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On natural frequencies of Levy-type thick porous-cellular plates
surrounded by piezoelectric layers

M. Askari, A. R. Saidi’, A. S. Rezaei

Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, an analytical solution for free vibration of rectangular porous-cellular plates
enclosed by piezoelectric layers is presented by using third-order shear deformation plate
theory. Using Hamilton’s principle and Maxwell equation, the governing equations of the
system are obtained for both closed and open circuit conditions. Due to ithe coordinate
dependency of mechanical properties of porous materials, the governing equations of motion
are highly coupled. By using four auxiliary functions, these equations convert into two
independent partial differential equations. The decoupled equations are solved analytically by
employing Levy-type boundary conditions for the plate. Finally, after validation of the
obtained results, the effects of various parameters such as porosity and geometrical
dimensions on the natural frequencies of plate are investigated for different electrical and
mechanical boundary conditions. It is found that the natural frequencies of the plate decrease
as the coefficient of plate porosity increases. Also, the piezoelectric layers cause the natural
frequency of the plate to increase in various vibrating modes.

Keywords: Free vibration, Levy-type solution, Porous materials, Piezoelectric materials,
Third-order shear deformation theory

1. Introduction

In order to analyze the mechanical behavior of plates, several theories are proposed in which
the extension of the displacement field along the plate thickness is different and the number of
extended terms. is directly related to thickness-length ratio of the plate. To analyze the
mechanical behavior of thin plates, it is reasonable to use classical plate theory (CPT). In
1951, Mindlin [1] introduced first-order shear deformation theory (FSDT) that can be
considered as a modified model of classical theory for moderately thick plates. This theory,
due to considering the displacement induced by shear forces, may be considered as a good
alternative for classical theory so as to analyze the moderately thick plates. By increasing the
number of extended terms, other theories may be obtained. Following this approach, a new
higher-order theory; i.e., Reddy’s third-order shear deformation theory (TSDT) has been
proposed [2].

*
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In general, porous materials due to their unique properties such as high stiffness in
conjunction with low specific weight, are widely used in several applications including
lightweight structures, energy absorption, sound attenuation and thermal insulation [3].

To analyze the dynamic behavior of rectangular plates, lots of investigations have been
performed. Among all notable works, the free vibration analysis of isotropic rectangular
plates under different boundary conditions have been carried out by Leissa [4] using CPT.
Reddy and Phan [5] presented an exact solution for vibration and stability of isotropic,
orthotropic and laminated rectangular plates having simply supported boundary condition on
all edges according to a higher-order shear deformation theory. Liew et al. [6] investigated the
three-dimensional vibrations of thick rectangular plates made of homogeneous materials with
general boundary conditions by using Ritz method. Vel and Batra [7] provided an exact
solution for free vibration of simply supported functionally graded rectangular plates using
three-dimensional theory of elasticity. Ferreira et al. [8] studied the free vibration of
functionally graded rectangular plates using first and third-order shear deformation plate
theories by employing a mesh-less method. Matsunaga [9] presented the Navier solution for
free vibration and stability of rectangular plates made of functionally graded materials
according to a 2D higher-order deformation theory. Hasani Baferani et al. [10] used Reddy’s
third-order shear deformation theory to investigate the free vibration of thick functionally
graded rectangular plates resting on elastic foundation. They also studied the effects of in-
plane displacements on the system’s response. Jin et al. [11] presented an exact solution for
free vibrations of thick functionally graded rectangular plates by employing Rayleigh-Ritz
procedure on the basis of three-dimensional theory of elasticity.

In recent years, smart materials such as piezoelectric materials have been proposed to control
vibrations. Due to the coupling between electric and mechanical fields, piezoelectric materials
can be used in a wide variety of applications including sensors and actuators. Few studies
have been performed to investigate the vibration of plates surrounded by piezoelectric layers.
For example, Huang et al. [12] investigated the vibration control of a laminated plate with
piezoelectric layers using finite element method based on classical plate theory. Heyliger and
Saravanos [13] presented an exact solution for the free vibration of simply supported
laminated plates with embedded piezoelectric layers. Liang and Batra [14] studied changes in
frequencies of a coupled laminated plate due to the presence of piezoelectric layers. In their
paper, they investigated the effects of thickness, mass density and stiffness of piezoelectric
layers on the natural frequency of a plate with simply supported edges. He et al. [15] carried
out the active control of FGM plates integrated with piezoelectric sensors and actuators under
various boundary conditions using finite element method. Baillargeon and vel [16] presented
an exact solution for vibration of simply supported laminated composite plates with
embedded piezoelectric shear actuators based on 3D theory of elasticity. Vibration analysis of
simply supported composite plate containing piezoelectric layers was considered by
Pietrzakowski [17] based on the Kirchhoff hypothesis and Mindlin plate theory. Askari
Farsangi and Saidi [18] presented an analytical solution for free vibration of functionally
graded rectangular plates with piezoelectric layers by using Mindlin plate theory. Askari
Farsangi et al. [19] proposed an exact solution for free vibration of moderately thick hybrid
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piezoelectric laminated plates under Levy-type boundary conditions according to first-order
shear deformation theory.

Despite various studies on rectangular plates made of homogeneous, isotropic, piezoelectric
and functionally graded materials, there are few studies dealing with the mechanical behavior
of porous structures. Theodorakopoulos and Beskos [20] studied the flexural vibration of a
simply supported thin rectangular plates made of fluid-saturated poroelastic materials by
using classical plate theory. Leclaire et al. [21] investigated the transverse vibrations of a thin
homogenous rectangular porous plate saturated by a fluid according to CPT. Magnucka-
Blandzi [22-23] carried out the vibrational behavior, deflection and buckling of a porous-
cellular circular plate using a nonlinear deformation theory. In her works, the distribution of
mechanical properties along the plate thickness is considered to be symmetrical relative to the
middle plane of plate. Khorshidvand et al. [24] investigated the buckling analysis of a
clamped porous circular plate with piezoelectric layers based on classical plate theory. Rezaei
and Saidi [25] presented an exact solution for the free vibration analysis of thick rectangular
plates made of rigid porous materials saturated by inviscid fluid according to the Reddy’s
third-order shear deformation plate theory with Levy-type boundary conditions. The effect of
porosity on natural frequencies of thick porous-cellular plates has been studied by Rezaei and
Saidi [26] on the basis of Carrera Unified Formulation.

In this study, free vibration analysis of thick rectangular plates made of porous-cellular
materials with piezoelectric layers has been investigated based on the Reddy’s third-order
shear deformation plate theory. Material properties of porous plate vary through its thickness
based on a cosine rule. Using Hamilton’s principle and Maxwell equation, governing
equations for open and closed. circuit electrical boundary conditions have been obtained.
Then, an exact solution has been presented and numerical results for various electrical and
mechanical boundary conditions have been obtained. Finally, the effect of geometric
parameters as well ascstiffness and electrical effects of piezoelectric layers on the natural
frequency of the plate have been studied in detail.

2. Kinematic assumptions

Consider a rectangular plate of length a, width b, thickness of the porous core 2h and each
piezoelectric layer h,,. x; and x, are in plane coordinates and x5 is the coordinate in thickness
direction. The geometry of the plate as well as its coordinate system may be seen in Fig. 1. As
canbe seen in Fig. 1, the origin of coordinate system is located at the mid-plane of the plate.
Based on third-order shear deformation theory, the displacement field is [2]

aw(xlr er t))

dx,q

Bw(xl,xz,t)) (1)

dx,

uy (xq, X5, X3, 1) = u(xy, x5, t) + 2394 (x4, x5, ) — ax3> <1[)1(x1,x2, t) +

Uy (x4, X5, X3, ) = V(xq, X5, 1) + X3P, (x4, X5, 1) — ax3? <1[)2 (xq, x5, t) +

uz(xq, X2, x3,t) = wlxy, x3,t)

P

-

2\W-Jadod



where the functions u4, u, and us represent the components of displacement field in x, x5
and x; directions, respectively. u and v are the in-plane displacements in the x; and x,
directions, respectively. w represents the transverse displacement of the middle plane. Also,
Y, and ¥, denote the rotations of the line perpendicular to the mid-plane about x, and x;
axes, respectively. t is the time variable and the constant « 1is equal to

4/[3(2h + 2h,)"].

3. Constitutive relations
3.1. Porous materials

Due to the non-uniform distribution of porosity in the structure of porous materials, different
rules may be used to model the variation of mechanical properties. Properties of porous
material are considered to be asymmetric with respect to mid-plane as follow:[25]

E(x3) = Etop [1 —eg CoS <W)]
R LT

Ebot

eozl—ﬁ , ep=1—4y1—¢,

In the above equations, E' and p represent the elastic modulus and the mass density of plate,
respectively and the dimensionless parameter €y, (0 < e, < 1) denotes the coefficient of plate
porosity. It is worth to note that zero value for this parameter means there is no porosity in
material’s structure. The superscripts “fop” and “bot” denote the top and bottom surfaces of
the plate, respectively. Fig. 2:shows the distribution of the elastic modulus in the thickness
direction. These relations: indicate that the mechanical properties of the plate have its
maximum and minimum values at the upper and lower planes, respectively.

The strain-stress relations for porous materials can be expressed as

1+v v
€ij =~ 0y —EUkk(Sij 3

where, €; i» B> 6 and v are the strain components, stress components, Kronecker delta and

Poisson’s ratio, respectively. The above constitutive relations are in fact the reduced form the
Biot’s poroelastic constitutive law which is proposed to model the behavior of porous
medium [26]. The relations are valid in a case in which the pore pressure is either very low or
nonexistent. Assuming air or low pressure gas as fluid, it is reasonable to disregard the last
term in Biot’s constitutive relations. This assumption leads to Eq. (3) meaning that the effect
of coupled solid-fluid deformation is negligible. It is convenient to classify porous metals into
the type of materials which follow the above relations. Different studies [22- 23] have already
used the assumption to investigate the static and dynamic analyses of porous-cellular plates.
By assuming o33 = 0, Eq. (3) may be rewritten as follows

011 = Q11611 + Q12822 4)
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022 = Q21811 + Q11622
023 = 2Q66€23
013 = 2Q66€13

012 = 2Q66€12

In which the coefficients Q;; may be obtained from relations (A.1) of the Appendix.

3.2. Piezoelectric materials

Due to coupling between electrical and mechanical fields, the constitutive relations of
piezoelectric materials are expressed as a combination of electrical and mechanical
characteristics. The constitutive relations for linear piezoelectric materials are as follows [27]

T; = ¢ijSj — exiEx i,j=1,2,3,4,56 (5.2)
Dk = ekij + EkmEm m,k = 1,2,3 (Sb)

where the vectors {D} and {E} represent the electrical displacement and field vectors,
respectively. ¢;;, Exy, And ey; are the components of the piezoelectric stiffness, dielectric

constants and piezoelectric coefficients matrices, respectively. Also, the components of T; and
S; may be obtained as [27]

Ty=011 ,To=0y ,T3=033 ,T4=033 ,Ts=013 ,T¢ =01, )

S1 =611 ,S2 =8, ,S3=¢&3 ,54 =283 ,55 =283 ,S¢ =261,

Transversely isotropic piezoelectric materials have been considered in this study being a type
of piezoelectrics which is polarized in the thickness direction. Considering o33 = 0, Egs. (5)
can be expressed as

011 = C11€11 + C1282 — €31E5

022 = C12€11 + C11623 — €31E3

023 = 2055823 — €15 E (7.2)
013 = 2C55813 — €15E7

012 =(C11 = C12)er2

Dy = 2ey5613 + E11E4

D, =2e 5653 + E211E> (7.b)

D3 = &31(e11 + €22) + Eg3E;
Here ¢34, €15, €31 and 233 are reduced constants given as relations (A.2) in the Appendix.

4. Mechanical and electrical fields
The components of the strain tensor in Cartesian coordinates are as follow

1 0wy | Oy
gij B 2 Bx] Bxi

®)
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By substituting the displacement field in Eq. (8), the components of the strain tensor are
obtained as

du d d 0w
+ ll)l _a.X33 <ﬂ+ )

11 = 6— X3 9x, dx X1 6x1 6x12
v oY, (0%, 9w
22 = 0x, T3 0x, *Xs <6x2 + 0x,2
&3 =0
L JONL NCTRI a%w ®)
12 = axZ 6x1 3(6x2 ) 3 axZ 6x1 axlaxZ
ow
S
g3 = (1 — Bx3%) l’b1+6x1
ow
S
g23 = (1 — Bx3°) l‘b2+6x2
where
B=3 :
=3a=—-—"3; 10
(2h + 2h,)"* (10

Based on Egs. (9), it can be seen that the shear strain components are not constant in the
thickness direction due to using TSDT, unlike first-order shear deformation plate theory.

4.1. Closed circuit condition

In this case, the electrodes on the upper and lower surfaces of the piezoelectric coupled plate
are connected to each other. Electric potential function for closed circuit condition is
considered as follows [28]

—h—h,/2
”/ l (h<x3<h+h,)

¢(x1r X2, t) [1 < h /2

¢(x1rx2rt) [1 - < —h- h /2) l (_h - hp <x3 < _h)

D(xq, X, x3;t) =

1

Here, ¢(x,,x,,t) denotes the electric potential in the mid-surface of piezoelectric layers.
Eq. (11) implies that the electric potential of major surfaces of the piezoelectric layer is zero
and the maximum value occurs at mid-surface of each layer.

4.2. Open circuit condition

Provided that the outer surface of the piezoelectric layer is exposed to an environment with
very low permeability (such as air or vacuum), the plate is under open circuit electrical
boundary condition. Piezoelectric materials in this mode may be used in design tools such as
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sensors and vibration absorbers. In this case, the electrical boundary conditions is as follows
[29]

at x3=2(h): =0

(12)
at x3 =*(h+h,) D3 =0
Similar to the closed state, the electric potential may be considered as
D (x1, X2, %3, )
2
X3 — h— hp/Z
¢ (x1, %2, t) 1—<— +X (h<x3<h+hy)
hy/2 P (13)
—x3 — h — hy/2)”
B0, 0) |1 (22 2V (—h < hy < 75 < —h)
hy,/2

where X and X' are linear functions of the thickness coordinate as X = Ax; + B and X' =
A'x; + B'. By satisfying the electrical boundary conditions in Eqgs. (12), the unknown
parameters A, B, A" and B’ may be obtained. These parameters are given as relations (A.3) of
the Appendix. On the other hand, the electric potential distribution, @ in piezoelectric layer is
considered as a second-order function in the thickness direction.

Further, the electric field (E ) could be obtained as follow [30]

Fe Vo= (aq’waq’*ﬁq’ﬁ) (14)
B B Bxlel szez 6x363

5. Governing equations
5.1. Obtained equations from Hamilton’s principle

Using Hamilton’s principle, the equations of motion may be derived as

6N11 ale azu 621[)1 621[)1 aBW
Su: e L Ry —al 15.
u ax, T ox, 0oz T 3\ Toner (15.2)
6N12 asz 6217 621[)2 621[)2 aSW
Sv: 22 —al 15.b
2 ox, ox, 09z Thar T\ G2 Tagee (15.6)
0My;  OMy, 0Py 0Py
oYy — ( ) — R
ltbl 6x1 + axZ 6x1 + axZ Ql +B ! 15
_ Pu P 0%y, 0w (15.0)
=harthge ~ YU\ G Torae
OMy;  OMy, 0Py, 0Py
oY, — ( )— R
¥ dx; + dx, dx;  0Ox, Q2 + BR;

_ v 0t 0%y 0w (15.d)
=hgetl5a *\ 9tz T ox,0t?
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ow: %+%—B(

6x1 axZ

+ 2
6x1 axZ 6x12 axlaxZ asz

_ 0w (9w a0 0
=0z T8\ oxj0e2 T oxgotz) T H 4\ ox002 T ax,0t2
< 3w, 9%,  d'w 9w )

0x,0t%  0x,0t? 6x126t2+6x226t2

In the above, the stress resultants and the inertia terms are defined as follow

h+hy,
{Nij, Myj, Pij} = f ULj {1, 3,33} dx3 (i,j =1,2)
h+hy
{Qk, R} = f 0k3 {1,x3%} dx; (k=1,2)
h+hy,
Ly = f p(x3) x3™ dxg (m=0,1234,6)
~h—hy
Jn =5 —alyy, (n=1,2,4)

The stress resultants in terms of displacement components can be rewritten as

Ny = a2, v, WWryp, W2 Al C 0w
11 — 411 axl 12 axz 11 axl 12 axz 11 axlz 12 axzz
Ny = Ay 2t a2 g, Mg M2 0w C 0w
22 — 112 axl 11 sz 12 axl 11 sz 12 axlz 11 axzz
ou v oy P, 92w
N =4 +B ) Cop———
12 66 (axZ t o 6x1 66 (axZ A axl) 66 axlaxZ
My =Dy Py p, g W g W Ow L 0w i, ¢
11 = V11 0%, 12 7%, 11 0%, 12 0%, 11 ox,2 12 02,2 Uy
ou ov o, o, 92w 92w

Mzz—D12a '|‘D11a '|‘E12a '|‘E11a _F1zax12_F11ax22_ﬁ1¢

du - 0Jv
M, = Dge (_ + _) + Eg6

(61/)1 61[)2) 2w
0x, 0xq

E 6_xl B 666x16x2
0¢ <32¢1 0%y, )+_ a(V?w)
3

aw
=4
¢ >5 (l’bl ) MY 0%, i 0,2 + 0x,0x, 0x,

aw o %, 0%, a(Viw)
=A il L
Q: = 55(1,1)2 )+M3a 2+”1<6x16x2+6x22 +i3 %,
ou ov o, o, 92w 2w
Py —]11 +]12 + Ky 7— ) + Ky, o, — Ly 9%, Ly, 91,2 s
ou ov o, o, 92w 92w

Py, =]126_xl+]116_xz+1(12 o, + Ky, o, — Ly, 9%, — Ly 9%,2 — fa

du v b, oY 92w
P12_]66( +W)+K66(_1+ 2)_L66
1

(15.e)

(16)

17)
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0 9 %y | 9° 3 (V2
R1—555(1l)1 W)+”56¢ +ﬁ4<Wlf21+ 2 >+ﬁ5< ( W)>

0x,0x, dx,

aw o 0%, 9%, a(V2w)
R, =S 7
2 55(1,1)2 )"‘#5a +”4<6x16x2+6x22 +is %,

The unknown constants in Eqs. (17) are given as Egs. (A.4-A.6) of the Appendix. V2
represents the Laplacian operator in 2D Cartesian coordinates. By substituting Eqs. (17).in the

system of Egs. (15), the governing equations of motion can be rewritten as

d (6u+6v)+A d (au 6v)+B d (61[)1+61[)2)
1163(1 6x1 axZ axZ axZ 6x1 1163(1 6x1 axZ
0, 0P, a(V?w)
B —Cij————
T Bes 0x, (axz Bxl) 1 0xq
%u %y, %y, 3w
=] +L——-ah| —+—=
09z T 1Tz ¢ < 3tz | ax,00

d (au+av) 4 d (au av)+B d (al[)1+al[)2)

1 axZ 6x1 axZ 66 6x1 axZ 6x1 1 axZ 6x1 axZ
0y 0y, a(V?w)

66 ( ) — (1
dx4 axz dx; dx,
%v %y, %y, 3w
=] +L——-al|=—+—=
05z Tz ¢ < 3tz ax0r?

d /0u v d /0u v . d d
5] g G S G 8
1

dxy \0x; 0xy dx, \0x, 0x; dx; 0Ox,
0Py azpz) a(V?w) ( BW) . 0¢
X S,———+X — |+ S—
+ 6 9x, axZ (axZ axl 2 6x1 55 ll)l + d 1 + 3 6x1

az 9%y o2y, 33w
=hoe Vg m Ui G Toxae

d (ou Odv d (0u OJv R P, 0P,
AT
axZ 6x1 axZ 6x1 axZ 6x1 axZ 6x1 axZ

4 61[)2) Sza(LW)'Fxss(ll)z aw)"'sz

Xes ( 99
6x1 axz 0x1 dx

axZ

az 9%, 0%, 9w
=hgeth e 4 <6t2 t o0
0Py 1112) & o2 a z(allh 61,1)2)
X55(V tap o) P+ Ss [v 7% " o ]

v .
+ a]ll [V ( + a )] + 56V4W
2
162w+ 02 (6u+6v)
05z T 5255, T an,

0y 61[)2) a(V?w)
— 2 2 - 2], ——2
+ (al, — a®le) [atz (6x1 a5, )| T4 e o

(18.2)

(18.b)

(18.0)

(18.d)

(18.¢)

Here the unknown constants Xss, Xgs and S;(i = 1,2, ...,6) may be found from Eqgs. (A.7) of

the Appendix.
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5.2. Maxwell equation

Maxwell equation may be expressed as follows [29]

-h hthp
f V.D dx; +f V.Ddx3 =0 (19)
~h—hy h

By substituting Egs. (7.b) and Egs. (9) in Eq. (19), Maxwell equation takes the form

0y 0y, oY1 0o

(G + ) VW stV + |7 (G2 )|+ revw = 0 (20)

The unknown constants in the above equation are given in Eqs. (A.8-A.10) of the Appendix.
Eqgs. (18) and Eq. (20) form a highly coupled system of partial differential equations that
cannot be solved analytically directly.

5.3. Decoupling procedure

In order to decouple the governing equations of motion, four auxiliary functions are assumed
as

ou v ou v oy, oY, o,

— — 2z 2 21
1= 6x1+6x2 b2 = ox, 0x; ' s = 6x1+6x2 r $a= 0x, 0xq D

By rewriting Eqs. (18) and Eq. (20) in terms of the auxiliary functions, the governing
equations of motion are presented as follows

¢, ¢, s ogs . 0(VPw)

A5 o, + Age 75— o%, + Bi1i5— 9% + Beo 57— %, 1 o, )
L Pu "2y (P, Pw (22.2)
03¢ "1 gz~ YB3\ gz T G 002
L0 s s by . O(Tw)

o, 66 g, T D1y, DGy T (T o2h)
L0 s (3, 3w :
03¢z T 1Tz T Y8\ ez T a¢2

0y 0p, , 03 0y a(V2w) ( W) 5 0¢
Bii =2 § By —2 + §, 2 + X, +8——24X + 85—
115 667 9%, 6%, 2 ax, 55 |1 ) 39, ’
L Pu P (0 0w (229
=harthge ~ YU\ G Torae
3¢ 99 . 095 3, . I(V?w) ( W) )
B —B +5,—=—=—-X +S, —— 24X S ——
11 sz 66 6 1 sz 66 3 ax, 22 ox, s |2 + xz + 53 ox, 020
_ P 0%y, 0w :
=haethge ~ Y G Togee
_X55(V2W + ¢3) + §42V2¢ + S‘5V22¢3 + a]llvzd)l + S‘GZV w 2( 5 )
2w ¢ ¢3 2°(V-w (22.e)
Io 9t2 + alg 9t2 + ( 14 - a216) a216 9t2
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t1d3 + pVPW + sz + i, V2h + VA3 + 1gViw = 0 (22.9)

By differentiating Eqs. (22.a-22.d) with respect to in-plane coordinates and doing some
algebraic manipulations, this system of equations takes the form

0%¢ 0%¢ 0%¢p;  0%(V?w)

A11V2¢1 + 311V2¢)3 - C11V4W = 10?21 + 11 at23 - alg at23 + EYD) (23.3)

By V2y + S1V2¢hs + §2v w + Xs5 (V2w + ¢3) + 53V2¢
¢>1 0%¢5 0%2(V?w) (23.b)

=h 5z + 02— a]4)w s
92
0% 0%¢,4
A6VP P2 + Bes Vs = lo— - 5¢2 +h 52 (23.0)
2 2 2¢2 2¢4

BeeV 2 + XV s + Xsspy = 1 5.2 + (2 —ajs) 5¢2 (23.d)

—X55(¢3 + VZW) + §4V2¢ +§ V2¢3 + a]11V2¢1 + § V4
a%w 0%, ¢3 0% (V2w) (23.¢)

Io a + a13 atz + ( 14 - a216) a216 atz

103 + VAW + Uz + 1V + Vs + [igViw = 0 (23.1)

As can be seen, Eq. (23.a), Eq. (23.b), Eq. (23.e) and Eq. (23.f) contain two auxiliary
functions; i.e., ¢p; and ¢3, the electric potential function and transverse displacement of
middle plane. On the other hand, Eq. (23.c) and Eq. (23.d) contain the remaining auxiliary
functions; i.e., ¢, and ¢,. By assuming harmonic motion for the system, the unknown
functions may be considered as

1 (x1, %2, ) D1m (e x2)

$2(x1, %2, 1) w | P2m(x1,x2)

¢P3(x1,x2,t) | _ P3m (X1, X2) iwmt

P4 (x1, X2, t) _;1 Pam (X1, %2) ¢ 24)
P (x1,%2,t) N\ by, x2)

w(xq, X3, t) Wi (1, X2)

where wy; is the natural frequency of the plate which has to be found. Then, by substituting
Eqgs. (24) in the system of Eqgs. (23) and doing some algebraic calculations on the resulting
system, the following equations can be obtained

E V0w, + E V8w, + EVOwW,, + E VAW, + VP, + Sy, = 0 (25.2)
Dsm = & VW + EVOW, + EVAW, + &40 VW, + E11Wiy, (25.b)
Gim = Z7V%P3m + ZgViWi + Zo@zm + Z10V W + Z11Win (25.¢)
Om = Z1203m + Z13V2P3m + Z1aV Wy + Z15 VW + Z16Win (25.d)
&1V bum + &V am + $3pam =0 (25.¢)

Po2m = 5_4V2¢4m + 5_5¢4m (25.9)
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The unknown coefficients in Egs. (25) are given in relations (A.11) of the Appendix. As can
be seen, by employing auxiliary functions, the governing equations of motion are reduced into
two independent partial differential equations.

6. Levy-type solution

According to the Levy-type solution, two parallel edges are assumed to be simply supported
(here at x; = 0 and x; = a), while arbitrary classical boundary conditions may be applied at
other edges. In order to satisfy the final equations at simply supported edges, the function
Wi (X1, x2) and ¢y, (x4, X,) are considered as below

Win (x4, x2) = z Winj () sin(Bix1) ) am(x1, %) = z Bamj (x2) cos(Bjx1) (26)
Jj=1 j=1

Here, ; = jm/a and j represents the number of half-waves in x; direction. By substituting
Eqgs. (26) in Eq. (25.a) and Eq. (25.e), the following equations may be obtained

8

mj 4 2 d6Wm;
e o+ [-5645, “rg] S 5+ 106" — 468" + &)=

d*why i
+[-106,8° + 65213;-4 = 36" + Gl (27.2)

8 6 4 2 demJ
568, — 488" + 388" ~ 28" + &1~
+ =68+ &B;° — B+ &P — B + E6|wmy; = 0
] 2¢4m]

4¢4m1

& +[-28B2 + & +[&B;* — &B;% + &l pam; =0 (27.b)

As can be seen, two homogeneous ordinary differential equations with constant coefficients
have been obtained. General solution for the system of Eqgs. (27) is as follow

Winj(x2) = Cy sinh(Qyx;) + C; cosh(Qx;) + Cs sinh(Qyx;) + C4 cosh(Qyx;)
+Cs 8inh(Q3x;) + Cg cosh(Q3x,) (28.2)
+ C7 8inh(Qyx;) + Cg cosh(Qyx;) ’
+ Cq sinh(Qsx,) + C1o cosh(Qsx;)
Gamj(2) = C11 Si?_lh(f_hxz)_"‘ C1z co§h(£_21x2)_ (28.b)
+ 613 Sinh(ﬂzxz) + C14 COSh(szz) ’
where the coefficients C;(i = 1,2,...,14) are unknown coefficients and the parameters

Qp(k =1,2,3,4,5) and Q;(l = 1,2) can be obtained by the following relations

&%+ [-588° + &t +[1085;* — 46,87 + &€
+[-10&8;° + 68,5, — 383;% + & ]€?
+[5&,8,° — 4&,8,° + 3868, — 286,8;% + & e
+[-6B" 0+ 6B —EGBC+ 8B —EB P+ & =0
Le2+[-26B° +&le+[ap - &7 +E] =0 (29.b)

where

(29.2)
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(30)

7. Boundary conditions
7.1. Electrical boundary conditions

Due to considering Levy-type solution, the electrical potential at simply supported edges is
equal to zero; i.e.,

at x;=0: ¢p=0
at x;=a: ¢=0 (31)

Also, the electrical boundary conditions at x, = +b/2 is as follow

-h b h+hy b
f Dz (xl,xZ :i_,X3,t) d.X3+f Dz (xl,xZ :i_,X3,t)dX3 =0 (32)
—h—hy 2 h 2

By substituting D, from Eq. (7.b) in the above equation and using Eq. (9), electrical boundary
conditions at x, = +b/2 can be obtained as

2 2 2 2
T1(¢2+37W2)+71%+Tl<—6 b | 972 ¢2)+Tz[ 9 <a w9 W)]:o (33)

0x, 0x,0x, 0x,2 9x, \ 9x,2 + 0x,°2
Where the unknown coefficients in Eq. (33) are given as relations (A.12-14) of the Appendix.

7.2. Mechanical boundary conditions

Assuming that classical boundary conditions including free, clamped and simply supported
which may be applied at x, = +b/2, the conditions for each types of boundary, are as

follows
Niz =0,Ny =0,(Myz —aPy3) =0,(My; — aPyy) =
. 0 ,Pzz =0
(I) Free: 0 BRo 4 a (2 P, N apzz) o (34.a)
2 2 6x1 axZ
ow
(I11) Clamped: u=0,v=0,1[)1=0,1[)2=0,W=0,W=0 (34.b)
2
(Ll1) Simply supported: Ny, =0,u=0,p; =0,(My; —aPy;) =0,w=0,P,, =0 (34.0)

Finally, by applying electrical and mechanical boundary conditions at x, = +b/2, fourteen
homogeneous algebraic equations in term of the unknown constants C; will be obtained. By
equating the determinant of the coefficients of the fourteen equations to zero, the natural
frequencies of the system can be determined.

8. Numerical results and discussion

The mechanical and electrical properties of different piezoelectric and porous-cellular
materials are listed in table 1 [31].
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For the sake of simplicity, the symbol SXSY has been used to show the plate’s boundary
conditions that represents two parallel simply supported edges at x; = 0 and x, = a. Also, X
and Y denote the type of boundary at the remaining edges. Symbols S, F and C represent
simply supported, free, and clamped boundary conditions, respectively.

In order to verify the obtained results, frequencies have been compared with those available in
literature for a simply supported homogeneous and isotropic square plate with p = 5700
kg/m3 and E = 200 GPa in table 2. Also, the Poisson's ratio is set to 0.3. The obtained
frequencies are found to correlate well with the ones tabulated in other reference papers.

A comparative study has been performed to validate the obtained frequencies for a
homogeneous and isotropic square plate under various boundary conditions in table 3. The
results match well with those presented in literature; thus, the accuracy of the approach may
be observed.

The first ten natural frequencies obtained from the present study for a simply supported
homogeneous and isotropic plate bounded with piezoelectric layers with 2h/a = 1/80 and
2h,/a =1/2000 are compared with the finite element results of Ref. [15], Levy- type
solution of Ref. [18] which is based on Mindlin plate theory and Navier solution of Ref. [32]
in table 4. According to the frequencies listed in this table, it can be seen that the results
predicted by CPT are slightly lower than the ones related to TSDT with maximum
discrepancies of 3.07 %. It can also be observed that the results related to this theory are lower
than that of FSDT [18] because third-order shear deformation theory considers plate to be
softer. As seen, the comparison is well justified.

After establishing the correctness of the presented approach, numerical results for natural
frequency response of porous rectangular plate made of cellular aluminum surrounded by
layers of PZT-4 are presented for various geometric parameters under different electrical and
mechanical boundary conditions.

To apply the proposed method to analyze piezoelectric coupled plates, Tables 5-7 show the
effect of variation of core thickness and porosity on the lowest three natural frequencies of a
square plate under Levy-type boundary conditions for both electrical boundary conditions.
These tables reveals that by increasing the core thickness, natural frequency of various
vibrational modes increases for all studied electrical and mechanical boundary conditions due
to increasing in overall stiffness of the plate. Further, increasing the coefficient of plate
porosity yields the decrease of the natural frequencies. In fact, the decrease in elastic modulus
affects more prominently than that of mass density; therefore, the variation of mechanical
properties leads to decrease in natural frequency. From the tables, it can also be found that, by
imposing more constraints on the plate’s edges causes natural frequencies to increase. In this
regard, the lowest natural frequency belongs to a plate under SFSF boundary condition and
the highest one is related to the similar plate under SCSC boundary condition.

In order to interpret the observed behaviors of natural frequency for both closed and open
circuit piezoelectric layers, the fundamental natural frequency of a porous square plate
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surrounded by piezoelectric layers under various classical boundary conditions, are listed in
Table 8. Three piezoelectric coupled plates with thickness ratios given by 0.05, 0.1 and 0.2
are considered when the core thickness-length ratio is equal to 0.15. To present the effect of
piezoelectric layers stiffness, frequencies listed in the third column are determined by
disregarding piezo-effect; i.e., by equating the piezoelectric coefficients equal to zero (e;; =
0) [29]. According to the data presented in this table, one can see that the piezo-effect in the
closed circuit condition is negligible. The interesting point is that in case of open circuit
condition, this effect plays a key role in increasing the natural frequency of piezoelectric
coupled plates. This fact could be attributed to the different distributions of electric potential
in thickness direction of the piezoelectric layers in these two cases. According to Eq. (11) and
Eq. (13), it is clear that in closed circuit condition, the electric potential of the upper and
lower surfaces of the layers is zero, while its maximum value occurs in'the middle plane of
each piezoelectric layer. On the other hand, in case of open circuit-condition, the electric
potential on adjacent surfaces of the core plate is zero and increases in the thickness direction
of the piezoelectric layers so that it reaches its maximum value on the outer surface of the
layers. In case of closed circuit condition, a large amount of electrical energy is released
through electrodes; i.e., the decrease in effectiveness of piezo-effect causes the piezoelectric
coupled plate stiffness to increase slightly. On the contrary, the electrical energy of the
piezoelectric layers cannot be released while the plate is vibrating freely in the open circuit
condition, which ultimately leads to increase in effective stiffness of the piezoelectric coupled
plate and its natural frequency as well.

The first three natural frequencies of a porous plate coupled with piezoelectric layers under
Levy-type boundary conditions for both closed and open circuit electrical boundary
conditions are listed in table 9..Due to similar reason which has been stated above, the piezo-
effect is much more significant in case of open circuit compared to closed circuit for all
vibrational modes.

The variation of natural frequency due to the changes in aspect ratio for a porous plate
coupled with piezoelectric layers under various mechanical boundary conditions is shown in
Fig. 3. This figure indicates that by decreasing the width of the plate, the natural frequency
increases for all studied boundary conditions except for SFSF boundary condition in which
the natural frequency decreases slightly when the major surfaces of piezoelectric layers are
held at zero voltage (closed circuit condition). It is observed that the natural frequencies of a
plate with open circuit condition undertake similar changes versus aspect ratio.

So as to study the effect of piezoelectric layer, the natural frequency relative difference
parameter is defined as follows

. .
NFD =22 (35)
Wp
where w,, is natural frequency of a piezoelectric coupled plate and w, denotes natural

frequency of this plate in absence of piezoelectric layers. The variation of the natural
frequency relative difference against the thickness ratio for various mechanical boundary
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conditions for both closed and open circuit piezoelectric layers is depicted in Fig. 4. Due to
positive NFD for all electrical and mechanical boundary conditions, it can be concluded that
the natural frequency increases as piezoelectric layers are added to the core plate. In fact, the
plate gets stiffer due to the presence of piezoelectric layers. This is because the flexural
rigidity of piezoelectric layers is more considerable compared to the core plate; therefore, the
piezoelectric coupled plate gets stiffer. On the other hand, the presence of piezoelectric layers
increases the mass of the system which causes the natural frequency to decrease. By
investigating the effect of piezoelectric layers on natural frequency of the system, it could be
deduced that the effect of flexural rigidity of piezoelectric layers overcomes the effect of their
mass density.

The variation of natural frequency relative difference versus 2h,/a for a square piezoelectric
coupled plate under SSSF and SSSS boundary conditions for different values of core
thickness-length ratio are shown in Fig. 5. It is observed from the plotes for a particular value
of ey, as core thickness increases, the value of NFD decreases due to-adding the piezoelectric
layers. It is to be noted, the changes in NFD parameter are less dependent on the variation of
thickness of core plate when it is under SSSF boundary condition than that of a simply
supported one.

As a further insight into these eigenfrequencies, the variation of NFD parameter
corresponding to fundamental vibrational mode versus the thickness ratio for different
coefficients of plate porosity for both open and closed circuit conditions, is depicted in Fig. 6.
According to this figure, for both closed and open circuits, the NFD parameter owns higher
values for higher porosity coefficients, which means that the effect of piezoelectric layers on
natural frequency is more prominent for core plates with higher coefficient of plate porosity.

Considering constant mass for a plate, the variation of fundamental natural frequency of a
porous plate against the coefficient of plate porosity is shown in Fig. 7. Also, the effect of the
same parameter onnatural frequency when two piezoelectric layers are bonded on bottom and
top surfaces of the plate is demonstrated in Fig. 8. It can be seen the natural frequency
increases as- the value of plate’s thickness and its coefficient of plate porosity increase
simultaneously (in such a way that the overall mass of the plate remains constant) under all
studied electrical and mechanical boundary conditions. Therefore, the variation of plate's
thickness "does have greater effect on natural frequency of the plate compared to the
coefficient of plate porosity. Moreover, the figures indicate that the graph related to a plate
with integrated piezoelectric layers changes with steeper slope comparing with trends shown
in Fig. 7. For example, as the coefficient of plate porosity vary from zero to 0.8, the natural
frequency of a porous plate with constant mass under SFSF boundary condition increases by
18.8%, while the frequency increases by almost 34% for a piezoelectric coupled plate with
same conditions for both open and closed circuits. As a further matter, it could be observed
that the above mentioned point is more considerable for plates with softer mechanical
boundary conditions.

9. Conclusion
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In this study, third-order shear deformation plate theory has been employed to analyze the free
vibration of porous plates coupled with piezoelectric layers. Using Hamilton’s principle and
Maxwell equation, the governing equations of motion have been obtained and solved
analytically by using some auxiliary functions for Levy-type boundary conditions. The natural
frequencies of the plate have been extracted for various geometric dimensions under different
mechanical and electrical boundary conditions. The effects of plate porosity, geometric
dimensions as well as mechanical and electrical boundary conditions on natural frequency
response of the plate coupled with piezoelectric layers have been studied. According to-the
obtained numerical results, the following concluding points may be reported

e The natural frequency of plates decreases as the coefficient of plate porosity increases
in all studied mechanical and electrical boundary conditions.

¢ In closed circuit condition, the effect of piezoelectric layers on the natural frequency is
negligible while this effect plays a key role in the natural frequency changes for the
case of open circuit condition.

® Adding piezoelectric layers causes the natural frequency to increase for all studied
electrical and mechanical boundary conditions.

e The piezo-effect is more prominent for plates with higher porosity, lower thickness
and softer boundary conditions.

e The natural frequency of plates increases as both the thickness of porous plate and its
coefficient of plate porosity increase (in such a way that the overall mass of the plate
remains constant) for all considered boundary conditions. This effect is more
significant for plates bounded with piezoelectric layers.

Appendix

The parameters Q;; are defined as

_ E(x3)
71— y2
_ . _VE(x3)
Q12—(1221—1_v2 b
_70 = — _2\¥3)
Q66_2(Q11 le)_2(1+v) (A.1)

The reduced constants of piezoelectric materials are defined as

C_11=C11—£ ) C_12=C12—£
C33 C33
€31 = €31 — E933 , E33 = E33 g
C33 C33 (A.2)
B=—Ah= —eﬁlh{a—u+a—v+ [h+ h, —a(h +hp)3] (%+%>
33 6x1 axZ 6x1 axZ

V2w

-5

(4

P
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e_glh{au av 3 (61,[)1 all)2>
B'=Ah== —+——|h+h,—alh+h —+—
B33 0x;  0x, [ +hy —alh+hy) ] x4 + 0x,
5 4h
+a(h+h,) V? } -—
(h+ hy) V2w hy (A3)

Stiffness coefficients

+h h+h,,
{A11, A2} = f {Q11, Q12 dxs + Zf {C11,Cr2} dxs + 1
—h h

+h h+h,
Age = f Qo6 dx3 + f (C11 — C12) dx5
“h h

+h
{B11,B12,Bee} = f {Q11,Q12, Qs6} (x3 — ax3?) dx3

—h

+h

{C11,C12,Co6} = {Q11, Q12,2Q46} ax3® dx;
“h

+h
{D11,D12, D¢} = f {Q11,Q12, Qe6} x3 dx3
—h

+h h+hy
{E11,E12} = f {Q11, 012} (x5 — ax3*) dxs + Zf (G0, C12} (3% — ax3™®) dx3 + 1,
“h h

+h h+h,
Ee¢e = f Qes (x3% — axz*) dx; +f (€11 — C12)(x3* — axz*) dx3
—h h

+h h+hy
{Fi1,F12} = f {Q11, Q12} axs* dxs + Zf {Ci1, Ciz} axz* dxs + 13
“h h

+h h+h,,
Fee = Zf Qo6 ax3* dx3 + 2_[ (€11 — C12) axs* dx;
—h h

+h h-+hp
Ass th Qes(1 — Bx3*) dxz +2_[h Css(1— Bxs”) dxs

+h
Ui J12.Je6} = f_h {Q11, Q12,Qs6} 9533 dxs3

+h h+h,
{Ki1, K12} = f {011,012} (x3* — ax3%) dxz + Zf {C11, G123 (rs* — ax3®) dxz + 1y
~h h
+h h+hy
Koo = f Qes (x3* — ax36) dx; +f (C11 — C12) (x3* — ax36) dxs
—h h

+h h+h,,
{11, L2} = f {Q11,Q12} ax3® dxs + Zf {€11, C12} ax3® dxs + 15
—h h

+h h+h,
Lee = Zf Qo6 ax3° dxz + Zf (€11 — C12) ax3® dx3
~h h

+h . h+hy 4
Ss5 = f Qo (x5 — Bx3") dxz + 2_[ Css (x5 — Bxs") doxz
. N (A4)

Where, for an open circuit piezoelectric layer, we have

s 2
_ 2631 hp
m = =
—33
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&322y (2h+ hy) (h+ hy —a(h + b))

2= 533

aéz*hy(h + hyp)3(2h + hy)
"o

&2 (2h3hy +312hy% + 2hhy® + 51" ) (Rt iy — o+ 1y YY)
"

@y (h+ hy)? (2h3hy, + 302, + 2R, + 21yt
5= E33
 emeshy? (h+hy—a(h+hy))
= E33
_ aggeshy(h+ k)’
Us = — Egg
 anens (Rt 4 ghiyd ) (Rt —alh+ hy)”)
a E33

5 3(12p 2, 4,3, 1, 4

~ agneis(h+hy) (K2R +3RR° +50,")
Hs = —

3]

33

. 8 _
"= _5931(3}1 + hy)

_ 16
Uz = ?615}11}
86 1
g, = —2%1 (h3h + h2h,> + = hh = hp5)
)2 10
e1s (12 16 20
fis = hi( = hy S — 3 h2h,® +?hhp4) (A.5)
14

And for a closed circuit piezoelectric layer

m=0_, m=0 , n3=0 , n=0 , n5=0
[11—0 ) Ij3=0 ) Ij4=0 ) Ij5=0

_ 4 _

ﬂ1=—§€31hp

ﬁ3=—§€15hp

284,k

fis = == (10h? + 10hh, +3h,")
2e

fis = — 15h ” (102 + 10hh, + 3h,?)

S1 =Ey1— aKyq + Bty —

(A.6)
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(7))

2 = alyy—Fi1 + Biis — i
S3 = afly + Biis — fiy — i3
S4 = fis—afi, — Biis

s = aKyy + iy — By

S¢ = fis — alyy — Bils

Xs5 = BSs5 — Ass

)

vy

Xe6 = E6 — aKge (A7)
— 2 2 1 3 —
U1 = _23(615 + 631) (h hp + hp h + §hp ) + th(615 + 631)
1
Uy = —2B(€15 + 6_31) (hth + hpzh + §hp3) + 2615hp
1684
B = (A.8)
For open circuit condition
_ 631‘-‘11hp 3 2 2 3
fi; = —=——(ah®+ 3ah?h, + 3ah,*h + ah,® = h=h,)
£33
_ a~11331h
fig=—s——(h+h )
—33
5 16h,E1,
o =773 (A9)
And for closed circuit condition
_ _ 5 4h, =4
A2=0 , =0, [=-—03 (A.10)

The coefficients Z;(i = 1,2,..,27), Z;(j = 17,18, ...

2,...,5) are defined as

2
aj11 W
_X55 - —jlelT ]1 + (a14 - a216)(1)m2

Z1 -— g S‘
4
aji11B11 +¢
Zz = 11
Sa
a]XCn +$
7. = 11
3 S
4
%11 w1
—Xee ]1;111171 3 a216wm2
Z4 = — S‘
4

22), &(k=12,..,11) and &(l=
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Zs

Zgz

lew

Sy

B’ & . ¢
= S+ 837,
Aiq

2
_Blllflﬂ + 557 +]100m2

BiCu | Sy + 8575
A1

2
_Buloom” 674w, 2

_M + Xs5 + $37, + (J2 — af ) wp?
A1q

2
_Bulown” + §3Z5 +]1(Um2
A11

2 ~
%A + Xeg + $3Z, — afy w2
11

2
_Buloom” 64w, 2
A11

S3Z6

2
_Bﬂéw + 8375 + Jy

Uy + fiy(Z1 + ZsZg)
B U3

fy + [y (Zy +ZsZ7)
B H3

fe + i, (Z3 + ZsZg)
B K3

Us +ﬁ2(Z4 +ZSZlo)
Q U3

i,(Ze + Z5Z41)
B —

2
Aq11Z9 + By + lywy,“ Z5
B A11Z

2
A11Z10 = Cia + lowm"Zg
B A11Z7
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2 2
A11Z11 + lywn " Z19 — alzwy

Zy = —

A11Z7
2 2
7 = _Iowm Zy+ J1wp,
21 A11Z,
7= _Iowm2211
22 AnZ,
_ BuZg+ 3837y,
Zl7 -_ ~
By1Z7 + 53713
7 o B11Zo + 51 + 321, + [y wp°Z,
18 = — =
B11Z7 + 53243
7 = B11Z10 + S; + S3Z45 + Jiwm *Zg
19 = — A
By1Z7 + 53213
7 o Bi1Z11 + Xss + S3Z16 + 10 Z1g — @Ja”
20 = — =
B11Z7 + 53233
7. = Xss + J1wm°Zo + (] — aJs) wn?
21 = — =
B11Z7 + 53243
7 ]1meZ11
22 = — =
By1Z7 + 537213
_ Zy7— 217
2 Zig—Zag
_ Z19 — Z19
T Zig—Zag
_ Z0 — Zy
27 Zie—Zig
Zy—Zxn
L6=7 7
18 = Z18
_ Loy — 2
27 " Zig = Z1g
=6

$2 = §g — Zz687 +$3

$3 =89 = Zp3 — Z6$3
$a = 8§10 = Z24 + Z26$9
$s = $11 — Za5 + Z26$10
$6 = —Z27 — Z26811

_ Z3
Zyy + Z15Z06 — Zog”

$7
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_ Zos + 236223 — Z17 — Z1gZ 53
Zoy + Z18Z26 — Za6”

8

_Zyst+ Zpeloy — Z19 — Z1glyy
=
Zy1 + Z1gZ26 — Zz6"

_Zyg + Zoelys — Zyo — Z1glys
10 =
Zoy + ZygZ06 — Zog"
£, = ZaeZoyy — Z1gla7 — L2
11 =
Zyr + Z18Z26 — Za6”

& = Aeeés + Bes
& = lowm?&y + Asels

& = hhwn?&s + hwm?

g, = Boo” ~ AsoKes
* 7 Bsgwm?(h — 1)

£ = —Xss + (1 — ]2 + aJ)wy,?
° Ji— 1o (A11)

2
T1 = —26615h2hp - 26615hhp2 - §B€15hp3 + 2615hp

(A.12)
For open circuit condition
_ 16 _
T1 = _?511}11)
- = 2 3 2 2 3
E11€31h,"(ah® + 3ahh, + 3ahh,” + ah,” —h — hy)
' E33
. aByi8ihy” (A +hy)?
z Eas (A.13)
And for closed circuit condition
_ 4_ _ _
T1=—§C"11hp ) T1=0 ) T2=0 (A14)
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Figure Captions:

Figure 1. The geometry and coordinate system for porous-cellular rectangular plate
surrounded by two piezoelectric layers.

Figure 2. The variation of elastic modulus through the thickness of plate

Figure 3. The variation of natural frequency of a coupled porous plate under various
boundary conditions with closed circuit piezoelectric layers versus aspect ratio
(2h/a=0.1, €p=0.5, h,/2h=0.1).

Figure 4. The variation of NFD parameter versus the thickness ratio for a piezoelectric
coupled porous plate under different boundary conditions (2h/a=0.1, ey=0.3,
a/b=1): (a) Closed circuit (b) Open circuit

Figure 5. The variation of NFD parameter versus the thickness ratio of a closed circuit
piezoelectric coupled porous plate for different thickness-length ratios,
(e0=0.3, a/b=1): (a) SSSF, (b) SSSS

Figure 6. The variation of NFD parameter of a square plate under SFSF boundary
condition versus the thickness ratio for different coefficients of plate porosity
(2h/a=0.15): (a) Closed circuit (b) Open circuit

Figure 7. The variation of fundamental natural frequency of a porous square plate versus
the coefficient of plate porosity for various boundary conditions (a=b=1Im,
hp=0, Mass=Constant=400Kg, h+#Constant).

Figure 8. The variation of fundamental natural frequency of piezoelectric coupled porous
plate versus the coefficient of plate porosity for various boundary conditions
(a=b=1I1m, h,=0.0lm=Constant, Mass=400Kg=Constant, h+Constant), a)
Closed circuit and b) Open circuit
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Table captions

Table 1. The properties of piezoelectric and porous materials

Table 2. Comparison of the non-dimensional fundamental natural frequency for a simply

supported homogeneous and isotropic plate

Table 3. Comparison of the non-dimensional fundamental natural frequency for a

homogeneous plate under various mechanical boundary conditions

Table 4. Comparison of the first ten natural frequencies (Hz) for a simply supported

piezoelectric coupled homogeneous and isotropic plate

Table 5. The first three natural frequencies (Hz) of SFSF and SSSS piezoelectric coupled
porous plate (h,/2h=0.05, a/b=1).

Table 6. The first three natural frequencies (Hz) of SCSC and SSSF piezoelectric coupled
porous plate (h,/2h=0.05, a/b=1)

Table 7. The first three natural frequencies (Hz) of SFSC and SSSC piezoelectric coupled
porous plate (h,/2h=0.05, a/b=1)

Table 8. Effect of the electrical condition on the fundamental natural frequency of the
piezoelectric coupled plate under Levy-type boundary conditions for different
thickness ratios (2h/a=0.15, ep=0.2, a/b=1):

Table 9. Effect of electrical condition on' the first three natural frequencies of the
piezoelectric coupled plate under Levy-type boundary conditions (2h/a=0.15,
hy/2h=0.1, ep=0.2, a/b=1).
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Table 1. The properties of piezoelectric and porous materials

Piezoelectric layers Core Plate
Material
PZT-4 PZT-8 PZT-6B  Pic-151 | Collular
Aluminum
132 137 168 107.6
71 69.9 84.7 63.1
Elastic constants
(GPa) 73 71.1 84.2 63.9
115 123 163 100.4
26 31.3 35.5 19.6
14.1 17.5 7.1 15.14
Piezoelectric coefficients
(C/md) 4.1 -4.0 -0.9 -9.52
10.5 10.4 4.6 11.97
7.124 7.97 3.60 9.837
Dielectric constants
nC/Vm) 6.46 7.97 3.60 9.837
5.841 5.14 3.42 8.190
Density
(Kg/m’) 7500 7600 7550 7800 2707
Young modulus . L L L 70
(GPa)
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Table 2. Comparison of the non-dimensional fundamental natural frequency for a simply
supported homogeneous and isotropic plate

Method Present wHDpT[o] P Method 5 plasticity 337 FXact TSDT
[11] [34]
N 0.1 0.0577 0.0577 0.0578 0.0577 0.577
a
INTO 04622 0.4658 0.4658 0.4658 0.4623
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Table 3. Comparison of the non-dimensional fundamental natural frequency for a
homogeneous plate under various mechanical boundary conditions

BC’s 2ha  Present  TSDT[10] D E[llals]t‘c‘ty
1 1134 1134 11
sss O 0.113 0.113 0.1135
02 04154 0.4154 0.4169
1 . . .
sesp O 0.0562 0.0562 0.0562
02 02140 02141 0.2141
Scs 01 01589 0.1589 0.1604
C 02 05364 0.5363 0.5402
01 00677 0.0678 0.0677
SSSF
02 02550 0.2552 0.2550
01 01333 0.1333 0.1339
SSsC
02 04706 0.4706 0.4731
1 072 07 0731
swse O 0.0729 0.0730 0.073
02 02712 02714 02713
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Table 4. Comparison of the first ten natural frequencies (Hz) for a simply supported

piezoelectric coupled homogeneous and isotropic plate

Method Mode Sequence
1 2 3 4 5 6 7 8 9 10

Present 144.49  360.90 360.90 576.92 720.72 720.72 936.10 936.10 1222.68 1222.68

CPT [15] 144.25 359.00 359.00 564.10 717.80 717.80 908.25 908.25 1223.14 1223.14
Diff. (%) 0.17 0.53 0.53 2.27 0.41 0.41 3.07 3.07 -0.04 -0.04
FSDT [18] 14535 363.05 363.05 580.35 725.00 725.00 941.64 941.64 1229.88 1229.88
Diff. (%) -0.59 -0.59 059 059 -059 -059 -059 -0.59 -0.58 -0.58
Navier [32] 14535 363.06 363.06 580.37 725.03 725.03 941.69 941.69 1229.96 1229.96
Diff. (%) -0.59 -059 059 059 -059 059 -059 -0.59 -0.59 -0.59
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Table 5. The first three natural frequencies (Hz) of SFSF and SSSS piezoelectric coupled porous plate (hp/2h=0.05, a/b=1).

Coefficient of Plate Porosity (e))

0 0.25 0.5
2h/a EC’s
Mode Sequence Mode Sequence Mode Sequence
lsl 2nd 3rd lsl 2nd 3rd lsl 2nd 3rd
SFSF

Closed 121.301 200.764 450.892 118.401 195912 439.752 114.893 190.058 426.309

0.05 (1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
G 124.253 202.954 460.998 121.624 198.296 450.819 118.515 192.726 438.807

(1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
Closed 238.329 387.514 846.216 232.453 377.667 823.529 225.363 365.829 796.287

0.1 (1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
G 243.905 391.360 864.570 238.523 381.831 843.530 232.160 370.457 818.738

(1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
Closed 448.362 699.457 1114.689 436.250 679.434 1068.185 421.752 655.560 1019.189

0.2 (1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
Qs 457.879 705.147 1118.463 446.529 685.515 1072.392 433.149 662.198 1024.017

(1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)

SSSS

Closed 247.352 608.107 957.500 241.363 592.940 932.980 234.118 574.636 903.457

0.05 (L1 (1,2) 2.2) (1,1 (1,2) 2.2) (L1 (1,2) 2.2)
G 255.830 628.557 989.132 250.651 615.295 967.492 244.611 599.825 942.248

(1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2)
Closed 478.750 1129.345 1718.002 466.490 1097.946 1667.376 451.728 1060.441 1607.288

0.1 (1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2)
G 494.566 1164.453 1768.859 483.746 1136.003 1722.233 471.124 1102.874 1668.077

(1,1) (1,2) (2,2) (1,1 (1,2) (2,2) (1,1) (1,2) (2,2)
Closed 859.001 1838.226 2626.428 833.688 1776.570 2532.508 803.644 1704.623 2424.035

0.2 (1,1) (1,2) 2,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2)
Qs 884.430 1885.951 2689.413 861.117 1827.400 2599.074 834.039 1760.047 2495.876

(1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2)
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Table 6. The first three natural frequencies (Hz) of SCSC and SSSF piezoelectric coupled porous plate (h,/2h=0.05, a/b=1)

Coefficient of Plate Porosity (e)

0 0.25 0.5
2h/a EC’s
Mode Sequence Mode Sequence Mode Sequence
lsl 2nd 3rd lsl 2nd 3rd lsl 2nd 3rd
SCSC
Closed 357.007 667.786 831.096 348.087 650.829 809.319 337.336 630.413 783.202
0.05 (LD 2.1 (1,2) (L1 2.1 (1,2) (L1 2.1 (12)
G 368.950 689.916 857.940 361.136 674.985 838.539 352.031 657.579 815.948
(1,1) 2,1 (1,2) (1,1) 2,1) (1,2) (1,1) 2,1) (1,2)
Closed 664.835 1216.125 1457.899 646.294 1181.102 1412.935 624.228 1139.494 1360.047
0.1 (1,1) 2,1 (1,2) (1,1) 2,1) (1,2) (1,1) 2,1) (1,2)
G 685.155 1252.540 1498.401 668.293 1220.448 1456.380 648.710 1183.181 1407.832
(1,1) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) (1,2)
Closed 1091.656 1920.632 2151.282 1055.057 1854.249 2071.313 1012.538 1777.246 1979.909
0.2 (1,1) 2,1 (1,2) (1,1) 2,1) (1,2) (1,1) 2,1) (1,2)
Qs 1118.851 1967.904 2197.960 1083.979 1904.420 2120.373 1043.987 1831.681 2032.407
(1,1 2,1 (1,2 (1,1) 2,1) (1,2) (1,1) 2,1) (1,2)
SSSF
Closed 146.731 344.061 509.019 143.213 335.642 496.427 138.960 325.475 481.231
0.05 (LD (1,2) 2.1 (L1 (12) 2.D (LD (1,2) 2.1
Qs 149.816 352.917 522.549 146.579 345.340 511.175 142.740 336.426 497.777
(1,1) (1,2) 2,1 (1,1) (1,2) (2,1) (1,1) (1,2) (2,1)
Closed 286.863 655.114 954.158 279.724 637.900 928.172 271.119 617.220 897.085
0.1 (1,1) (1,2) (1,2) (1,1) (1,2) 2,1) (1,1) (1,2) 2,1)
Qs 292.582 671.298 977.255 285.942 655.537 953.14 (2,1) 278.072 637.017 924.819
(1,1) (1,2) 2,1 (1,1) (1,2) ) ’ (1,1) (1,2) (2,1)
Closed 532.727 1135.377 1286.463 518.031 1100.665 1232.829 500.480 1059.343 1176.410
0.2 (1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
Qs 542.094 1160.534 1289.232 528.123 1127.751 1235.919 511.631 1089.239 1179.999
(1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
2 J2dod = mual



Table 7. The first three natural frequencies (Hz) of SFSC and SSSC piezoelectric coupled porous plate (h,/2h=0.05, a/b=1)

Coefficient of Plate Porosity (e)

0 0.25 0.5
2h/a EC’s
Mode Sequence Mode Sequence Mode Sequence
lsl 2nd 3rd lsl 2nd 3rd lsl 2nd 3rd
SFSC

Closed 158.837 406.442 514.619 155.012 396.337 501.866 150.390 384.154 486.480

0.05 (1,1) (1,2) 2,1) (1,1) (1,2) 2,1) (1,1) (1,2) 2,1)
Qs 161.829 417.200 527.910 158.274 408.102 516.349 154.051 397.417 502.722

(1,1) (1,2) 2,1) (1,1 (1,2) 2,1) (1,1) (1,2) 2,1)
Closed 308.659 758.935 962.623 300.874 738.138 936.311 291.510 713.286 904.852

0.1 (1,1) (1,2) 2,1) (1,1) (1,2) 2,1) (1,1) (1,2) 2,1)
G 314.121 777.658 985.234 306.805 758.458 960.750 298.129 735.972 931.977

(1,1) (1,2) 2,1) (1,1 (1,2) 2,1) (1,1) (1,2) 2,1)
Closed 564.881 1258.425 1596.724 548.911 1217.483 1544.622 529.908 1169.252 1483.589

0.2 (1,1) (1,2) 2,1) (1,1) (1,2) 2,1) (1,1) (1,2) 2,1)
G 573.603 1284.792 1627.628 558. 285 1245.656 1577.483 540.231 1200.077 1519.276

(1,1) (1,2) (2,1) (1,1) (1,2) (2,1) (1,1) (1,2) (2,1)

SSSC

Closed 294.344 634.172 713.547 287.122 618.238 695.329 278.399 599.028 673.407

0.05 (L1 2.1 (1,2) (1,1 2.1 (1,2) (L1 2.1 (1,2)
Qs 304.332 655.372 737.100 298.052 641.400 721.025 290.731 625.105 702.288

(1,1) 2,1) (1,2) (1,1 2,1) (1,2) (1,1) (2,1) (1,2)
Closed 560.379 1168.193 1289.312 545.473 1135.222 1251.536 527.617 1095.928 1206.759

0.1 (1,1) 2,1) (1,2) (1,1) 2,1) (1,2) (1,1) 2,1) (1,2)
G 578.293 1203.946 1327.299 564.953 1173.925 1292.504 549.419 1139.005 1252.139

(1,1) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) (1,2)
Closed 965.731 1876.557 1996.510 935.425 1812.751 1925.731 899.821 1738.495 1844.019

0.2 (1,1) 2,1) (1,2) (1,1) 2,1) (1,2) (1,1) 2,1) (1,2)
G 992.201 1924.141 2043.868 963.793 1863.349 1975.833 930.992 1793.542 1898.138

(1,1) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) (1,2)
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Table 8. Effect of the electrical condition on the fundamental natural frequency of the
piezoelectric coupled plate under Levy-type boundary conditions for different thickness
ratios (2h/a=0.15, ep=0.2, a/b=1).

e hy/2h di.sregarding considering piezo-effect
piezo-effect  cloeed  Diff. (%) ~ Open  Diff. (%)
0.05 340.934 340.942 0.00002 349.220 2.42798
SESF 0.1 353.894 353.942 0.01356 367.041 3.71495
0.2 381.346 381.604 0.06766 399.811 4.84206
0.05 668.983 669.005 0.00329 691.867 3.42071
SSSS 0.1 687.932 688.075 0.02079 724.321 5.28962
0.2 728.572 729.352 0.10706 778.910 6.90913
0.05 884.958 885.003 0.00508 911.326 2.97958
SCSC 0.1 896.483 896.766 0.03157 936.036 4.41202
0.2 923.630 925.177 0.16749 972.901 5.33450
0.05 407.693 407.701 0.00196 416.007 2.03928
SSSF 0.1 422.240 422.291 0.01208 435.301 3.09326
0.2 453.019 453.290 0.05982 471.001 3.96937
0.05 435.285 435.294 0.00207 443.100 1.79538
SFSC 0.1 449.708 449.764 0.01245 461.854 2.70086
0.2 480.215 480.517 0.06289 496.618 3.41576
0.05 766.251 766.282 0.00404 790.933 3.22114
SSSC 0.1 782.528 782.726 0.02530 820.775 4.88762
0.2 818.143 819.234 0.13335 868.619 6.16958
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Table 9. Effect of electrical condition on the first three natural frequencies of the

piezoelectric coupled plate under Levy-type boundary conditions (2h/a=0.15, hp/2h=0.1,

eo=0.2, a/b=1).

s Mode di.sregarding considering piezo-effect
S piezo-effect  coed  Diff. (%) Open  Diff. (%)
1*(1,1) 353.894 353.942 0.01356 367.041 3.71495
SFSF 2" (1,2) 559.283 559.321 0.00679 567.318 1.43666
3 (1,3) 1026.257 1026.257 0.00000 1033.085 0.66533
1*(1,1) 687.932 688.075 0.02079 724.321 5.28962
SSSS 2" (1,2) 1513.073 1513.469 0.02617 1582.809 4.60890
34(2,2) 2196.219 2196.892 0.03064 2288.325 4.19384
1*(1,1) 896.483 896.766 0.03157 936.036 4.41209
SCSC 2" (2,1) 1592.042 1592.539 0.03122 1660.750 4.31572
3(1,2) 1814.216 1815.034 0.04509 1881.380 3.70210
1* (1,1) 422.240 422.291 0.01208 435.301 3.09326
SSSF 2" (1,2) 918.344 918.502 0.01720 954.491 3.93611
3(1,3) 1184.504 1184.504 0.00000 1189.491 0.42102
1* (1,1) 449.708 449.764 0.01245 461.854 2.70086
SFSC 2" (1,2) 1030.542 1030.783 0.02339 1068.722 3.70485
342,1) 1307.735 1307.996 0.01996 1351.948 3.38088
1*(1,1) 782.528 782.726 0.02530 820.775 4.88762
SSSC 2" (2,1) 1549.478 1549.911 0.02794 1618.866 4.47815
34(1,2) 1664.163 1664.750 0.03527 1733.059 4.13998
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