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 12 

Abstract 13 

The resilience of a system is generally defined in terms of its ability to withstand external perturbation(s), 14 

adapt, and rapidly recover.  This paper introduces a probabilistic formulation to predict the recovery 15 

process of a system given past recovery data, and estimate the probability of reaching or exceeding a 16 

target value of functionality at any time.  A Bayesian inference is used to capture the changes over time 17 

of model parameters as recovery data become available during the work progress.  The proposed 18 

formulation is general and can be applied to continuous recovery processes such as those of economic or 19 

natural systems, as well as to discrete recovery processes typical of engineering systems.  As an 20 

illustration of the proposed formulation, two examples are provided.  The paper models the recovery of 21 

a reinforced concrete bridge following seismic damage, as well as the population relocation after the 22 

occurrence of a seismic event when no data on the duration of the recovery are available a priori.  23 

 24 
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Introduction 27 

Civil infrastructure enables the conveyance of goods, services, and resources to communities (Corotis 28 

2009; Ellingwood et al. 2016; Gardoni et al. 2016).  Past disasters continue to show the vulnerability of 29 

civil infrastructure to natural and anthropogenic hazards and highlight the significance of risk mitigation 30 

and management (Murphy and Gardoni 2006; Gardoni et al. 2016).  Buildings, bridges, and other 31 

structures and infrastructure may experience extreme natural events, such as floods, earthquakes, 32 

hurricanes, and anthropogenic hazards, such as accidents and terrorist attacks, which may lead to 33 

significant damage making infrastructure networks inoperative (Gardoni and LaFave 2016).  Past 34 

disasters stressed the importance of being prepared and to be able to recover in a short period (e.g., 35 

Bruneau et al. 2003; McAllister 2013; Caverzan and Solomos 2014).   36 

The concept of resilience has gained relevance in the last fifteen years as a desirable feature for 37 

communities (Bruneau et al. 2003; McAllister 2013; Caverzan and Solomos 2014; Ellingwood et al. 38 

2016; Guidotti et al. 2016, 2017; Sharma et al. 2018; Gardoni 2018).  The relatively recent interest in 39 

resilience has resulted in several definitions of the concept of resilience and several approaches to 40 

measuring resilience across several application domains.  In general, resilience is defined as the ability 41 

of systems to recover after a disturbance to the pre-disturbance state or a new (improved) state (e.g., 42 

Bruneau et al. 2003; Cimellaro et al. 2010a; Bocchini et al. 2012).  The U.S. Presidential Policy Directive 43 

21 (PPD 21) defines resilience as the ability to prepare for and adapt to changing conditions and 44 

withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and recover 45 

from deliberate attacks, accidents, or naturally occurring threats or incidents.  A review of the current 46 

state of the research in community resilience can be found in Koliou et al. (2018).  Going beyond the 47 

engineering domain, Doorn et al. (2018) explored how philosophical and social science considerations 48 

can be incorporated into a multidisciplinary definition of resilience to account for social justice.  The 49 
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choice of a defined recovery curve plays a key role in resilience analysis in terms of quantifying the 50 

resilience of a system.  A recovery curve describes the behavior of a system as a function of time 51 

following the impact of a hazard as the system recovers to achieve a desired state (of functionality or of 52 

reliability.)  In absence of disrupting shocks during the recovery phase, the recovery curve is, in general, 53 

a non-decreasing and time-dependent function.  Different studies have attempted to model and define the 54 

recovery curve of engineering systems subject to a hazard (e.g., Cimellaro et al. 2010b; Decò et al. 2013; 55 

Titi et al. 2015).  Recovery curves are usually assumed based on qualitative attributes, such as the 56 

preparedness of the society, that influence the recovery process.  As such, they i) are not based on the 57 

actual physics of the recovery process, ii) do not account for the underlying uncertainties, and iii) are not 58 

able to incorporate additional information as it becomes available (such as ongoing progress of the work 59 

or increased resource availability, which affect the recovery models and reduce the uncertainty involved.)  60 

As a result, models of recovery typically only provide crude approximations and not accounting for the 61 

underplaying uncertainties makes it not possible to estimate the probability of reaching or exceeding a 62 

target percentile of interest of the ultimate desired state (e.g., a target value of functionality or reliability).  63 

To overcome these limitations, Sharma et al. (2018) proposed a mathematical formulation for resilience 64 

analysis that models the recovery curves based on the actual work plan of activities involved in the 65 

recovery process. 66 

Once a recovery curve is defined, there is a need to define a metric or a set of metrics of recovery 67 

that distinctively characterize the recovery curve.  A typical resilience metric has been defined as the 68 

integral of the recovery curve over a specified interval of time (Bruneau and Reihnorn 2007; Cimellaro 69 

et al. 2010a; Bonstrom and Corotis 2016). However, such metrics do not uniquely and fully characterize 70 

a recovery curve.  Sharma et al. (2018) defined a set of resilience metrics in analogy with the moments 71 

of a random variable to quantify the resilience of a system.  The Sharma et al.’s metrics i) are intuitive 72 
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because of their analogy with the moments of a random variable, and ii) define a complete set of partial 73 

descriptors that uniquely and fully characterize a recovery curve.   74 

This paper contributes to the literature in resilience analysis.  In particular, this paper proposes a 75 

probabilistic formulation to predict a recovery process of a system, and then estimate the probability of 76 

reaching or exceeding a target value of functionality (or reliability) of the system at any given time as 77 

the system recovers.  The proposed formulation uses Sharma et al.’s resilience metrics obtained from 78 

historical recovery data to predict possible recovery processes along with their likelihood, as well as to 79 

estimate the probability of reaching or exceeding a desired level of recovery by a desired time.  The 80 

proposed formulation can be applied to systems in different fields, i.e., economical, natural, and 81 

engineering systems.  The proposed formulation first defines the joint probability density function (PDF) 82 

of resilience metrics that captures the underlying uncertainties.  Then, parametrized recovery curves are 83 

introduced to model the time-varying recovery process, and the joint PDF of model parameters is 84 

obtained as a function of the joint PDF of the resilience metrics.  The joint PDF of the model parameters 85 

defines the variability in the possible recovery curves, which is used to estimate the probability of 86 

reaching or exceeding a target value of functionality by conducting a reliability analysis (Ditlevsen and 87 

Madsen 1996; Gardoni 2017).  A Bayesian inference is also proposed to include possible information 88 

from the field while the work for the recovery is in progress.  We use field data to update the predicted 89 

recovery curve such that the recovery curve is updated to reflect the advancement of the actual recovery 90 

in the field.  Thanks to the Bayesian updating, the uncertainties in the recovery process diminish while 91 

more data become available.  The main benefits of the proposed formulation are that the estimates of the 92 

recovery curve can be simply defined as a function of resilience metrics and the modeling can take 93 

advantage of data collected both before and during the recovery process. We illustrate the proposed 94 

formulation considering the recovery of a typical reinforced concrete (RC) bridge following a seismic 95 
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damage, and the population relocation after the occurrence of a seismic event when no data on the 96 

duration of the recovery are available a priori. 97 

Following this introduction, Section 2 gives a brief review of mathematical formulations for 98 

resilience analysis.  Section 3 presents the proposed probabilistic formulation.  Section 4 illustrates the 99 

proposed formulation considering the recovery of an example bridge following a seismic damage.  100 

Finally, Section 5 uses the propose approach considering the population relocation after a seismic event.  101 

Review of Mathematical Formulations for Resilience Analysis 102 

The resilience analysis of engineering systems plays a key role in mitigation planning and allocation of 103 

resources in pre- and post-disruption scenarios (Ellingwood et al. 2016).  Resilience of a system is, in 104 

general, defined as its ability to maintain or promptly resume a level of functionality or performance after 105 

a disruption.  What is promptly enough is usually defined based on the owner’s, customers’ or, more 106 

generally, societal needs.  A performance measure (e.g., the system functionality), typically indicated as 107 

( )Q t , can be used to describe the system state as a function of time t  (Cimellaro et al. 2010a; Bocchini 108 

et al. 2012; Bonstrom and Corotis 2016; Sharma et al. 2018).  An external shock, such as a natural or 109 

anthropogenic event (a shock), might reduce ( )Q t  instantaneously. Such reduction is typically a function 110 

of the intensity of the shock, the system design specifications (which define the system robustness at 111 

0t  , e.g., Bai et al. 2009), and the system state immediately before the shock (which reflect the 112 

deterioration of a system over time and also define the system robustness at time t , e.g., Kumar and 113 

Gardoni 2014; Kumar et al. 2015; Jia and Gardoni 2018a,b).  After a shock, the recovery process starts 114 

to retrieve the system functionality to a desired level, which may be below, same or better than the pre-115 

disruption value (Ayyub 2014, 2015). 116 
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Resilience, independently from the field of application, consists of four properties (Bruneau et al. 117 

2003; Tierney and Bruneau 2007): 1) robustness as the ability to withstand a given level of stress or 118 

demand without suffering degradation or loss of function or, if a degradation occurs, the residual level 119 

of ( )Q t ; 2) resourcefulness, interrelated to the ability to diagnose and prioritize issues and to initiate 120 

solutions by identifying and monitoring all resources; 3) redundancy, defined as the extent to which the 121 

system and other elements satisfy and sustain functional requirements in the event of disturbance; and 4) 122 

rapidity as the ability to recover in a timely manner to limit losses and avoid future disruptions.  These 123 

four properties define the resilience of a system and characterize the recovery process.   124 

Recovery curves capture the changes in system functionality over time and defined how the system 125 

state improves to achieve a desired value of functionality at the end of the recovery process.  Different 126 

studies have attempted to quantify the resilience of a system based on the shape of the recovery curves.  127 

As a first attempt to quantify the resilience of a system, Bruneau et al. (2003) proposed to measure the 128 

resilience as the area underneath the recovery curve.  Chang and Shinozuka (2004) assessed the resilience 129 

as the probability that the time needed for the recovery due to a performance loss after a disruption would 130 

be less than a predefined threshold.  Garbin (2007) outlined an approach to quantitatively measure the 131 

resilience of a network as the percentage of links damaged and the percentage of nodes damaged versus 132 

a network performance measure.  Bruneau and Reinhorn (2007) proposed metrics for measuring 133 

resiliency based on the expected degradation in the quality of an infrastructure by quantifying robustness, 134 

redundancy, resourcefulness, and rapidity to recovery.  While these contributions show the importance 135 

of quantifying resilience in an objective and formal way, the metrics they define only provide partial 136 

information about the actual resilience and might not be able to distinguish among different resilience 137 

levels (as noted in Sharma et al. 2018).  Uniquely and fully characterizing the resilience of the system 138 
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requires capturing all of the relevant characteristics of the recovery curve.  Consequently, a single metric 139 

cannot represent a curve and capture all of its attributes.   140 

Sharma et al. (2018) showed that the existing metrics are not able to uniquely and fully characterize 141 

recovery curves with different shapes and might not be able to capture the difference in the resilience 142 

levels.  To address this issue, they developed a complete set of resilience metrics able to fully describe 143 

the recovery process and capture the differences in the shapes of different recovery curves.  Sharma et 144 

al.’s resilience metrics are analogous to the partial descriptors commonly adopted in probability and 145 

statistics (e.g., mean, standard deviation and higher moments of a random variable.)  The recovery curve 146 

( )Q t , which Sharma et al. (2018) call the cumulative resilience function (CRF) in analogy with the 147 

cumulative distribution function (CDF) of a random variable, represents the overall recovery process as 148 

a function of time.  If the CRF is a continuous and differentiable function of the time, it is possible to 149 

describe the instantaneous rate of recovery as the resilience density function (RDF) q defined as the time 150 

derivative of the CRF (in analogy with the definition of the probability density function (PDF) of a 151 

random variable). If the CRF is not continuous and differentiable, it is possible to define a resilience 152 

mass function (RMF) that describes the instantaneous change of the recovery occurring as a step-wise 153 

function (in analogy with the probability mass function (PMF) of a random variable).   154 

Based on these definitions, Sharma et al. (2018) introduced a set of resilience metrics to capture the 155 

specific characteristics of the recovery process in analogy to the moments of random variables.  In 156 

analogy to the mean and standard deviation of a random variables, Sharma et al. (2018) defined the center 157 

of resilience   and the resilience bandwidth,   as two fundamental partial descriptions.  The definition 158 

of these metrics is general and can be systematically extended to higher order metrics to fully characterize any 159 

( )Q t .  The metric   defines where the recovery curve is centered with respect to the time of the initial 160 
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shock. In addition, Sharma et al. (2018) also introduced the resilience quantile,  , which is the time instant 161 

corresponding to the th  (0 ≤   ≤1) quantile of the CRF.  Mathematically, the recovery quantile can be 162 

written as : min{ [0, ]: [Q(t) / Q( )]}R Rt T T    , where RT  is the recovery time (i.e., the time needed 163 

to reach a desired final level of ( )Q t .)  The metric   gives the breath of the recovery process, small 164 

values represent a situation in which a significant percentage of the recovery process is completed over 165 

a short period concentrated around  .  By contrast, a large value of   captures a recovery process 166 

spread over a prolonged period of time.  To further characterize the recovery curve, Sharma et al. (2018) 167 

also introduced the skewness of the recovery,  .  If 0   the recovery progress is symmetric about   168 

(i.e., the recovery process has the same pace before and after  .) If 0  , the process is slower during 169 

the initial phases (i.e., in the interval [0, ] ) and then it becomes faster over the next period ( , ]RT , 170 

which is the most typical case for recovery processes that include a lengthy planning phase in the post-171 

disruption period.  If planning is done ahead of the disruptive event as a  pre-disruption planning and 172 

preparation, then 0  .  In this case, the recovery progress picks up quickly and the relative most time-173 

consuming portion is the completing of the repairs/reconstruction (i.e., faster in the interval [0, ] , and 174 

slower in the interval, ( , ]RT ).  Finally, to uniquely and fully characterize the recovery curve, Sharma 175 

et al. (2018) also introduced higher order partial descriptors (in analogy with higher order moments or a 176 

random variable). However, in most cases,   and   are sufficient to characterize a recovery process.  177 

Based on Sharma et al. (2018), we can write the center of resilience as  178 
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Likewise, we can write the resilience bandwidth as  179 
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Finally, as a generalization, the thn  recovery moment can be written as 180 
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 181 

Proposed Probabilistic Formulation 182 

This section explains the proposed probabilistic formulation to develop recovery curves accounting for 183 

the relevant uncertainties and estimate the probability of reaching or exceeding a target level of 184 

functionality at any time. 185 

Work progress for civil structures and infrastructure typically advances continuously, or near-186 

continuously, over time (Klinger and Susong 2006; Gardoni et al. 2007), whereas, the system state 187 

changes only at completion of a group of activities (Sharma et al. 2018).  As a result, the functionality of 188 

a system typically changes in a step-wise fashion with discrete increments at the completion of each 189 

group of activities.  Besides civil structures and infrastructure, or more generally, engineering systems, 190 
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the recovery might be a continuous function of time when we deal with the restoration of natural systems, 191 

such as the recovery and resilience of tropical forests (Cole et al. 2014;. van Leeuwen 2008), or the 192 

Gross Domestic Product (GDP) as a monetary measure of the market value of all final goods and 193 

services produced in a period to quantify the economic performance of a whole country or region.  194 

The proposed methodology is general and allows to estimate processes described either by discrete or 195 

continuous recovery curves.  The proposed formulation has the following four steps: Step 1: Obtaining 196 

the joint PDF of the Sharma et al.’s resilience metrics, Step 2: Obtaining the joint PDF of the model 197 

parameters of the recovery curve, Step 3: Obtaining point and predictive estimates of the recovery curve 198 

and confidence bounds, Step 4: Estimating the probability of reaching or exceeding a target percentile of 199 

interest of the ultimate desired state, and Step 5: Updating the model parameters as new data become 200 

available. 201 

Obtaining the joint PDF of the resilience metrics  202 

The first step of the proposed formulation consists in collecting historical recovery data for the system 203 

of interest and with them obtaining estimates of the statistics (means, standard deviations and 204 

correlation coefficients) and marginal PDFs of Sharma et al.’s resilience metrics (reviewed in Section 205 

2). Based on the obtained statistics and marginal PDFs, we can then construct the joint PDF of the 206 

resilience metrics using a Nataf formulation (Liu and Der Kiureghian 1986).  Let ( )f  , ( )f  , up 207 

to ( )

( )( )n

nf 


 be the marginal PDFs of Sharma et al.’s resilience metrics, and let ijr  be the estimated 208 

correlation coefficients between the thi  and the thj  resilience metric.  Following the Nataf 209 

formulation, the joint PDF of the resilience metrics is 210 
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In case historical recovery data for the system of interest are not available, one can choose a 214 

distribution that either reflect some degree of judgement and experience, or a distribution with 215 

minimal information (i.e., a noninformative distribution as usually done in Bayesian inference), to 216 

reflect the fact that little or no information is available a priori.  In addition, the Bayesian inference 217 

discussed later in Section 3.5, can be used to update the state of knowledge every time new knowledge 218 

becomes available (i.e., recovery data are collected as the recovery unfolds) (Box and Tiao 1992) 219 

Obtaining the joint PDF of the model parameters of the recovery curve 220 

The second step consists in introducing parametrized recovery curves to describe the recovery process 221 

over time.  In general, the functional form of the selected parametrized recovery curve may affect the 222 

time-varying recovery process of a general performance measure.  However, one can choose the 223 

parametrized recovery curve based on engineering judgement and experience of the problem.  In 224 

addition, one can use flexible functional forms, such that the recovery curve can be updated as the actual 225 
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recovery progresses and data become available.  Example of parametrized recovery curves can be found 226 

in Gardoni et al. (2007) and Ayyub (2015). A parametrized CRF describes the time-varying recovery 227 

process of a general performance measure in the following form: 228 

    Q ,τ = Q ,τ + σε   Θ θ  (6) 

where, [ ]   is a transformation function, ( , )Θ θ ; 1 2( , ,...) θ is a vector of unknown model 229 

parameters associated with Q , that needs to be estimated; and   is an additive model error term of Q  230 

(additivity assumption), in which   is the standard deviation of the model error, assumed not to depend 231 

on   (homoskedasticity assumption), and   is a standard normal random variable (normality 232 

assumption).  The additivity, normality and homoskedasticity assumptions typically can be satisfied 233 

using an appropriate variance stabilizing transformation from the parametrized family of transformations 234 

introduced by Box and Cox (1964).  We then define the joint PDF of the unknown model parameters 235 

Θ  based on the joint PDF of the resilience metrics (Hogg et al. 2012; Ang and Tang 2006).  Let the set 236 

( )( , ,..., )n    have a jointly continuous distribution with PDF ( )
, , ...,( )nf   Ρ  on a defined support 237 

set C .  According to the definition of the resilience metrics, the resilience metrics are a function of 238 

the model parameters  1,..., n θ  in the support set D , such that  1 1,..., nk   ,  2 1,..., nk   , 239 

up to  ( )
1,...,

n
n nk   , where the generic thi  function  1,...,i nk    represents the expression of the thi240 

resilience metric ( )i  based on Equations (1)-(3), after introducing a parametrized recovery curve 241 

according to Equation (6).  We first evaluate the n n  Jacobian given by 242 
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Then, let us consider two subsets of the supports, respectively named A  and B , where B denotes 243 

the mapping of A  under a one-to-one transformation.  Due to the conservation of the probability the 244 

event ( ){( , ,..., ) }n A     is equivalent to the event {( , , ..., ) B}1 2 n    .  Therefore, we can write 245 
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Therefore, for every set B D , we can write  248 
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 (10) 

We conclude that the joint PDF of interest 1 2( , ,..., )nf   θ  is 249 

    1 1 2 1 2 1 2
1 2

( , ,..., ),..., ( , ,..., ) , ,..., D
( , ,..., )

0 elsewhere
n n n n

n

f k k J
f

        
  

 
 


θ
θ  (11) 
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Eq. (11) represents the state of knowledge on the model parameters  1,..., n θ .  We can now 250 

derive the expected recovery curve and the related uncertainties based on the distribution of the 251 

parameters in Eq. (6).   252 

Obtaining point and predictive estimates of the recovery curve and confidence bounds 253 

Different estimates of the recovery curves can be obtained depending on how we treat the model 254 

parameters.  Following Gardoni et al. (2002), we can obtain point estimates or predictive estimates.  255 

A point estimate of the recovery curve is obtained using a point estimate of Θ̂ , in place of Θ .  In 256 

general, the mean value of Θ  or the maximum likelihood estimate (MLE) MLEΘ  can be used.  257 

However, the point estimate does not incorporate the epistemic (statistical) uncertainties in the model 258 

parameters Θ .  To incorporate these uncertainties, we need to consider Θ  as random variable. The 259 

predictive estimate of the recovery curve is then the expected value of the recovery curve over the 260 

space of the model parameters, i.e., 261 

 ( ) ( , ) ( )Q Q f d   Θ Θ Θ  (12) 

This estimate incorporates the epistemic uncertainties in the model parameters Θ .  In addition, we can 262 

construct probability bounds on the recovery curve using the PDF of the model parameters, as 263 

illustratively shown in Figure 1. 264 

Estimating the probability of reaching or exceeding a target percentile of interest of the ultimate 265 

desired state 266 

Once we obtained ( , )Q Θ , we can estimate the probability of reaching or exceeding a target value of 267 

Q  by reliability analysis (Ditlevsen and Madsen 1996; Gardoni 2017).  We can write a limit-state 268 

function ( , )g Θ  as 269 
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 ( , ) ( , ) Tg Q Q  Θ Θ  (13) 

where QT  is a level of performance we desire to reach or exceed, expressed as a percentile of the ultimate 270 

desired state, Q .  Mathematically, we can write the probability that the recovery process is above TQ  271 

at a time  , ( , )H Θ , as 272 

    , 1 , 0H g       Θ Θ  (14) 

Figure 2 shows a conceptual representation of ( , )Q Θ  and the corresponding ( , )H Θ  over time.  273 

Following Gardoni et al. (2002), we can construct a point estimate of ( )H  , a predictive estimate as well 274 

as confidence bounds as previously proposed for the recovery curve.  Hence, we define the point estimate 275 

of the probability that the recovery process is above TQ  at a time   using a point estimate of Θ̂ , in place 276 

of Θ , whereas the predictive estimate ( )H   is defined taking the expected value of the quantity of 277 

interest over the space of the model parameters, in the same way as previously showed for the recovery 278 

curve.  Furthermore, we obtain confidence bounds on the estimate in Eq. (14). We can define the 279 

reliability index as 280 

    1, ,H     Θ Θ  (15) 

where 1( )   indicates the inverse of the standard normal CDF.  Following Gardoni et al. (2002), the 281 

variance of ( , ) Θ  can be estimates as 282 

      2 T

      Θ ΘΘ ΘΣ  (16) 
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where ( ) Θ  is the gradient of ( , ) Θ  evaluated at the mean value and ΘΘΣ is the estimated covariance 283 

matrix.  The gradient vector ( ) Θ  is obtained by performing a FORM (First-Order Reliability 284 

Method) analysis (Ditlevsen and Madsen 1996). Therefore, we obtain  285 

         ], [               
   (17) 

as one standard deviation bounds, where 1( ) [ ( )]H    . The bounds represent approximately 15% 286 

and 85% probability levels. 287 

Updating the model parameters as new data become available 288 

Finally, Bayesian inference can be used to update the model parameters Θ  combining existing 289 

information with new information as it might become available during the actual recovery process 290 

(Gardoni et al. 2007).  Steps 3 and 4 can then be repeated to obtain updated recovery curves and updated 291 

probabilities of reaching or exceeding a desired level TQ . Mathematically, we can write the posterior 292 

distribution ( )f  Θ  that includes the updated status of knowledge about Θ  as (Box and Tiao 1992)  293 

      | |f L f Θ Q Θ Q Θ  (18) 

where ( | )L Θ Q  is the likelihood function that contains the objective information on Θ  in a set of 294 

observations, ( )f  Θ  is the prior distribution, reflecting the state of knowledge about Θ  prior to obtaining 295 

the observations 1( ,..., )mQ QQ , and 
1

( | ) ( )L f d


    Θ Q Θ Θ  is a normalizing factor.   296 

The prior distribution includes the status of knowledge based on previous experiences, 297 

engineering judgments, and/or past data.  The likelihood function is proportional to  the conditional 298 

probability of observing the recorded data 1( ,..., )mQ QQ  for given values of the parameters Θ.  In 299 
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general, the likelihood function permits to include lower, upper and equality data (see Gardoni et al. 300 

2002).  A lower bound datum is defined as an observation of Q  that is larger than a certain value iQ  at 301 

time  ; an upper bound datum is defined as an observation that is smaller than a certain value iQ  at time 302 

 ; an equality datum is defined as the value of Q  recorded at time  .  Following Gardoni et al. (2002), 303 

the likelihood function can be written as 304 

 
equality
data

lower bound
data

upper bound
data

( , ) [ Q Q( , )]

[ Q Q( , )]

[ Q Q( , )]

i i

i i

i i

L   

 

 

  

  

  







θ θ

θ

θ







 
(19) 

Based on the normality assumption, we can then write  305 

 

equality
data

lower bound
data

upper bound
data

( , )1
L( , )

( , )

( , )

i

i

i

Q Q

Q Q

Q Q

 
 







        

         

        







θ
θ

θ

θ

 (20) 

where ( )  is the standard normal PDF, and ( )   is the standard normal CDF. 306 

Eqs. (15)-(20) can be used every time additional information is available to update the model 307 

parameters.  For instance, when a set of samples 1Q  is available, we can write 308 

 
1 1( | ) ( | ) ( )f L f Θ Q Θ Q Θ  (21) 
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Then, let us suppose another set of samples 2Q  is available and this is independent from the previous 309 

one, we can update the posterior PDF evaluated in Eq. (21) such that 310 

            1 2 1 2 2 1| , | |f L L f L f   Θ Q Q Θ Q Θ Q Θ Θ Q Θ Q  (22) 

Generally, if n independent set of observations are available, we can write 311 

      ( 1) ( )
1 1 k-1| ,..., | , ...,

2,...,

k k
k kf L f

k n

 



Θ Q Q Θ Q Θ Q Q
 (23) 

Field measurements can often be inexact and include measurement errors (Gardoni et al. 2002; 312 

Murphy et al. 2011). Following Gardoni et al. (2002), measurement errors can be incorporated in the 313 

updating process.  To incorporate the measurements errors in the updating process, we assume that 314 

ˆ
ii i QQ Q e   is the true value of the thi observation, where ˆ

iQ  represents the measured value and 
iQe  is 315 

the measurement error.  We also assume that 
iQe  has zero mean, which reflects that the measurements 316 

have been corrected from any systematic errors, and variance 2
is , which represents the uncertainties 317 

inherent in the measurements.  For the equality data we have ˆ ( , )
ii Q iQ e Q    θ , for the lower bound 318 

data we have ˆ ( , )
ii Q iQ e Q    θ , and for the upper bound data we have ˆ ( , )

ii Q iQ e Q    θ .  319 

Therefore, the conditions for the three type of data can be, respectively, written as ˆ ( , )
ii Q ie Q Q    θ , 320 

ˆ ( , )
ii Q ie Q Q    θ , and ˆ ( , )

ii Q ie Q Q    θ .  The left-hand sides of these expressions are a 321 

normal random variable with zero mean and variance 2 2ˆ( , ) is   θ .  Hence, in presence of 322 

measurement errors, the likelihood function is  323 
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   

      
   







θ
θ

θ θ

θ

θ

θ

θ

 (24) 

Example 1: Recovery curves for an example bridge 324 

This section presents the proposed formulation considering the recovery process of a typical RC bridge 325 

subject to seismic excitations.  The first example demonstrates the application of the formulation in a 326 

realistic case related to civil structures in support of risk and resilience analysis. 327 

We previously discussed that for civil structures the work progress is a continuous, or near-328 

continuous, function, whereas a discrete function describes the performance indicators (e.g., 329 

functionality) with jumps when a group of activities is completed.  This section illustrates the proposed 330 

formulation applied to a RC bridge.  Figure 3 shows the configuration of the considered (single column, 331 

single bent) testbed bridge from Kumar and Gardoni (2014a) and Jia et al. (2017).  Following the 332 

proposed formulation, we obtain the estimates of the first two resilience metrics to describe the recovery 333 

process of the selected engineering system.  Figure 4 shows the pair ( , )   used in this example, and 334 

their correlation.  Based on the data in Figure 4, we assume that both   and   follow a lognormal 335 

distribution, whose parameters are listed in Table 1.  Then, based on the estimated coefficient of 336 

correlation and the marginal PDFs we can construct the joint PDF of the resilience metrics as described 337 

in Section 3.1.  Next, we introduce a parametrized recovery curve to describe the changes of a selected 338 

performance measure over time.  The performance indicator considered in this example is the reliability 339 

index  .  Moreover, in this example we assume that there is only one recovery step that restores the 340 
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reliability of the bridge, as described in Sharma et al. (2018).  Consequently, we consider the recovery 341 

curve in the following form:  342 

 
1 2

1
2

( , )Q
Q

  


 


  

Θ  (25) 

where 1  is the residual reliability index after the occurrence of the hazard, and before the completion of 343 

the recovery; and 2  is the time at which the reliability index reaches the ultimate desired value Q .  To 344 

model the reliability, we consider the reliability-based resilience metrics coming from previous analyses.  345 

Thus, we do not need to model the occurrence of earthquake mainshock-aftershocks sequence and their 346 

impact on structural properties because the resilience metrics capture all these information.  Based on the 347 

definition of the resilience metrics in Eqs. (1) and (2), the parameters 1  and 2  can be written as a 348 

function of the resilience metrics.  Specifically, Figure 5 shows the RMF of the adopted parametrized 349 

curve.  Following the proposed methodology, we compute the joint PDF of the model parameters and 350 

the corresponding expected recovery process in terms of the reliability index  .  We observe that the 351 

number of resilience metrics needed to adopt the formulation is at least equal to the number of the model 352 

parameters of the selected parametrized recovery curve.  Therefore, considering the possibility of having 353 

a drop in the functionality, during the recovery process due to aftershocks, would require implying higher 354 

resilience metrics. Next, we estimate the probability of reaching or exceeding a target value of 355 

functionality at any time setting, for instance, 3.5TQ  .   356 

Initial estimate of the recovery curve and corresponding probability of exceeding the target 357 
value of functionality 358 

As previously discussed, in this example we assume that there is only one recovery step that restores the 359 

reliability of the bridge.  Nevertheless, we can also estimate the behavior of the system toward the desired 360 

value of the functionality at the end of the recovery in terms of the mean value of the different probable 361 
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recovery curves.  Figure 6 shows the expected changes of the instantaneous reliability index over time. 362 

Adopting the reliability-based definitions for the damage state proposed in Sharma et al. (2018), the 363 

initial damage level is moderate.  Figure 7 shows the probability of exceeding the target value of TQ .  364 

The figure also presents the confidence band due to the statistical uncertainty in Θ .  Based on the 365 

expected initial value of the reliability index, we can observe that the probability of exceeding the target 366 

value of functionality, 3.5TQ  , at time 25  days, is equal to 0.5.  The observed result matches the 367 

results provided in Sharma et al. (2018), where the expected value of the time to recover is approximately 368 

26 days when the initial damage level is moderate. 369 

Updated estimate of the recovery curve and corresponding probability of exceeding the 370 
target value of functionality 371 

We assume that after the occurrence of the hazard we collect data on the state of damage for the first 10 372 

days, and then we update the model parameters.  In the presented example, we assume that inspection 373 

data are collected after the occurrence of the hazard.  Specifically, we assume that a qualitative 374 

description of the damage state indicates moderate damage following the definition in ATC-38 (ATC 375 

2000) and Bai et al. (2009) (i.e., “Repairable structural damage has occurred. The existing elements can 376 

be repaired in place, without substantial demolition or replacement of elements”.)  Then, the qualitative 377 

definition of the damage state is mapped into a reliability-based definition in terms of the corresponding 378 

reliability index   (i.e., 1.5 2.5  ) following in Sharma et al. (2018).  As a result, we obtain the new 379 

expected changes in the reliability index and the corresponding time-varying probability of exceeding 380 

the same target value of functionality, as shown in Figure 8 and 9.  Figure 8 shows the expected changes 381 

of the reliability index over time, after updating the model parameters based on the observed data.  First, 382 

we can observe that the recovery process follows the observed data in terms of its mean; then, the 383 
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Bayesian inference also reduces the relevant uncertainties.  The probability of exceeding the target value 384 

of functionality reflects both the effects of the Bayesian inference.   385 

Example 2: Population relocation after a seismic event 386 

The second example shows the application of the formulation in a scenario where historical recovery 387 

data are not available.  In this example, we consider the population relocation of the city of Seaside, OR, 388 

after the occurrence of an earthquake originated from the Cascadia Subduction Zone.  We consider a 389 

seismic event of magnitude 7.0WM  , located 25 km southwest of the city.  Since no data are available, 390 

we consider a noninformative PDF of the first resilience metric   in the form ( ) 1/  f , 0  , which 391 

reflects the fact that little is known a priori.  We consider a parametrized S-shape recovery curve proposed 392 

in Gardoni et al. (2007) in the following form: 393 

 
 

2

2 1
1 1

( , ) 1 3 2R RQ Q Q Q
   
 

    
         

    
Θ  (26) 

where RQ  represents the percentage of population dislocation at time 
0

t   (i.e., after the occurrence of the 394 

seismic event), Q  represents the percentage of the population that relocates at the end of the recovery, 395 

and 1  is the time at which the recover ends.   396 

Ground Motion Prediction Equations (Boore and Atkinson, 2008) are used to obtain maps of the 397 

seismic intensity measure at the residential building location. Next, we perform a building damage 398 

analysis using different fragility functions (e.g., HAZUS-MH (FEMA 2015), and Steelman et al. 2007).  399 

Then, we estimate the initial percentage of population dislocation due to structural damage using a 400 

logistic regression model (Lin 2009).  For the purpose of this example, we assume that the entire 401 

population returns to their homes at the end of the recovery (i.e., 100% Q .)   402 
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Based on the definition of the resilience metric in Eq. (1), the parameter 1  can be written as a 403 

function of the resilience metric  .  Therefore, we obtain the PDF 
1 1( )f   according to Eq. (11), as well 404 

as the corresponding estimate of 2Q  over time (shown in Figure 10(b).)  More generally, Q  could also 405 

be taken as a parameter (i.e., 2 Q ). In this case, we would obtain the joint PDF 1 2( , ) θf  again using 406 

Eq. (11) given   and  . 407 

After the occurrence of the seismic event, recovery activities start to retrieve structures and 408 

infrastructure functionality, thereby we can observe the population returning to their homes.  For the 409 

purpose of this example, we assumed that data on the population relocation are available at given time-410 

steps.  The relocation data at different times can be used to obtain the corresponding values of 2Q  (shown 411 

by dots in Figure 10(b).)  Using these values of 2Q , we obtain the new expected value of 2Q  as a function 412 

of time, as shown in Figure 10(b).  In particular, we can observe that the uncertainties in the initial 413 

estimate in Figure 10(a) reflect the fact that little is known in terms of the duration of the recovery.  In 414 

Figure 10(b) the confidence band is significantly smaller around the mean line indicating that the values 415 

of 2Q  used to update the mean prediction also reduce the prediction uncertainty. 416 

Finally, Figure 11 shows the probability that the population dislocation is higher than 25% of the 417 

total population (i.e., 0.25TQ  ) before and after we update the recovery curve, including the confidence 418 

band due to the statistical uncertainty in Θ . We can see that the information used to update the model 419 

parameter can also adjust the prediction in terms of the probability of exceeding a target level of 420 

functionality, as well as reduce the prediction uncertainty. 421 
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Conclusions 422 

The paper proposed a formulation to (i) predict the recovery curves that define the recovery of 423 

engineering systems subject to a hazard, and (ii) estimate the probability of reaching or exceeding a target 424 

value of a selected performance indicator at any given time.  The formulation uses the resilience metrics 425 

defined in Sharma et al. (2018), which quantify the resilience of systems and form a complete set of 426 

partial descriptors that characterize the recovery curve of the system of interest.  To evaluate the recovery 427 

process of an engineering system, the paper proposed to use the probability density function (PDF) of 428 

the resilience metrics, defined based on historical data, to obtain the PDF of the model parameters that 429 

define the recovery curve.  The proposed formulation incorporates the Bayesian inference to update the 430 

estimates of the unknown parameters when additional information is available.  The paper illustrated the 431 

implementation of the proposed formulation by predicting the recovery of a single-bent, single-column 432 

reinforced concrete (RC) bridge subject to seismic damage, and the population relocation after the 433 

occurrence of a seismic event when no data on the duration of the recovery are available a priori.  The 434 

proposed formulation is general and suited to applications such as risk analysis and mitigation, and 435 

resilience-based design. 436 

Acknowledgements 437 

This work was supported by the National Science Foundation (NSF) under Award No. 1638346 and by 438 

the National Institute of Standards and Technology (NIST) through the Center for Risk-Based 439 

Community Resilience Planning under Award No. 70NANB15H044.  The research leading to these 440 

results has also received funding from the European Research Council under the Grant Agreement n° 441 

ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE-Integrated Design and Control of 442 

Sustainable Communities during Emergencies.  Opinions and findings presented are those of the authors 443 

and do not necessarily reflect the views of the sponsors. 444 



25 

 

 445 

References 446 

Boore, D.M., and Atkinson, G.M. (2008). “Ground-motion prediction equations for the average 447 
horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 448 
10.0 s.” Earthquake Spectra 24(1), 99-138 449 

Ang, A.H-S., and Tang W.H. (2006). Probability Concepts in Engineering. Emphasis on Applications in 450 
Civil & Environmental Engineering, John Wiley & Sons, Inc. 451 

ATC. (2000). Database on the performance of structures near strong-motion recordings: 1994 Northridge 452 
earthquake. Redwood City, CA: Applied Technology Council. 453 

Ayyub, B.M. (2014). “Systems resilience for multihazard environments: Definition, metrics, and 454 
valuation for decision making.” Risk Analysis, 34(2), 340–355. 455 

Ayyub, B.M. (2015). “Practical resilience metrics for planning, design, and decsion making.” Journal of 456 
Risk Uncertainty in Engineering  Systems, Part A: Civil Engineering, 1(3), 04015008. 457 

Bai, J.-W., Hueste, M.B.D., and Gardoni, P., (2009). “Probabilistic assessment of structural damage due 458 
earthquakes for buildings in Mid-America,” ASCE Journal of Structural Engineering, 135 (10), 459 
1155-1163. 460 

Bocchini, P., Decò, A., and Frangopol, D.M. (2012). “Probabilistic functionality recovery model for 461 
resilience analysis.” Bridge Maintenance, Safety, Management, Resilience and Sustainability, 462 
Biodini and Frangopol (Eds), 1920–1927. 463 

Bonstrom, H., and Corotis, R.B. (2016). “First-Order Reliability Approach to Quantify and Improve 464 
Building Portfolio Resilience.” Journal of Structural Engineering, 142(8), C4014001. 465 

Box, G.E.P., and Tiao, G.C. (1992). Bayesian inference in statistical analysis. John Wiley & Sons. 466 

Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn, A.M., Shinozuka, M., 467 
Tierney, K., Wallace, W.A., and von Winterfeldt, D. (2003). “A Framework to Quantitatively 468 
Assess and Enhance the Seismic Resilience of Communities.” Earthquake Spectra, 19(4), 733–752. 469 

Bruneau, M., and Reinhorn, A. (2007). “Exploring the Concept of Seismic Resilience for Acute Care 470 
Facilities.” Earthquake Spectra, 23(1), 41–62. 471 

Caverzan, A., and Solomos, G. (2014). “Review on resilience in literature and standards codes for critical 472 
built-inrastructures.” JRC Science and Policy Report. 473 

Chang, S.E., and Shinozuka, M. (2004). “Measuring Improvements in the Disaster Resilience of 474 
Communities.” Earthquake Spectra, 20(3), 739–755. 475 

Cimellaro, G.P., Reinhorn, A.M., and Bruneau, M. (2010a). “Seismic resilience of a hospital system.” 476 
Structure and Infrastructure Engineering, 6(1), 127–144. 477 



26 

 

Cimellaro, G.P., Reinhorn, A.M., and Bruneau, M. (2010b). “Framework for analytical quantification of 478 
disaster resilience.” Engineering Structures, 32(11), 3639–3649. 479 

Cole, E.S.L., Bhagwat, S.A., and Willis, K.J. (2014). “Recovery and resilience of tropical forests after 480 
disturbance.” Nature Communications, 5(1), 59–65. 481 

Collins English Dictionary Complete and Unabridged edition 12th edition. (2014) 482 

Corotis, R. (2009). “Societal issues in adopting life-cycle concepts within the political system.” Structure 483 
and Infrastructure Engineering, 5:3906. 484 

Decò, A., Bocchini, P., and Frangopol, D.M. (2013). “A probabilistic approach for the prediction of 485 
seismic resilience of bridges.” Earthquake Engineering & Structural Dynamics, 42(10), 1469–1487. 486 

Ditlevsen, O., and Madsen, H.O. (1996). Structural reliability methods, Wiley, New York. 487 

Doorn, N., Gardoni, P., Murphy, C. (2018). “A multidisciplinary definition and evaluation of resilience: 488 
the role of social justice in defining resilience,” Sustainable and Resilient Infrastructure, DOI: 489 
10.1080/23789689.2018.1428162. 490 

Ellingwood, B.R., Cutler, H., Gardoni, P., Peacock, W.G., van de Lindt, J.W., and Wang, N. (2016). 491 
“The Centerville Virtual Community: a fully integrated decision model of interacting physical and 492 
social infrastructure systems.” Sustainable and Resilient Infrastructure, 1(3–4), 95–107. 493 

FEMA (2015). Hazus 2.1 technical and user’s manuals, available at https://www.fema.gov/media-494 
library/assets/documents/24609 (last accessed 21 February 2018) 495 

Garbin, D. (2007). “Moving beyond critical infrastructures protection to disaster resilience.” CIP 496 
Program Discussion Paper Series. George Mason University school of Law. 497 

Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002). “Probabilistic capacity models and Fragility 498 
estimates for reinforced concrete columns based on experimental observations.” Journal of 499 
Engineering Mechanics, 128(10), 1024–1038. 500 

Gardoni, P., Mosalam, K.M., and Der Kiureghian, A. (2003). “Probabilistic seismic demand models and 501 
fragility estimates for RC bridges.” Journal of Earthquake Engineering, 7(Special Issue 1), 79–106. 502 

Gardoni, P., Reinschmidt, K.F., and Kumar, R. (2007). “A probabilistic framework for Bayesian adaptive 503 
forecasting of project progress.” Computer-Aided Civil and Infrastructure Engineering, 22(3), 182–504 
196. 505 

Gardoni, P., and LaFave, J.M. (Eds.) (2016). Multi-hazard Approaches to Civil Infrastructure 506 
Engineering, Springer International. 507 

Gardoni, P., Murphy, C., Rowell, A. (Eds.) (2016). Societal Risk Management of Natural Hazards, 508 
Springer. 509 

Gardoni, P. (Ed.) (2017). Risk and Reliability Analysis: Theory and Applications. Springer International 510 
Publishing. 511 



27 

 

Gardoni, P., (Ed.) (2018). Handbook of Sustainable and Resilient Infrastructure, Routledge. 512 

Guidotti, R., Chmielewski, H., Unnikrishnan, V., Gardoni, P., McAllister, T., and van de Lindt, J.W. 513 
(2016). “Modeling the resilience of critical infrastructure: the role of network dependencies.” 514 
Sustainable and Resilient Infrastructure, 1(3–4), 153–168. 515 

Guidotti, R., Gardoni, P., and Chen, Y. (2017). “Network reliability analysis with link and nodal weights 516 
and auxiliary nodes.” Structural Safety, 65, 12–26. 517 

Hogg, R. V., McKean, J.W., and Craig, A. T. (2012). Introduction to Mathematical Statistics. 7th Edition, 518 
Prentice Hall College Div. 519 

Jia, G., Tabandeh, A., and Gardoni, P. (2017). “Life-Cycle Analysis of Engineering Systems: Modeling 520 
Deterioration, Instantaneous Reliability, and Resilience.” Risk and Reliability Analysis: Theory and 521 
Applications, P. Gardoni, (Ed.), Springer International Publishing. 522 

Jia, G., and Gardoni, P. (2018a). “State-dependent stochastic models: A general stochastic framework 523 
for modeling deteriorating engineering systems considering multiple deterioration processes and 524 
their interactions,” Structural Safety, 72, 99-110. 525 

Jia, G., and Gardoni, P. (2018b). “Stochastic life-cycle analysis: Renewal-theory life-cycle analysis with 526 
state-dependent deterioration stochastic models,” Structure and Infrastructure Engineering (under 527 
review). 528 

Klinger, M., and Susong, M. (2006). The construction project : phases, people, terms, paperwork, 529 
processes. American Bar Association. 530 

Koliou, M., van de Lindt, J.W. McAllister, T., Ellingwood, B.R., Dillard, M., and Cutler, H. (2018). 531 

“State of the research in community resilience: progress and challenges.” Sustainable and Resilient 532 

Infrastructure, DOI: 10.1080/23789689.2017.1418547. 533 

Kumar, R., and Gardoni, P. (2014). “Renewal theory-based life-cycle analysis of deteriorating 534 
engineering systems.” Structural Safety, 50, 94–102. 535 

Kumar, R., Cline, D., and Gardoni, P., (2015). “A stochastic framework to model deterioration in 536 
engineering systems.” Structural Safety, 53, 36-43. 537 

Lin, Y.S. (2009). Development of algorithms to estimate post-disaster population dislocation - a research-538 
based approach. Ph.D. Thesis, Texas A&M University. 539 

McAllister, T. (2013). Developing Guidelines and Standards for Disaster Resilience of the Built 540 
Environment: A Research Needs Assessment. Gaithersburg, MD.Murphy, C., Gardoni, P., and 541 
Harris, C.E., (2011). "Classification and moral evaluation of uncertainties in engineering 542 
modeling," Science and Engineering Ethics, 17 (3), 553-570. 543 

PPD-21. (2013, February 12). Presidential policy directive/ PPD-21 – Critical infrastructure security 544 
and resilience. Washington, DC: The White House. 545 



28 

 

Sharma, N., Tabandeh, A., and Gardoni, P. (2018). “Resilience analysis: a mathematical formulation to 546 
model resilience of engineering systems.” Sustainable and Resilient Infrastructure, 3(2), 49-67. 547 

Steelman, J., Song, J., and Hajjar, J.F. (2007). “Integrated Data Flow And Risk Aggregation For 548 
Consequence-Based Risk Management Of Seismic Regional Losses.” MAE Center. Retrieved from 549 
http://mae.cee.illinois.edu/publications/reports/Report_Jan_07.pdf 550 

Tierney, K, and Bruneau, M. (2007). “Conceptualizing and measuring resilience.” TR News 250. 551 

Titi, A., Biondini, F., and Frangopol, D.M. (2015). “Seismic resilience of deteriorating concrete 552 
structures.” Structures Congress. 553 

Van Leeuwen, W. J. D. (2008). “ Monitoring the effects of forest restoration treatments on post-fire 554 
vegetation recovery with MODIS multitemporal data.” Sensors, 8(3), 2017-2042. 555 

  556 



29 

 

Figures 557 

Figure 1. 90% Confidence bounds on the estimate of the recovery curve 558 

Figure 2. Conceptual representation of probability of reaching or exceeding a target value of functionality at any time 559 

Figure 3. The considered RC bridge (adapted from Jia et al. 2017) 560 

Figure 4. Correlation between the adopted resilience metrics 561 

Figure 5. RMF of the adopted parametrized recovery curve 562 

Figure 6. Mean value and corresponding 95% confidence band of the recovery curve 563 

Figure 7. Probability of exceeding the selected value of 3.5TQ   564 

Figure 8. Mean value and corresponding 95% confidence band of the recovery curve after updating the model parameters 565 

Figure 9. Probability of exceeding the selected value of 3.5TQ  after updating the model parameters 566 

Figure 10. Mean value and corresponding 95% confidence band of the population dislocation recovery curve (a) before and 567 

(b) after updating the model parameter 568 

Figure 11. Probability of population dislocation (i.e,, 25%TQ  ) (a) before and (b) after updating the model parameter  569 

  570 



30 

 

Tables 571 

Table 1. Distribution parameters of the resilience metrics 572 
Resilience metric λ ξ 

ρ 0.94 0.22 
χ 1.14 0.20 
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