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Sensorless Synchronous Reluctance Motor Drives:
A Projection Vector Approach for Stator Resistance

Immunity and Parameter Adaptation
Anantaram varatharajan and Gianmario Pellegrino, Senior Member, IEEE,

Abstract—The paper presents a general projection vector
framework for the analysis of flux and position observers applied
to sensorless control of synchronous reluctance machines, with
emphasis to parametric errors sensitivity. The stator resistance
immunity property of Adaptive Projection vector for Position
error estimation (APP) technique is demonstrated, in maximum
torque per ampere (MTPA) conditions. Out of MTPA, additional
resistance adaption is devised for accurate estimation of stator
flux and torque. Alternatively, inductance adaptation might be
preferred to resistance’s, when dealing with inaccurate motor
flux-maps. Inductance adaptation is shown to decrease the steady-
state position error. All proposed APP observers with adaptation
techniques are subjected to stability analysis. The merit and the
feasibility of the proposed scheme is experimentally demonstrated
on a 1.1 kW synchronous reluctance (SyR) machine test-bench.

Index Terms—Sensorless control, adaptive projection vector,
stator resistance adaptation, inductance adaptation, synchronous
reluctance machine.

I. INTRODUCTION

Owing to the saliency of synchronous reluctance (SyR)
machine, the position and speed estimation without an en-
coder or resolver becomes realizable. The literature contains
numerous works on high frequency signal injection methods in
different reference frames for operation at low and zero speeds
region [1] [2]; [3] presents a comprehensive review of high
frequency injection techniques. Fundamental wave excitation
based approach is preferred at medium and high speeds [4] [5];
fusion methods are available for smooth transition between
low and high speed methods [6] [7]. The proposed technique
falls in the latter category and can be augmented with high
frequency injection schemes for covering the full speed range
of the electrical drive. This paper proposes a new sensorless
control scheme based on the Adaptive Projection vector for
Position error estimation (APP), with immunity to stator re-
sistance detuning under maximum torque per ampere (MTPA)
conditions, and with online parameter adaptation capability.

The flux and position observers are susceptible to resis-
tance variation at low speeds, leading to steady-state posi-

The conference version of this paper titled ”Sensorless Synchronous Reluc-
tance Motor Drives: A Sensitivity Analysis Framework and Design to Achieve
Stator Resistance Immunity” was presented at 2019 IEEE International Sym-
posium on Sensorless Control for Electrical Drives (SLED), Turin, Italy, Sept.
9-10. This work was supported by the Power Electronics Innovation Center
(PEIC) of Politecnico di Torino, Italy. (Corresponding author: Anantaram
Varatharajan)

A. Varatharajan and G. Pellegrino are with the Department
of Energy, Politecnico di Torino, Turin 10129, Italy. (email:
anantaram.varatharajan@polito.it; gianmario.pellegrino@polito.it)

tion error and even instability. To circumvent this, several
methods have been explored: stator resistance observers for
non-salient synchronous machines are proposed in [8]; sliding
mode observers are developed in [9]; a recursive least square
approach is resorted to identify resistance online in [10].
Besides stator resistance, errors in motor inductances or flux-
maps are critical in sensorless applications, leading to the
inevitable position error and potential instability. Sensorless
self-commissioning techniques for standstill identification of
flux-maps are reported in [11], [12]. Permanent magnet flux
adaptation for sensorless synchronous machines is reported
in [13]. An inductance error adaptation for improved torque
accuracy in permanent magnet machines is proposed in [4]. A
high frequency injection based inductance adaptation is pro-
posed in [14] for PM synchronous motors with linear magnetic
model. To the author’s knowledge, the inductance adaptation
in sensorless SyR motor drives is not widely reported.

The projection vector approach is a unified design and
analysis framework for a class of fundamental wave excita-
tion based sensorless observers, first explored in [5]. Many
commonly used sensorless techniques rely on the discrep-
ancy between observed and current model flux estimates;
this discrepancy is a 2-D domain (dq) where the error can
be minimized along any of the infinite directions for posi-
tion tracking. Minimizing the q-axis error is the well-known
active-flux observer approach which can be represented as
a subset within the projection vector framework. In [15],
the stability analysis of active-flux based position observer
is reviewed and discussed using the same framework, and a
new Adaptive Projection vector for Position error estimation
(APP) is developed, circumventing the risk of instability in
braking and overload conditions of the active-flux approach.

Fig. 1. Control system overview illustrating the hybrid flux observer (HFO)
and position observer augmented with parameter adaptation.



2

Moreover, the stator resistance immunity property of APP
technique is demonstrated in [16]. This work further develops
on conference work [16] with an elaborate sensitivity analysis
to parameter errors. Finally, an inductance adaption scheme
is devised to replace resistance adaption in the presence of
inaccurate flux-maps, which is entirely a new contribution of
this work.

Section II introduces the machine model and the analysis
of flux observer. Section III presents the generic projection
vector framework for sensorless control system and develops
the proposed APP technique. Section IV and V describes the
parameter adaptation and stability analysis, respectively. The
main contributions of the paper are summarized as follows:

1) A position observer based on Adaptive Projection vector
for Position error estimation (APP) [15] is developed
to demonstrate the immunity to resistance error for
operating points respecting MTPA law.

2) The immunity also extends to the voltage error due to
non-ideal compensation of inverters as the fundamental
component of voltage error is in phase with the stator
current [17].

3) The auxiliary flux linkage vector is defined and the
general property of such vector being aligned to the
current vector along MTPA is established.

4) A stator resistance adaption is developed to alleviate
the steady-state position error at non-MTPA operating
points; furthermore, it aids in accurate estimation of
stator flux and torque.

5) Alternatively, an inductance adaptation is proposed for
operations under parametric error in flux-maps, resulting
in a reduced position error.

6) The observers with resistance/inductance adaptation are
subjected to stability analysis.

The section VI covers the experimental validation of pro-
posed method with a 1.1 kW SyR motor drive.

II. SENSORLESS CONTROL SYSTEM

The electrical rotor position is θ and the electrical angular
speed is ω = s θ where s is the differential operator d

dt .
Estimated vectors are represented by the superscript .̂ The
orthogonal rotational matrix is J = [ 0 −11 0 ] and I is the identity
matrix.

The machine model is expressed in coordinates of estimated
rotor reference frame, denoted by subscript d̂q, whose d-axis
is at θ̂ = θ−θ̃, where θ̃ is the position error. Real space vectors
will be used; for example, the stator current is id̂q = [id̂, iq̂]

T

where id̂ and iq̂ are the vector components in estimated rotor
reference frame. Space vectors in stationary reference frame
are denoted by subscript αβ.

The block diagram illustrating an overview of the motor
control is shown in the Fig.1.

A. Synchronous Reluctance Motor Model

The voltage equation of a SyR machine in estimated rotor
reference frame is expressed as

sλd̂q = vd̂q −Rsid̂q − ω̂ Jλd̂q (1)

Fig. 2. Experimentally obtained flux maps LUTs of the 1.1 kW SyR motor
under test: λdq = Λdq(idq)

where Rs is the stator resistance and λd̂q is the stator flux
linkage. The electromagnetic torque is given by

T =
3p

2
iT
d̂q

Jλd̂q (2)

where p is the number of pole pairs.

B. Inductance Modeling in Sensorless Control

The SyR machine under test is commissioned using constant
speed test reported in [18] for flux map identification, shown in
Fig. 2. Let the 2-D flux map lookup tables (LUTs) be denoted
by Λdq . Then, the stator flux in estimated rotor reference frame
is expressed as

λd̂q = eJθ̃ Λdq(e
−Jθ̃ id̂q) = eJθ̃ L(idq) e−Jθ̃ · id̂q (3)

where L is the apparent inductance diagonal matrix with the
d-axis Ld and the q-axis Lq . In sensorless schemes, the current
model inductance Li is computed in the estimated reference
frame as

Li(id̂q) · id̂q = Λdq(id̂q). (4)

To formulate the relation of current model Li(id̂q) to the
real inductance L(idq), the expression (4) is written as

Li(id̂q) · e
Jθ̃idq = Λdq(e

Jθ̃idq). (5)

Linearizing for small position error around the operating point
marked by subscript 0 leads to

Li · (idq + θ̃ J idq) = Λdq(idq0) +
∂Λdq

∂idq
θ̃ J idq0. (6)

The incremental inductance matrix L∂ is defined as

L∂ =
∂λdq
∂idq

=

[
ld ldq
ldq lq

]
(7)

where ld, lq represents the incremental inductance along di-
rect d and quadrature q axis, respectively, while ldq is the
cross-saturation term. All quantities are functions of idq . On
simplifying, the inductance model accounting position error
(IMAP) is obtained as

L ≈ Li + θ̃ (Li −L∂) J. (8)
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Fig. 3. Hybrid flux observer in stator reference frame with the APP position observer augmented with stator resistance and inductance adaptation.

IMAP is introduced in [15] as improved inductance model.
The incremental inductance matrix L∂ is computed in real-
time from the flux map; as an example:

ld(id̂q) =
Λdq(id̂ + δid, iq̂)−Λdq(id̂, iq̂)

δid
(9)

where δid is a small value (≈ 10 mA). The other incremental
inductances are computed in a similar fashion.

Let Λ̂dq denote the flux map LUTs accounting for parameter
error. Then, the current model inductance is given by

L̂
i

= Li − L̃ (10)

where L̃ is the inductance error matrix with components L̃d
and L̃q .

C. Hybrid Flux Observer

The hybrid flux observer (HFO) in stator reference frame is
defined as

sλ̂αβ = vαβ − R̂siαβ +Gαβ

(
eJθ̂L̂

i
e−Jθ̂iαβ − λ̂αβ

)
(11)

where Gαβ is a 2 × 2 gain matrix. The estimated stator
resistance is denoted by R̂s = Rs − R̃s where R̃s is the
resistance error. The flux observer is transformed to estimated
rotor reference as

s λ̂d̂q = vd̂q − R̂sid̂q − ω̂J λ̂d̂q +G
(
L̂
i
id̂q − λ̂d̂q

)
(12)

where the gain matrix G equivalence is given by

G = e−Jθ̂Gαβ eJθ̂. (13)

In this work, a diagonal matrix G = g I is used where g
can be inferred as a cross-over frequency between the current
model at low speeds and voltage model at high speeds; hence,
the equivalence G = Gαβ holds.

D. Linearized Error Dynamics and Auxiliary Flux Definition

The non-linear flux estimation error dynamics [15] is de-
rived from (12) as

s λ̃d̂q = −(G+ ωJ) λ̃d̂q +G
(
λd̂q − L̂

i
id̂q − R̃sid̂q

)
(14)

where the flux estimation error is λ̃d̂q = λd̂q−λ̂d̂q . Linearizing
around an operating point signified by a subscript 0 and using
IMAP, the error dynamics simplifies to

λ̃d̂q = (sI +G+ ω0J)
−1
(
G (θ̃ λ̂

a

d̂q0 + L̃ id̂q0)− R̃sid̂q0

)
(15)

where λ̂
a

d̂q0 is the auxiliary flux linkage vector defined as

λ̂
a

d̂q0 =
(
J L̂

i
−L∂ J

)
id̂q0. (16)

E. MTPA Law in function of Auxiliary Flux Vector

The analytical expression for the MTPA law [19] is derived
by differentiating torque w.r.t current angle γ as

dT
dγ

∣∣∣
|idq|

= 0. (17)

The terms relate to the real rotor reference frame (dq). Fol-
lowing (2), (

didq
dγ

)T

Jλdq + iTdq J
dλdq
dγ

= 0. (18)

Upon simplification and using the definition in (16),

iTdq J
(
JL−L∂ J

)
idq = 0 (19a)

=⇒ iTdq Jλadq = 0. (19b)

The expression (19b) dictates that the MTPA criterion is
respected if and only if the stator current is in phase with
the auxiliary flux vector.

III. PROPOSED SENSORLESS TECHNIQUE

The block diagram of sensorless scheme with flux observer,
position estimation and parameter adaptation is shown in
Fig. 3.
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A. Speed and Position Tracking

The position error signal εθ is part of the general error signal
ε obtained by manipulation of the observed and current model
flux linkages from the HFO, as illustrated in Fig. 1.

Dealing with position tracking, a conventional phase lock
loop (PLL) with a proportional-integral (PI) controller is
employed to drive the position error signal εθ to zero as

ω̂ = kp εθ + ωi ωi =

∫
ki εθ dt θ̂ =

∫
ω̂ dt (20)

where kp and ki are the respective gains. The position error
signal εθ is defined in the next section. The gains of the PLL
are tuned for a critically damped response considering εθ = θ̃
by placing the two poles at s = −Ωω as

kp = 2 Ωω ki = Ω2
ω. (21)

B. Projection Vector Framework

The general error signal ε is defined as the projection of
difference in observed and current model flux estimates on a
generic projection vector φ [5] [15], formulated as

ε = φT (λ̂d̂q − L̂
i
id̂q). (22)

Following the results of flux error dynamics, the linearized
form of the error signal is

ε = φT (λ̂ad̂q0 θ̃ + L̃ id̂q0 − λ̃d̂q
)
. (23)

Using (15), the error signal (23) is expressed in terms of both
position and parameter errors as

ε =φT (sI +G+ ω0J)
−1·(

(sI + ω0J)(λ̂
a

d̂q0 θ̃ + L̃ id̂q0) + R̃s id̂q0

)
. (24)

Decomposing (24) in terms of constituent errors, the error
signal is expressed as

ε = φT
[
hθ̃ hL̃d

hL̃q
hR̃s

]
x̃ (25a)

hθ̃ = (sI +G+ ω0J)
−1

(sI + ω0J) λ̂
a

d̂q0

hL̃d
= (sI +G+ ω0J)

−1
(sI + ω0J)

[
id̂0 0

]T
hL̃q

= (sI +G+ ω0J)
−1

(sI + ω0J)
[
0 iq̂0

]T
hR̃s

= (sI +G+ ω0J)
−1
id̂q0 (25b)

where x̃ =
[
θ̃ L̃d L̃q R̃s

]T
and the operators h are 2×1

vectors.
As an example, let φθ be the position error projection vector

and εθ the position error signal. Then, the steady-state position
error θ̃0 owing to parametric errors can be derived by equating
εθ = 0 as

θ̃0 = −
φT
θ

(
hL̃d

L̃d + hL̃q
L̃q + hR̃s

R̃s

)
φT
θ hθ̃

∣∣∣∣∣
s=0

. (26)

Steady-state error in the case of parameter adaptation can be
derived in a similar fashion.

Fig. 4. Frequency response of closed loop position observer [1] for simplified
projection vector (28) at three different operating speeds; dotted lines corre-
spond to the ideal projection vector with derivative term (27). Parameters:
g = 2π · 10 rad/s, Ωω = 2π · 25 rad/s.

In conclusion, the generic error signal ε is a function of
position and parameter errors. Due to the 2-dimensional nature
of the error space (dq), only two errors out of four can be
compensated concurrently.

C. Adaptive Projection Vector for Position Error Estimation

The position error projection vector φθ is designed to hold
the equality between position error signal and position error,
εθ = θ̃, in the absence of parametric errors, i.e., φT

θ hθ̃ = 1.
From (25), this leads to a projection vector of nature:

φT
θ =

−1

ω0 |λ̂
a

d̂q0|2
λ̂
aT

d̂q0 J
(
s I +G+ ω0 J

)
. (27)

It has been shown in [1] that the derivative term sI is non-
essential as far as the position error is concerned. Hence
the adaptive projection vector for position error estimation is
derived by dropping the derivative term as

φT
θ =

−1

ω0 |λ̂
a

d̂q0|2
λ̂
aT

d̂q0 J
(
G+ ω0 J

)
. (28)

To further support the simplification, frequency response of
the closed loop position observer is analyzed. For the PLL of
structure (20), the closed loop transfer function is given by

θ̂(s)

θ(s)
=

(skp + ki)φ
T
θ hθ̃

s2 + (skp + ki)φ
T
θ hθ̃

(29)

where the transfer function between the position error signal
and position error is

φT
θ hθ̃ =

εθ

θ̃
=
s2 + sg + g2 + ω2

0

(s+ g)2 + ω2
0

. (30)

It can be inferred that the transfer function is independent of
the operating point id̂q and the sign of rotation.
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Fig. 5. Steady-state position error θ̃0 in ◦ (electrical) of APP based position observer due to parameter inaccuracies: (a) R̃s = 0.25Rs at ω = 2π · 10
rad/s; (b) L̃d = 0.25Ld; (c) L̃q = 0.25Lq .

Fig. 4 shows the frequency response plot of (29) at different
operating speeds for the simplified projection vector (28) and
the ideal projection vector with derivative term (27). Notice
that the closed loop bandwidth is only marginally altered by
the absence of derivative term; hence, the simplification is
reasonable.

D. Resistance Immunity of APP

The sensitivity of proposed position error projection vector
(28) to resistance error is drawn from the steady-state position
error expression (26) at L̃d = L̃q = 0 as

θ̃0 = −R̃s ·
φT
θ hR̃s

φT
θ hθ̃

∣∣∣∣∣
s=0

=
R̃s

ω0 |λ̂
a

d̂q0|2
λ̂
aT

d̂q0 J id̂q0. (31)

The term λ̂
aT

d̂q0 J id̂q0 in (31) is the MTPA law derived in
(19b). This implies that the chosen projection vector (28) is
immune to resistance error on MTPA trajectory.

Fig. 5(a) shows the contour of steady-state position error
(31) for a 25% error in resistance, R̃s = 0.25Rs, at an
operating speed of ω = 2π · 10 rad/s. The position error θ̃0 is
seen to diminish towards the MTPA trajectory. As θ̃0 in (31)
is inversely proportional to ω, the R̃s becomes less relevant at
higher speeds, expectedly.

It is worth mentioning that the fundamental component
of the voltage error arising due to inverter dead-time is in
phase with the stator current vector id̂q and is reflected in the
resistive error term R̃s. Consequently, immunity also extends
towards non-ideal compensation of inverter errors. This is
demonstrated experimentally in later section.

E. Susceptibility to Inductance Errors

The sensitivity of APP to inductance errors L̃d and L̃q are
analyzed by evaluating the steady-state position error in (32)
and (33), respectively.

θ̃0 = −L̃d ·
φT
θ hL̃d

φT
θ hθ̃

∣∣∣∣∣
s=0

= −L̃d
λ̂a
d̂0
id̂0

|λ̂
a

d̂q0|2
(32)

θ̃0 = −L̃q ·
φT
θ hL̃q

φT
θ hθ̃

∣∣∣∣∣
s=0

= −L̃q
λ̂aq̂0iq̂0

|λ̂
a

d̂q0|2
. (33)

Fig. 5(b) & 5(c) plots the contour of steady-state position error
for a 25% inductance error, i.e., L̃d = 0.25Ld and L̃q =
0.25Lq , respectively. It is observed in Fig. 5(b) that regions in
the vicinity of MTPA trajectory are particularly sensitive to L̃d,
resulting in steady-state position error as high as ≈ 10◦. APP
is relatively less sensitive to L̃q as shown in Fig. 5(c) where
the maximum position error is ≈ 5◦ at high loads. Contrary to
the resistance error, the influence of inductance error is speed
independent.

IV. PARAMETER ADAPTATION

Exploiting the two degrees of freedom of the error domain,
a second projection vector

(
φT
θ J
)

orthogonal to APP can be
utilized to adapt parameters for improved reliability. To this
end, an generic error signal εj for parameter adaptation is
defined as

εj = φT
θ J (λ̂d̂q − L̂

i
id̂q)

= φT
θ J
[
hθ̃ hL̃d

hL̃q
hR̃s

]
x̃. (34)

Owing to the orthogonality, the position error does not
influence the adaptation error signal εj in steady-state, i.e.,

φT
θ Jhθ̃|s=0 = 0. (35)

Among the three parameter errors (L̃d, L̃q , R̃s) in con-
tention, the feasibility of adaptation is determined by evaluat-
ing the steady-state coefficients (DC gain) of error signal εj
in (25), reported in the following expressions:

φT
θ JhL̃d

|s=0 =
1

|λ̂
a

d̂q0|2
λ̂aq̂0 id̂0 (36)

φT
θ JhL̃q

|s=0 =
−1

|λ̂
a

d̂q0|2
λ̂a
d̂0
iq̂0 (37)

φT
θ JhR̃s

|s=0 =
1

ω0 |λ̂
a

d̂q0|2
λ̂
aT

d̂q0 id̂q0. (38)
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Fig. 6. Steady-state error signal εj of orthogonal to APP projection vector φT
θ J due to parameter inaccuracies: (a) R̃s = 0.25Rs at ω = 2π · 10 rad/s; (b)

L̃d = 0.25Ld; (c) L̃q = 0.25Lq . Note that the error signalεj is dimensionless.

A sufficiently high DC gain is essential for reliable adapta-
tion; bigger the gain, better is the prospect for adaptation. For a
fair comparison, the magnitude of error signal εj is calculated
for a 25% parametric error in R̃s = 0.25Rs, L̃d = 0.25Ld and
L̃q = 0.25Lq , shown in Fig. 6(a), 6(b) and 6(c) respectively.
The d-axis inductance error is seen to noticeably dominant by
a factor of ≈ 4, indicating a strong prospect for L̃d adaptation.

A. Stator Resistance Adaptation

In presence of accurate flux-map LUTs, a stator resistance
adaptation can be resorted to track temperature induced vari-
ations. The APP technique is inherently immune to R̃s and
dead-time on MTPA trajectory as pointed out in preceding
section. However, high performance drives can benefit from
accurate flux and torque estimation that are susceptible to
resistance error.

The resistance error signal εr is defined in (39) where φr
is the resistance error projection vector.

εr = φT
r (λ̂d̂q − L̂

i
id̂q). (39)

Akin to the design of APP, the resistance error projection
vector φr is desired to hold the equality between resistance
error signal and resistance error, εr = R̃s, in steady-state. It
follows from (38) that φr should be of nature:

φT
r =

ω0 |λ̂
a

d̂q0|2

λ̂
aT

d̂q0 id̂q0

φT
θ J. (40)

A resistance adaption law is defined with gain kr as

R̂s = kr

∫
εr dt. (41)

As alluded to earlier, the fundamental component of voltage
error due to non-ideal dead-time compensation is along the
current vector. Thus, the adapted resistance will be

R̂s = Rs +
1

|idq|
4

3
vdc fs t̃d (42)

where vdc is the dc-link voltage, fs is the switching frequency
and t̃d = td − t̂d is the error in compensated dead-time.

The expression (42) suggests that the resistance estimation is
more sensitive to dead-time error for small current magnitude.
However, the voltage error due to dead-time is diminished
at small currents due to parasitic capacitance [20]. Moreover,
as depicted in Fig. 6(a), the error signal diminishes at small
loads making it unobservable; hence, the resistance adaptation
is disabled for |T | < 0.2 p.u.

For small loads, the control deviates from MTPA trajectory
due to the necessary minimum excitation in d-axis. Thus,
a conflicting situation arises: the resistance adaption is not
feasible in the regions where APP is susceptible. The resulting
steady-state position error is unavoidable, as predicted in
Fig. 5(a). Adaptation is resumed at high loads which primarily
benefits accurate stator flux and torque estimation. Moreover,
it suffers from poor signal to noise ratio at high speeds and is
disabled for |ω| > 0.75 p.u.

B. Inductance Adaptation

In presence of inaccurate flux-maps LUT, adapting resis-
tance is not advisable as the error signal εj due to d-axis
inductance error in Fig. 6(b) is more dominant over resistance
error in Fig. 6(a) and could result in potential instability.
Hence, adaptation of L̃d is preferred which further helps to
reduce the steady-state position error in Fig. 5(b).

The inductance error signal εl is defined as

εl = φT
l (λ̂d̂q − L̂

i
id̂q) (43)

where φl is the inductance error projection vector. To satisfy
the equality, εl = L̃d in steady-state, it follows from (36) that
the inductance error projection vector φl should be of nature

φT
l =
|λ̂
a

d̂q0|2

λ̂aq̂0 id̂0
φT
θ J. (44)

The inductance adaptation law is defined with gain kl as

L̂id =
Λ̂d(id̂q)

id̂
+ kl

∫
εl dt. (45)

The adaptation term is added to the current model inductance
estimate for faster convergence. A small steady-state error L̃d0
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Fig. 7. Steady-state position error in ◦ (electrical) at L̃d = 0.2Ld and L̃q =
0.2Lq : (a) Without inductance adaptation; (b) With inductance adaptation.

Fig. 8. Locus of poles for ω = 0.2. . . 2 p.u at T = 1 p.u. where the markers ◦
and ∗ denote the speeds 0.2 and 2 p.u respectively: (a) Position and resistance
observer; (b) Position and inductance observer. Color code: PLL poles are
denoted in blue, flux observer in red, resistance/inductance observer in yellow.

persists in the presence of q-axis flux-maps errors (L̃q), given
by

L̃d0 = −L̃q ·
φT
l hL̃q

φT
l hL̃d

∣∣∣∣∣
s=0

= L̃q ·
λ̂a
d̂0
iq̂0

λ̂aq̂0 id̂0
. (46)

The resulting steady-state position error under inductance
adaptation is derived from (32), (33) and (46) as

θ̃0 =
−L̃q
|λ̂
a

d̂q0|2

(
λ̂aq̂0iq̂0 + λ̂a

d̂0
id̂0

λ̂a
d̂0
iq̂0

λ̂aq̂0 id̂0

)
. (47)

Fig. 7 shows the contour of position error with and without
inductance adaptation at L̃d = 0.2Ld, L̃q = 0.2Lq; no
resistance error is considered. A conspicuous improvement
in position error along the MTPA trajectory is discerned,
experimentally validated in the succeeding section.

A large position error is noticed in Fig. 7(b) for operating
points away from MTPA trajectory towards the q-axis. The
adaptation should be disabled at these operating points where
the strength of L̃d signal gets progressively weaker (see
Fig. 6(b)).

V. STABILITY ANALYSIS

The gains of PLL are chosen for a critically damped
response (21) with the poles at s = −Ωω = −2π · 25 rad/s,
corresponds to a bandwidth of 2π ·62 rad/s. The flux observer
gain is set to 0.2 p.u of rated speed as g = 2π ·10 rad/s. Owing
to slow time-varying nature, the resistance observer gain is set

Fig. 9. Experimental Setup of 1.1 kW SyR motor under test on a dSPACE
DS1103 control platform at a sampling frequency of 10 kHz.

TABLE I
MOTOR AND INVERTER PARAMETERS

Parameters Symbol Values Units

Rated power Pn 1.1 kW
Rated speed ωn 1500 rpm
Rated torque Tn 7.1 Nm
Rated voltage Vn 340 V
Rated current In 2.3 A
Pole pairs p 2 -
Stator resistance Rs 4.5 Ω
Shaft inertia J 0.04 kgm2

DC-link voltage vdc 565 V
Nominal dead-time td 1.9 µs

to kr = 2π · 0.5 rad/s. The bandwidth of inductance observer
is chosen to kl = 2π · 10 rad/s.

A. APP with Resistance Adaptation

The error dynamics of the position observer in (20) is be
expressed as

s θ̃ = ω̃i − kp εθ s ω̃i = −ki εθ. (48)

The combined dynamics of flux, position and resistance ob-
servers is given by

syr = Ar yr (49)

Ar =


−(G0 + ω0 J) G0 λ̂

a

d̂q0 0 −id̂q0
kp φ

T
θ −kp φT

θ λ̂
a

d̂q0 1 0

ki φ
T
θ −ki φT

θ λ̂
a

d̂q0 0 0

kr φ
T
r −kr φT

r λ̂
a

d̂q0 0 0


where yr =

[
λ̃d̂q θ̃ ω̃i R̃s

]T
. Fig. 8(a) shows the move-

ment of poles for ω = 0.2 . . . 2 p.u. The poles are seen to con-
verge to their designed value at high speeds; the movement of
the resistance observer pole (yellow line), although dependent
on operating point, is not as pronounced as the PLL and flux
observer poles. Stability at T = 1 p.u is ascertained.

Note that the control system becomes unstable for large
values of kr (eg. 2π·10 rad/s) at low speeds. Since temperature
is slow time-varying, a high kr is unwarranted.

B. APP with Inductance Adaptation

The combined dynamics of flux, position and inductance
observer is expressed as

syl = Al yl (50)
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Fig. 10. Immunity of observed position in the APP technique to resistance
variation of R̃s = ±1 p.u (± 4.5Ω) at ω = −0.2 p.u: (a) TL = 0.5 p.u,
away from MTPA due to imind ; (b) TL = 1 p.u, on MTPA trajectory.

Al =


−(G+ ω0 J) Gλ̂

a

d̂q0 0 G
[
id̂0 0

]T
kp φ

T
θ −kp φT

θ λ̂
a

d̂q0 1 −kp φT
θ

[
id̂0 0

]T
ki φ

T
θ −ki φT

θ λ̂
a

d̂q0 0 −ki φT
θ

[
id̂0 0

]T
kl φ

T
l −kl φT

l λ̂
a

d̂q0 0 −kl φT
l

[
id̂0 0

]T


where yl =

[
λ̃d̂q θ̃ ω̃i L̃d

]T
. Fig. 8(b) shows the move-

ment of poles for ω = 0.2. . . 2 p.u at T = 1 p.u. Similar to the
former case, the poles are seen to converge to their designated
value at high speeds.

The migration of PLL and inductance observer poles is
due to the absence of the derivative term in the simplified
projection vector (28), making it operating point dependent.
Nevertheless, stability is ascertained.

VI. EXPERIMENTAL RESULTS

The proposed sensorless scheme is validated experimentally
with a 1.1 kW SyR motor on a dSPACE DS1103 control
platform at a sampling frequency of 10 kHz. The output of
PLL is low pass filtered at Ωω . A PI speed controller with
critically damped poles at s = −2π · 1 rad/s is used for close
loop control. Load torque is imposed by the auxiliary drive
connected to the shaft. The parameters of the SyR motor under
test are tabulated in Table I.

Fig. 11. Variations on dead-time compensation (± 1µs) to emulate R̃s at
TL = 0.5 p.u and ω = −0.2 p.u: (a) Without Rs adaptation; (b) With Rs
adaptation.

Note that a high minimum current in imind = 0.6 p.u (2A) is
intentionally imposed to move the operation away from MTPA
to facilitate the demonstration of susceptibility of APP to
resistance error and the effectiveness of resistance adaptation
in mitigation.

A. Immuntity of Proposed APP to R̃s
The immunity of proposed technique to resistance variation

on MTPA trajectory is demonstrated in this section. A pertur-
bation of ±100% is injected to resistance within the control,
R̂s, with the physical stator resistance Rs remaining constant.
A load torque of TL = 0.5 p.u (non-MTPA) and TL = 1
p.u (MTPA) is imposed in Fig 10(a) and 10(b), respectively.
Despite the variations in observed flux and torque in Fig. 10(b),
the position is undeterred. However, when the MTPA is not
respected as in Fig. 10(a), the observed position is susceptible
to R̃s. In either scenario, stability is not compromised.

B. Stator Resistance Adaptation

The competency of resistance adaption is studied by impos-
ing deliberate variations on the dead-time compensation which
is equivalent to physical variations in resistance. A dead-time
variation of t̃d = ±1µs is equivalent to ±3 Ω at TL = 0.5 p.u;
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Fig. 12. Validation of d-axis inductance adaptation, enabled at t = 0 s: (a)
+25% error Λ̂d = 0.75Λd at TL = 0.5 p.u; (b) -25% error Λ̂d = 1.25Λd
at TL = 1 p.u..

the equivalence is a function of peak current and changes with
load as expressed in (42). In Fig. 11(a) and 11(b), the effect
of changes in dead-time without and with resistance adaption
is shown in juxtaposition. With the adaptation, the R̂s tracks
the changes in dead-time and thereby alleviates the impact on
the observed position, the stator flux and the torque.

C. Inductance Adaptation

A series of tests are conducted to validate the proposed
inductance adaptation scheme. In Fig. 12(a), a +25% error
in d-axis flux-maps LUT (Λ̂d = 0.75 Λd) is imposed at
TL = 0.5 p.u while in Fig. 12(b), a -25% error (Λ̂d = 1.25 Λd)
is imposed at TL = 1 p.u. Accurate q-axis flux-maps is
considered. For t < 0 s without adaptation, the steady-state
position error owing to L̃d is ≈ 9◦ (electrical). The inductance
adaptation is enabled at time t = 0 s upon which the position
error reduces to zero as estimated L̂id converges to Ld.

The performance under parametric error in both d and q-
axes flux-maps is analyzed in Fig. 13. An error of +20 % is
imposed (Λ̂d = 0.8 Λd and Λ̂q = 0.8 Λq) at TL = 0.5 p.u in
Fig. 13(a) while an error of -20% in d and +20 in q (Λ̂d =
1.2 Λd and Λ̂q = 0.8 Λq) is imposed in Fig. 13(b). For t < 0 s
without adaptation, the steady-state position error in Fig. 13(a)
is ≈ 9◦; it is lower in Fig. 13(b), ≈ 5◦, since the inductance

Fig. 13. Validation of d-axis inductance adaptation at Λ̂q = 0.75Λq , enabled
at t = 0 s: (a) +25% error Λ̂d = 0.75Λd at TL = 0.5 p.u; (b) -25% error
Λ̂d = 1.25Λd at TL = 1 p.u.

errors have opposing signs. As the adaptation is enabled at
t = 0 s, a small residue in steady-state position error, ≈ 2◦,
remains due to the error in q-axis flux-maps (L̃q).

VII. CONCLUSION

A projection vector framework is developed for analysis
of sensorless position observers under parametric errors. A
position error projection vector APP is proposed having immu-
nity to resistance and inverter errors on MTPA trajectory. The
impact of various parametric errors on steady-state position
error is analytically examined, revealing dominance of d-axis
inductance error.

In the interest of reliability, the projection vector orthogonal
to APP is utilized for parameter adaptation. A resistance
adaptation is developed to track the temperature induced
variations. Alternatively, an inductance adaptation is proposed
in the presence of inaccurate flux-maps. Stability analysis to
sketch the movement of poles of APP position observer with
resistance/inductance adaptation is undertaken.

The proposed technique is experimentally validated on a
1.1 kW SyR machine test bench, demonstrating the immunity
of APP to R̃s and feasibility of parameter adaptation for
improved reliability of position estimation.
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