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Abstract—In the study of muscle synergies during the 

maintenance of single-leg stance (SLS) there are methodological 

issues that must be taken into account before performing the 

synergy extraction. In particular, it is important to distinguish 

between epochs of surface electromyographic (sEMG) signals 

corresponding to a “good” balance control during the SLS test, 

from those characterized by an “excessive” body sway. The aim 

of this work is to assess the robustness in the segmentation and 

selection of sEMG signal epochs to be chosen as input for the 

synergy extraction algorithm. The robustness is evaluated in 

terms of: 1) consistency of the number of muscle synergies, and 

2) weight vector correlation. Our results show that the same 

number of muscle synergies and similar weight vectors are 

obtained, independently from the threshold chosen to build the 

segmentation mask. The methodology proposed may help the 

interpretation of muscle synergies in SLS test. 

Keywords—muscle synergies, balance, unipedal stance, 

robustness. 

I. INTRODUCTION 

The postural sway analysis of human upright stance is 
applied to the study of various balance tasks (e.g. double-leg 
stance, semi-tandem, tandem, and single-leg stance), 
characterized by different motor control strategies and degrees 
of difficulty in the task performance [1]. In particular, the 
single-leg stance may be challenging in subjects affected by 
chronic ankle instability [2]. Considering a specific balance 
exercise, different conditions of visual and somatosensory 
integrations may be tested [3]. As an example, along with the 
eyes open (EO) condition, in which the subject exploits the 
visual feedback to maintain balance, a condition with eyes 
closed (EC) is also studied to assess the effect of visual 
deprivation on postural balance control [4]. 

Recently, there has been a growing interest in the use of 
muscle synergies to quantitatively assess motor control 
strategies in different motor tasks, including gait and postural 
balance [5]–[9]. This has a direct impact in clinics, sport 
science and robotics [10]. After recording surface 
electromyographic (sEMG) signals from several muscles 
involved in the actuation of a specific motor task, muscle 
synergies are extracted through algorithms for the 
dimensionality reduction of data, such as Non-Negative 
Matrix Factorization (NNMF) [11], [12].  

In literature, the study of muscle synergies in upright 
stance is mainly focused on the evaluation of balance recovery 
after a perturbation [13]. In particular, it was demonstrated a 
high consistency of muscle synergies in different balance 
tasks [14]. This suggests that, increasing the task complexity, 
there are only slight modifications of the basic motor control 
strategies involved in postural balance control, evidence that 
supports the muscle synergy hypothesis. The extraction of 
muscle synergies has opened up new challenges in the field of 
postural balance analysis. To the best of our knowledge, there 
are no studies focusing on the muscle synergies adopted to 
maintain the single-leg stance. One possible reason may be the 
difficulty of selecting epochs of sEMG signals where the 
subject properly maintains the unipedal stance. Indeed, it is 
important to separate these sEMG epochs from those where a 
clear imbalance has occurred. The aim of this work is to define 
a robust procedure to segment and select epochs of sEMG 
signals, relative to a “well-balanced” single-leg stance, to be 
used as input for the muscle synergy extraction algorithm. 
This might help the interpretation of muscle synergies in 
single-leg stance. 
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II. MATERIALS AND METHODS 

A. Sample Population and Experimental Protocol 

Twenty-two healthy subjects (age: 24 years ± 3 years, 
gender: 11 females and 11 males, height:  175.7 cm ± 9.6 cm, 
weight: 65.9 kg ± 12.2 kg) were enrolled in the study. None of 
the volunteers reported lower limb injuries or had neurological 
or musculoskeletal disorders that could compromise their 
single-leg stance performance. All the subjects were right-
limb dominant, according to the preferred foot to start 
walking.  

All subjects underwent the same experimental protocol 
consisting of a single-leg stance task. More specifically, they 
were asked to perform twice the single-leg stance (SLS) under 
two different conditions: eyes open (EO) and eyes closed 
(EC). Each task lasts at least 30 seconds and was performed 
on a firm surface. Arms were kept straight at the sides. 
Figure 1 represents the block diagram of the experimental 
protocol. 

All participants signed a written informed consent for the 
experimental procedure and all the experiments were 
performed in accordance with the Declaration of Helsinki.  

B. Data Acquisition 

The following signals were simultaneously recorded 
during the experimental protocol:  

i.  sEMG signals by means of active probes (FREEEMG 
1000, BTS Technology)  

ii.  Foot-switch signal to detect the onset/offset timing of the 
single-leg stance (FREEEMG 1000 – Footswitch Kit, 
BTS Technology) 

iii.  Ground reaction force by means of a force plate 
(Dynamic Walkway P6000, BTS Technology).  

The sEMG active probes were positioned over the 
following 13 muscles of the trunk (bilaterally) and the lower 
limb (dominant side): right Longissimus Dorsii (LDR), left 
Longissimus Dorsii (LDL), Gluteus Medius (GMD), Rectus 
Femoris (RF), Lateral Hamstring (LH), Medial Hamstring 
(MH), Vastus Medialis (VM), Vastus Lateralis (VL), Lateral 
Gastrocnemius (LGS), Peroneus Longus (PL), Peroneus 
Brevis (PB), Soleus (SOL), and Tibialis Anterior (TA). sEMG 
signals were acquired with a sampling rate of 1000 kSa/s.  

All the acquired signals were then imported into 
MATLAB® release R2019b (The MathWorks Inc., Natick, 
MA, USA) to be processed by means of custom routines. 

Figure 2 represents a subject with sEMG probes placed 
over the observed dominant-side muscles. Foot-switch is also 
mounted on the contralateral side of the subject to detect the 
onset/offset timing of the single-leg stance.  

C. Data Processing 

Before muscle synergy extraction, the acquired sEMG 
signals were pre-processed to segment and select only the 
time-instants relative to a “well-balanced” single leg-stance, 
discarding those in which either double-leg stance or 
excessive unipedal-balance perturbations were detected (the 
quantitative definition is provided in the next Section).  

Three different segmentation thresholds were applied to 
the acquired data to assess the robustness of the selection and 
segmentation approach and the consistency of the muscle 
synergy results.  

D.  Segmentation and Selection of Single-Leg Stance 

Epochs 

The segmentation of the time-instants relative to a “well-
balanced” SLS was performed considering the signals 
acquired from the foot-switch placed under the first metatarsal 
head of the non-dominant foot (left side) and the ground 
reaction forces acquired through the force plate. 

The foot-switch signal was used to detect the time-instants 
after which the subjects moved from double- to single-leg 
stance and vice versa. The foot-switch signal was normalized 
in amplitude to obtain a signal in the range [0, 1], where 0 
corresponds to an open foot-switch (foot raised from the 
floor), while 1 corresponds to a closed foot-switch (foot on the 
floor). The onset of the SLS was detected in correspondence 
of a 1-to-0 transition, while the offset was detected in 
correspondence of a 0-to-1 transition.  

The ground reaction force was used to discard the possible 
excessive imbalances observed during single-leg stance. The 
ground reaction force acquired through the force plate is a tri-
axial signal, where the x-axis is aligned to the antero-posterior 
direction, the y-axis is aligned to the down-top vertical 
direction, and the z-axis is aligned to the medio-lateral 
direction. As a first step, each component of the ground 
reaction force was pre-processed following an approach  

 

Fig. 1. Block diagram of the experimental protocol. Participants were 
asked to pass from a double-leg to a single-leg stance, mantaining the 

position for at least 30 seconds, and return to the double-leg stance. 

 

Fig. 2. Experimental set up. The sEMG probes are positioned over the 
main muscles of the dominant lower limb (sustaing the single-leg 

stance). A foot-switch is positioned under the first metatarsal head 

of the contralateral foot (raising from floor during the single-leg 

stance).  



widely used in literature  [15], [16]. More specifically, each 
component was low-pass filtered through a 5th order 
Butterworth digital filter with a cut-off frequency of 10 Hz. 

Then, to detect excessive unipedal-balance perturbations, 
only the antero-posterior (AP) and the medio-lateral (ML) 
directions were considered. More specifically, the resultant of 
the antero-posterior and the medio-lateral components (𝐹𝑟𝑒𝑠) 
was computed as described in (1):  

𝐹𝑟𝑒𝑠 =  √𝐹𝐴𝑃
2 + 𝐹𝑀𝐿

2  (1) 

where 𝐹𝐴𝑃  and 𝐹𝑀𝐿  represents the antero-posterior and the 
medio-lateral components of the ground reaction force, 
respectively. 

The root-mean-square (rms) of the resultant reaction force 
(𝐹𝑟𝑒𝑠) was computed by windowing the signals through 1-
second epochs with no overlap, and was named 𝐹𝑟𝑒𝑠𝑟𝑚𝑠. The 
time-instants relative to a “well-balanced” SLS were detected 
applying three different thresholds ( 𝑇ℎ𝑐 ) to 𝐹𝑟𝑒𝑠𝑟𝑚𝑠 , as 
described in (2): 

𝑇ℎ𝑐 =  𝑚𝑒𝑎𝑛(𝐹𝑟𝑒𝑠𝑟𝑚𝑠) + 𝑐 ∙ 𝑠𝑡𝑑(𝐹𝑟𝑒𝑠𝑟𝑚𝑠) (2) 

where 𝑐  is a constant that was set equal to 1, 1.5, and 2, 
respectively. The values of the constant 𝑐 have been chosen to 
be lower than 2 to achieve a sufficient length of the sEMG 
signals to be analyzed for the muscle synergy extraction. 

The sEMG signals relative to a “well-balanced” SLS were 
segmented by windowing the filtered sEMG signals through a 
binary mask that was set equal to 1 in correspondence of the 
time-instants of the 𝐹𝑟𝑒𝑠𝑟𝑚𝑠 below the threshold (“well-

balanced” SLS condition) and to 0 in correspondence of the 
time-instants of the 𝐹𝑟𝑒𝑠𝑟𝑚𝑠  above the threshold (excessive 
unipedal-balance perturbations). Figure 3 shows an example 
of the segmentation masks for a representative subject for each 
of the tested threshold (c = 1, 1.5, and 2).   

E. Muscle Synergy Extraction and Sorting 

The segmented sEMG signals were high-pass filtered by 
means of an 8th order Butterworth digital filter with a cut-off 
frequency of 35 Hz, to remove motion artefacts, and full-cycle 
rectified to obtain a non-negative signal. Then, the sEMG 
envelopes were computed from the rectified signals through a 
low-pass 5th order Butterworth digital filter with a cut-off 
frequency of 12 Hz [17]. For each muscle, the sEMG 
envelopes were normalized in amplitude with respect to their 
global maximum to ensure that the activity in all the acquired 
muscle was equally weighted in the muscle synergy extraction 
process [17]. 

Muscle synergies were then extracted from the filtered 
sEMG signals by mean of the Non-Negative Matrix 
Factorization (NNMF) algorithm [11], [12]. The NNMF 
decomposes the original sEMG envelope matrix (𝑀) as the 
linear combination of time-dependent activation coefficients 

TABLE I.  INPUT PARAMETERS OF THE MATLAB®
 ROUTINE 

“NNMF” USED FOR MUSCLE SYNERGY EXTRACTION 

Settings NNMF function 

Algorithm Multiplicative update 

Termination tolerance 1e-6 

Number of replicates 50 

Number of iteration 1000 

 

 

Fig. 3. Example of segmentation masks of “well-balanced” Single-Leg-Stance (SLS) for a representative subject, with eyes closed, for each of the tested 

thresholds (c = 1, 1.5, and 2). In blue it is represented the resultant reaction force (𝐹𝑟𝑒𝑠) during a SLS test, while in black it is represented the 

segmentation mask computed considering the 3 different thresholds. The segmentation mask is set to 0 in correspondence of excessive unipedal 

balance perturbations (𝐹𝑟𝑒𝑠𝑟𝑚𝑠 > 𝑇ℎ𝑐), while is set to 1 in correspondence of “well-balanced” single-leg stance (𝐹𝑟𝑒𝑠𝑟𝑚𝑠 < 𝑇ℎ𝑐). 



( 𝐶 ) and time-independent weight vectors ( 𝑊 ) [18] as 
described in (3):  

𝑀(𝑡) =  ∑ 𝐶(𝑡)𝑘 ∙  𝑊𝑘 + 𝑒

𝑁

𝑘=1

 (3) 

where 𝑁 represents the number of synergies needed to model 
the motor control and 𝑒  is the reconstruction error. More 
specifically, the activation coefficient vector 𝐶(𝑡)𝑘 represents 
the time modulation of the k-synergy, while the weight vector 
𝑊𝑘  describes the weighted contribution of each observed 
muscle to the k-synergy.    

The MATLAB® function “nnmf” was used to apply the 
NNMF algorithm, setting the routine’s input parameters as 
detailed in Table I. The input parameters used in this study 
were optimized in previous works focused on muscle synergy 
extraction during gait [9], [19].   

To explore different solutions of the factorization 
algorithm, the nnmf function was run many times on the same 
sEMG data, changing the number of muscle synergies from 1 
to 8. The accuracy in reconstruction of the original matrix (𝑀) 
was computed for each number of muscle synergies by means 
of the total Variance Accounted For (𝑡𝑉𝐴𝐹), defined as in (4):  

𝑡𝑉𝐴𝐹 =  (1 −
∑ (𝑀𝑘 − 𝑀𝑘

𝑅)2𝑚
𝑘=1

∑ (𝑀𝑘)2𝑚
𝑘=1

) ∙ 100 (4) 

where 𝑚 represents the number of observed muscles, and 𝑀𝑘 

and 𝑀𝑘
𝑅  represent the original and the reconstructed sEMG 

envelopes of the k-th muscle, respectively.   

The optimal number of muscle synergies (𝑁) necessary to 
properly reconstruct the original sEMG matrix was selected 
by choosing the least number of muscle synergies granting a 
𝑡𝑉𝐴𝐹 greater or equal to 90% [20]. Moreover, considering the 
number of synergies selected according to the previous 
criterion, the Variance Accounted For (𝑉𝐴𝐹) was computed, 
for each muscle. If the 𝑉𝐴𝐹 value was greater or equal to 75% 
for each of the 13 muscles, it was concluded that no additional 
muscle synergies were needed to properly reconstruct the 
original sEMG signals. Otherwise, the number of muscle 
synergies was incremented until all the muscles achieved a 
𝑉𝐴𝐹 value greater or equal to 75% [21].    

A k-means algorithm was used to sort the muscle synergies 
extracted from each condition and each subject according to 
their weight vectors (𝑊) [22]. The clustering algorithm was 
set considering 𝑁  as number of k-means cluster, 1000 as 
maximum number of iterations, 15 as number of replicates, 
and cosine similarity as distance metric. The activation 
coefficients (𝐶) were sorted consequently. 

F. Muscle Synergy Analysis 

The muscle synergies extracted considering the three 
different segmentation thresholds were quantitatively 
compared in terms of (a) consistency of the number of muscle 
synergies and (b) weight vector correlation obtained using the 
different thresholds. 

a) Number of Muscle Synergies: As stated above, the 

optimal number of muscle synergies needed to properly 

reconstruct the original sEMG signals was selected by 

choosing the least number of synergies granting 𝑡𝑉𝐴𝐹 ≥
90% and 𝑉𝐴𝐹 ≥ 75% for each of the 13 muscles.  

 

b) Weight Vector Correlation: The similarity of the 

muscle synergies among the different segmentation conditions 

was assessed by computing the correlation coefficient of the 

previously sorted weight vectors (𝑊𝑘). More specifically, the 

similarity was computed by means of the Pearson correlation 

coefficient (𝑅) between each couple of weight vectors.  

G. Statistical Analysis 

To assess the robustness in the segmentation and selection 
of sEMG signal epochs as input for the synergy extraction 
algorithm, a two-way analysis of variance (ANOVA) was 
performed to assess the differences in the number of muscle 
synergies (𝑁) and similarity of the synergy weights among the 
three different segmentation thresholds. 

III. RESULTS 

In the following, results obtained with the three different 
segmentation thresholds were compared in terms of (A) 
consistency of the number of muscle synergies, and (B) 
similarity of synergy weights. 

A. Number of Muscle Synergies 

On average, all the tested segmentation thresholds 
required the same number of muscle synergies (𝑁) to properly 
reconstruct the original sEMG signals with a 𝑡𝑉𝐴𝐹  value 
higher than 90% and a 𝑉𝐴𝐹 value for each observed muscle 
higher than 75%. More specifically, 4 muscle synergies for the 
EC condition and 5 muscle synergies for the EO condition 
were needed to properly reconstruct the original sEMG 
signals, for each of the three segmentation thresholds 
considered.  

No statistically significant differences were found, in the 
number of muscle synergies, comparing the three 
segmentation thresholds (p-value = 0.95), while a significant 
increase of N was detected in the EO condition with respect to 
the EC condition (p-value = 0.005). 

 

Fig. 4. Histograms of the number of muscle synergies extracted from all 
the subjects of the sample population during Single-Leg-Stanec (SLS) 

with (a) Eyes Open (EO) and (b) Eyes Closed (EC), considering the 

three segmentation thresholds (c = 1, 1.5, and 2). 



Figure 3 reports the histograms of the number of muscle 
synergies extracted during SLS from the sample population 
with (a) EO and (b) EC, considering the three segmentation 
thresholds. The histograms show a high consistency in the 
number of muscle synergies among the tested segmentation 
thresholds, both in EO and EC condition.  

B. Muscle Synergy Similarity 

Overall, results revealed high values (𝑅 > 0.97) of synergy 
weight correlations between each pair of segmentation 
thresholds chosen. No statistically significant differences in 
weight vector correlations were found comparing the three 
segmentation thresholds (p-value = 0.84), while a slightly 
significant decrease in the correlation was detected in the EO 
condition with respect to the EC condition (p-value = 0.048).  

Table II shows the Pearson correlation coefficients (𝑅), 
averaged on the sample population, between each pair of the 
tested segmentation thresholds. Results suggest a very high 
similarity among the muscle synergy weights extracted 
considering different segmentation thresholds, both in the EO 
and EC conditions. 

IV. DISCUSSION AND CONCLUSIONS 

The study of motor control in single-leg-stance can be 
challenging, due to the presence of out-of-balance epochs in 
sEMG signals. We demonstrated that a robust pre-processing 
can be applied to properly select the well-balanced periods 
during the SLS test. The procedure relies on a segmentation 
mask that allows for discarding periods when ground reaction 
forces exceed a certain threshold. Our results showed that the 
same number of muscle synergies and similar weights are 
obtained when extracting muscle synergies, independently 
from the threshold chosen to build the segmentation mask. 

It should be noticed that, in the study of muscle synergies 
during locomotion, both weights and activation coefficients 
are usually analyzed [20], [23]–[26]. Conversely, when 
considering postural balance, the focus of the analysis is 
mainly on the synergy weights, rather than on the activation 
coefficients [6], [14]. This is somewhat not surprising since in 
locomotion there are cyclic patterns of activation, while there 
is nothing alike when considering postural balance motor 
control. The absence of typical cyclostationary processes in 
postural balance control prevents researchers from any direct 
interpretation of activation coefficients. Therefore, the main 
results in this field relate to the analysis of the muscle synergy 
weights, and this contribution is no exception. 

In conclusion, we presented a methodology to pre-process 
sEMG signals, before muscle synergy extraction, that may 
help the interpretation of motor control strategies in single-
leg-stance. Future developments will include the study of 
subjects affected by chronic ankle instability. 
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