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Abstract—This paper discusses the impedance and front-to-
back ratio performance of asymmetric dipoles. These parame-
ters are very important when the antennas are placed over a
conductive ground plane and should operate over multi-octave
frequency bands. The operation of these antennas is usually
described relying on analogies with more classical structures such
as symmetric dipoles and tapered slot antennas. To provide a
solid theoretical background to this intuition, this work presents
the application of characteristic mode analysis to multi-octave
dipole antennas. Firstly, a brief review of the main characteristic
mode content is presented. Then, characteristic mode analysis
is applied to three antenna concepts to emphasize how their
geometry impacts on the relevant figures of merit. This allows
to draw some conclusions on the achievable performance by
different designs.

Index Terms—antenna design, asymmetric dipoles, character-
istic mode analysis.

I. INTRODUCTION

Several applications require the design of compact broad-
band antennas that can be placed over a ground plane. For
instance, the guidelines of the Square Kilometer Array (SKA)
[1] require a 7:1 bandwidth with minimum ripple on the
overall antenna directivity, the presence of a ground plane
is required in order to decouple the array elements from
the soil ground. To this end, omnidirectional dipoles over a
ground plane cannot be adopted owing the cancellation that
occurs when the distance between the antenna and the ground
approaches λ/2. On the contrary, a high front-to-back ratio is
required to make the antenna insensitive to the ground across
the whole frequency band. Driven by the manufacturing sim-
plicity and cost-effectiveness of asymmetrical dipole antennas
(see Fig. 1), this work investigates their front-to-back ratio
performance.

In the literature, the operation of multi-octave asymmetrical
dipoles is commonly described by invoking analogies with
more classical configurations. At low frequencies the antenna
asymmetry is not very significant, it basically operates as a
small dipole with a quasi-omnidirectional pattern (see Fig. 2).
On the contrary, at high-frequencies the currents are more
concentrated on the inner edges (tapered-slot, Vivaldi antenna
[2], [3]) and a higher directivity behavior is achieved. The full
band operation is supposed to result from the combination of
these two mechanisms [4], [5]. However, this intuition lacks a
solid theoretical background capable of interpreting rigorously

the antenna operation and then give some room for design
optimization.

In this view, an interesting antenna simulation framework
is provided by characteristic mode analysis (CMA). Presented
in the early ’70s in the pioneering papers of Garbacz and
Harrington [6], [7], CMA is experiencing a renewed interest,
being an enabling methodology to approach electromagnetic
modeling from a physical- rather than merely numerical-
oriented standpoint [8], [9]. Being implemented in commercial
electromagnetic integral equation solvers (e.g. Altair FEKO
or CST Microwave Studio), this technique has been recently
employed in many applications, such as bandwidth enhance-
ment for MIMO antenna systems [10], [11], design of pattern-
reconfigurable null-scanning radiators [12], or placement op-
timization in aircrafts [13].

This communication is aimed at presenting the application
of CMA to multi-octave dipoles. Firstly, the main CMA
concepts and notations are reviewed in Section II. Then, in
Section III the technique is applied to the analysis of the
three antenna concepts sketched in Fig. 1. A discussion of the
simulation results allows to establish a solid interpretation of
the antenna operation in terms of interference between several
characteristic modes, leading to the design considerations and
to the conclusions reported in Section IV. All the simulations
presented in this paper have been performed with the method
of moments (MoM) simulator FEKO from Altair HyperWorks
v2017.1.

II. REVIEW OF CHARACTERISTIC MODE ANALYSIS

The characteristic mode analysis (CMA) is based on a post-
processing of the impedance matrix Z obtained from the
application of the method of moments to the electric field
integral equation for perfect electric conductor scatterers. By
defining the resistance and reactance operators R and X from
Z , the following generalized eigenproblem is obtained:

XJn = λnRJn. (1)

Being the operators in (1) real and symmetric, both the
eigencurrents {Jn} and the corresponding eigenvalues {λn}
representing the “characteristic modes” of the antenna under
simulation are real. By exploiting the orthogonality relation-
ships of the eigencurrents reported in [6, eq. (14)], it is possible
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Fig. 1. Sketches of three antenna concepts: a cylindrical dipole (a), a circular
dipole (b), an asymmetrical dipole (Vivaldi) (c).

to compute the power flux radiated by the overlap of two
eigencurrents,

Ps = 〈J∗
m,Z Jn〉 = (1 + jλn)δmn, (2)

which states that the eigenvalue λn can be interpreted as a
measure of the reactive contribution to the power radiated by
the n-th eigencurrent.

In order to apply CMA to real antenna problems, it is
necessary to expand the current density J describing the
scattering of the source electric field E(inc) by the antenna
surface as a linear combination of the eigencurrents from (1),
leading to

J =
∑
n

αn Jn, (3)

where the n-th modal weighting coefficient of J in the
eigencurrent basis {Jn} is

αn =
1

1 + jλn
V (inc)
n . (4)

Two contributions can be identified. The modal excitation
coefficient V (inc)

n measures the power coupled by E(inc) to
the n-th eigencurrent, and it is defined as the projection
V

(inc)
n =

〈
Jn,E

(inc)
〉
. The remaining term (1 + jλn)

−1,
which depends exclusively on the geometry of the scatterer
(and then is independent of the source field), quantifies the
capability to couple power to the n-th mode. From its magni-
tude, which is commonly referred to as modal significance, it
is apparent that the maximum coupling occurs at the resonance
condition λn = 0.

III. CMA ANALYSIS OF BROADBAND DIPOLE ANTENNAS

The first part of this section presents some considerations
on the reflection coefficient of dipole antennas, with reference
to the three antenna concepts sketched in Fig. 1. Figure 4
reports the reflection coefficients for these three antennas (top),
and, below, the most significant modal weighting coefficients

αn are reported. Focusing on the cylindrical dipole having
aspect ratio Lant/r = 120, being r the dipole radius, the
reflection dips occur for Lant ' 0.4λ and Lant ' 1.4λ,
which are related to the first and third resonances of a half-
wavelength dipole. No contribution from the second resonance
can be observed. Indeed, even if the corresponding modal
significance |1 + jλ2|−1 from (4) is high, the corresponding
excitation coefficient V (inc)

2 is zero. This is a consequence
of the presence of a zero of the eigencurrent in the antenna
center, making it impossible to be excited by a centered feed.
To summarize, since the reflection dips correspond exactly to
the weighting coefficient peaks, it is possible to identify the
dipole resonances with the first and third characteristic modes
of the structure.

By extending this analysis to the other two antennas, it is
possible to observe similar low-frequency trends: the reflec-
tion coefficient is quite high correspondingly to low modal
weighting, until the first resonance is achieved. The different
positions of the first peak (see Fig. 4, middle row) can be
ascribed to the different transverse dimensions of the dipoles
(the Vivaldi antenna has the largest surface area).

At high frequencies, a major difference between cylindrical
and broadband dipoles can be immediately noticed. In the
former, the weighting coefficient of the fundamental mode
reduces in favor of the higher-order one. On the contrary, in the
broadband antennas the fundamental mode is dominant across
almost the entire frequency band, but several high-order modes
contribute to the overall operation. Nevertheless, the minima
of the reflection coefficients still correspond to the peaks of
the modal weighting coefficients.

Figure 4 (bottom right) reports the front-to-back ratio (FBR)
only for the Vivaldi antenna (as the other ones are identically
equal to 0 dB). In the low-frequency region the FBR is approx-
imately 0 dB. As a matter of fact, Fig. 2 shows an example
of Vivaldi radiation pattern obtained for Lant = 0.2λ. This
plot strengthens the common interpretation of low-frequency
behavior as “dipole-like”. At higher frequencies, it can be
observed that FBR reaches high levels (> 15 dB) in several
subbands. However, 10 dB level are present elsewhere. This
limits the operation frequency range in presence of ground
plane.

In order to provide more details about the Vivaldi directivity
behavior, Fig. 3 (left) shows the radiation pattern of the Vivaldi
antenna at Lant = λ where, according to Fig. 4, the FBR is
maximum. The corresponding eigenpattern magnitudes (a)-(c)
are reported on the right. At first sight the eigenpatterns could
seem unreasonable, since they appear perfectly symmetric
even for such an asymmetric geometry. This symmetry is a
consequence of the fact that eigencurrents Jn are real-valued
functions and the radiated eigenpatterns are computed by their
Fourier transforms. A real function in the starting domain
is then transformed in a function with even magnitude and
odd phase in the angular (dual) domain. This is shown in
Fig. 5 (right), which reports the magnitudes and phases (top,
center) of the three most significant eigenpatterns, exhibiting
the aforementioned symmetries. The three-mode pattern re-



Fig. 2. Radiation pattern of the Vivaldi antenna sketched in Fig. 1(c) for
Lant = 0.2λ.
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Fig. 3. Radiation patterns of the Vivaldi antenna sketched in Fig. 1(c) for
Lant = λ. Left: radiation pattern under excitation. Right: eigenpatterns for
the three fundamental characteristic modes, where the colors of the labels (a)-
(c) correspond to the modal weighting coefficients reported in Fig. IV (right).

construction (dashed red curve) exhibits the expected directive
behavior. This is not the case of the two-mode representation
(dashed brown curve), which is sensitively different from the
reference MoM solution.

It could be seen that also the other FBR peaks result from
this peculiar three-mode interference. As an example, Fig. 4
shows similar results for the first FBR peak at Lant = 0.45λ.

IV. DESIGN CONSIDERATIONS AND CONCLUSIONS

The characteristic mode analysis allows to clarify several
aspects of the working principle of broadband dipoles, which
are now summarized in view of proposing some design con-
siderations.

In the first place, the intuition of Vivaldi to behave as sym-
metrical dipoles at low frequencies has been better interpreted.
This definitely states that high FBR cannot be achieved for
electrically small antennas, where only one mode is significant
(eigenpatterns have symmetrical magnitude).

At higher frequencies, it has been shown that the directive
behavior results from the interference of several characteristic
modes. In the antennas discussed in this work a unique feed
is present. This generally excites more than one mode and
hence the surface current results from the linear combination
of the frequency-dependent eigencurrents by complex-valued

coefficients (4). This is quite different from most CMA appli-
cations, which exploit the orthogonality of the eigencurrents
to optimize the antenna feed to obtain peculiar designs [10],
[11], [13].

The interference of characteristic modes produces a signif-
icant frequency variation of the FBR. As a matter of fact,
their cancellation in the backlobe direction, only occurs at
certain frequencies where a proper phase condition is satisfied.
Therefore, for antennas supporting only a few modes, it is not
possible to achieve a high and stable FBR across a broadband.
This consideration is almost independent of the asymmetrical
dipole geometry. This behavior has been also verified on
asymmetrical dipoles with exponential and piecewise profiles.
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Fig. 4. The top plots report the antenna reflection coefficients for the cylindrical dipole (left, 75 Ω impedance), circular dipole (center, 50 Ω impedance) and
Vivaldi antenna (right, 50 Ω impedance). Below are reported the absolute values of the corresponding modal weighting coefficients αn related to the most
significant characteristic modes. The front-to-back ratio (FBR) is reported only for the Vivaldi antenna.
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Fig. 5. The top and central plots show the magnitude and phase of the Vivaldi eigenpatterns. The colors are consistent to ones in Fig. IV (right). The bottom
plot shows the radiation pattern obtained with the standard MoM solution (solid blue curve) and with the characteristic mode analysis rebuilt with all (dashed
green curve), three (dashed red curve) and two (dashed brown curve) characteristic modes. Left and right figures are obtained with Lant = 0.45λ and
Lant = λ, respectively


