𝑖𝑔ℎ𝑡)& ∼ (𝛿2 & 𝑛𝑖𝑔ℎ𝑡)& ∼ (𝛿3 & 𝑛𝑖𝑔ℎ𝑡) 
 (4.16) 

𝑇𝑖,𝑚𝑖𝑛 − 𝑒 ≤ 𝑇𝑖 ≤ 𝑇𝑖,𝑚𝑎𝑥 + 𝑒 
 (4.17) 

𝜙𝐿 ≤ 𝜙𝐿,𝑚𝑖𝑛 + 𝑒𝐿 (4.18) 
 
Equation (3.12) sets an upper and a lower boundary to the heating/cooling load 

(assuming heating as positive and cooling as negative). 
Equation (3.13) avoids the switching of two different states of the 

electrochromic glass at the time (see Table 4.6 to infer the window state from the 
Boolean variable 𝛿1, 𝛿2, 𝛿3 combination). 

Table 4.6. Correspondence between the Boolean variables and the relative states action 

𝜹𝟏 𝜹𝟐 𝜹𝟑 State Glass  
g-value 

Façade 
average  
g-value 

0 0 0 EC73 0.468 0.468 
1 0 0 EC60 0.284 0.342 
0 1 0 EC46 0.185 0.275 
0 0 1 EC5 0.087 0.208 

 
Equation (3.14) avoids the selection of states other than the bleached one at 

night time, where 𝑛𝑖𝑔ℎ𝑡 is defined as when solar radiation is below a certain 
threshold. 

In Equation (3.15), a soft constraint on the internal temperature 𝑇𝑖 is defined, 
allowing the system to violate the boundaries 𝑇𝑖,𝑚𝑖𝑛 and 𝑇𝑖,𝑚𝑎𝑥 using the slacking 
variable 𝑒, that penalizes the objective function. 

To consider the lighting energy consumption, the slacking variable 𝑒𝐿 was used 
as in Equation (4.18). The system will be provided with the minimum energy need 
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for lighting in that particular moment, which always corresponds with the bleached 
state. Therefore, if the bleached state is chosen, 𝜙𝐿 = 𝜙𝐿,𝑚𝑖𝑛, hence 𝑒𝐿 = 0; if a 
different state is chosen, 𝜙𝐿  will necessarily be higher than 𝜙𝐿,𝑚𝑖𝑛 (𝜙𝐿 > 𝜙𝐿,𝑚𝑖𝑛), 
so 𝑒𝐿 will be higher than 0 (𝑒𝐿 = 𝜙𝐿 − 𝜙𝐿,𝑚𝑖𝑛). The higher the energy need for 
lighting 𝜙𝐿  with respect to its minimum possible value 𝜙𝐿,𝑚𝑖𝑛, the higher will be 
𝑒𝐿, in turns negatively affecting the cost function. The controller will thus prefer 𝜙𝐿  
values to be as close as possible to 𝜙𝐿,𝑚𝑖𝑛 , finding a trade-off between this need and 
the one relative to heating/cooling energy need, often contrasting. 

HMPC formulation 

As in Chapter 3, a Mixed Logic Dynamical formulation was required [50,82]: 
 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2𝛿(𝑡) + 𝐵3𝑧(𝑡) (4.19) 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷1𝑢(𝑡) + 𝐷2𝛿(𝑡) + 𝐷3𝑧(𝑡) (4.20) 

 
Where: 

 𝑥(𝑡) = [𝑥𝑐
𝑇(𝑡) 𝑥𝑑

𝑇(𝑡)] is the state vector, with a continuous part 
(𝑥𝑐(𝑡) ∈ ℝ𝑛) and a discrete part (𝑥𝑑(𝑡) ∈ {0,1}𝑛𝑑); 

 𝑦(𝑡) = [𝑦𝑐
𝑇(𝑡) 𝑦𝑑

𝑇(𝑡)] is the output vector, with 𝑦𝑐(𝑡) ∈ ℝ𝑚 and 
𝑦𝑑(𝑡) ∈ {0,1}𝑚𝑑  the respective continuous and discrete parts; 

 𝑢(𝑡) = [𝑢𝑐
𝑇(𝑡) 𝑢𝑑

𝑇(𝑡)] with 𝑢𝑐(𝑡) ∈ ℝ𝑙 and 𝑢𝑑(𝑡) ∈ {0,1}𝑙𝑑  the 
respective continuous and discrete parts; 

 𝑧(𝑡) ∈ ℝ𝑟  is a continuous auxiliary and 𝑢𝑑(𝑡) ∈ {0,1}𝑟𝑑 represents 
discrete variables; 

 𝐴, 𝐵𝑖, 𝐶, 𝐷𝑖 are the real constant matrices  

Objective function 

The objective function can be written as: 
 

𝑚𝑖𝑛{𝑢}0
𝑁−1 𝐽 = ∑‖𝑄(𝑥(𝑡) − 𝑥𝑟)‖𝑝 + ‖𝑅(𝑢(𝑡) − 𝑢𝑟)‖𝑝

𝑁−1

𝑡=1

 (4.21) 

 
Where: 

 𝑄 is the weighted matrix of the states; 
 𝑅 is the weighted matrix of the controlled inputs; 
 𝑥(𝑡) is the state vector, 𝑥𝑟 the reference state vector; 
 𝑢(𝑡) the controlled inputs vector and 𝑢𝑟 the reference controlled input 

vector. 

As in Chapter 3, the controlled inputs are considered for the cost function. The 
controlled input vector is 𝑢 = [𝑒, 𝜙ℎ𝑐 , 𝜙𝐿 , 𝛿1, 𝛿2, 𝛿3]

𝑇, where 𝑒 is a slacking 
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variable used to define a soft constraint, 𝜙ℎ𝑐 is the heating/cooling energy, 𝜙𝐿  is the 
lighting energy, 𝛿1, 𝛿2, 𝛿3 are three Boolean variables related to the electrochromic 
glass state (as in Table 4.6). 

The input variable characteristics and associated weights are summarised in 
Table 4.7. 

Table 4.7. Input variables description and weights 

Variable Description Variable 
typology 

Limits Weights Lower Upper 
𝒆 Slacking Continuous 0 °C 2 °C 0.1 W/K 

𝝓𝒉𝒄 Heating/Cooling Continuous -1000 W 1000 W 1 [-] 
𝝓𝑳 Lighting Continuous 0 W 62 W 1 [-] 
𝜹𝟏 State: EC60 Boolean 0 1 0.00025 W 
𝜹𝟐 State: EC46 Boolean 0 1 0.00050 W 
𝜹𝟑 State: EC5 Boolean 0 1 0.00075 W 
 
Due to the complexity of the problem to be solved and the limitation of the 

machine used to solve it, the control horizon (correspondent to the prediction 
horizon) was fixed to 6 hours, while the control time-step at 30 minutes. 

Hardware and software setup 

The Mixed Logic Dynamical System was formulated in HYSDEL [83]. The 
Multi-Parametric Toolbox 3.0 (MPT3) [84] was used to design the MPC algorithm. 
CPLEX was used as the optimizer to solve the Mixed Linear Programming (MILP) 
problem. The machine used is a DELL XPS15, with an Intel Core i7 @ 2.8 GHz 
processor and 16GB of RAM. 
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4.5.2. Baseline control strategies 

As in Chapter 3, baseline control strategies were used to compare the MPC results. 

Firstly, a base case study with static windows (equivalent to the electrochromic 
in the bleached state) was considered. Then, considering the possibility to change 
the electrochromic windows states, RBC strategies were applied based on the 
incident solar radiation (𝜙𝑠,𝑖) and on the average indoor temperature (𝑇𝑖). The 
applied threshold are summarised in Table 4.8: 

Table 4.8. RBC strategies summary 

RBC strategy Thresholds Electrochromic state 

𝝓𝒔,𝒊 

𝜙𝑠,𝑖 ≤ 100 W/m2 EC73 
100 W/m2 < 𝜙𝑠,𝑖 ≤ 150 W/m2 EC60 
100 W/m2 < 𝜙𝑠,𝑖 ≤ 400 W/m2 EC46 

𝜙𝑠,𝑖 > 400 W/m2 EC5 

𝑻𝒊 

𝑇𝑖 ≤ 24.5 °C EC73 
24.5 °C < 𝑇𝑖 ≤ 25 °C EC60 
25 °C < 𝑇𝑖 ≤ 25.5 °C EC46 

𝑇𝑖 > 26 °C EC5 
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4.6. Results 

In this section, the presented results provide an exhaustive picture of the 
strategies adopted by the designed control strategies in different periods of the year. 
Moreover, comparisons between MPC and baseline strategies will be provided. 

For a summer, an intermediate and a winter week period, results in the time 
domain are shown for the different control strategies, while in a radar chart the key 
performance indicators are compared. 

Results in the time domain will show the weather disturbances and the output, 
in particular the incident solar radiation 𝜙𝑠,𝑖, the ambient temperature 𝑇𝑎 and the 
indoor temperature 𝑇𝑖, along with the controlled inputs, which are the 
electrochromic state (g-value), the heating and cooling power (𝜙ℎ and 𝜙𝑐) and the 
lighting power (𝜙𝐿). 

The radar charts comparing the control strategies are based on five Key 
Performance Indicators (KPIs): 

 total energy consumption [Wh]: the energy request of the 
heating/cooling system over the week period; 

 peak power [W]: the peak load of the heating/cooling system over the 
week period; 

 dark states [%]: the amount of time in which the window was in dark 
states (i.e. EC28 or EC5) with respect to the total simulation period; 

 Percentage of Discomfort Hours (PDH) [h]: as defined in EN 16978-
1:2019[86], the percentage amount of time in which the operative 
temperature 𝑇𝑜𝑝 is above or below given threshold values, in this case 
20°C and 26°C respectively (Category II) 

 glass state changes [-]: total number of times in which the 
electrochromic glass state changes. 

As in Chapter 3, the normalised area of each polygon represented in the radar 
chart is used as KPI to compare the control strategies. It needs to be read along with 
the other KPIs to correctly perform the comparison, but its simplicity and directness 
make it a useful tool for this purpose 

4.6.1. Summer week 

From Figure 4.20 to Figure 4.23, results of RBC and MPC strategies are shown 
for a summer week in Torino (July 20th – 27th). In Figure 3.39, a radar chart is 
shown to compare these strategies. 
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Figure 4.20. Rule Base Control based on the incident solar radiation (𝜙𝑠,𝑖) – Summer week 

 

 
Figure 4.21. Rule Based Control based on indoor temperature (Ti) - Summer week 
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Figure 4.22. Bleached state - Summer week 

 
Figure 4.23. MPC control - Summer week 
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Figure 4.24. Comparison between MPC and RBC control strategies - Summer week 

 
Table 4.9 summarises the KPI represented in Figure 3.39, along with the 

normalised polygon areas. 

Table 4.9. Performance parameters and polygon areas – Summer week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [kWh] [W] [%] [%] [-] [-] 

RBC 𝝓𝒔,𝒊 31.18 528.07 26.19 25.20 40 2.09 
RBC 𝑻𝒊 30.79 525.72 57.74 23.48 26 1.98 
MPC 30.35 525.33 42.86 20.92 34 1.83 

 

Results show that the MPC strategy seems to merge the advantages of the two 
RBC strategies: from one side it anticipates the solar radiation increase and it 
protects the indoor environment by choosing darker states; on the other side it 
considers the indoor air temperature, thus reacting faster when temperature 
increases are foreseen. Since the case study consists of a test cell built with 
lightweight materials and not particularly airtight, these anticipations result in lower 
advantages from the energy consumption perspective than what could be achieved 
in other cases. However, it is clear how the predictive abilities of the MPC strategy 
enable the system to not only consume less energy than the other cases, but also to 
guarantee better indoor conditions (lower percentage of discomfort hours), and 
more time with the glazing system in clear states. This last aspect also affects the 
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indoor comfort conditions, since it results in a decreased use of the lighting system 
in favour of natural daylight and a better view-out. 

It is also worth to be noted that the adaptation range of the transparent façade 
is greatly reduced with respect to its full potential because of the static IGU. 

4.6.2. Spring week 

From Figure 4.25 to Figure 4.28, results of RBC and MPC strategies are shown 
for a spring week in Torino (March 30th – April 5th). In Figure 4.29, a radar chart is 
reported to compare these strategies. 
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Figure 4.25. Rule Base Control based on the incident solar radiation (𝜙𝑠,𝑖) – Spring week 

 
Figure 4.26. Rule Based Control based on indoor temperature (Ti) - Spring week 
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Figure 4.27. Bleached state - Spring week 

 
Figure 4.28. MPC control - Spring week 
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Figure 4.29. Comparison between MPC and RBC control strategies - Spring week 

 
Table 4.10 summarises the KPI represented in Figure 4.29, along with the 

normalised polygon areas. 

Table 4.10. Performance parameters and polygon areas – Spring week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [kWh] [W] [%] [%] [-] [-] 
RBC 𝝓𝒔,𝒊 36.09 382.23 23 18.5 36 2.07 
RBC 𝑻𝒊 37.09 390.69 29 18.7 16 1.96 
MPC 35.63 376.45 31 15.6 28 1.77 
 
Because of the low ambient temperatures and high solar radiation, the spring 

period poses a challenge to the control strategies. In facts, a glazed south can cause 
overheating during the day due to the high solar gains, and heating can be needed 
when solar radiation is not present, due to the low ambient temperatures. Given the 
low thermal mass and airtightness of the test cell, as stated before, these alternating 
behaviours can be exacerbated. In contrast to the previous case, RBC base on solar 
radiation works better during spring, since protection from solar radiation is key to 
lower cooling energy consumption. As before, the MPC strategy seems merging the 
positive behaviours of the two RBC strategies and its anticipations seem smoothing 
the peaks (especially present in the RBC based on the indoor temperature). The 
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overall advantages are hampered by the low thermal capacity of the test cell, which 
is translated in a rapidly changing indoor temperature. 

Since the MPC strategy is characterised by higher weights on the energy 
consumption and lower ones on the glass states, darker states are preferred during 
high solar radiation values to protect the indoor environment from excessive solar 
gains, resulting in higher percentage period with dark states. The advantages of this 
strategies would be more evident if the entire façade would have been characterised 
by the same adaptation range as the electrochromic IGUs and if the indoor 
environment would be more suitable to predictive strategies (higher capacity and 
airtightness). 

4.6.3. Winter week 

From Figure 4.30 to Figure 4.33, results of RBC and MPC strategies are shown 
for a winter week in Torino (January 22nd – 28th). In Figure 4.34, a radar chart is 
reported to compare these strategies. 
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Figure 4.30. Rule Base Control based on the incident solar radiation (𝜙𝑠,𝑖) – Winter week 

 
Figure 4.31. Rule Based Control based on indoor temperature (Ti) – Winter week 
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Figure 4.32. Bleached state - Winter week 

 
Figure 4.33. MPC control - Winter week 
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Figure 4.34. Comparison between MPC and RBC control strategies - Winter week 

 
Table 4.11 summarises the KPI represented in Figure 4.34, along with the 

normalised polygon areas. 

Table 4.11. Performance parameters and polygon areas – Winter week 

 Total 
Energy 

Peak 
Power 

Dark 
States PDH State 

changes 
Polygon 

Area 
 [kWh] [W] [%] [%] [-] [-] 

RBC 𝝓𝒔,𝒊 81.79 738.48 19.64 7.27 22 2.08 
RBC 𝑻𝒊 79.66 734.55 6.75 6.89 8 1.13 

Static clear 81.98 730.71 0.00 10.56 0 1.05 
MPC 79.05 734.38 6.55 5.84 13 1.00 

 
Winter is obviously characterised by heating needs, hence solar gains can be 

seen as a resource. However, high solar radiation values occur even in the presented 
“extreme winter week”, as defined in Torino IWEC file. This can result in the 

necessity to protect the indoor environment through solar gain modulation, 
especially in environments with high Window to Wall Ratios (WWR). 

This allows the RBC strategy based on the incident solar radiation to protect 
the environment from over-heating risks, but it also causes an increased need in 
heating the environment, furthermore with a rougher heating curve. RBC based on 
the indoor temperature better exploits the solar gains, but the lack of ability to 
modulate the solar gains causes over-heating during the central hours of the days 
characterised by high solar radiation values. If compared to the bleached state 
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reference, the RBC based on the 𝑇𝑖 value is able to lower the cooling needed caused 
by the over-heating occurring in the central hours of the same days. However, the 
lack of ability to completely protect the environment from the overheating 
phenomenon is unacceptable. 

The MPC strategy cannot lower much the heating requirement during the hours 
without solar radiation, since on one side, in those ours is clearly impossible to 
exploit the solar gains and on the other side, because the low thermal mass curbs 
the predictive potential that could lead to higher thermal storages. However, the 
prediction abilities allow the controller to avoid over-heating during the central 
hours while decreasing the heating energy need. The smoother transitions are also 
reflected in a lower period outside comfort conditions. 

 

4.7. Discussion 

The present Chapter described a research activity path involving experimental 
activities, complex numerical simulations and design of advanced control 
strategies. 

The experimental activity has seen the implementation of next-generation 
electrochromic glazing systems in Politecnico di Torino TWINS test facility. The 
nature of the collaboration with the smart glass manufacturer allowed this research 
activity to be carried out, even with the downside of not having a completely 
adaptive façade (given the static IGU). The experimental activity started with the 
implementation of the necessary equipment to measure all the necessary thermo-
optical parameters and to gather the acquired data. An automatized structure and 
Python scripts were used to automatically save and process the data, with significant 
advantages (first and foremost avoiding data-loss) and crucial to enable real-time 
control applications. 

Great importance was given to the test cell characterization, the white-box 
model validation and the grey-box model identification, since a reliable control-
oriented model is paramount for a well-functioning MPC strategy [51,102].  

A similar methodological approach to what described in Chapter 3 was 
followed to set-up the co-simulation infrastructure that needs to synchronize the 
physical model simulation with the controller, with its underlying management of 
weather data and the grey-box model, used to predict the future states. Considering 
the energy need for lighting incremented the complexity by adding a new 
contrasting need, impossible to be managed by standard RBC strategies. 

As described in the results, limitations include the low thermal capacity of the 
test cell, which worked against the predictive abilities of the controller. Moreover, 
the static nature of part of the façade resulted in a not completely exploitable 
adaptation range. 

However, the knowledge on the system thermal behaviour within the control-
oriented model, allowed the controller to perform better than the widely used RBC 
strategies, by reducing energy consumption while keeping clear states for longer 
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periods, or avoiding over-heating problems by anticipating and modulating solar 
gains or simply smoothening transition, which often resulted in improved comfort. 

Recommendation for future works on this research include the application of 
the previously shown strategies in real-time. This translates to the installation of an 
appropriate and controllable HVAC system, whose energy consumption can be 
measured, a dimmerable lighting system and additional sensors to evaluate the 
indoor light conditions (as lux probes). The grey-box model could then be identified 
with monitored data. Weather forecast data could be easily implemented using the 
widely spread web services. Monitored data on the test cell controlled with an MPC 
strategy would provide precious information to improve the described 
methodological approach. 

In the presented chapter, a new methodological approach was applied, and 
allowed the design and implementation of a Hybrid Model Predictive Control, used 
in many industrial or system-related applications but new for adaptive building 
façade components. The improvements in the smart-glass manufacturing, 
demonstrated by the improved aesthetics (tinting toward neutral colours) and fast-
changing tinting levels (under 3 minutes between the two extremes), need to meet 
improved control strategies to justify the higher costs compared to traditional solar 
radiation modulation systems. This work was a first attempt to merge two 
consolidated realities to create new possibilities for adaptive building components. 
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Chapter 5 

5. Conclusions 

This Chapter outlines the conclusions, states the limitations and illustrates the 
future outlook 
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5.1. Conclusions outline 

The current share of building energy consumption, along with the increasing 
standards in terms of indoor comfort requirements, need to be faced with novel 
approaches. The outdated strategy of seeking a disconnection between the indoor 
and outdoor environments must be replaced with the smarter idea of exploiting the 
available resources in a dynamic and adaptive manner. This change of paradigm 
opens a whole new set of possibilities: for example, exploiting the building thermal 
dynamics and weather conditions, use information on energy pricing or RES 
generation to consequently manage the building system, or change comfort 
requirements based on various factors, as the presence of occupants or energy 
pricing. The ability to adapt to changing environmental conditions and 
requirements, moreover, can improve building energy flexibility, which is recently 
gaining importance. As a consequence, demand response strategies can be faced, 
answering the increasingly important need to support the electric grid requirements. 
The possibilities are virtually infinite, and tailored solutions can be designed for 
each particular case. 

Adaptive building components play a central role in allowing this transition to 
become reality, but real-case applications are still (by far) a minority. Hardware 
technological solutions are already available and growing in terms of possibilities 
and adaptation ranges. However, market penetration is curbed by the high initial 
cost of these technologies (especially if compared with traditional building 
components) and the failure to fully exploit their potential during operation. This 
last issue can be addressed be tackled by using advanced software solutions, which 
would thus allow adaptive building components to improve their cost-effectiveness. 

The presented PhD thesis was developed in this framework. Innovative 
building components were explored along with advanced control strategies that 
could enhance their applications. The research activity focused, from the hardware 
side, on electrochromic glazing, which can change its thermo-optical properties by 
means of an electric control. This technology is characterized by a wide adaptability 
range and high potential in future applicability due to decreasing costs and 
continuous improvements in the manufacturing. Model Predictive Control, on the 
other side, was identified as a promising control strategy to be used, due to its 
predictive nature that allows the system dynamics to be taken into account and its 
intrinsic capability of managing contrasting requirements, essential for a better 
exploitation of the adaptive components’ possibilities. Moreover, MPC enables to 
design strategies aimed not only at reducing the energy consumption while 
guaranteeing the indoor comfort, but it can consider additional factors to increase 
the energy flexibility of the building with respect to the overall electric grid. 
Demand side management strategies can be implemented. Factors as the energy 
pricing, the availability of energy produced by renewable resources or the 
possibility to exploit thermal or electric storages can be taken into account. This is 
not a trivial characteristic, since it would not be achievable with simpler, rule-based 
strategies. 
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Following a pragmatic approach, a simulative case study was first taken into 
account. The first challenging step was that of translating a complex energy model 
in a simple and agile version of itself, reliable enough to provide consistent and 
accurate results, but requiring low computational effort to be solved. Completing 
this task allowed the opportunity to design a Model Predictive Controller for the 
management of the electrochromic glazing states and the heating/cooling system 
for the indoor air temperature control. Given the discrete nature of the 
electrochromic glazing states and the continuous nature of the heating/cooling 
system, a Hybrid Model Predictive Controller (HMPC) was considered the most 
preferable solution. In this way, no simplifications were needed: the precise 
thermos-optical properties of the electrochromic glazing at each state could be taken 
into account into the controller numerical optimization along with the continuous 
states of the heating/cooling system. Hard constraints were used to set the 
boundaries on the controlled variables and states and soft constraints to penalize 
undesirable conditions. Different weight matrices were defined to tune the HMPC 
in different ways, pushing the controller to act differently according to the preferred 
configuration. The possibility to use the same controller with different weight 
matrices allows to tune it in order to face different needs, enhancing different factors 
according to the needs. In order to implement the controller, a co-simulation 
toolchain was developed. Data exchange at time-step level between the physical 
model simulation and the controller allowed the needed benchmarking and 
feedback. Rule Based Controllers (RBC) were conceived with comparable logics 
to the most widespread control strategies found in literature. Moreover, different 
weather periods and climatic conditions were taken into account, with the aim of 
assessing the overall controller/adaptive system behaviour in different scenarios. 
Results obtained from the application of different HMPC strategies and baseline 
strategies were compared, demonstrating how the advanced HMPC outperformed 
simple RBC strategies. Specifically, the predictive abilities of the HMPC allowed 
better solar gains modulation that resulted in decreasing the system energy need 
and peak load while preserving comfort conditions and avoiding trivial, undesirable 
solutions (as maintaining tinted states for long periods). The success in the 
application of this control strategy is due to the facts that on one side solar gains 
greatly affect the indoor thermal conditions, and on the other side are strictly 
dependant on solar radiation and its evolution over time. The first element is 
translated in the fact that controlling solar gains has a big impact on the indoor 
thermal conditions, while the second element points at the prediction abilities of the 
HMPC as an important benefit. 

A second case study has involved the installation of next-generation 
electrochromic glazing in an outdoor experimental test cell (TWINS). The 
extensive experimental activity carried out allowed the characterization of the test 
cell in that specific configuration and the numerical validation of the relative energy 
model. An automatized structure was designed and implemented with the twofold 
objective of automatically managing the experimental data and real-time 
controlling of the system (electrochromic glazing and convection heater). This 
activity resulted in a better insight on all the working pieces of a real-case adaptive 
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system and provided key information for the model validation. Following a similar 
methodological approach designed in the first case study, a grey-box model was 
defined and its parameters were identified using the validated energy model. A co-
simulation toolchain was essential for linking all the working pieces of the MPC 
implementation. While in the first case study the lighting requirements were not 
taken into account, in this case they were assessed using ad-hoc simulation 
programs, and the relative results were implemented in the toolchain by means of a 
look-up table. This implementation required a different methodological approach 
with respect to what done for the other considered variables. The HMPC was thus 
designed to manage the additional lighting requirement, which often caused 
contrasting needs with the heating/cooling system. This aspect is particularly 
interesting due to the often contrasting nature of lighting and heating/cooling 
requirements: considering a previously stated example, high transparency states of 
the switchable glazing lead to an increase of natural daylight entering the 
environment, thus lowering the energy need for lighting; on the other end, a direct 
consequence is that the heat gains via solar radiation increase, leading to a potential 
increase in cooling energy needs. This contrasting nature of the considered 
variables poses a challenge to the control strategy, which needs to find a balanced 
trade-off solution. RBC strategies were conceived respecting the most widespread 
in literature, and results were used as baseline. The HMPC strategy was compared 
with the baseline strategies: the predictive controller was able to exploit the physical 
phenomena driving the system evolution, which RBC strategies cannot take into 
account. Moreover, the opportunity to manage contrasting needs, demonstrated 
with the implementation of the lighting requirements, underline the virtually 
boundless possibilities provided by the MPC. The great effort required to conceive 
and implement all the working pieces of MPC strategies is translated in a flexible, 
customizable and adaptable control solution able to better exploit the active 
building component potential. 

In conclusion, the outcomes of the research activities undertaken in this PhD 
highlight the importance of control strategies on active building components, 
showing how an advanced control strategy such as the Model Predictive Control, 
on the one hand opens a new set of possibilities (e.g. managing contrasting needs, 
account for constraints) and on the other hand enhances the performance of these 
systems. Moreover, the intrinsic flexibility and adaptability of MPC, along with the 
possibility of considering multiple variables at once, enables the opportunity of 
exploiting the gained building energy flexibility to implement strategies aimed at 
taking demand response actions. This feature is considered as increasingly 
important nowadays, given the growing building energy intensity due to higher and 
more widespread comfort requirements. 

The increasing complexity of adaptive building components and the growing 
availability of cheap electronic devices, high computational power and data (e.g. 
weather forecast, sensors in the built environment) will necessarily lead to a future 
where a holistic approach is required. Building physics, computer science, data 
analytics and control competences need to work as a whole to tackle future 
challenges. Only in this context will innovative adaptive components be seen as a 
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viable and convenient solution, with positive repercussions on the future built 
environment, with better comfort conditions, added flexibility, lower energy 
consumptions and more capable of exploiting renewable energy sources. The 
present thesis approached this novel problem with a pragmatic approach, with the 
result of demonstrating and assessing the opportunities provided by merging 
adaptive technologies and advanced control strategies. 

5.2. Limitations and future outlook 

The present work has focused on the implementation of Hybrid Model 
Predictive Control for electrochromic glazing systems. Through the described 
methodological framework, this goal was achieved, demonstrating the 
opportunities brought by this approach. 

In future works online weather forecasting can be considered to allow the online 
control of the electrochromic façade. Improvements can be identified in the 
consideration of occupancy, which thanks to state-of-the-art models can be reliably 
predicted, thus embedding additional potential to the MPC strategies. Energy 
pricing prediction can be used in massive and energy intensive buildings to pre-heat 
or pre-cool the indoor environment during low fares or in sight of increasing prices. 
Finally, information on RES generation can be implemented, when applicable, to 
better exploit clean energy generation. 
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