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Abstract 

In this paper, an analytical solution for free vibration of rectangular porous-cellular plates 

enclosed by piezoelectric layers is presented by using third-order shear deformation plate 

theory. Using Hamilton’s principle and Maxwell equation, the governing equations of the 

system are obtained for both closed and open circuit conditions. Due to the coordinate 

dependency of mechanical properties of porous materials, the governing equations of motion 

are highly coupled. By using four auxiliary functions, these equations convert into two 

independent partial differential equations. The decoupled equations are solved analytically by 

employing Levy-type boundary conditions for the plate. Finally, after validation of the 

obtained results, the effects of various parameters such as porosity and geometrical 

dimensions on the natural frequencies of plate are investigated for different electrical and 

mechanical boundary conditions. It is found that the natural frequencies of the plate decrease 

as the coefficient of plate porosity increases. Also, the piezoelectric layers cause the natural 

frequency of the plate to increase in various vibrating modes. 

Keywords: Free vibration, Levy-type solution, Porous materials, Piezoelectric materials, 

Third-order shear deformation theory 

 

1. Introduction 

In order to analyze the mechanical behavior of plates, several theories are proposed in which 

the extension of the displacement field along the plate thickness is different and the number of 

extended terms is directly related to thickness-length ratio of the plate. To analyze the 

mechanical behavior of thin plates, it is reasonable to use classical plate theory (CPT). In 

1951, Mindlin [1] introduced first-order shear deformation theory (FSDT) that can be 

considered as a modified model of classical theory for moderately thick plates. This theory, 

due to considering the displacement induced by shear forces, may be considered as a good 

alternative for classical theory so as to analyze the moderately thick plates.  By increasing the 

number of extended terms, other theories may be obtained. Following this approach, a new 

higher-order theory; i.e., Reddy’s third-order shear deformation theory (TSDT) has been 

proposed [2]. 
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In general, porous materials due to their unique properties such as high stiffness in 

conjunction with low specific weight, are widely used in several applications including 

lightweight structures, energy absorption, sound attenuation and thermal insulation [3]. 

To analyze the dynamic behavior of rectangular plates, lots of investigations have been 

performed. Among all notable works, the free vibration analysis of isotropic rectangular 

plates under different boundary conditions have been carried out by Leissa [4] using CPT. 

Reddy and Phan [5] presented an exact solution for vibration and stability of isotropic, 

orthotropic and laminated rectangular plates having simply supported boundary condition on 

all edges according to a higher-order shear deformation theory. Liew et al. [6] investigated the 

three-dimensional vibrations of thick rectangular plates made of homogeneous materials with 

general boundary conditions by using Ritz method. Vel and Batra [7] provided an exact 

solution for free vibration of simply supported functionally graded rectangular plates using 

three-dimensional theory of elasticity. Ferreira et al. [8] studied the free vibration of 

functionally graded rectangular plates using first and third-order shear deformation plate 

theories by employing a mesh-less method. Matsunaga [9] presented the Navier solution for 

free vibration and stability of rectangular plates made of functionally graded materials 

according to a 2D higher-order deformation theory. Hasani Baferani et al. [10] used Reddy’s 

third-order shear deformation theory to investigate the free vibration of thick functionally 

graded rectangular plates resting on elastic foundation. They also studied the effects of in-

plane displacements on the system’s response. Jin et al. [11] presented an exact solution for 

free vibrations of thick functionally graded rectangular plates by employing Rayleigh-Ritz 

procedure on the basis of three-dimensional theory of elasticity. 

In recent years, smart materials such as piezoelectric materials have been proposed to control 

vibrations. Due to the coupling between electric and mechanical fields, piezoelectric materials 

can be used in a wide variety of applications including sensors and actuators. Few studies 

have been performed to investigate the vibration of plates surrounded by piezoelectric layers. 

For example, Huang et al. [12] investigated the vibration control of a laminated plate with 

piezoelectric layers using finite element method based on classical plate theory. Heyliger and 

Saravanos [13] presented an exact solution for the free vibration of simply supported 

laminated plates with embedded piezoelectric layers. Liang and Batra [14] studied changes in 

frequencies of a coupled laminated plate due to the presence of piezoelectric layers. In their 

paper, they investigated the effects of thickness, mass density and stiffness of piezoelectric 

layers on the natural frequency of a plate with simply supported edges. He et al. [15] carried 

out the active control of FGM plates integrated with piezoelectric sensors and actuators under 

various boundary conditions using finite element method. Baillargeon and vel [16] presented 

an exact solution for vibration of simply supported laminated composite plates with 

embedded piezoelectric shear actuators based on 3D theory of elasticity. Vibration analysis of 

simply supported composite plate containing piezoelectric layers was considered by 

Pietrzakowski [17] based on the Kirchhoff hypothesis and Mindlin plate theory. Askari 

Farsangi and Saidi [18] presented an analytical solution for free vibration of functionally 

graded rectangular plates with piezoelectric layers by using Mindlin plate theory. Askari 

Farsangi et al. [19] proposed an exact solution for free vibration of moderately thick hybrid 



 

  

 

 

piezoelectric laminated plates under Levy-type boundary conditions according to first-order 

shear deformation theory. 

Despite various studies on rectangular plates made of homogeneous, isotropic, piezoelectric 

and functionally graded materials, there are few studies dealing with the mechanical behavior 

of porous structures. Theodorakopoulos and Beskos [20] studied the flexural vibration of a 

simply supported thin rectangular plates made of fluid-saturated poroelastic materials by 

using classical plate theory. Leclaire et al. [21] investigated the transverse vibrations of a thin 

homogenous rectangular porous plate saturated by a fluid according to CPT. Magnucka-

Blandzi [22-23] carried out the vibrational behavior, deflection and buckling of a porous-

cellular circular plate using a nonlinear deformation theory. In her works, the distribution of 

mechanical properties along the plate thickness is considered to be symmetrical relative to the 

middle plane of plate. Khorshidvand et al. [24] investigated the buckling analysis of a 

clamped porous circular plate with piezoelectric layers based on classical plate theory. Rezaei 

and Saidi [25] presented an exact solution for the free vibration analysis of thick rectangular 

plates made of rigid porous materials saturated by inviscid fluid according to the Reddy’s 

third-order shear deformation plate theory with Levy-type boundary conditions. The effect of 

porosity on natural frequencies of thick porous-cellular plates has been studied by Rezaei and 

Saidi [26] on the basis of Carrera Unified Formulation. 

In this study, free vibration analysis of thick rectangular plates made of porous-cellular 

materials with piezoelectric layers has been investigated based on the Reddy’s third-order 

shear deformation plate theory. Material properties of porous plate vary through its thickness 

based on a cosine rule. Using Hamilton’s principle and Maxwell equation, governing 

equations for open and closed circuit electrical boundary conditions have been obtained. 

Then, an exact solution has been presented and numerical results for various electrical and 

mechanical boundary conditions have been obtained. Finally, the effect of geometric 

parameters as well as stiffness and electrical effects of piezoelectric layers on the natural 

frequency of the plate have been studied in detail. 

 

2. Kinematic assumptions 

Consider a rectangular plate of length	�, width	�, thickness of the porous core 2ℎ and each 

piezoelectric layer ℎ�. �� and �	 are in plane coordinates and �
 is the coordinate in thickness 

direction. The geometry of the plate as well as its coordinate system may be seen in Fig. 1. As 

can be seen in Fig. 1, the origin of coordinate system is located at the mid-plane of the plate. 

Based on third-order shear deformation theory, the displacement field is [2] 

�����, �	, �
, �� = ����, �	, �� + �
�����, �	, �� − ��

 ������, �	, �� + �����, �	, ����� � 

(1) �	���, �	, �
, �� = ����, �	, �� + �
�	���, �	, �� − ��

 ��	���, �	, �� + ����� , �	, ����	 � 

�
���, �	, �
, �� = ����, �	, ��	 



 

  

 

 

where the functions	��, �	 and �
 represent the components of displacement field in	��, �	 

and �
 directions, respectively. � and � are the in-plane displacements in the �� and �	 

directions, respectively. � represents the transverse displacement of the middle plane. Also, �� and �	 denote the rotations of the line perpendicular to the mid-plane about �	 and �� 

axes, respectively. � is the time variable and the constant � is equal to	4/[3�2ℎ + 2ℎ��	]. 
 

3. Constitutive relations 

3.1. Porous materials 

Due to the non-uniform distribution of porosity in the structure of porous materials, different 

rules may be used to model the variation of mechanical properties. Properties of porous 

material are considered to be asymmetric with respect to mid-plane as follow [25] 

(2) 

!��
� = !"#� $1 − &'	()* �+��
 + ℎ�4ℎ �, 

-��
� = -"#� $1 − &. 	()* �+��
 + ℎ�4ℎ �, 

&' = 1 − !/#"
!"#� 					,							&. = 1 − 01 − &' 

In the above equations, ! and - represent the elastic modulus and the mass density of plate, 

respectively and the dimensionless parameter &', �0 < &' < 1) denotes the coefficient of plate 

porosity. It is worth to note that zero value for this parameter means there is no porosity in 

material’s structure. The superscripts “top” and “bot” denote the top and bottom surfaces of 

the plate, respectively. Fig. 2 shows the distribution of the elastic modulus in the thickness 

direction. These relations indicate that the mechanical properties of the plate have its 

maximum and minimum values at the upper and lower planes, respectively. 

The strain-stress relations for porous materials can be expressed as 

(3) 345 = 1 + 62 745 − 6! 788945 
where, 345 , 745, 9 and 6 are the strain components, stress components, Kronecker delta and 

Poisson’s ratio, respectively. The above constitutive relations are in fact the reduced form the 

Biot’s poroelastic constitutive law which is proposed to model the behavior of porous 

medium [26]. The relations are valid in a case in which the pore pressure is either very low or 

nonexistent. Assuming air or low pressure gas as fluid, it is reasonable to disregard the last 

term in Biot’s constitutive relations. This assumption leads to Eq. (3) meaning that the effect 

of coupled solid-fluid deformation is negligible. It is convenient to classify porous metals into 

the type of materials which follow the above relations. Different studies [22- 23] have already 

used the assumption to investigate the static and dynamic analyses of porous-cellular plates. 

By assuming  7

 = 0, Eq. (3) may be rewritten as follows 

(4) 7�� = :��;�� + :�	;		 



 

  

 

 

7		 = :	�;�� + :��;		 7	
 = 2:<<;	
 7�
 = 2:<<;�
 7�	 = 2:<<;�	 

In which the coefficients :45  may be obtained from relations (A.1) of the Appendix. 

 

3.2. Piezoelectric materials 

Due to coupling between electrical and mechanical fields, the constitutive relations of 

piezoelectric materials are expressed as a combination of electrical and mechanical 

characteristics. The constitutive relations for linear piezoelectric materials are as follows [27] 

(5.a) =	, > = 1, 2, 3, 4, 5, 6 A4 = (45B5 − &84!8 
(5.b) C	, D = 1, 2, 3 E8 = &85B5 + Ξ8.!. 

where the vectors GEH and G!H represent the electrical displacement and field vectors, 

respectively. (45, Ξ8. And &84 are the components of the piezoelectric stiffness, dielectric 

constants and piezoelectric coefficients matrices, respectively. Also, the components of A4 and B5 may be obtained as [27]  

(6) 
A� = 7��					, A	 = 7							, A
 = 7

				, AI = 7	
					, AJ = 7�
				, A< = 7�	 B� = ;��			, B	 = ;		 				, B
 = ;

				, BI = 2;	
				, BJ = 2;�
				, B< = 2;�	 

Transversely isotropic piezoelectric materials have been considered in this study being a type 

of piezoelectrics which is polarized in the thickness direction. Considering 7

 = 0, Eqs. (5) 

can be expressed as  

(7.a) 

7�� = (�̅�;�� + (�̅	;		 − &̅
�!
 7		 = (�̅	;�� + (�̅�;		 − &̅
�!
 7	
 = 2(JJ;	
 − &�J!	 7�
 = 2(JJ;�
 − &�J!� 7�	 = �(�̅� − (�̅	�;�	 

(7.b) 

E� = 2&�J;�
 + Ξ��!� E	 = 2&�J;	
 + Ξ��!	 E
 = &̅
��;�� + ;		� + ΞL

!
 

Here (�̅�, (�̅	, &
̅� and ΞL

 are reduced constants given as relations (A.2) in the Appendix. 

 

4. Mechanical and electrical fields 

The components of the strain tensor in Cartesian coordinates are as follow 

(8) ;45 = 12 ���M��N + ��N��4� 



 

  

 

 

By substituting the displacement field in Eq. (8), the components of the strain tensor are 

obtained as  

 

(9) 

;�� = ����� + �
 ������ − ��

 ������� + �	����	� 
;		 = ����	 + �
 ��	��	 − ��

 ���	��	 + �	���		� 
;

 = 0 
2;�	 = ����	 + ����� + �
������	 + ��	��� � − ��

 ������	 + ��	��� + 2 �	������	� 
2;�
 = �1 − O�
	� P�� + �����Q 
2;	
 = �1 − O�
	� P�	 + ����	Q 

where 

(10) O = 3� = 4�2ℎ + 2ℎ��	 

Based on Eqs. (9), it can be seen that the shear strain components are not constant in the 

thickness direction due to using TSDT, unlike first-order shear deformation plate theory.  

 

4.1. Closed circuit condition 

In this case, the electrodes on the upper and lower surfaces of the piezoelectric coupled plate 

are connected to each other. Electric potential function for closed circuit condition is 

considered as follows [28] 

(11) Φ���, �	, �
, �� =
ST
U
TVW���, �	, �� X1 − ��
 − ℎ − ℎ� 2⁄ℎ� 2⁄ �	Z																										�ℎ ≤ �
 ≤ ℎ + ℎ��
W���, �	, �� X1 − �−�
 − ℎ − ℎ� 2⁄ℎ� 2⁄ �	Z																�−ℎ − ℎ� ≤ �
 ≤ −ℎ�

\ 

Here, W���, �	, �� denotes the electric potential in the mid-surface of piezoelectric layers. 

Eq. (11) implies that the electric potential of major surfaces of the piezoelectric layer is zero 

and the maximum value occurs at mid-surface of each layer.  

 

4.2. Open circuit condition 

Provided that the outer surface of the piezoelectric layer is exposed to an environment with 

very low permeability (such as air or vacuum), the plate is under open circuit electrical 

boundary condition. Piezoelectric materials in this mode may be used in design tools such as 



 

  

 

 

sensors and vibration absorbers. In this case, the electrical boundary conditions is as follows 

[29] 

 

(12) 
��		�
 = ±�ℎ� ∶ Φ = 0 
��		�
 = ±�ℎ + ℎ��		E
 = 0 

Similar to the closed state, the electric potential may be considered as  

(13) 

Φ���, �	, �
, ��	
=

ST
U
TVW���, �	, �� X1 − ��
 − ℎ − ℎ� 2⁄ℎ� 2⁄ �	Z + _																																															�ℎ ≤ �
 ≤ ℎ + ℎ��

W���, �	, �� X1 − �−�
 − ℎ − ℎ� 2⁄ℎ� 2⁄ �	Z + _` 																																			�−ℎ − ℎ� ≤ �
 ≤ −ℎ�
\ 

where _ and _` are linear functions of the thickness coordinate as _ = a�
 + b and	_` =a`�
 + b`. By satisfying the electrical boundary conditions in Eqs. (12), the unknown 

parameters	a,	b, a` and b` may be obtained. These parameters are given as relations (A.3) of 

the Appendix. On the other hand, the electric potential distribution, Φ in piezoelectric layer is 

considered as a second-order function in the thickness direction. 

Further, the electric field (!cd) could be obtained as follow [30] 

(14) !cd = −∇ccdΦ = − P�Φ��� &d� + �Φ��	 &d	 + �Φ��
 &d
Q 
 

5. Governing equations 

5.1. Obtained equations from Hamilton’s principle 

Using Hamilton’s principle, the equations of motion may be derived as 

(15.a) 9�:									 �g����� + �g�	��	 = h' �	���	 + h� �	����	 − �h
 ��	����	 + �
������	�	 
(15.b) 9�:									 �g�	��� + �g		��	 = h' �	���	 + h� �	�	��	 − �h
 ��	�	��	 + �
���	��	� 

(15.c) 

9�� :						�i����� + �i�	��	 − � P�j����� + �j�	��	 Q − :� + Ok�
= l� �	���	 + l	 �	����	 − �lI ��	����	 + �
������	� 

(15.d) 

9�	 :						�i�	��� + �i		��	 − � P�j�	��� + �j		��	 Q − :	 + Ok	
= l� �	���	 + l	 �	�	��	 − �lI ��	�	��	 + �
���	��	� 



 

  

 

 

(15.e) 

9�:								 �:���� + �:	��	 − O P�k���� + �k	��	Q + � ��	j�����	 + 2 �	j�	�����	 + �	j		��		 �
= h' �	���	 + �h
 � �
������	 + �
���	��	� + �hI � �
�������	 + �
�	��	��	�
− �	h< � �
�������	 + �
�	��	��	 + �I����	��	 + �I���		��	� 

In the above, the stress resultants and the inertia terms are defined as follow 

(16) 

mg45 ,i45 , j45n = o 745 	G1, �
, �

H	p�

qrqs

tqtqs
												 �=, > = 1,2� 

G:8 , k8H = o 78
	G1, �
	H	p�

qrqs

tqtqs
																									�D = 1,2� 

h. = o -��
�	�
. 	p�

qrqs

tqtqs
																																							 �C = 0,1,2,3,4,6� 

lu = hu − �hur																																																														�v = 1,2,4� 
The stress resultants in terms of displacement components can be rewritten as 

(17) 

g�� = a�� ����� + a�	 ����	 + b�� ������ + b�	 ��	��	 − w�� �	����	 − w�	 �	���		 

g		 = a�	 ����� + a�� ����	 + b�	 ������ + b�� ��	��	 − w�	 �	����	 − w�� �	���		 

g�	 = a<< P ����	 + �����Q + b<< P�����	 + ��	���Q − w<< �	������	 

i�� = E�� ����� + E�	 ����	 + !�� ������ + !�	 ��	��	 − x�� �	����	 − x�	 �	���		 − yz�W 
i		 = E�	 ����� + E�� ����	 + !�	 ������ + !�� ��	��	 − x�	 �	����	 − x�� �	���		 − yz�W 
i�	 = E<< P ����	 + �����Q + !<< P�����	 + ��	���Q − x<< �	������	 

:� = aJJ P�� + �����Q + yz
 �W��� + y̅� ��	�����	 + �	�	�����	�+y̅
 ��∇	�����  

:	 = aJJ P�	 + ����	Q + yz
 �W��	 + y̅� � �	�������	 + �	�	��		�+y̅
 ��∇	����	  

j�� = l�� ����� + l�	 ����	 + {�� ������ + {�	 ��	��	 − |�� �	����	 − |�	 �	���		 − yzIW 
j		 = l�	 ����� + l�� ����	 + {�	 ������ + {�� ��	��	 − |�	 �	����	 − |�� �	���		 − yzIW 
j�	 = l<< P ����	 + �����Q + {<< P�����	 + ��	���Q − |<< �	������	 



 

  

 

 

k� = BJJ P�� + �����Q + yzJ �W��� + y̅I ��	�����	 + �	�	�����	�+y̅J ���∇	����� � 
k	 = BJJ P�	 + ����	Q + yzJ �W��	 + y̅I � �	�������	 + �	�	��		�+y̅J ���∇	����	 � 

The unknown constants in Eqs. (17) are given as Eqs. (A.4-A.6) of the Appendix. ∇	 

represents the Laplacian operator in 2D Cartesian coordinates. By substituting Eqs. (17) in the 

system of  Eqs. (15), the governing equations of motion can be rewritten as 

(18.a) 

a�� ���� P ����� + ����	Q + a<< ���	 P ����	 − �����Q + b�� ���� P������ + ��	��	Q
+ b<< ���	 P�����	 − ��	���Q − w�� ��∇	�����= h' �	���	 + h� �	����	 − �h
 ��	����	 + �
������	�	 

(18.b) 

a�� ���	 P ����� + ����	Q − a<< ���� P ����	 − �����Q + b�� ���	 P������ + ��	��	Q
− b<< ���� P�����	 − ��	���Q − w�� ��∇	����	= h' �	���	 + h� �	�	��	 − �h
 ��	�	��	 + �
���	��	� 

(18.c) 

b�� ���� P ����� + ����	Q + b<< ���	 P ����	 − �����Q + B}� ���� P������ + ��	��	Q
+ _<< ���	 P�����	 − ��	��� Q + B}	 ��∇	����� + _JJ P�� + �����Q + B}
 �W���
= l� �	���	 + l	 �	����	 − �lI ��	����	 + �
������	� 

(18.d) 

b�� ���	 P ����� + ����	Q − b<< ���� P ����	 − �����Q + B}� ���	 P������ + ��	��	Q
− _<< ���� P�����	 − ��	��� Q + B}	 ��∇	����	 + _JJ P�	 + ����	Q + B}
 �W��	= l� �	���	 + l	 �	�	��	 − �lI ��	�	��	 + �
���	��	� 

(18.e) 

−_JJ P∇	� + ������ + ��	��	 Q + B}I∇	W + B}J ~∇	 P������ + ��	��	 Q�
+ �l�� ~∇	 P ����� + ����	Q� + B}<∇I�
= h' �	���	 + �h
 $ �	

��	 P ����� + ����	Q,
+ ��hI − �	h<� $ �	

��	 P������ + ��	��	Q, − �	h< ��∇	����	  

Here the unknown constants	_JJ, _<< and B}4�= = 1,2,… ,6� may be found from Eqs. (A.7) of 

the Appendix. 



 

  

 

 

 

5.2. Maxwell equation 

Maxwell equation may be expressed as follows [29] 

(19) o ∇ccd.Eccd	p�

tq

tqtqs
+ o ∇ccd.Eccd	p�


qrqs
q = 0 

By substituting Eqs. (7.b) and Eqs. (9) in Eq. (19), Maxwell equation takes the form 

(20) y� P������ + ��	��	Q + y	∇	� + y
W + yz	∇	W + y̅	 ~∇	 P������ + ��	��	Q� + y̅<∇I� = 0 

The unknown constants in the above equation are given in Eqs. (A.8-A.10) of the Appendix. 

Eqs. (18) and Eq. (20) form a highly coupled system of  partial differential equations that 

cannot be solved analytically directly. 

 

5.3. Decoupling procedure 

In order to decouple the governing equations of motion, four auxiliary functions are assumed 

as  

(21) W� = ����� + ����	 						,					W	 = ����	 − ����� 						,					W
 = ������ + ��	��	 						,					WI = �����	 − ��	��� 
By rewriting Eqs. (18) and Eq. (20) in terms of the auxiliary functions, the governing 

equations of motion are presented as follows 

(22.a) 

a�� �W���� + a<< �W	��	 + b�� �W
��� + b<< �WI��	 − w�� ��∇	�����= h' �	���	 + h� �	����	 − �h
 ��	����	 + �
������	�	 

(22.b) 

a�� �W���	 − a<< �W	��� + b�� �W
��	 − b<< �WI��� − w�� ��∇	����	= h' �	���	 + h� �	�	��	 − �h
 ��	�	��	 + �
���	��	� 

(22.c) 

b�� �W���� + b<< �W	��	 + B}� �W
��� + _<< �WI��	 + B}	 ��∇	����� + _JJ P�� + �����Q + B}
 �W���= l� �	���	 + l	 �	����	 − �lI ��	����	 + �
������	� 

(22.d) 

b�� �W���	 − b<< �W	��� + B}� �W
��	 − _<< �WI��� + B}	 ��∇	����	 + _JJ P�	 + ����	Q + B}
 �W��	= l� �	���	 + l	 �	�	��	 − �lI ��	�	��	 + �
���	��	� 

(22.e) 

−_JJ�∇	� + W
� + B}I∇	W + B}J∇	W
 + �l��∇	W� + B}<∇I�
= h' �	���	 + �h
 �	W���	 + ��hI − �	h<� �	W
��	 − �	h< �	�∇	����	  



 

  

 

 

(22.f) y�W
 + y	∇	� + y
W + yz	∇	W + y̅	∇	W
 + y̅<∇I� = 0 

By differentiating Eqs. (22.a-22.d) with respect to in-plane coordinates and doing some 

algebraic manipulations, this system of equations takes the form 

(23.a) a��∇	W� + b��∇	W
 − w��∇I� = h' �	W���	 + h� �	W
��	 − �h
 ��	W
��	 + �	�∇	����	 �	 
(23.b) 

b��∇	W� + S��∇	W
 + S�	∇I� + _JJ�∇	� + W
� + S�
∇	W
= l� �	W���	 + �l	 − �lI� �	W
��	 − �lI �	�∇	����	  

(23.c) a<<∇	W	 + b<<∇	WI = h' �	W	��	 + l� �	WI��	 	 
(23.d) b<<∇	W	 + _<<∇	WI + _JJWI = l� �	W	��	 + �l	 − �lI� �	WI��	  

(23.e) 
−_JJ�W
 + ∇	�� + S�I∇	W + S�J∇	W
 + �l��∇	W� + S�<∇I�

= h' �	���	 + �h
 �	W���	 + ��hI − �	h<� �	W
��	 − �	h< �	�∇	����	  

(23.f) y�W
 + y	∇	� + y
W + yz	∇	W + y̅	∇	W
 + y̅<∇I� = 0 

As can be seen, Eq. (23.a), Eq. (23.b), Eq. (23.e) and Eq. (23.f) contain two auxiliary 

functions; i.e.,	W� and 	W
, the electric potential function and transverse displacement of 

middle plane. On the other hand, Eq. (23.c) and Eq. (23.d) contain the remaining auxiliary 

functions; i.e.,  W	 and	WI. By assuming harmonic motion for the system, the unknown 

functions may be considered as 

(24) 

�
��
�

W����, �	, ��W	���, �	 , ��W
���, �	 , ��WI���, �	, ��W���, �	, ������, �	, �� �
��
� = �

�
��
�

W�.���, �	�W	.���, �	�W
.���, �	�WI.���, �	�W.���, �	��.���, �	� �
��
� &4��"�

.��
 

where �. is the natural frequency of the plate which has to be found. Then, by substituting 

Eqs. (24) in the system of Eqs. (23) and doing some algebraic calculations on the resulting 

system, the following equations can be obtained 

(25.a) ��∇�'�. + �	∇��. + �
∇<�. + �I∇I�. + �J∇	�. + �<�. = 0 
(25.b) W
. = ��∇��. + ��∇<�. + ��∇I�. + ��'∇	�. + ����. 

(25.c) W�. = ��∇	W
. + ��∇I�. + ��W
. + ��'∇	�. + ����. 

(25.d) W. = ��	W
. + ��
∇	W
. + ��I∇I�. + ��J∇	�. + ��<�. 

(25.e) ��̅∇IWI. + �	̅∇	WI. + �
̅WI. = 0 

(25.f) W	. = �I̅∇	WI. + �J̅WI. 



 

  

 

 

The unknown coefficients in Eqs. (25) are given in relations (A.11) of the Appendix. As can 

be seen, by employing auxiliary functions, the governing equations of motion are reduced into 

two independent partial differential equations. 

 

6. Levy-type solution 

According to the Levy-type solution, two parallel edges are assumed to be simply supported 

(here at �� = 0 and	�� = �), while arbitrary classical boundary conditions may be applied at 

other edges. In order to satisfy the final equations at simply supported edges, the function �.���, �	� and WI.���, �	� are considered as below 

(26) �.���, �	� = ��.5��	� sin�O5����
5�� 				,				WI.��� , �	� = � WI.5��	� cos�O5����

5��  

Here, O5 = >+ �⁄  and > represents the number of half-waves in �� direction. By substituting 

Eqs. (26) in Eq. (25.a) and Eq. (25.e), the following equations may be obtained 

(27.a) 

�� p�'�.5p�	�' + �−5��O5	 + �	� p��.5p�	� + �10��O5I − 4�	O5	 + �
� p<�.5p�	<
+ �−10��O5< + 6�	O5I − 3�
O5	 + �I� pI�.5p�	I
+ �5��O5� − 4�	O5< + 3�
O5I − 2�IO5	 + �J� p	�.5p�		+ �−��O5�' + �	O5� − �
O5< + �IO5I − �JO5	 + �<��.5 = 0 

(27.b) ��̅ pIWI.5p�	I + �−2��̅O5	 + �	̅� p	WI.5p�		 + ���̅O5I − �	̅O5	 + �
̅�WI.5 = 0 

As can be seen, two homogeneous ordinary differential equations with constant coefficients 

have been obtained. General solution for the system of Eqs. (27) is as follow 

(28.a) 

�.5��	� = w�̅ *=vℎ�Ω��	� + w̅	 ()*ℎ�Ω��	� + w̅
 *=vℎ�Ω	�	� + w̅I ()*ℎ�Ω	�	�+ wJ̅ *=vℎ�Ω
�	� + w̅< ()*ℎ�Ω
�	�+ w�̅ *=vℎ�ΩI�	� + w̅� ()*ℎ�ΩI�	�+ w�̅ *=vℎ�ΩJ�	� + w̅�' ()*ℎ�ΩJ�	� 

(28.b) 
WI.5��	� = w�̅� *=vℎ�Ω���	� + w̅�	 ()*ℎ�Ω���	�+ w�̅
 *=vℎ�Ω�	�	� +w�̅I ()*ℎ�Ω�	�	� 

where the coefficients w̅4�= = 1, 2,… , 14� are unknown coefficients and the parameters Ω8�D = 1, 2, 3, 4, 5� and Ω���� = 1, 2� can be obtained by the following relations 

(29.a) 

��3J + �−5��O5	 + �	�3I + �10��O5I − 4�	O5	 + �
�3

+ �−10��O5< + 6�	O5I − 3�
O5	 + �I�3	
+ �5��O5� − 4�	O5< + 3�
O5I − 2�IO5	 + �J�3+ �−��O5�' + �	O5� − �
O5< + �IO5I − �JO5	 + �<� = 0 

(29.b) ��̅3̅		 + �−2��̅O5	 + �	̅�3̅ + ���̅O5I − �	̅O5	 + �
̅� = 0 

where 



 

  

 

 

(30) 
 8 = ±038 

 L� = ±03�̅ 
 

7. Boundary conditions 

7.1. Electrical boundary conditions 

Due to considering Levy-type solution, the electrical potential at simply supported edges is 

equal to zero; i.e., 

(31) 
��		�� = 0 ∶ 		W = 0 ��		�� = � ∶ 		W = 0 

 

Also, the electrical boundary conditions at �	 = ±�/2 is as follow 

(32) o E	 P��, �	 = ±�2 , �
, �Q p�

tq

tqtqs
+ o E	 P��, �	 = ± �2 , �
, �Q p�


qrqs
q = 0 

By substituting E	 from Eq. (7.b) in the above equation and using Eq. (9), electrical boundary 

conditions at �	 = ±�/2 can be obtained as 

(33) A� P�	 + ����	Q + ¡¢� �W��	 + ¡L� � �	�������	 + �	�	��		� + ¡L	 $ ���	 ��	����	 + �	���		�, = 0 
Where the unknown coefficients in Eq. (33) are given as relations (A.12-14) of the Appendix. 

 

7.2. Mechanical boundary conditions 

Assuming that classical boundary conditions including free, clamped and simply supported 

which may be applied at �	 = ±�/2, the conditions for each types of boundary, are as 

follows 

(34.a) 

 g�	 = 0	, g		 = 0	, �i�	 − �j�	� = 0	, �i		 − �j		� =0	, j		 = 0 

:	 − Ok	 + � P2 �j�	��� + �j		��	 Q = 0 (I) Free: 

(34.b) � = 0	, � = 0	,�� = 0	, �	 = 0	,� = 0	, ����	 = 0 (II) Clamped: 

(34.c) g		 = 0	, � = 0	,�� = 0	, �i		 − �j		� = 0	,� = 0	, j		 = 0 (III) Simply supported: 

Finally, by applying electrical and mechanical boundary conditions at �	 = ±�/2, fourteen 

homogeneous algebraic equations in term of the unknown constants w̅4 will be obtained. By 

equating the determinant of the coefficients of the fourteen equations to zero, the natural 

frequencies of the system can be determined. 

 

8. Numerical results and discussion 

The mechanical and electrical properties of different piezoelectric and porous-cellular 

materials are listed in table 1 [31]. 



 

  

 

 

For the sake of simplicity, the symbol B_B£ has been used to show the plate’s boundary 

conditions that represents two parallel simply supported edges at �� = 0 and �	 = �. Also, _ 

and £ denote the type of boundary at the remaining edges. Symbols B, x and w represent 

simply supported, free, and clamped boundary conditions, respectively.  

In order to verify the obtained results, frequencies have been compared with those available in 

literature for a simply supported homogeneous and isotropic square plate with - = 5700 D¥/C
 and ! = 200 ¦j� in table 2. Also, the Poisson's ratio is set to 0.3.  The obtained 

frequencies are found to correlate well with the ones tabulated in other reference papers.  

A comparative study has been performed to validate the obtained frequencies for a 

homogeneous and isotropic square plate under various boundary conditions in table 3. The 

results match well with those presented in literature; thus, the accuracy of the approach may 

be observed.  

The first ten natural frequencies obtained from the present study for a simply supported 

homogeneous and isotropic plate bounded with piezoelectric layers with 2ℎ/� = 1/80 and 2ℎ�/� = 1/2000 are compared with the finite element results of Ref. [15], Levy- type 

solution of Ref. [18] which is based on Mindlin plate theory and Navier solution of Ref. [32] 

in table 4. According to the frequencies listed in this table, it can be seen that the results 

predicted by CPT are slightly lower than the ones related to TSDT with maximum 

discrepancies of 3.07 %. It can also be observed that the results related to this theory are lower 

than that of FSDT [18] because third-order shear deformation theory considers plate to be 

softer. As seen, the comparison is well justified. 

After establishing the correctness of the presented approach, numerical results for natural 

frequency response of porous rectangular plate made of cellular aluminum surrounded by 

layers of PZT-4 are presented for various geometric parameters under different electrical and 

mechanical boundary conditions.  

To apply the proposed method to analyze piezoelectric coupled plates, Tables 5-7 show the 

effect of variation of core thickness and porosity on the lowest three natural frequencies of a 

square plate under Levy-type boundary conditions for both electrical boundary conditions. 

These tables reveals that by increasing the core thickness, natural frequency of various 

vibrational modes increases for all studied electrical and mechanical boundary conditions due 

to increasing in overall stiffness of the plate. Further, increasing the coefficient of plate 

porosity yields the decrease of the natural frequencies. In fact, the decrease in elastic modulus 

affects more prominently than that of mass density; therefore, the variation of mechanical 

properties leads to decrease in natural frequency. From the tables, it can also be found that, by 

imposing more constraints on the plate’s edges causes natural frequencies to increase. In this 

regard, the lowest natural frequency belongs to a plate under SFSF boundary condition and 

the highest one is related to the similar plate under SCSC boundary condition.  

In order to interpret the observed behaviors of natural frequency for both closed and open 

circuit piezoelectric layers, the fundamental natural frequency of a porous square plate 



 

  

 

 

surrounded by piezoelectric layers under various classical boundary conditions, are listed in 

Table 8. Three piezoelectric coupled plates with thickness ratios given by 0.05, 0.1 and 0.2 

are considered when the core thickness-length ratio is equal to 0.15. To present the effect of 

piezoelectric layers stiffness, frequencies listed in the third column are determined by 

disregarding piezo-effect; i.e., by equating the piezoelectric coefficients equal to zero (&45 =0) [29]. According to the data presented in this table, one can see that the piezo-effect in the 

closed circuit condition is negligible. The interesting point is that in case of open circuit 

condition, this effect plays a key role in increasing the natural frequency of piezoelectric 

coupled plates. This fact could be attributed to the different distributions of electric potential 

in thickness direction of the piezoelectric layers in these two cases. According to Eq. (11) and 

Eq. (13), it is clear that in closed circuit condition, the electric potential of the upper and 

lower surfaces of the layers is zero, while its maximum value occurs in the middle plane of 

each piezoelectric layer. On the other hand, in case of open circuit condition, the electric 

potential on adjacent surfaces of the core plate is zero and increases in the thickness direction 

of the piezoelectric layers so that it reaches its maximum value on the outer surface of the 

layers. In case of closed circuit condition, a large amount of electrical energy is released 

through electrodes; i.e., the decrease in effectiveness of piezo-effect causes the piezoelectric 

coupled plate stiffness to increase slightly. On the contrary, the electrical energy of the 

piezoelectric layers cannot be released while the plate is vibrating freely in the open circuit 

condition, which ultimately leads to increase in effective stiffness of the piezoelectric coupled 

plate and its natural frequency as well. 

The first three natural frequencies of a porous plate coupled with piezoelectric layers under 

Levy-type boundary conditions for both closed and open circuit electrical boundary 

conditions are listed in table 9. Due to similar reason which has been stated above, the piezo-

effect is much more significant in case of open circuit compared to closed circuit for all 

vibrational modes.  

The variation of natural frequency due to the changes in aspect ratio for a porous plate 

coupled with piezoelectric layers under various mechanical boundary conditions is shown in 

Fig. 3. This figure indicates that by decreasing the width of the plate, the natural frequency 

increases for all studied boundary conditions except for SFSF boundary condition in which 

the natural frequency decreases slightly when the major surfaces of piezoelectric layers are 

held at zero voltage (closed circuit condition). It is observed that the natural frequencies of a 

plate with open circuit condition undertake similar changes versus aspect ratio. 

So as to study the effect of piezoelectric layer, the natural frequency relative difference 

parameter is defined as follows  

(35) gxE = ��� − ����  

where ��� is natural frequency of a piezoelectric coupled plate and �� denotes natural 

frequency of this plate in absence of piezoelectric layers. The variation of the natural 

frequency relative difference against the thickness ratio for various mechanical boundary 



 

  

 

 

conditions for both closed and open circuit piezoelectric layers is depicted in Fig. 4. Due to 

positive NFD for all electrical and mechanical boundary conditions, it can be concluded that 

the natural frequency increases as piezoelectric layers are added to the core plate. In fact, the 

plate gets stiffer due to the presence of piezoelectric layers. This is because the flexural 

rigidity of piezoelectric layers is more considerable compared to the core plate; therefore, the 

piezoelectric coupled plate gets stiffer. On the other hand, the presence of piezoelectric layers 

increases the mass of the system which causes the natural frequency to decrease. By 

investigating the effect of piezoelectric layers on natural frequency of the system, it could be 

deduced that the effect of flexural rigidity of piezoelectric layers overcomes the effect of their 

mass density.  

The variation of natural frequency relative difference versus  2ℎ�/� for a square piezoelectric 

coupled plate under SSSF and SSSS boundary conditions for different values of core 

thickness-length ratio are shown in Fig. 5. It is observed from the plotes for a particular value 

of &', as core thickness increases, the value of NFD decreases due to adding the piezoelectric 

layers. It is to be noted, the changes in NFD parameter are less dependent on the variation of 

thickness of core plate when it is under SSSF boundary condition than that of a simply 

supported one. 

As a further insight into these eigenfrequencies, the variation of NFD parameter 

corresponding to fundamental vibrational mode versus the thickness ratio for different 

coefficients of plate porosity for both open and closed circuit conditions, is depicted in Fig. 6. 

According to this figure, for both closed and open circuits, the NFD parameter owns higher 

values for higher porosity coefficients, which means that the effect of piezoelectric layers on 

natural frequency is more prominent for core plates with higher coefficient of plate porosity. 

Considering constant mass for a plate, the variation of fundamental natural frequency of a 

porous plate against the coefficient of plate porosity is shown in Fig. 7. Also, the effect of the 

same parameter on natural frequency when two piezoelectric layers are bonded on bottom and 

top surfaces of the plate is demonstrated in Fig. 8. It can be seen the natural frequency 

increases as the value of plate’s thickness and its coefficient of plate porosity increase 

simultaneously (in such a way that the overall mass of the plate remains constant) under all 

studied electrical and mechanical boundary conditions. Therefore, the variation of plate's 

thickness does have greater effect on natural frequency of the plate compared to the 

coefficient of plate porosity. Moreover, the figures indicate that the graph related to a plate 

with integrated piezoelectric layers changes with steeper slope comparing with trends shown 

in Fig. 7. For example, as the coefficient of plate porosity vary from zero to 0.8, the natural 

frequency of a porous plate with constant mass under SFSF boundary condition increases by 

18.8%, while the frequency increases by almost 34% for a piezoelectric coupled plate with 

same conditions for both open and closed circuits. As a further matter, it could be observed 

that the above mentioned point is more considerable for plates with softer mechanical 

boundary conditions. 

 

9. Conclusion 



 

  

 

 

In this study, third-order shear deformation plate theory has been employed to analyze the free 

vibration of porous plates coupled with piezoelectric layers. Using Hamilton’s principle and 

Maxwell equation, the governing equations of motion have been obtained and solved 

analytically by using some auxiliary functions for Levy-type boundary conditions. The natural 

frequencies of the plate have been extracted for various geometric dimensions under different 

mechanical and electrical boundary conditions. The effects of plate porosity, geometric 

dimensions as well as mechanical and electrical boundary conditions on natural frequency 

response of the plate coupled with piezoelectric layers have been studied. According to the 

obtained numerical results, the following concluding points may be reported  

 

• The natural frequency of plates decreases as the coefficient of plate porosity increases 

in all studied mechanical and electrical boundary conditions. 

• In closed circuit condition, the effect of piezoelectric layers on the natural frequency is 

negligible while this effect plays a key role in the natural frequency changes for the 

case of open circuit condition. 

• Adding piezoelectric layers causes the natural frequency to increase for all studied 

electrical and mechanical boundary conditions. 

• The piezo-effect is more prominent for plates with higher porosity, lower thickness 

and softer boundary conditions. 

• The natural frequency of plates increases as both the thickness of porous plate and its 

coefficient of plate porosity increase (in such a way that the overall mass of the plate 

remains constant) for all considered boundary conditions. This effect is more 

significant for plates bounded with piezoelectric layers.  

 

Appendix 

The parameters :45  are defined as 

(A.1  )  

:�� = !��
�1 − 6	 

:�	 = :	� = 6!��
�1 − 6	  

:<< = 12 �:�� − :�	� = !��
�2�1 + 6� 

The reduced constants of piezoelectric materials are defined as 

(A.2) 

(�̅� = (�� − (�
	
(

 					,						(�̅	 = (�	 − (�
	

(

  
&̅
� = &
� − (�
(

 &

 					,						ΞL

 = Ξ

 + &

	

(

  
 

 

b = −aℎ = − &̅
�ℎΞL

 ¨ ����� + ����	 + ©ℎ + ℎ� − ��ℎ + ℎ��
ª P������ + ��	��	Q
− ��ℎ + ℎ��
∇	�« − 4Wℎℎ�  



 

  

 

 

(A.3) 

b` = a`ℎ = &̅
�ℎΞL

 ¨ ����� + ����	 − ©ℎ + ℎ� − ��ℎ + ℎ��
ª P������ + ��	��	Q
+ ��ℎ + ℎ��
∇	�« − 4Wℎℎ�  

Stiffness coefficients 

Ga��, a�	H = o G:��, :�	H	p�
 + 2o G(�̅�, (�̅	H	p�
 + ¬�
qrqs

q
rq

tq  

a<< = o :<<	p�
 + o �(�̅� − (�̅	�	p�

qrqs

q
rq

tq  

Gb��, b�	 , b<<H = o G:��, :�	, :<<H	��
 − ��

�	p�

rq

tq  

Gw��, w�	, w<<H = o G:��, :�	, 2:<<H	��

 	p�

rq

tq  

GE��, E�	 , E<<H = o G:��, :�	, :<<H	�
	p�

rq

tq  

G!��, !�	H = o G:��, :�	H	��
	 − ��
I�	p�

rq

tq + 2o G(�̅�, (�̅	H��
	 − ��
I�	p�
 + ¬	
qrqs

q  

!<< = o :<<	��
	 − ��
I�	p�

rq

tq + o �(�̅� − (�̅	���
	 − ��
I�	p�

qrqs

q  

Gx��, x�	H = o G:��, :�	H	��
I 	p�
 + 2o G(�̅�, (�̅	H	��
I	p�

qrqs

q + ¬

rq

tq  

x<< = 2o :<<	��
I	p�
 + 2o �(�̅� − (�̅	�	��
I	p�

qrqs

q
rq

tq  

aJJ = o :<<�1 − O�
	�	p�
 + 2o (J̅J�1 − O�
	�	p�

qrqs

q
rq

tq  

Gl�� , l�	, l<<H = o G:��, :�	, :<<H	�

	p�

rq

tq  

G{��, {�	H = o G:��, :�	H	��
I − ��
<�	p�

rq

tq + 2o G(�̅�, (�̅	H��
I − ��
<�	p�
 + ¬I
qrqs

q  

{<< = o :<<	��
I − ��
<�	p�

rq

tq + o �(�̅� − (�̅	���
I − ��
<�	p�

qrqs

q  

G|�� , |�	H = o G:��, :�	H	��
<	p�

rq

tq + 2o G(�̅�, (�̅	H	��
<	p�
 + ¬J
qrqs

q  

|<< = 2o :<<	��
< 	p�

rq

tq + 2o �(�̅� − (�̅	�	��
<	p�

qrqs

q  

(A.4) 
BJJ = o :<<��
	 − O�
I�	p�
 + 2o (J̅J��
	 − O�
I�	p�


qrqs
q

rq
tq  

Where, for an open circuit piezoelectric layer, we have 

 ¬� = 2&̅
�	ℎ�ΞL

  



 

  

 

 

¬	 = &̅
�	ℎ��2ℎ + ℎ�� ­ℎ + ℎ� − α�ℎ + ℎ��
¯ΞL

  

¬
 = �&̅
�	ℎ��ℎ + ℎ��
�2ℎ + ℎ��ΞL

  

¬I = &̅
�	 ­2ℎ
ℎ� + 3ℎ	ℎ�	 + 2ℎℎ�
 + 12ℎ�I¯ ­ℎ + ℎ� − α�ℎ + ℎ��
¯ΞL

  

¬J = �&̅
�	�ℎ + ℎ��
 ­2ℎ
ℎ� + 3ℎ	ℎ�	 + 2ℎℎ�
 + 12ℎ�I¯ΞL

  

y̅� = &̅
�&�Jℎ�	 ­ℎ + ℎ� − α�ℎ + ℎ��
¯ΞL

  

y̅
 = −�&̅
�&�Jℎ�	�ℎ + ℎ��	
ΞL

  

y̅I = &̅
�&�J ­ℎ	ℎ�	 + 43ℎℎ�
 + 12ℎ�I¯ ­ℎ + ℎ� − α�ℎ + ℎ��
¯ΞL

  

y̅J = −�&̅
�&�J�ℎ + ℎ��
 ­ℎ	ℎ�	 + 43ℎℎ�
 + 12ℎ�I¯ΞL

  

yz� = −83 &̅
��3ℎ + ℎ�� 

yz
 = 163 &�Jℎ� 
yzI = −8&̅
�ℎ�	 Pℎ
ℎ�	 + ℎ	ℎ�
 + 12ℎℎ�I + 110ℎ�JQ 

(A.5) yzJ = &�Jℎ�	 P125 ℎ�J + 163 ℎ	ℎ�
 + 203 ℎℎ�IQ 

And for a closed circuit piezoelectric layer 

(A.6) 

¬� = 0							,							¬	 = 0						,						¬
 = 0						,							¬I = 0						,					¬J = 0 
y̅� = 0							,							y̅
 = 0						,						y̅I = 0						,							y̅J = 0	 
yz� = −43 &̅
�ℎ� 
yz
 = −43&�Jℎ� 
yzI = −2&̅
�ℎ�5 �10ℎ	 + 10ℎℎ� + 3ℎ�	� 

yzJ = −2&�Jℎ�15 �10ℎ	 + 10ℎℎ� + 3ℎ�	� 
 

 S�� = !�� − �{�� + Oy̅I − y̅� 



 

  

 

 

S�	 = �|��−x�� + Oy̅J − y̅
 S�
 = �yzI + OyzJ − yz� − yz
 S�I = yz
−�yzI − OyzJ S�J = �{�� + y̅� − Oy̅I S�< = y̅
 − �|�� − Oy̅J _JJ = OBJJ − aJJ 
(A.7) _<< = !<< − �{<< 

 

 

y� = −2O�&�J + &̅
�� Pℎ	ℎ� + ℎ�	ℎ + 13 ℎ�
Q + 2ℎ��&�J + &̅
�� 
y	 = −2O�&�J + &̅
�� Pℎ	ℎ� + ℎ�	ℎ + 13ℎ�
Q + 2&�Jℎ� 

(A.8) 
y
 = 16ΞL

ℎ�  

For open circuit condition 

 

y̅	 = &̅
�Ξ��ℎ�	
ΞL

 ��ℎ
 + 3�ℎ	ℎ� + 3�ℎ�	ℎ + �ℎ�
 − ℎ − ℎ�� 

y̅< = �Ξ��&̅
�ℎ�	
ΞL

 �ℎ + ℎ��


 

(A.9) 
yz	 = −16ℎ�Ξ��3  

And for closed circuit condition 

(A.10) y̅	 = 0							,						y̅< = 0							,							yz	 = − 4ℎ�Ξ��3 				 
The coefficients �4�= = 1,2,… ,27�, �̅5�> = 17,18,… ,22�, �8�D = 1,2,… ,11� and ��̅�� =1,2,… ,5� are defined as 

�� = −−_JJ − �l���.	l�a�� + ��hI − �	h<��.	
B}I  

�	 = −−�l��b��a�� + B}JB}I  

�
 = −−�l��w��a�� + B}<B}I  

�I = −−_JJ − �	l���.	h
a�� − �	h<�.	
B}I  



 

  

 

 

�J = −−�l���.	h'a�� + �h
�.	
B}I  

�< = −h<�.	
B}I  

�� = − −b��	a�� + B}� + B}
�	
−b��h'�.	a�� + B}
�J + l��.	 

�� = − b��w��a�� + B}	 + B}
�

−b��h'�.	a�� + B}
�J + l��.	 

�� = −− b��l��.	a�� + _JJ + B}
�� + �l	 − �lI��.	
−b��h'�.	a�� + B}
�J + l��.	  

��' = −
�b��h
�.	a�� + _JJ + B}
�I − �lI�.	

−b��h'�.	a�� + B}
�J + l��.	  

��� = − B}
�<
−b��h'�.	a�� + B}
�J + l��.	 

��	 = − y� + yz	��� + �J���y
  

��
 = − y̅	 + yz	��	 + �J���y
  

��I = − y̅< + yz	��
 + �J���y
  

��J = − y	 + yz	��I + �J��'�y
  

��< = − yz	��< + �J����y
  

��� = − ���� 

��� = − a���� + b�� + h'�.	��a����  

��� = −a����' − w�� + h'�.	��a����  



 

  

 

 

�	' = − a����� + h'�.	��' − �h
�.	
a����  

�	� = − h'�.	�� + l��.	
a����  

�		 = − h'�.	���a����  

�̅�� = − b���� + B}
��Ib���� + B}
��
 

�̅�� = − b���� + B}� + B}
��	 + l��.	��b���� + B}
��
  

�̅�� = −b����' + B}	 + B}
��J + l��.	��b���� + B}
��
  

�̅	' = − b����� + _JJ + B}
��< + l��.	��' − �lI�.	
b���� + B}
��
  

�̅	� = − _JJ + l��.	�� + �l	 − �lI��.	
b���� + B}
��
  

�̅		 = − l��.	���b���� + B}
��
 

�	
 = �̅�� − ������ − �̅�� 

�	I = �̅�� − ������ − �̅�� 

�	J = �̅	' − �	'��� − �̅�� 

�	< = �̅	� − �	���� − �̅�� 

�	� = �̅		 − �		��� − �̅�� 

�� = �� 

�	 = �� − �	<�� + ��  

�
 = �� − �	
 − �	<�� 

�I = ��' − �	I + �	<�� 

�J = ��� − �	J + �	<��' 

�< = −�	� − �	<���  

�� = �	
�	� + ����	< − �	<	 



 

  

 

 

�� = �	I + �	<�	
 − ��� − ����	
�	� + ����	< − �	<	  

�� = �	J + �	<�	I − ��� − ����	I�	� + ����	< − �	<	  

��' = �	� + �	<�	J − �	' − ����	J�	� + ����	< − �	<	  

��� = �	<�	� − ����	� − �		�	� + ����	< − �	<	  

��̅ = a<<�I̅ + b<<  

�	̅ = h'�.	�I̅ + a<<�J̅  

�
̅ = h'�.	�J̅ + l��.	 

�I̅ = b<<	 − a<<_<<b<<�.	�l� − h�� 

(A.11) 
�J̅ = −_JJ + �l� − l	 + �lI��.	

l� − h'  

 

(A.12) A� = −2O&�Jℎ	ℎ� − 2O&�Jℎℎ�	 − 23O&�Jℎ�
 + 2&�Jℎ� 
For open circuit condition 

(A.13) 

¡¢� = − 163 Ξ��ℎ� 

� = Ξ��&̅
�ℎ�	��ℎ
 + 3�ℎ	ℎ� + 3�ℎℎ�	 + �ℎ�
 − ℎ − ℎ��ΞL

  

¡L	 = �Ξ��&̅
�ℎ�	�ℎ + ℎ��
ΞL

  

And for closed circuit condition 

(A.14) ¡¢� = − 43Ξ��ℎ�						,								¡L� = 0								,									¡L	 = 0 
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Figure Captions: 

Figure 1. The geometry and coordinate system for porous-cellular rectangular plate 

surrounded by two piezoelectric layers. 

Figure 2. The variation of elastic modulus through the thickness of plate 

Figure 3. The variation of natural frequency of a coupled porous plate under various 

boundary conditions with closed circuit piezoelectric layers versus aspect ratio 

(2h/a=0.1, e0=0.5, hp/2h=0.1). 

Figure 4. The variation of NFD parameter versus the thickness ratio for a piezoelectric 

coupled porous plate under different boundary conditions (2h/a=0.1, e0=0.3, 

a/b=1): (a) Closed circuit (b) Open circuit 

Figure 5. The variation of NFD parameter versus the thickness ratio of a closed circuit 

piezoelectric coupled porous plate for different thickness-length ratios, 

(e0=0.3, a/b=1): (a) SSSF, (b) SSSS 

Figure 6. The variation of NFD parameter of a square plate under SFSF boundary 

condition versus the thickness ratio for different coefficients of plate porosity 

(2h/a=0.15): (a) Closed circuit (b) Open circuit 

Figure 7. The variation of fundamental natural frequency of a porous square plate versus 

the coefficient of plate porosity for various boundary conditions (a=b=1m, 

hp=0, Mass=Constant=400Kg, h≠Constant). 

Figure 8. The variation of fundamental natural frequency of piezoelectric coupled porous 

plate versus the coefficient of plate porosity for various boundary conditions 

(a=b=1m, hp=0.01m=Constant, Mass=400Kg=Constant, h≠Constant), a) 

Closed circuit and b) Open circuit  

 

  



 

  

 

 

 

Figure 1. The geometry and coordinate system for porous-cellular rectangular plate 
surrounded by two piezoelectric layers 

 

 
  



 

  

 

 

Figure 2. The variation of elastic modulus through the thickness of plate 

 

  



 

  

 

 

 

 

 

Figure 3. The variation of natural frequency of a coupled porous plate under various 

boundary conditions versus aspect ratio with closed circuit piezoelectric layers (2h/a=0.1, 

e0=0.5, hp/2h=0.1). 
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       (a)            

                                                          

 
                            (b) 

Figure 4. The variation of NFD parameter versus the thickness ratio for a piezoelectric 

coupled porous plate under different boundary conditions (2h/a=0.1, e0=0.3, a/b=1): (a) 

Closed circuit (b) Open circuit 
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       (a)    

                                                                  

 
       (b) 

Figure 5. The variation of NFD parameter versus the thickness ratio of a closed circuit 

piezoelectric coupled porous plate for different thickness-length ratios, (e0=0.3, a/b=1):  

(a) SSSF, (b) SSSS 
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                   (b) 

Figure 6. The variation of NFD parameter of a square plate under SFSF boundary condition 

versus the thickness ratio for different coefficients of plate porosity (2h/a=0.15): (a) Closed 

circuit (b) Open circuit 
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Figure 7. The variation of fundamental natural frequency of a porous square plate versus the 

coefficient of plate porosity for various boundary conditions (a=b=1m, hp=0, 

Mass=Constant=400Kg, h≠Constant). 
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      (a) 

 

 
        (b) 

Figure 8. The variation of fundamental natural frequency of piezoelectric coupled porous 

plate versus the coefficient of plate porosity for various boundary conditions (a=b=1m, 

hp=0.01m=Constant, Mass=400Kg=Constant, h≠Constant), a) Closed circuit and b) Open 

circuit 
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Table captions 

 

  

Table 1. The properties of piezoelectric and porous materials 

Table 2. Comparison of the non-dimensional fundamental natural frequency for a simply 

supported homogeneous and isotropic plate 

Table 3. Comparison of the non-dimensional fundamental natural frequency for a 

homogeneous plate under various mechanical boundary conditions 

Table 4. Comparison of the first ten natural frequencies (Hz) for a simply supported 

piezoelectric coupled homogeneous and isotropic plate 

Table 5. The first three natural frequencies (Hz) of SFSF and SSSS piezoelectric coupled 

porous plate (hp/2h=0.05, a/b=1). 

Table 6. The first three natural frequencies (Hz) of SCSC and SSSF piezoelectric coupled 

porous plate (hp/2h=0.05, a/b=1)  

Table 7. The first three natural frequencies (Hz) of SFSC and SSSC piezoelectric coupled 

porous plate (hp/2h=0.05, a/b=1)  

Table 8. Effect of the electrical condition on the fundamental natural frequency of the 

piezoelectric coupled plate under Levy-type boundary conditions for different 

thickness ratios (2h/a=0.15, e0=0.2, a/b=1). 

Table 9. Effect of electrical condition on the first three natural frequencies of the 

piezoelectric coupled plate under Levy-type boundary conditions (2h/a=0.15, 

hp/2h=0.1, e0=0.2, a/b=1). 



 

  

 

 

Table 1. The properties of piezoelectric and porous materials 

Material  

Piezoelectric layers Core Plate 

PZT-4 PZT-8 PZT-6B PIC-151 
Cellular 

Aluminum 

Elastic constants 

(GPa) 

(�� 132 137 168 107.6 

--- 

(�	 71 69.9 84.7 63.1 

(�
 73 71.1 84.2 63.9 

(

 115 123 163 100.4 

(JJ 26 31.3 35.5 19.6 

Piezoelectric coefficients 

(C/m
2
) 

&

 14.1 17.5 7.1 15.14 

--- &
� -4.1 -4.0 -0.9 -9.52 

&�J 10.5 10.4 4.6 11.97 

Dielectric constants 

(nC/Vm) 

±�� 7.124 7.97 3.60 9.837 

--- ±		 6.46 7.97 3.60 9.837 

±

 5.841 5.14 3.42 8.190 

Density 

(Kg/m
3
) 

- 7500 7600 7550 7800 2707 

Young modulus 

(GPa) 
! --- --- --- --- 70 

 



 

  

 

 

Table 2. Comparison of the non-dimensional fundamental natural frequency for a simply 

supported homogeneous and isotropic plate 

 

Exact TSDT 

[34] 
3D Elasticity [33] 

3D Method 

[11] 
2D HDT [9] Present Method 

0.577  0.0577 0.0578  0.0577  0.0577  0.1 
2h/a 

0.4623  0.4658 0.4658  0.4658  0.4622  1/√10 



 

  

 

 

Table 3. Comparison of the non-dimensional fundamental natural frequency for a 

homogeneous plate under various mechanical boundary conditions  

 

 

 

 

 

 

 

 

 

3D Elasticity 

[11] 
TSDT [10] Present 2h/a BC’s 

0.1135 0.1134 0.1134 0.1 
SSSS 

0.4169 0.4154 0.4154 0.2 

0.0562 0.0562 0.0562 0.1 
SFSF 

0.2141 0.2141 0.2140 0.2 

0.1604 0.1589 0.1589 0.1 SCS

C 0.5402 0.5363 0.5364 0.2 

0.0677 0.0678 0.0677 0.1 
SSSF 

0.2550 0.2552 0.2550 0.2 

0.1339 0.1333 0.1333 0.1 
SSSC 

0.4731 0.4706 0.4706 0.2 

0.0731 0.0730 0.0729 0.1 
SFSC 

0.2713 0.2714 0.2712 0.2 



 

  

 

 

Table 4. Comparison of the first ten natural frequencies (Hz) for a simply supported 

piezoelectric coupled homogeneous and isotropic plate 

Mode Sequence 
Method 

10 9 8 7 6 5 4 3 2 1 

1222.68 1222.68 936.10 936.10 720.72 720.72 576.92 360.90 360.90 144.49 Present 

1223.14 1223.14 908.25 908.25 717.80 717.80 564.10 359.00 359.00 144.25 CPT [15] 

-0.04 -0.04 3.07 3.07 0.41 0.41 2.27 0.53 0.53 0.17 Diff. (%) 

1229.88 1229.88 941.64 941.64 725.00 725.00 580.35 363.05 363.05 145.35 FSDT [18] 

-0.58 -0.58 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 Diff. (%) 

1229.96 1229.96 941.69 941.69 725.03 725.03 580.37 363.06 363.06 145.35 Navier [32] 

-0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 Diff. (%) 



 

  

 

 

Table 5. The first three natural frequencies (Hz) of SFSF and SSSS piezoelectric coupled porous plate (hp/2h=0.05, a/b=1). 

2h/a EC’s 

Coefficient of Plate Porosity (e0) 

0 0.25 0.5 

Mode Sequence Mode Sequence Mode Sequence 

1
st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 

  SFSF 

0.05 

Closed 
121.301 

(1,1) 

200.764 

(1,2) 

450.892 

(1,3) 

118.401 

(1,1) 

195.912  

(1,2) 

439.752 

(1,3) 

114.893 

(1,1) 

190.058 

(1,2) 

426.309 

(1,3) 

Open 
124.253 

(1,1) 

202.954 

(1,2) 

460.998 

(1,3) 

121.624 

(1,1) 

198.296  

(1,2) 

450.819 

(1,3) 

118.515 

(1,1) 

192.726 

(1,2) 

438.807 

(1,3) 

0.1 

Closed 
238.329 

(1,1) 

387.514 

(1,2) 

846.216 

(1,3) 

232.453 

(1,1) 

377.667  

(1,2) 

823.529 

(1,3) 

225.363 

(1,1) 

365.829 

(1,2) 

796.287 

(1,3) 

Open 
243.905 

(1,1) 

391.360 

(1,2) 

864.570 

(1,3) 

238.523 

(1,1) 

381.831  

(1,2) 

843.530 

(1,3) 

232.160 

(1,1) 

370.457 

(1,2) 

818.738 

(1,3) 

0.2 

Closed 
448.362 

(1,1) 

699.457 

(1,2) 

1114.689 

(1,3) 

436.250 

(1,1) 

679.434  

(1,2) 

1068.185 

(1,3) 

421.752 

(1,1) 

655.560 

(1,2) 

1019.189 

(1,3) 

Open 
457.879 

(1,1) 

705.147 

(1,2) 

1118.463 

(1,3) 

446.529 

(1,1) 

685.515  

(1,2) 

1072.392 

(1,3) 

433.149 

(1,1) 

662.198 

(1,2) 

1024.017 

(1,3) 

  SSSS 

0.05 

Closed 
247.352 

(1,1) 

608.107 

(1,2) 

957.500 

(2,2) 

241.363 

(1,1) 

592.940  

(1,2) 

932.980 

(2,2) 

234.118 

(1,1) 

574.636 

(1,2) 

903.457 

(2,2) 

Open 
255.830 

(1,1) 

628.557 

(1,2) 

989.132 

(2,2) 

250.651 

(1,1) 

615.295  

(1,2) 

967.492 

(2,2) 

244.611 

(1,1) 

599.825 

(1,2) 

942.248 

(2,2) 

0.1 

Closed 
478.750 

(1,1) 

1129.345 

(1,2) 

1718.002 

(2,2) 

466.490 

(1,1) 

1097.946  

(1,2) 

1667.376 

(2,2) 

451.728 

(1,1) 

1060.441 

(1,2) 

1607.288 

(2,2) 

Open 
494.566 

(1,1) 

1164.453 

(1,2) 

1768.859 

(2,2) 

483.746 

(1,1) 

1136.003 

(1,2) 

1722.233 

(2,2) 

471.124 

(1,1) 

1102.874 

(1,2) 

1668.077 

(2,2) 

0.2 

Closed 
859.001 

(1,1) 

1838.226 

(1,2) 

2626.428 

(2,2) 

833.688 

(1,1) 

1776.570  

(1,2) 

2532.508 

(2,2) 

803.644 

(1,1) 

1704.623 

(1,2) 

2424.035 

(2,2) 

Open 
884.430 

(1,1) 

1885.951 

(1,2) 

2689.413 

(2,2) 

861.117 

(1,1) 

1827.400  

(1,2) 

2599.074 

(2,2) 

834.039 

(1,1) 

1760.047 

(1,2) 

2495.876 

(2,2) 

 

 



 

  

 

 

 

Table 6. The first three natural frequencies (Hz) of SCSC and SSSF piezoelectric coupled porous plate (hp/2h=0.05, a/b=1)  

2h/a EC’s 

Coefficient of Plate Porosity (e0) 

0 0.25 0.5 

Mode Sequence Mode Sequence Mode Sequence 

1
st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 

  SCSC 

0.05 

Closed 
357.007 

(1,1) 

667.786 

(2,1) 

831.096 

(1,2) 

348.087  

(1,1) 

650.829 

(2,1) 

809.319 

(1,2) 

337.336 

(1,1) 

630.413 

(2,1) 

783.202 

(1,2) 

Open 
368.950 

(1,1) 

689.916 

(2,1) 

857.940 

(1,2) 

361.136  

(1,1) 

674.985 

(2,1) 

838.539 

(1,2) 

352.031 

(1,1) 

657.579 

(2,1) 

815.948 

(1,2) 

0.1 

Closed 
664.835 

(1,1) 

1216.125 

(2,1) 

1457.899 

(1,2) 

646.294  

(1,1) 

1181.102 

(2,1) 

1412.935 

(1,2) 

624.228 

(1,1) 

1139.494 

(2,1) 

1360.047 

(1,2) 

Open 
685.155 

(1,1) 

1252.540 

(2,1) 

1498.401 

(1,2) 

668.293  

(1,1) 

1220.448 

(2,1) 

1456.380 

(1,2) 

648.710 

(1,1) 

1183.181 

(2,1) 

1407.832 

(1,2)  

0.2 

Closed 
1091.656 

(1,1) 

1920.632 

(2,1) 

2151.282 

(1,2) 

1055.057 

 (1,1) 

1854.249 

(2,1) 

2071.313 

(1,2) 

1012.538 

(1,1) 

1777.246 

(2,1) 

1979.909 

(1,2) 

Open 
1118.851 

(1,1) 

1967.904 

(2,1) 

2197.960 

(1,2) 

1083.979   

(1,1) 

1904.420 

(2,1) 

2120.373 

(1,2) 

1043.987 

(1,1) 

1831.681 

(2,1) 

2032.407 

(1,2) 

  SSSF 

0.05 

Closed 
146.731 

(1,1) 

344.061 

(1,2) 

509.019 

(2,1) 

143.213  

(1,1) 

335.642 

(1,2) 

496.427 

(2,1) 

138.960 

(1,1) 

325.475 

(1,2) 

481.231 

(2,1) 

Open 
149.816 

(1,1) 
352.917 

(1,2) 
522.549 

(2,1) 
146.579  

(1,1) 
345.340 

(1,2) 
511.175 

(2,1) 
142.740 

(1,1) 
336.426 

(1,2) 
497.777 

(2,1) 

0.1 

Closed 
286.863 

(1,1) 

655.114 

(1,2) 

954.158 

(1,2) 

279.724  

(1,1) 

637.900 

(1,2) 

928.172 

(2,1) 

271.119 

(1,1) 

617.220 

(1,2) 

897.085 

(2,1) 

Open 
292.582 

(1,1) 

671.298 

(1,2) 

977.255 

(2,1) 

285.942  

(1,1) 

655.537 

(1,2) 
953.14 (2,1) 

278.072 

(1,1) 

637.017 

(1,2) 

924.819 

(2,1) 

0.2 

Closed 
532.727 

(1,1) 

1135.377 

(1,2) 

1286.463 

(1,3) 

518.031  

(1,1) 

1100.665 

(1,2) 

1232.829 

(1,3) 

500.480 

(1,1) 

1059.343 

(1,2) 

1176.410 

(1,3) 

Open 
542.094 

(1,1) 

1160.534 

(1,2) 

1289.232 

(1,3) 

528.123  

(1,1) 

1127.751 

(1,2) 

1235. 919 

(1,3) 

511.631 

(1,1) 

1089.239 

(1,2) 

1179.999 

(1,3) 

 



 

  

 

 

 

Table 7. The first three natural frequencies (Hz) of SFSC and SSSC piezoelectric coupled porous plate (hp/2h=0.05, a/b=1)  

2h/a EC’s 

Coefficient of Plate Porosity (e0) 

0 0.25 0.5 

Mode Sequence Mode Sequence Mode Sequence 

1
st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 

  SFSC 

0.05 

Closed 
158.837 

(1,1) 

406.442 

(1,2) 

514.619 

(2,1) 

155.012  

(1,1) 

396.337 

(1,2) 

501.866 

(2,1) 

150.390 

(1,1) 

384.154 

(1,2) 

486.480 

(2,1) 

Open 
161.829 

(1,1) 

417.200 

(1,2) 

527.910 

(2,1) 

158.274  

(1,1) 

408.102 

(1,2) 

516.349 

(2,1) 

154.051 

(1,1) 

397.417 

(1,2) 

502.722 

(2,1) 

0.1 

Closed 
308.659 

(1,1) 

758.935 

(1,2) 

962.623 

(2,1) 

300.874  

(1,1) 

738.138 

(1,2) 

936.311 

(2,1) 

291.510 

(1,1) 

713.286 

(1,2) 

904.852 

(2,1) 

Open 
314.121 

(1,1) 

777.658 

(1,2) 

985.234 

(2,1) 

306.805  

(1,1) 

758.458 

(1,2) 

960.750 

(2,1) 

298.129 

(1,1) 

735.972 

(1,2) 

931.977 

(2,1) 

0.2 

Closed 
564.881 

(1,1) 

1258.425 

(1,2) 

1596.724 

(2,1) 

548.911  

(1,1) 

1217.483 

(1,2) 

1544.622 

(2,1) 

529.908 

(1,1) 

1169.252 

(1,2) 

1483.589 

(2,1) 

Open 
573.603 

(1,1) 

1284.792 

(1,2) 

1627.628 

(2,1) 

558. 285  

(1,1) 

1245.656 

(1,2) 

1577.483 

(2,1) 

540.231 

(1,1) 

1200.077 

(1,2) 

1519.276 

(2,1) 

  SSSC 

0.05 

Closed 
294.344 

(1,1) 
634.172 

(2,1) 
713.547 

(1,2) 
287.122  

(1,1) 
618.238 

(2,1) 
695.329 

(1,2) 
278.399 

(1,1) 
599.028 

(2,1) 
673.407 

(1,2) 

Open 
304.332 

(1,1) 

655.372 

(2,1) 

737.100 

(1,2) 

298.052  

(1,1) 

641.400 

(2,1) 

721.025 

(1,2) 

290.731 

(1,1) 

625.105 

(2,1) 

702.288 

(1,2) 

0.1 

Closed 
560.379 

(1,1) 

1168.193 

(2,1) 

1289.312 

(1,2) 

545.473  

(1,1) 

1135.222 

(2,1) 

1251.536 

(1,2) 

527.617 

(1,1) 

1095.928 

(2,1) 

1206.759 

(1,2) 

Open 
578.293 

(1,1) 

1203.946 

(2,1) 

1327.299 

(1,2) 

564.953  

(1,1) 

1173.925 

(2,1) 

1292.504 

(1,2) 

549.419 

(1,1) 

1139.005 

(2,1) 

1252.139 

(1,2) 

0.2 

Closed 
965.731 

(1,1) 

1876.557 

(2,1) 

1996.510 

(1,2) 

935.425  

(1,1) 

1812.751 

(2,1) 

1925.731 

(1,2) 

899.821 

(1,1) 

1738.495 

(2,1) 

1844.019 

(1,2) 

Open 
992.201 

(1,1) 

1924.141 

(2,1) 

2043.868 

(1,2) 

963.793  

(1,1) 

1863.349 

(2,1) 

1975.833 

(1,2) 

930.992 

(1,1) 

1793.542 

(2,1) 

1898.138 

(1,2) 
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Table 8. Effect of the electrical condition on the fundamental natural frequency of the 

piezoelectric coupled plate under Levy-type boundary conditions for different thickness 

ratios (2h/a=0.15, e0=0.2, a/b=1). 

considering piezo-effect disregarding  

piezo-effect 
hp/2h BC’s 

Diff. (%) Open Diff. (%) Closed 

2.42798 349.220 0.00002 340.942 340.934 0.05 

SFSF 3.71495 367.041 0.01356 353.942 353.894 0.1 

4.84206 399.811 0.06766 381.604 381.346 0.2 

3.42071 691.867 0.00329 669.005 668.983 0.05 

SSSS 5.28962 724.321 0.02079 688.075 687.932 0.1 

6.90913 778.910 0.10706 729.352 728.572 0.2 

2.97958 911.326 0.00508 885.003 884.958 0.05 

SCSC 4.41202 936.036 0.03157 896.766 896.483 0.1 

5.33450 972.901 0.16749 925.177 923.630 0.2 

2.03928 416.007 0.00196 407.701 407.693 0.05 

SSSF 3.09326 435.301 0.01208 422.291 422.240 0.1 

3.96937 471.001 0.05982 453.290 453.019 0.2 

1.79538 443.100 0.00207 435.294 435.285 0.05 

SFSC 2.70086 461.854 0.01245 449.764 449.708 0.1 

3.41576 496.618 0.06289 480.517 480.215 0.2 

3.22114 790.933 0.00404 766.282 766.251 0.05 

SSSC 4.88762 820.775 0.02530 782.726 782.528 0.1 

6.16958 868.619 0.13335 819.234 818.143 0.2 
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Table 9. Effect of electrical condition on the first three natural frequencies of the 

piezoelectric coupled plate under Levy-type boundary conditions (2h/a=0.15, hp/2h=0.1, 

e0=0.2, a/b=1). 

considering piezo-effect disregarding  

piezo-effect 

Mode 

Sequence 
BC’s 

Diff. (%) Open Diff. (%) Closed 

3.71495 367.041 0.01356 353.942 353.894 1
st
 (1,1) 

SFSF 1.43666 567.318 0.00679 559.321 559.283 2
nd

 (1,2) 

0.66533 1033.085 0.00000 1026.257 1026.257 3
rd

 (1,3) 

5.28962 724.321 0.02079 688.075 687.932 1
st
 (1,1) 

SSSS 4.60890 1582.809 0.02617 1513.469 1513.073 2
nd

 (1,2) 

4.19384 2288.325 0.03064 2196.892 2196.219 3
rd

 (2,2) 

4.41209 936.036 0.03157 896.766 896.483 1
st
 (1,1) 

SCSC 4.31572 1660.750 0.03122 1592.539 1592.042 2nd (2,1) 

3.70210 1881.380 0.04509 1815.034 1814.216 3rd (1,2) 

3.09326 435.301 0.01208 422.291 422.240 1st (1,1) 

SSSF 3.93611 954.491 0.01720 918.502 918.344 2nd (1,2) 

0.42102 1189.491 0.00000 1184.504 1184.504 3rd (1,3) 

2.70086 461.854 0.01245 449.764 449.708 1st (1,1) 

SFSC 3.70485 1068.722 0.02339 1030.783 1030.542 2nd (1,2) 

3.38088 1351.948 0.01996 1307.996 1307.735 3
rd

 (2,1) 

4.88762 820.775 0.02530 782.726 782.528 1
st
 (1,1) 

SSSC 4.47815 1618.866 0.02794 1549.911 1549.478 2
nd

 (2,1) 

4.13998 1733.059 0.03527 1664.750 1664.163 3
rd

 (1,2) 

 

 

 


