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Summary

Civil infrastructure facilities, such as bridges and tunnels, have a considerable
impact on the economic, social and political growth of nowadays society. Such
structural systems, due to their inherent vulnerability, may be affected by aging and
degradation processes over time, which lead to a loss of the expected performances.

Structural Health Monitoring (SHM) has assumed a key role in the past two
decades in the management of important civil infrastructures, since it could provide,
on a continuous real-time basis, relevant information about the behavior of critical
structures, recognizing unsafe conditions and predicting potential failures.

Nowadays, several techniques are available for recognizing damages in civil en-
gineering structures, identifying any change in the intrinsic dynamic characteristics
of a system. Indeed, a large number of damage identification algorithms have been
developed over the years, from the simplest to the most sophisticated, capable of
identifying even very small variations in the dynamic behavior of structures.

However, in most cases, the available techniques have been tested and applied
to numerical case studies or, at best, to small structures with a limited number
of devices. Moreover, no methodology has been developed to cope with the most
critical aspects related to the need of monitoring a large number of structures,
equipped with many sensors, and providing at the same time a monitoring service
for reporting in real-time any anomaly in an automatic but reliable way.

This dissertation aims at providing a new methodology for the continuous and
automatic monitoring of a large number of structures instrumented with many sen-
sors, overcoming many of the issues related to the application and management
of widespread monitoring systems. More in detail, this work has focused on the
development and implementation of a data-based multi-level processing framework,
adequate to extract relevant information about the behaviour of structures from
continuous and long-term monitoring systems and automatically generate early-
stage system health indicators without any detailed analysis of the monitored in-
frastructure. Furthermore, the multi-level approach, based on different levels of
complexity, allows avoiding high computational costs and time while ensuring a
robust and reliable damage detection service.
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A numerical case study has been used for selecting the most reliable identifica-
tion algorithm to be implemented in the monitoring framework. Afterwards, the ro-
bustness, reliability and efficiency of the proposed methodology have been validated
through real case studies. Indeed, the multi-level approach has been applied for the
long-term real-time monitoring of a significant number of structures under normal
operating conditions. In particular, the implemented monitoring methodology was
tested thanks to real damage scenarios occurred on two of the currently monitored
structures. The first case study is a box composite highway bridge, strengthened
by both internal and external prestressing, where all the features of the proposed
methodology were applied and permitted to detect real damages occurred during
the monitoring period. The second case study is a pre-stressed concrete bridge from
the early 1965s, where real changes in structural stiffness were identified through the
dynamic monitoring system in which the proposed methodology has been adopted.

The two significant case studies permitted to demonstrate both the usefulness
and robustness of all the components included in the proposed methodology as well
as the main advantages of the developed monitoring framework. The multilevel
and data-driven method was in fact able to automatically generate system health
indicators (effectively detecting structural damages) without any specific analy-
sis on the monitored structures. Damage identification algorithms were combined
with statistical analysis and machine learning approaches for detecting anomalous
structural behaviours while avoiding high computational cost and time.
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Chapter 1

Introduction

1.1 Research Context
Civil infrastructure facilities, such as bridges and tunnels, have a considerable

impact on the economic, social and political growth of nowadays society. Such
structural systems, due to their inherent vulnerability, may be affected by aging
and degradation processes, which can lead to a loss of functionality over time that
turns into unsatisfactory structural performances under service loadings or acci-
dental actions.The social and economic impact of structural deterioration of civil
infrastructures is extraordinary high and highlights the importance of adequate
maintenance, repair, and rehabilitation of structurally deficient systems.

Over the past few years, there have been a number of remarkable bridge failures,
including the I-35W Mississippi River bridge which had a catastrophic breakdown
during the evening rush hour on August 1, 2007, killing 13 people and injuring 145
and the most recent disaster of Polcevera Viaduct, in Italy, which failed on August
14, 2018, killing 43 people who were crossing the bridge at the time.

All these deadly incidents, mainly caused by structural deficiencies, lack of
proper inspections and degradation, have significantly focused the attention of both
designers and owners on the management and condition assessment of large infras-
tructures. To this end, a number of procedures, methodologies and tools have
been implemented over the years in order to cope with the maintenance of the
aforementioned existing structures.

Visual inspection techniques are the main methods currently used to evaluate
the health of the majority of our infrastructures. However, the effectiveness of this
kind of analysis is heavily influenced on the inspectors’ experience and judgment and
guarantees a very limited levels of accuracy, considering that only visible damages
can be recognized.

A large study about the reliability of visual inspection for highway bridges has
been conducted by Moore et al. [50], which have shown that this type of inves-
tigation does not consistently provide accurate results about the health state of

1



1 – Introduction

(a) Polcevera Viaduct (b) I-35W Mississippi River bridge

Figure 1.1: Recent examples of bridge failures

a structure, despite being one of the predominant techniques used for assessing
bridge conditions. This kind of non-destructive evaluation method is time consum-
ing and cost inefficient and does not allow a continuous and effective inspection
program, leaving a gap in knowledge about the performances and deterioration of
infrastructures. In 2004, Phares et al. [54] investigated the accuracy and reliability
of documentation generated during visual inspections, having the same bridge in-
spected independently by 100 experienced inspectors. A significant variability has
been underlined by investigation results, proving the subjectivity of visual inspec-
tions and their poor reliability.

Structural Health Monitoring (SHM) is defined as the process of assessing the
health state of a structure, detecting any change due to damage or deterioration as
a function of time. SHM aims to provide, on a continuous real-time basis, relevant
information about the behavior of critical infrastructures, recognizing unsafe con-
ditions and predicting potential failures. SHM has gained the strong interest of the
research engineering communities in the past two decades, thanks to the possibility
of facilitating the routine inspection and maintenance activities and increasing at
the same time the frequency and accuracy of the performed risk analysis. In par-
ticular, the structural behavior and the performances of a structure can be directly
evaluated by processing real-time data collected by a network of sensors, which
monitor the response of the structure under service loads. In this way, damage
detection and characterization analysis can be performed in order to predict and
assure the ongoing safety of the monitored system.

Sensors are the most elementary but at the same time fundamental elements
of a SHM system. Indeed, they are installed in a structure to collect data about
the most significant parameters able to describe the system response under stresses
and loads, as well as some complementary information, such as environmental data
(temperature, wind, etc...). A wide range of devices has been developed over the
years to meet the needs of SHM. Depending on the purpose, the most used ones are
fiber optic sensors, accelerometers, inclinometers, strain gauges, GPS sensors, etc..

2



1.2 – Dynamic Monitoring

The application of such devices on structures, combined with strong acquisition and
process capabilities, allows the continuos assessment of the current state of system
health and provides the possibility to evaluate the structural integrity after extreme
events, such as earthquakes. However, despite all these undeniable advantages,
SHM struggles to find a large-scale application mainly because of the high cost of
the system devices, as well as the complex data management. In fact, installating
and querying a large number of sensors, just like processing and archiving the
enormous quantity of data generated, represents currently a big obstruction to the
massive diffusion of monitoring systems.

Recently, thanks to the simple, yet efficient, design, Micro Electro-Mechanical
Systems (MEMS) sensors, which have been initially employed for other applications,
have demonstrated to be a suitable solution for SHM uses. MEMS devices have
been employed since the 1990s for early-bird monitoring of civil infrastructures
but only in recent years technology has improved considerably, leading to higher
performaces and limited costs. This allows designing inexpensive and distributed
monitoring systems, easier to install and manage, in the view of creating a future
in which each structure will be continuously and almost automatically monitored,
from the construction until the end of its service life. The use of MEMS sensors for
SHM applications finds consensus in the literature, with promising results about
the reliability of these low-cost devices [16], [55], [7].

MEMS sensors may work in static and dynamic conditions, depending on the
physical phenomenon to be observed and consequently on the parameters able to
characterize it. Dynamic and static sensors, that is accelerometers and inclinome-
ters, may be used for measuring vibration and displacement to which structures
can be subjected. In particular, data collected by accelerometers are usually used
to analyze the dynamic behaviour of a system subjected to varying load conditions
over time (for example traffic load on a bridge). On the other hand, inclinometers
allow measuring structural deflections or residual deformation on bridge-like struc-
tures, as well as the evolution of phenomena evolving slowly over time, such as the
deformation of a tunnel section under a slope movement.

In this dissertation, different approaches for the analysis and interpretation
of data acquired from dynamic SHM systems installed on civil infastructures are
presented. The implemented metodologies are then tested and applied for the
analysis of data collected from a number of case studies, including highway bridges.

1.2 Dynamic Monitoring
Dynamic monitoring can be defined as the process of characterizing the be-

haviour of a structure through the study of vibrations induced by dynamic loads
and/or ambient excitation on the system. Vibration-based techniques for SHM
purposes have been studied since the early 1980s, mainly for applications to bridge
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structures. In 1980 Richardson [59] presented an in-depth survey of the state of
the art related to the damage detection approaches, based on modal analysis pro-
cedures. The survey showed that the application of vibration-based methodologies
for civil structural monitoring was still at primordial levels, unlike industrial appli-
cations (for example for rotating machinery).

Dynamic methods are based on the awareness that structural changes caused by
a damage result in a more or less noticeable change of the dynamic behavior of the
structure itself. The basic idea is that modal parameters, such as frequencies, mode
shapes etc.., strongly depend of the physical properties of the system, namely mass,
damping, and stiffness. As a consequence, any change in the physical properties
of the structure will cause also changes in its modal properties. In view of these
considerations, in the last decades the scientific community has focused its attention
on the experimental identification of modal parameters, to get important insight
about the dynamic performances of structures.

1.2.1 Experimental Modal Analysis
Experimental Modal Analysis (EMA) allows the identification of modal param-

eters from measurements of the vibration response of the structure subjected to
controlled excitation forces. This type of analysis is carried out through a number
of Forced Vibration Tests (FVT), which generate a vibration impact by means of
shakers or hammers. EMA methods has gained more and more interest since the
early 1970’s, thanks to the introduction of the digital FFT processing [60]. The
basic idea behind the EMA methods is that the response of a system exposed to an
arbitrary viration input can be obtained through the frequency response function
multiplied by the input forcing function.

Figure 1.2: Schematic description of the Experimental Modal Analysis method

Figure 1.2 shows a schematic overview of the Input-Output approach. A random
input force is applied to the system and causes all the modes of the structure to be
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activated. As a consequence, the response is given by a linear combination of all
the modes excited by the forcing function.

EMA has been extensively used over the years in different fields, expecially
automotive, industrial and aerospace engineering. However, the application of this
methodology becomes more challenging in civil engineering, due to the larger size of
the structures and the lower range of resonance frequencies. Indeed, it is extremely
complex to apply a controlled and measurable input force to a civil structure, due
to the high costs and dimensions of the necessary equipment. Furthermore, the
analysis should be repeated over time, increasing even more the testing costs and
considerably limiting the information about the structural behaviour between two
consecutive tests.

1.2.2 Operational Modal Analysis
An attractive solution for the dynamic characterization of structures is offered

by the Operational Modal Analysis (OMA), which allows avoiding the high costs
and time-consuming EMA operations. OMA can be defined as "the modal testing
procedure that allows the experimental estimation of the modal parameters of the
structure from measurements of the vibration response only" [57]. In other words,
OMA technique, also known as output-only approach, aims to use as input force the
excitation given to the structure by all the loads (traffic, wind..) and ambient forces
which act on the system under operating conditions. This means that the dynamic
properties of the structure, mainly resonance frequencies, damping ratios and mode
shapes, are extracted from the signal that represents the response of the system to a
non-artificial and unknown input excitation. The advantages deriving from the use
of this methodology are numerous, expecially when dealing with civil engineering
structures. First of all, OMA method is much less expensive than the traditional
experimental modal analysis as there is no need to generate a known artificial input,
which requires tests repeated over time using heavy and large dedicated equipment.
Moreover, ambient modal identification can be performed quickly (also in real-
time), since random excitation is freely available during operational conditions and
tests do not interfere with the regular use of the structure. Figure 1.3 shows a
schematic overview of OMA method.

As described in Figure 1.3, according to OMA methods, the structure, which
is assumed to be deterministic, linear and time invariant, is excited by a random
input, such as wind, traffic, rail irregularities ect... The measures output includes
the response of the structure under the aforementioned input as well as a stochastic
noise given by environmental effects and disturbances, instrument noise, discretiza-
tion noise and so on.

One of the most important implications of OMA methods is the possibility of
performing a reliable damage detection on civil infrastructures. In practice, this
implies the permanent installation of a set of accelerometers on the structure and
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Figure 1.3: Schematic description of the Operation Modal Analysis method

the development of dedicated algorithms to extract modal parameters, in order to
track their evolution over time. Unlike EMA methods, processing of data com-
ing from environmental excitation is more challenging because of the unmeasured
and unknown operational loads. Indeed, particular attention must be paid to sig-
nal noise and environmental influences on sensors output, in order to avoid the
erroneous identification of the dynamic parameters. Therefore, the need of devel-
oping robust and powerful algorithms has become increasingly evident, with the
aim of performing an automatic and reliable processing of a large number of data
collected in real-time from the monitoring system, taking into accont the envi-
ronmental changes (temperature, wind, etc.) which can lead to variations in the
dynamic response of the structure. In recent years, many steps forward have been
made regarding the data processing topic but some improvements are needed to
make the elaboration of the signal coming from sensors more straightforward, au-
tomatic and trustworthy. This means that an efficient OMA approach must take
into account al least the following steps:

• collecting and storing vibration data coming from sensors, under excitation
sources which are assumed of white noise-type;

• applying one or more OMA methodologies for the identification of the selected
dynamic parameters;

• removing environmental influences, such as temperature, humidity, etc., on
the modal parameters;

• evaluating the evolution of such parameters over time and detecting any
anomalies in the monitored structure.

Based on the above-mentioned considerations, some applications of the dynamic
SHM methods on existing structures will be presented in this dissertation, in order
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to highlight all the advantages of these approaches and underline their performances
when applied to full-scale structures.

1.3 Organization of Dissertation
This dissertation presents a methodology developed for the continuous dynamic

monitoring of civil engineering structures, in particular bridges. The main goal is
showing how to automatically and effectively process and use data generated by a
monitoring system, for understanding the performance characteristics of the mon-
itored structure and detect any abnormal behaviour. The dissertation is organized
as follows. Moreover, the logical relationship between chapters is illustrated in the
Figure 1.4.

Figure 1.4: Organization of the dissertation
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Chapter 1

It introduces the subject of this thesis, contextualizing the research field in
which it develops. More in detail, the aging of structures issue is described, with a
special focus on mantenance and inspection techniques currently used to evaluate
the health of the majority of existing infrastructures. Structural Health Monitoring
(SHM) process is presented as an alternative method for assessing the behaviour
of a structure and detecting any change during its life. Special attention is paid
to dynamic monitoring, which can be defined as the process of characterizing the
behaviour of a structure through the study of vibrations induced by dynamic loads
and/or ambient excitation on the system.

Chapter 2

It provides an overall description of the background of this work. In particular,
previous research in the SHM area are underlined through an extensive review of the
most impactful studies related to SHM methods and applications. An overview of
vibration-based damage detection techniques is illustrated, followed by a detailed
description of some of the most used frequency domain methods. Subsequently,
particular attention has been paid to the literature related to long-term monitoring
systems, able to continuously detect the evolution of damages over time. Finally,
based on the literature review, the main objectives and contribution of this work
have been highlighted.

Chapter 3

It defines the theoretical background behind some of the main used dynamic
identification methods, as well as some of the most common pre-processing tech-
niques for data coming from sensors installed on real structures. Afterwards, the
application of these methodologies on a numerical case study is shown, in order to
highlight advantages and drawbacks of each method.

Chapter 4

It describes and motivates the need for developing a new metodology for con-
tinuous and long-term monitoring of a network of structures, equipped with a large
number of sensors. A multi-level damage detection methodology is presented, with
the aim of highlighting the reliability, efficiency and robustness of the proposed
approch. The first part relates to a data acquisition and storage procedure for
efficently collect data from sensors and discard those deemed to be lacking in infor-
mation. Secondly, a strategy for elaborating a large amount of data in the shortest
possible time is explained. Afterwards, the multi-level damage detection procedure,
based on three different levels of alarm, is described. Special attention has been

8



1.3 – Organization of Dissertation

paid to the interaction between different sites of computational capability, which
allow the implementation of a reliable and computationally inexpensive monitoring
framework for an early damage detection.

Chapter 5

It presents a complete description of the monitoring system installed on a high-
way composite box girder located in Italy. This case study has been used to de-
mostrate the reliability and robustness of the proposed methodology, described in
Chapter 4, which allowed the identification of a real damage scenario occurred in
the structure during the monitored period.

Chapter 6

It summarizes a meaningful case study of continuous monitoring system applied
on a pre-stressed concrete highway bridge. This application shows the potentiality
of the implemented methodology in identifying any anomalous condition in real
operating bridges. More in detail, during the monitoring period, the structure
has been subjected to strengthening works, which of course stiffened the structure,
changing its intrinsic properties. Therefore, a very clear representation of the state
of the structure before and after the restoration works has been provided by us-
ing the developed methodology, giving a very complete test of the implemented
approach.

Chapter 7

It summarizes the main results of this dissertation, focusing on the most relevant
outcomes obtained by applying the proposed methodology to real operating struc-
tures. Moreover, some future research topics are pointed out, in order to outline
the plans for future developments in this area.
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Chapter 2

State of Art

This chapter illustrates the key findings collected over the years from the litera-
ture, in order to provide a comprehensive state of the art related to SHM methods
and applications. For this purpose, a extensive review of the most impactful studies
has been conducted to highlight the main results obtained as well as to create a
coherent overview on the most relevant aspects of the field. On the other hand, lit-
erature shortcomings are also underlined, with the aim of clearly define the overall
purpose of the present research work.

More in detail, in a first section of this chapter the main steps of structural
health monitoring have been reviewed with particular focus on highway bridge ap-
plications. Then, specific attention has been paid on vibration-based SHM methods,
mainly used for the case studies described in this dissertation and being the research
topic that has gained much interest from the scientific community in the last three
decades. Static monitoring applications have also been analyzed, summarizing the
current state-of-the-art related to the use of static measurements. Finally, particu-
lar requirements and constraints associated with the implementation of monitoring
systems are analyzed, highlighting advantages and disadvantages of the available
technologies and methods.

2.1 Structural Health Monitoring
Structural Health Monitoring (SHM) can be defined as the process of implement-

ing a damage identification strategy for a mechanical or civil engineering structure,
in order to determine the current state of system health [26].

Structural Health Monitoring starts to grow and develop since the 1980s, follow-
ing some tragic bridge failures (Chester Bridge - Illinois, Autobahnbrücke Franken-
thal Bridge - Frankenthal, Tacoma Bridge - USA etc...), that focused the attention
on the vulnerability of civil engineering infrastructures and on the need of moni-
toring their health state over time. In 1985 Collacott [18] provides a large overview
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of the main consequences of disasters affecting mechanical, aeronautical and civil
structures. In particular, he concentrated on the awareness that the functional life
of structures is limited in time and thus, it is essential to ensure their integrity over
the years. The traditional way of identifying any structural damage or deficiency
and therefore to guarantee the integrity of systems were and still are visual inspec-
tions. However, as mentioned in Chapter 1, visual inspections, as well as other
experimental techniques, present several drawbacks, such as the need to know a
priori the position of damages, the impossibility of inspecting the not accessible
portions of the structure, the limited accuracy level of the inspection results and
the very long times and high costs of each operation [50]. Moreover, traditional
visual inspection-based methods allow to identify only damages which are visible
from the outer surface of the structure; this means that all the structural defi-
ciencies that do not cause external evidences, such as for example the breakage of
precompression cables or early stage of corrosion in steel reinforcement bars, cannot
be identified by visual inspections. For all these reasons, a more global inspection
approach has come forward over the years, proposing a damage detection method-
ology that evaluates changes in some significant parameters of the structure, which
are able to provide useful information about the health state of the monitored sys-
tem. The development of structural health monitoring technology implicates the
coexistence and integration of several fields of study including sensor electronics,
signal processing and interpretation, structural knowledges, material science, etc...

The first research studies concerning the possibility of correlating a physical
damage with the variation of some significant parameters focused on the dynamic
properties of structures. Richardson [59] in 1980 reviews some results related to
the young concept of structural health monitoring, applied mainly to nuclear power
plants, rotating machinery and offshore platforms. He concentrated especially on
the hypothesis that changes in the vibration modes of a structure indicate modifica-
tions in physical properties like mass, stiffness and damping. However, the author
asserted that the effort of correlating structural failures to variations in dynamic
properties of a system was still in its early stages at that time.

This topic has been a subject that has draw considerable attention by the sci-
entific community in the ’70s and ’80s. An extensive literature is available in these
years concerning the detection of damages using changes in dynamic properties of
systems; in particular, several methods have been considered as effective for health
monitoring. A detailed state of the art on structural health monitoring has been
published by Doebling et al. [22] in 1996. In this research work, authors have sum-
marized the most significant contributions found in literature by 1996, including
some early papers published on the topic.

While changes in the dynamic properties induced by structural damages were
investigated, other alternative forms of monitoring have been developed over the
years. Special interest has been deserved for the so called static monitoring, in
which the observed quantities evolve slowly in time (few months or few years). The
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most common monitored parameters are displacements, tilts, deformations, cracks
amplitude etc...They can be used to evaluate variations in the behaviour of the
analyzed structure and/or in the material properties. A great number of methods
and technologies are available for monitoring such quantities. However, more at-
tention has been paid to the use of mechanical parameters as representative of the
health state of a structure. Glisic and Inaudi [32] describes a structural monitoring
system based on fibre-optic sensor techologies applied to a number of case studies.
Fibre-optic sensors are used to measure strain, temperature, inclination, and load
measurements with the aim of assessing the health condition of existing structures.

In 2006, DeWolf et al. [21] published an extensive report regarding a large-scale
research program carried out by the Connecticut Department of Transportation
and the University of Connecticut starting from 1994. In particular, four bridges
of different structural type were instrumented with a long-term monitoring system,
with the aim of better understand the behavior of bridges under operating condi-
tions. Both strain and acceleration were monitored by using tiltmeters, strain gages
and accelerometers. Results showed how both static and dynamic measurements
provided useful information for characterizing each bridge and its behavior.

As stated before, a considerable amount of literature has been published over
the past 30 years on structural health monitoring and damage identification topic.
The field of study is very broad and comprises a large number of methods and
applications; in this dissertation a more detailed analysis will be conducted only on
methods that affect this research, neglecting those that are not directly applied. In
light of this, the following paragraphs will present an analysis of the main procedures
connected to dynamic and static structural monitoring, by using accelerometers and
clinometers for bridge applications, respectively.

2.2 Dynamic Monitoring
In the last 30 years, SHM has gained the increased interest of the scientific com-

munity, especially with regards to vibration-based monitoring methods. Vibration-
based monitoring methods can be define as all the "in situ non-destructive analysis
of system characteristics – in the time, frequency or modal domains – for the pur-
pose of detecting changes, which may indicate damage or degradation" [12]. The
first applications of this approach has been registered for rotating machinery and
only few years later it was also applied to civil engineering structures. The main
concept behind the vibration-based monitoring method is that any damage that
occurs in a structure causes a change in its physical parameters, such as stiffness,
mass, or damping. Hence, detectable variation of dynamic properties of the sys-
tem (natural frequencies, modal damping, and mode shapes) can be identificated
and evaluated in order to detect the damage. This means that if the structural
response under a external random excitation is measured, modal properties can be
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determined and evaluated in time. In fact, if the dynamic response of a system
subjected to an external input is given by the folowing equation:

Mü+ Cu̇+Ku = F (t) (2.1)

where M, C and K are respectively the mass, damping and stiffness matrices
of the considered system and u is the displacement, is it possible to convert this
equation from the time domain to frequency domain using the Fourier transform:

S(ω) · x(ω) = F (ω) (2.2)

where:

S(ω) = −ω2M + iωC +K (2.3)

is the system matrix, that depends only on frequency ω; x(ω) and F (ω) are
respectively the nodal degrees of freedom and nodal forces.

In light of this, any damage in a physical property of the structure will reflect
in a change to the modal characteristics (natural frequencies, mode shapes, and
modal damping values), according to the trasformation illustrated in equation 2.2.

For the case studies illustrated in this dissertation, particular reference will be
made to response-based methods, which depend only on data coming from sensors,
that differ from model-based methods, which are based on a detailed numerical
model of the structure [25].

Several methods have been developed for the identification of global damages in
a structure. In particular, frequency domain methods and modal methods, which
extract modal informations from frequency domain data, are the most used in
literature because they are easier to be interpreted and than more attractive for
potential practical applications. Alongside these two methods, time domain ap-
proaches also exist but are used less frequently. However, none of these methods
(time, frequency and modal domain) is capable of solving all the damage detection
problems exhaustively; therefore, the research field is still widely open.

Frequency and modal domain methods have been extensively applied when ex-
perimental modal analysis took its first steps in the world of damage detection.
Then, when Operation Modal Analysis walked into the structural health monitor-
ing field, they developed further, together with some time domain methods.

Some extensive review on vibration-based damage detection methods have been
published over the years; reference can be made to [25], [12], [22], [63] for a more
detailed state of the art on the topic. Hereinafter a summary of the main methods
in the frequency domain is illustrated, according to what has been developed in
this research work. In particular, the follwing methods are analyzed:
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• Frequency-based methods;

• Mode shape-based methods;

• Curvature-based methods;

• Other methods.

2.2.1 Frequency-based methods
Frequency-based approach is one of the first method used for damage detection.

It is based on the awareness that changes in physical properties of structures reflect
in a shift of natural frequencies, which are inherent characteristics of a system. In
particular, numerous studies have shown that natural frequencies decrease if a dam-
age occurs. This method has several advantages being exploitable by using a very
small number of sensors, which means low costs and reduced measurement times.
On the other hand, frequencies can provide in most cases only informations about
the overall health state of the structure and are unable to identify localized damages
[61]. Moreover, in order to be able to appreciate a failure of reduced dimensions,
very precise measurements are required; otherwise, no significant frequency shifts
are registered [28]. However, there are examples where, after the removal of envi-
ronmental effects, even very small frequency variations were appreciated, as in the
case of the Z24 bridge [52].

The frequency domain method can be divided into two different approaches: a
forward problem and an inverse problem.

The Forward Problem

The forward problem, as most engineering problems, aims at estimating the
output of a known system subject to a given exitation force. In other words,
the natural frequency variations are calculated for a given damage in a known
structure. Damages are generally simulated through a mathematical model and
the corresponding decrease in natural frequencies is compared with that obtained
from in situ tests. This approach constitutes the theoretical foundation for the
application of the subsequent inverse problem.

The Inverse Problem

The inverse problem is aimed at calculating the state of a structure knowing
the system response to a given input. More specifically, if measurements in some
points of the structure are available, damage location and size can be obtained
through this method. The inverse problem has its roots in the late 1980s, when
Adams et al. [3] introduced the concept of identifying damages in a structure by
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measure natural frequencies in time. This method is actually the most commonly
used, even if it retains all the limitations of a frequency-based approach.

2.2.2 Mode shape-based methods
Mode shape-based methods consist in extracting from the mode shapes of a

structure useful information about possible damages affecting the structure itself.
This method has several advantages when compared with frequency-based method.
Firstly, it allows the identification of both global and local damages, since mode
shapes are more sensitive to local variations than frequencies and thus they can be
used to localize the failure. Moreover, the influence on mode shapes of environ-
mental effects, such as temperature, is lower compared to frequencies. This means
that closely spaced modes can be discerned and analyzed [29]. On the other hand,
this method is certainly more expensive and time consuming with respect to the
previous one, since a series of sensors is needed to be able to reconstruct the modes.

The introduction of this method led to the need of validating the experimental
modal model that generates from measured data. For this purpose, different as-
surance criteria have been developed over the years [4]. All the proposed criteria
are applicable for comparing theoretical vs measured data as well as measured vs
measured data. Among all, MAC and COMAC criteria are the most frequently
employed ones.

MAC Criteria

The Modal Assurance Criteria (MAC) [5] evaluates the correlation between two
different mode shapes. In particular, the MAC value between the mode i from
a dataset A and the mode j from a dataset B is obtained through the following
equation:

MAC(φAi, φBj) =

⃓⃓⃓
φT

AiφBj

⃓⃓⃓2
(φT

AiφAi)(φT
BjφBj)

(2.4)

Equation 2.4 can assume values ranging from 0 to 1, where 1 indicates the
strongest possible relationship between the two modes and 0 means the strongest
possible disagreement. Therefore, the evaluation of MAC coefficient can be assumed
as a good damage indicator. Indeed, if the MAC value calculated between modes
in the dataset A and those of the dataset B decreses in time, it might be possible
that a damage is evolving in the structure.
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COMAC Criteria

The Co-ordinate Modal Assurance Criterion (COMAC) is an extension of the
Modal Assurance Criterion and has been introduced by Lieven and Ewins [41] in
1988. Unlike the MAC, the COMAC compares different modes for the same location
point, with the aim of identifying which measured mode shape is responsible for a
low MAC value. It can be obtained by the following expression:

COMAC(i) =

[︂∑︁N
j=1(φAi)j(φBi)j

]︂2
∑︁N

j=1(φAi)2
j

∑︁N
j=1(φBi)2

j

(2.5)

where i indicates one measurement location, N is the number of mode pairs
that have been correlated and A and B are the two sets of mode shapes to be
compared (A and B are obtained at different time moments and compared to detect
anomalies). It takes values from 0 to 1, as for the MAC, where 0 indicates no
correlation and 1 maximum correlation. In particular, if COMAC value is low for a
single point of the structure, it possibly identifies a damage in that specific location.

Both MAC and COMAC can be used as useful tools for indentifying damages
in a structure. However, some limitations must be underlined. Indeed, MAC values
are less sensitive to localized damages since correlations between mode shapes are
calculated by averaging data from all the measurement points; this means that if a
single point shows a higher difference, it is hidden by the remaining points [2]. On
the other hand, although COMAC is a good tool for identifying localized damages,
it is unable to detect global failures that evolve slowly over time.

2.2.3 Curvature-based methods
Based on the aforementioned shortcomings of both frequency-based and mode

shape-based methods, the scientific community has focused on researching meth-
ods that would be more sensitive to both localized and global damages. In 1991,
Pandey, Biswas, and Samman [51] introduced the Mode Shape Curvature (MSC)
method, which consists in calculating the second derivative of the displacement
mode shapes. More in detail, the MSC values are obtained using a central differ-
ence approximation, as shown in equation 2.6.

κi = (ui+1 + ui−1 − 2ui)
L2 (2.6)

where u represent che displacement mode shape and L the distance between
two consecutive measurement points.

This method results to be more sensitive to localized damages as well as global

17



2 – State of Art

ones. Nevertheless, this method has the drawback of needing at least one mea-
surement point in the vicinity of the damage. This implies that, since the location
of the damage is unknown, a large number of measurement points are necessary.
Moreover, the derivative introduces a large of numerical noise in the final result
and, without proper numerical strategies, results are almost useless.

2.2.4 Other methods
In addition to the methods illustrated above, other damage detection methods

have been developed over the years. All these approaches will not be described in
this dissertation; the most relevant ones are just mentioned below.

Among all the proposed methods, of particular interest are: Modal Flexibility
Method, which uses variations in modal flexibility for damage detection; Modal
Stiffness Error Method, that calculates an error matrix in function of the flexibility
change in the structure and the initial stiffness matrix; Model Update Methods,
whose purpose is to find damages by updating mass, stiffness and damping matrices
to reproduce as closely as possible experimental data; Optimization Methods, that
aim to solve damage detection problems as an optimization problem, maximizing
or minimizing an objective function based on modal variables.

2.2.5 Long-term dynamic monitoring
All the above-mentioned methods have been widely used and applied over the

years to test their effectiveness in identifying localized or global damages in civil
infrastructures. It is thus available an extensive literature, which confirms that
the use of these methods, applied individually or combined together, allows the
identification of damages in civil engineering structures.

However, in recent years (since 2000 approximately) the scientific attention has
increasingly focused on long-term and automatic monitoring systems. In fact, since
damage detection techniques are able to detect the evolution of damages over time,
interest has moved to the application of these metodologies to assess the health state
of existing structures continuously. In particular, with the introduction of output-
only modal identification approches in place of the most traditional experimental
modal analysis (ref. Chapter 1), the identification of the dynamic parameters
can be performed without the need of exciting the structure with a controlled
input force, by using only the response of the system subject to an unknown and
random input. Thus, an effort as been made for monitoring structures, such as
bridges, for long-term periods, using normal operating condition loads (traffic, wind,
earthquake, etc.) as the main source of excitation.

One of the first and most relevant long-term applications of the last 20 years
concerns the Z24 bridge, located in Switzerland, which has been monitored during
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the year before demolition. In particular, Krämer, De Smet, and De Roeck [38]
explained that this bridge was used as a test field for two main purposes: the first
one was validating the damage detection procedures available for civil engineering
structures while the second one was to assess the influence of environmental factors
on bridge dynamics. The bridge was progressively damaged over a month, mea-
suring the evolution of the damage with a series of sensors installed on the struc-
ture. Maeck, Peeters, and De Roeck [45] showed that natural frequencies along
with modal displacements and their derivatives are good indicators of failures. In
particular, modal parameters were obtained automatically from the response data
through the stochastic subspace identification technique and the stabilisation dia-
grams, and their evolution in time was evaluated [39]. Modal curvature was also
used as damage identificatin method, showing promising results especially for the
lower modes [67]. Moreover, Peeters and De Roeck [52] investigated the influence
of environmental parameters on the evolution of bridge dynamic characteristics in
time. They discussed that temperature had a significant influence on the eigenfre-
quencies while other factors such as wind, rainfall and humidity showed a negligible
effect.

The growing interest for long-term monitoring systems was addressed by Ko
and Ni [37], which highlighted all the technical and technological challenges of
installing a system that requires interdisciplinary skills such as sensors technology,
communication, signal processing, system dynamics, data management, etc. More
in detail, Ko and Ni [37] stated that progress has been made in the application of
long-term monitoring systems; however, many aspects still remain open and thus
they have to be further explored.

In 2006, Lynch et al. [44] evaluated the use of a network of wireless sensors
for monitoring the Geumdang Bridge, Korea. This technology seemed to be cost-
effective and allowed data processing directly at the wireless sensor, which is cer-
tainly a great advantage in terms of elaboration times. However, the application
of the described technology has been limited to a total number of 14 sensors for a
short-term utilization; in particular it has been adopted to record two sets of forced
vibration tests. Thus, despite having a number of advantages, this application is
not suitable for long-term monitoring of full scale structures. In fact, to accom-
plish a long-term usage, some improvements have to be introduced. Moreover, it
adapts well only to structures with a reduced number of sensors; if not, the wireless
bandwidth saturates and data processing can no longer be performed.

Another interesting example regarding the use of wireless sensors for civil en-
gineering applications is presented by Zimmerman et al. [70]. As well as for the
aforementioned research work [44], the competitive costs together with data pro-
cessing capabilities provide undoubted advantages for wireless sensor systems with
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respect to the traditional tethered systems. In particular, authors performed three
different output-only methods on a number of processors embedded within a net-
work of wireless sensors. Nevertheless, as pointed out before, the long-term appli-
cability and the extension to a large number of sensors is still a challenge for this
technology.

A long term monitoring application has been presented by Cigada et al. [17], in
2008. In order to evaluate the health state of a high capacity civil structure, such
as the G. Meazza stadium in Milan, ambient vibration measurements have been
performed over a year. Structure dynamic has been evaluated in terms of natural
frequencies, modal shapes and damping factors by using OMA techniques. Since
the amount of data to be analyzed was large, data processing were performed to
all time windows which recorded significant vibrational levels.

Soyoz and Feng [64] illustrated a long-term monitoring system installed on a new
concrete bridge located in Irvine, California. This bridge was instrumented by 13
wireless accelerometers about four years before it was opened to traffic. A total of
5 years have been monitored, trasmitting real-time data every time vibration levels
exceeded a preset threshold. During the 5 years of monitoring, an high variation
in natural frequencies was observed due to both the influence of moving vehicles
and environmental effects (temperature and moisture). This study is of particular
interest because it represents one of the first long-term monitoring attempts with
automatic and real-time data processing.

An equally interesting example of long-term monitoring of bridge structures is
shown by Magalhães, Cunha, and Caetano [46]. Authors describe a continuous
monitoring system installed on a concrete arch bridge located in Porto, Portugal.
Different methodologies were used to identify structural anomalies in real-time.
Dynamic parameters were evaluated over 2 years, thanks to the use of automatic
identification algorithms. However, damage detection was performed by comparing
data from sensors to a numerical model; this represents a limitation since numerical
models contain inherently some uncertainties which make the problem no longer
well-defined.

Ubertini, Gentile, and Materazzi [65] showed, using experimental data from two
Italian bridges, a fully automated identification method suitable for the continuous
processing of data coming from long-term monitoring systems. In particular, the
dynamic characteristics of the investigated structures have been studied through a
cluster analysis, which proved to be a reliable tool for real-time automated struc-
tural monitoring.

Significant results have also been obtained by other authors in recent years, as
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for example [11], [47], which have shown how the interest in long-term and almost
automatic structural health monitoring systems is growing.

An equally significant effort has been made to apply machine learning algo-
rithms for structural health monitoring. An extensive and in-depth work about
the advantages deriving from the application of machine learning techniques has
been published by Farrar and Worden [27] in 2012. Authors investigated the use of
methods such as neural networks, genetic algorithms, supervised and unsupervised
machine learning algorithms and support vector machines for detecting structural
changes in civil engineering infrastructures. These techniques are very useful for
automatic and blind detection of damages; indeed, they are a still open field of
research.

2.3 Research Objectives and Main Contribution
Paragraphs 2.1 and 2.2 illustrated the key findings available in the scientific

literature related to structural health monitoring and, more particularly, to dy-
namic monitoring methods and applications. Over the years, numerous studies
have been carried out on the techniques that can be used to recognize damages in
civil engineering systems, analyzing all the parameters which are most sensitive for
identifying variations in the intrinsic dynamic characteristics of a system. Indeed,
a large number of damage identification algorithms have been developed, from the
simplest to the most sophisticated, capable of identifying even very small variations
in the dynamic behavior of a structure. However, in most cases, these techniques
have been tested and applied to numerical case studies or, at best, to real small
structures with a limited number of sensors.

In recent years, an effort has been made towards continuous monitoring systems,
which try to apply the developed damage detection methodologies to assess the
health state of existing structures in real-time. Nevertheless, literature is currently
lacking in real applications of widespread monitoring systems, with a large number
of sensors, continuously active under normal operating conditions for long periods
of time (see paragraph 2.2.5). Specifically, there are no examples of monitoring
systems capable of generating, in case of anomalies, automatic alarms, which would
turn in management actions on the structure. The crucial point lies precisely in
the comparison between what has been developed over the years from a theoretical
point of view and its applicability in the real world, where false alarms are not
acceptable, in the same way that the occurrence of damages cannot be overlooked.
Indeed, very few works describe real data, regularly collected along several years
by reliable continuous dynamic monitoring systems installed on bridge structures.
Above all, no methodology has been developed to cope with the most critical aspects
related to the need of monitoring a large number of structures, equipped with many
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sensors, and providing at the same time a monitoring service for reporting in real-
time any anomalies in an automatic but reliabe way.

Based on all these considerations, the major contribution of this work is to pro-
pose a methodology that can be effectively used for the continuous and automatic
monitoring of a large number of structures instrumented with many sensors, over-
coming many of the issues that inevitably arise in the application and management
of real monitoring systems. More in detail, one of the main contribution is to fill up
the large difference existing between making academic research based on numerical
simulations or limited experimental analysis, and the real application of widespread
systems which generate large databases collected in real structures continuously.

Therefore, taking into account the needs and shortcomings highlighted in this
chapter, it is possible to summarize the main objectives and major contributions of
this dissertation as follows:

1. development, implementation and validation of a new methodology for con-
tinuous and long-term monitoring of a network of structures, equipped with
a large number of sensors, which allows to efficiently obtain reliable system
health indicators, used for carrying out a preventive diagnostics of any pro-
gressive damage on structural elements;

2. conception and development of all the routines and algorithms needed for
defining a multi-level distributed data analysis framework, able to automati-
cally extract useful information from data continuously collected by dynamic
systems, in order to create a smart, lasting and efficient monitoring architec-
ture, based on Internet of Things (IoT) tools. In particular, sensor nodes,
IoT gateways and a Data Center, also known as IoT Cloud, have been pro-
vided with Edge of Things (EoT) technology, in order to efficently manage
the large number of connected devices by using intelligent algorithms and
architectures that lead to a more interoperable system. More in detail, the
IoT Gateway allow IoT communication, that is device-to-device communi-
cations or device-to-cloud communications while the IoT cloud include the
infrastructure needed for processing and storing real-time data;

3. Application of the proposed methodology to a significant number of struc-
tures (about 20 bridges), with different geometry, static scheme and intrinsic
characteristics;

4. Identification of real damage scenarios, which have been recorded by the mon-
itoring system, for two significant case studies. Notably, the developed mon-
itoring system has been conceived and installed on the selected case studies,
which have been monitored for more than 2 years and are still under real-
time control. All the features of the dynamic monitoring system have been
applied, showing the ability of the proposed methodology to provide reliable
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and robust real-time information about the health status of the monitored
structures, demonstrating the usefulness of vibration-based health monitor-
ing systems, which make it possible to preventively detect real damage oc-
currence.

The objectives and contributions described above are detailed in the following
chapters. In particular, it is important to underline that the motivations that led to
the development of the methodology described in this work are to be found in the
need of having a procedure that solves many of the issues that arise when applying
theoretical studies to a practical case.
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Chapter 3

Dynamic Monitoring

3.1 Chapter Introduction
This chapter illustrates the theoretical background behind some of the main

OMA methods, used for the dynamic identification of civil engineering structures.
Subsequently, the application of the described methodologies on a numerical case
study is shown, in order to highlight advantages/disadvantages of each method.
Finally, one of these OMA methods is selected for automatically detecting any
structural damage, through a real-time, efficient and robust monitoring system to
be applied to full-scale bridge structures under operating conditions (chapter 4).

As mentioned in chapter 1, output-only modal analysis has attracted much
attention from the engineering scientific community in the last few decades, given
the difficulty and high cost of exciting artificially (using for example hammers
or shakers) large civil infrastructures and perform the well known Experimental
Modal Analysis (EMA). Instead, Operational Modal Analysis (OMA) gives the
possibility of estimating the modal characteristics of a structure without knowing
and/or controlling the vibration input. In particular, the excitation source is a
zero mean gaussian white noise, which represents the variety of ambient forces,
assumed to be random, acting on the structure under its real boundary and load
conditions. Through this analysis technique, it is possible to obtain the modal
parameters describing the dynamic behaviour of the structure, such as mode shapes,
natural frequencies and damping ratios. Considering that the ambient response
analysis provides a non-deterministic knowledge of the input signal, but on the
contrary is based on random processes, it is often identified as "stochastic system
identification" technique. Inasmuch as this process is of random type, that is, it
is the representation of quantities that varies randomly over time and with certain
characteristics, some assumptions are needed.

Firts of all, it is assumed that all OMA methods retain linearity, which means
that the dynamic response of a system can be obtain as a given combination of
all the inputs acting on it. This assumption is most of the time quite reasonable,
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even if there are cases of concentrated or widespread non-linearity for which specific
analysis are required.

Secondly, the hypothesis of stationarity is also essential in order to consider the
probability distribution of the stochastic process constant over time. This implies
that any variation of the dynamic parameters characterizing the structure can be
assumed as an indicator of a change in the system and therefore of a potential
damage.

Finally, as the input is considered to be a white noise signal, it is assumed
that the output contains full information about all the modes of the structure.
This assumption does not actually correspond to the real operating conditions in
which dynamic monitoring is performed. In fact, full-scale structures are excited
by environmental factors, such as wind, traffic, etc.., which themselves have a non-
constant spectrum. This leads to the awareness that, although the assumption of
having a white noise input has been made, some modes will be more excited than
others according to the random forces acting on the system.

In all the applications presented in this chapter, the aforementioned assumption
are considered holded.

3.2 Signal Processing
Signal processing plays a key role in extracting useful and correct information

from data recorded by a network of sensors. Indeed, processing vibration signals in
an appropriate way is essential for obtaining the most accurate representation of
the real behavior of the structure. In particular, signal processing refers to all the
numerical and technical operations needed for translating the real analog signal,
corresponding to the dynamic response of the structure over time, to data suitable
for subsequent analysis, such as modal identification processes.

Signal processing is particularly tricky when passing from time to the frequency
domain. Indeed, vibration signals are defined as mathematical functions of time.
However, they are commonly studied through mathematical models in which fre-
quency is considered the reference variable. This conversion (time to frequency)
involves a series of inevitable approximations in the transition from a digital signal
to a frequency spectrum, which must be taken into account for obtaining a result
without undetermined errors.

The effects of a poor signal processing can genarate errors, such as aliasing,
leakage and quantization error, which can affect the results of subsequent analyzes.
For this reason it is crucial to mitigate, by the use of mathematical procedures,
such errors.

The following paragraphs illustrate the main procedures used for avoiding an
erroneous processing of data recorded by sensors.
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3.2.1 Sampling frequency
Sampling can be defined as the reduction of a continuous-time signal to a

discrete-time signal. Real signals are obviously continuous, i.e. analog, so it is nec-
essary to convert them from analog to digital using an analog-to-digital converter
(ADC), which punctually samples real continuous functions at regular intervals of
time. This means that the sampling operation is performed by measuring the con-
tinuous function every T seconds, which represents the sampling interval. Thus, a
sample can be defined as the value corresponding to a specific point in time. As a
consequence, the sampling frequency is the number of samples per second:

fs = 1
T

(3.1)

The sampled digital signal can in turn be converted back to the continuous
signal by interpolation algorithms. However, if the sampling frequency fs has not
been chosen carefully, errors in the signal processing can be produced.

Aliasing

Aliasing, as its name suggests, is the assumption of a "false identity" by a signal
when sampled. It is a typical effect generated from an incorrect sampling rate
which makes different signals indistinguishable when sampled. This implies that the
reconstructed sampled signal is different from the original continuous one. Figure
3.1 shows an example of aliasing:

Figure 3.1: Aliased signal due to Undersampling

The main measure taken to prevent aliasing is to sample more than twice the
highest frequency (Nyquist–Shannon sampling theorem), which avoid the construc-
tion of a distorted signal.

Moreover, since the interference of erroneous frequencies (aliasing) can occur
even when the very wide band random signals are not correctly filtered and thus the
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influence of very high frequencies compromises the sampling, an analog anti-aliasing
filter (AAF) is necessary to prevent from aliasing. In particular, a low-pass filter is
used to remove all frequencies above the Nyquist frequency prior to sampling.

Quantization error

Since the real analog signal is converted into a discrete digital signal, this dis-
cretization also applies in amplitude. This means that countinuous input values
are reduced to a smaller discrete dataset through a fixed number of digital levels,
known as quantization levels. This process introduces a difference (round-off error)
between the original values and the quantized ones, called quantization error.

Figure 3.2: Quantization error

The higher the quantization error, the smaller the number of quantization lev-
els, which depends on the number of bits (an n− bit converter has 2n quantization
levels). This means that an higher resolution is needed to prevent from this distor-
tion. In particular, the relationship between resolution (in bits) and quantization
noise can be expressed as:

S/N = −20 ∗ log 1
2n

(3.2)

where n is the resolution of the A/D converter in bits.

3.2.2 Spectral leakage
Spectral Leakage is an effect that takes place due finite windowing of the data.

It is caused by the truncation of a signal to a finite length, which is not an integer
multiple of the period of each and every signal component. As a consequence,
in addition to the real frequency components of the signal, additional frequencies
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starts appearing in the spectrum. This phenomenon of "migration" of the energy
associated with the true frequencies to other frequencies is one of the most serious
problems in signal processing.

To mitigate this distortion, the signal is usually pre-multiplied by a function,
known as a window function. The objective of this operation is to obtain a gradual
decay of the amplitude of the signal towards the ends of the sampling interval, so
as to be more similar to a true periodic signal. Indeed, a window function is defined
to be zero-valued outside of some chosen interval and symmetric around the middle
of the interval.

A number of window function has been introduced over the year by the liter-
ature; however, the most widespread and effective one is the sinusoidal Hanning
window, introduced by Julius von Hann and defined as:

ω(n) = 0.5 − 0.5cos( 2πn
M − 1) (3.3)

where n is between 0 and (M − 1).

3.3 Dynamic models
In this section, some theoretical concepts concerning the dynamic models of

structural systems are addressed. In particular, in order to describe the dynamic
behavior of a structure, be it in the civil, aerospace or mechanical engineering field,
there is a need for a mathematical model able to reproduce the relationship ex-
isting between the applied input forces and the response of the structure in terms
of displacements, velocities and accelerations. In this regard, it should be empha-
sized that a model always represents an idealization of reality and therefore some
simplifications must be made in any model. Moreover, different models can be
adopted to describe the same behavior, which in this case is a time-invariant vi-
brating behavior. In this paragraph, three different models that can be used to
describe the dynamic response of a system are illustrated. In particular, starting
from the equations of motion for the Spatial Models (nodal representation), Modal
Models (modal representation) and State-Space Models are described. An extensive
literature is available on the subject ([15], [24],etc..) and therefore only essential
concepts are illustrated in this section.

3.3.1 Spatial Model
The dynamic behavior of a physical system is traditionally described by the

differential equation of motion, in terms of displacement, velocity and acceleration
as a function of time. For a Multi Degree Of Freedom (MDOF) system, which is
the case of real systems, the equation of motion is:
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[M ] ü (t) + [C] u̇ (t) + [K]u (t) = f(t) (3.4)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,
the vector u(t) contains the displacements and f(t) defines the input forces.

The second order linear differential equation 3.4 represents the Spatial Model in
structural dynamics, in which forces and displacements are expressed with respect
to the physical coordinates of the system. This equation, which in general refers to
damped MDOF systems, has an exponential solution obtained solving an eigenval-
ues problem whose eigenvectors are complex (meaning that the different solutions
are not in phase).

However, the equation 3.4 constitutes a system of n equations containing n
variables. In general the n equations are coupled, which means that each equation
includes different components of the displacement vector u(t), corresponding to
various DOFs. In order to overcome this drawback and make the solution of this
equation simpler, the orthogonality properties of natural vibration modes can be
used to decouple the equations of motion of a linear viscous system with N degrees
of freedom, as reported in the following paragraph.

3.3.2 Modal Model
As mentioned in the previous paragraph, the solution of the equation 3.4 can be

decomposed through the Modal Model formulation. Indeed, modal analysis allows
decoupling the various equations, so that each of them represents a system with
a single degree of freedom. This means that a MDOF system can be analyzed as
a combination of multiple SDOF systems, corresponding to the different natural
vibration modes of the structure. Each vibration mode is uniquely characterized
by a single natural frequency value and shape.

The described transformation can be obtained by imposing that:

u(t) = Φq(t) u̇(t) = Φq̇(t) ü(t) = Φq̈(t) (3.5)

in which the displacement vector u(t) is converted into a new vector q(t) of size
n×1, whose components refer to the modal (called normal or principal) coordinates
and no longer the spatial ones. Φ is the modal matrix with size n × n, containing
in the columns all the n modes of the system. Whit reference to 3.5, the equation
3.4 can be thus rewritten in the form:

[M ] Φq̈ (t) + [C] Φq̇ (t) + [K] Φq (t) = f(t) (3.6)
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and, by multiplying all the terms of 3.7 for ΦT on the left, the following expres-
sion can be obtained:

ΦT [M ] Φq̈ (t) + ΦT [C] Φq̇ (t) + ΦT [K] Φq (t) = ΦTf(t) (3.7)

in which the modal mass, damping and stiffness matrices are diagonal for the
orthogonality properties of the modes with respect to the mass and stiffness matri-
ces.

M̂ = ΦT [M ] Φ =

⎡⎢⎢⎢⎣
. . .

Mn

. . .

⎤⎥⎥⎥⎦ (3.8)

Ĉ = ΦT [C] Φ =

⎡⎢⎢⎢⎣
. . .

Cn

. . .

⎤⎥⎥⎥⎦ (3.9)

K̂ = ΦT [K] Φ =

⎡⎢⎢⎢⎣
. . .

Kn

. . .

⎤⎥⎥⎥⎦ (3.10)

that is:

M̂ q̈(t) + Ĉq̇(t) + K̂q(t) = F̂ (t) (3.11)

Moreover, by dividing all the terms for the modal mass M̂ , the equation for a
single mode i becomes equal to:

q̈i(t) + 2ξiωiq̇i(t) + ωiqi(t) = F̂i(t)
M̂i

i = 1, ..., n (3.12)

considering the well known following relationships:

ω2
i = K̂i

M̂i

ξi = Ĉi

2M̂iωi

(3.13)
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where ωi is the modal frequency associated to the i-th mode and ξi represents
the modal damping ratio.

As shown, the modal model allows transforming a MDOF system, including
n coupled differential equations defined in terms of geometric coordinates, into n
decoupled SDOF differential equations, defined in terms of modal coordinates.

3.3.3 State-Space Model
An analogous and equally valid method to solve the dynamic problem is rep-

resented by the so-called state-space formulation. According to this method, the
second order differential equation problem can be transformed into a first order
one, by using some mathematical trick. In particular, the displacement vector u(t)
can be converted into a state vector, so defined:

z(t) =
{︄
u(t)
u̇(t)

}︄
(3.14)

With reference to 3.4, all the terms can be divided by the mass matrix M , thus
obtaining:

ü(t) + [M ]−1[C]u̇(t) + [M ]−1[K]u(t) = [M ]−1f(t) (3.15)

which, considering the assumption made in equations ?? and 3.15, leads to:

ż(t) =
[︄

0 I
−M−1K −M−1C

]︄
z(t) +

[︄
0

M−1

]︄
f(t) (3.16)

From this equation it is possible to define the two following matrices:

A =
[︄

0 I
−M−1K −M−1C

]︄
B =

[︄
0

M−1

]︄
(3.17)

where A is defined as the state matrix, containing all the information about the
dynamics of the system and B is known as the input matrix.

On the other hand, the observation equation can be written as:

ui(t) = [Ca]ü(t) + [Cv]u̇(t) + [Cd]u(t) (3.18)

where ui(t) is the vector containing the outputs from sensors and Ca, Cv, Cd

are matrices that have all the elements equal to zero except in correspondence of
the i-th degree of freedom, where the outputs are measured. In other words, these
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matrices are used to identify which degree of freedom is recorded during the test
phase. Now, it is possible to substitute ü(t) from equation 3.15 in equation 3.18,
obtaining the following matrices:

C =
[︂
Cd − CaM

−1K Cv − CaM
−1C

]︂
D = [CaM

−1] (3.19)

where C is the output matrix and D is the direct transmission matrix, as it
directly correlates the input given to the system to the measured outputs.

The equation of motion 3.4 can thus be transformed into the so-called state-
space model, which is obtained by combining the state equation with the observa-
tion equation, as reported in the following expression:⎧⎪⎨⎪⎩

ż(t) = [A]z(t) + [B]f(t)

y(t) = [C]z(t) + [D]f(t)
(3.20)

where z(t) represents the state vector containing the real displacement and ve-
locity vectors of the dynamic system, as defined in equation 3.20, f(t) is the exitation
force and y(t) is the output vector as measured.

Using this approach, the dynamic system is thus transformed into a 2N dif-
ferential equations of the first order. In particular, the state equation describes
the state process which depends only on the dynamic characteristics of the system
([A]z(t)) as well as on the input foces ([B]f(t)). The observation equation represents
the transformation of the hidden state z(t) into an output signal, that is further
corrupted by a noise process ([D]f(t)).

The state-space model described above refers to a continuous-time model. How-
ever, in real dynamic tests, the measurements of a dynamic system under the ex-
citation of an input force are discrete in time. As a consequence, a transformation
from a continuous-time model to a discrete-time model is needed to adequately de-
scribe experimental data. The relationship between continuous and discrete time
system matrices is [30]:

[Ad] = e[Ac]∆t

[Bd] = ([A] − [I])[Ac]−1[Bc]

[Cd] = [Cc]

[Dd] = [Dc]

(3.21)

where the subscript C indicates the continuous-time and the subscript D indi-
cates the discrete one.
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It is notable that the State-Space Model describes the state of a system under
a particular realization; this means that there are infinite equivalent state-space
representations for the same dynamic system subjected to different test conditions.

3.4 Theoretical background of OMA identifica-
tion methods

As mentioned in paragraphs 1.2 and 3.1, Operational Modal Analysis (OMA)
is a complementary technique for the identification of the modal properties of a
structure using vibration data measured on site. Compared with traditional meth-
ods, OMA is based on measuring the response of the test structure only, being the
input force unknown. OMA techniques allow the monitoring of civil, mechanical
or aerospatial structures knowing only the response of the system to a random
dynamic input. In fact, all this structures (expecially civil engineering ones) are
difficult to be excited by a controlled external forcing, due to both their boundary
conditions and their considerable size. With a view to monitor continuously the
behavior of a structure, readings from sensors can be collected and processed us-
ing OMA methods without compromising the normal traffic operations, avoiding
interferences or interruptions. Moreover, for all the reasons given, the cost of the
OMA techniques is considerably lower than the EMA ones.

In this paragraph, a brief description of the most common OMA identification
methods is presented. In particular, an overview of the available OMA algorithms
is first delineated, followed by a detailed description of some of the most used and
representative identification techniques that have been taken into account in the
present research work.

3.4.1 Overview of OMA methods
Output-only system identification methods are based on the possibility of de-

scribing the dynamic behavior of a structure either through a set of differential
equations in time domain, or through a set of algebraic equations in the frequency
domain. Thus, all the techniques used for the identification of modal parameters
of dynamic systems can be grouped into two main categories: time domain and
frequency domain.

Time domain methods are based on the analysis of the time histories from
sensors while frequency domain methods use the spectral density function to process
data. All these methodologies can in turn be divided into parametric and non-
parametric methods. The parametric methods estimate the modal characteristics
of a dynamic system from a parametric model, extrapolated from the processed
signal through a fitting procedure. The non-parametric models instead derive the
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modal parameters directly from data, without the need to generate a descriptive
model of the structure.

3.4.2 Frequency Domain Methods
Peak-Picking (PP)

The simplest and most immediate non-parametric method for the modal pa-
rameter identification, in frequency domain, is the so-called Peak Picking (PP). It
consists in evaluating the natural frequencies from the simple observation of the
peaks in the graph of the auto-spectra of the measured outputs, the vibrational
modes from the ratio between peaks at various points of the structure and the
damping ratios from the "width" of the peaks [23].

The peak-picking method is based on the assumption that close to a peak, that
is around a resonance, the system behaves as a SDOF system, considering that just
one mode is dominant and the contribution of other vibration modes is negligible.

According to this method, the resonant frequencies are thus obtained, for the
i-th frequency, as:

ωi = ωpeak (3.22)

while, the relative damping is calculated as:

ζi = ω2 − ω1

2ωi

(3.23)

where ω1 and ω2, called half-power frequency points, are two frequency points
(with the assumption that ω2 > ω1) on either side of the identified frequency ωi for
which:

|X(ω1)| = |X(ω2)| = |X(ωi)|√
2

(3.24)

Moreover, for the i-th resonance, the following equation can be written for a
SDOF system:

H(ω) = Ai

ω2
i − ω2 + 2iζiωωi

(3.25)

where Ai is the modal constant, related to the mode shape. Hence, by combining
the equation 3.22 with the equation 3.25:
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Q = |H(ωi)| = Ai

2ζiω2
i

(3.26)

So, the modal constant Ai can be obtained as:

Ai = 2Qζiω
2
i (3.27)

This method has the advantage of providing an acceptable approximation of
modal parameters, if the modes are clearly separated, in a simple and quick way.
It can be advantageously used for a first check of the quality of data collected by
sensors as well as for a first estimation of the dynamic properties of the system.
However, the method presents some limitations, mainly due to the low level of
accuracy as well as the impossibility of identifying close modes.

Frequency Domain Decomposition (FDD)

One of the most advanced non-parametric frequency domain identification meth-
ods is the Frequency Domain Decomposition (FDD) method. This methodology has
been firstly proposed by Brincker, Zhang, and Andersen [10] in 2000 and is based
on the assertion that the eigenvectors, which represent the vibration modes of the
system, constitute a base, being linearly independent, and therefore any movement
of the system can be represented by their linear combination. It is therefore pos-
sible to separate the components of the different vibration modes. This property
can be applied to the spectral density function (PSD), through a Singolar Value
Decomposition (SVD) of the spectral matrix into a set of auto spectral density
functions, corresponding to SDOF systems.

It is possible to obtain the relationship between input x(t) and outputy(t) for a
general MDOF system, and thus the PSD matrix, by taking the Fourier transform:

[Gyy(ω)] = [Φ][Gxx(ω)][Φ]H (3.28)

where Gyy(ω) is the power spectral density (PSD) matrix of the output, Gxx(ω)
is the input PSD matrix and Φ is the modal matrix, defined according to 3.5.
By applying the well known Singular Values Decomposition (SVD) to the power
spectral density matrix at a specific frequency, the following expression can be
obtained:

[Gyy(ω)] = [U ][Σ][V ]H (3.29)
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where [Σ] is the singular value matrix and [U] and [V] are the unitary matrices
holding the left and right singular vectors. The [Σ] matrix is a diagonal matrix,
having the following form:

[Σ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 0 0 . . 0
0 s2 0 . . 0
0 . s3 . . .
. . . . . .
. . . . sr 0
0 . . 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.30)

The elements s1, ..., sr in the matrix 3.30 are the singular values whose corre-
sponding singular vectors are contained in the matrices U and V. The number of
non-zero values in the matrix [Σ], indicated by r, corresponds to the rank of the
PSD matrix [Gyy(ω)] at a specific frequency. This means that a one-to-one rela-
tionship can be recognized between singular vectors and mode shapes. In fact, for
a fixed frequency, the rank of the PSD matrix and therefore the number of singular
values, coincides with the modes that are involved in that specific frequency. This
implies being able to identify very close or even coincident modes.

Each line in the FDD plot represents a singolar value for a single degree of free-
dom (SDOF) system. If the modes of the stucture are well separated, only the first
singular value will present the peaks corresponding to all the resonance frequencies
of the structure, while all the other singular values will show negligible values for all
the frequencies. On the contrary, if the structure has close or coincident modes, fre-
quency peaks will be evident in the singular values following the first one. In other
words, the first singular value of each frequency contains the information regarding
all the dominant modes, while the following singular values could represents modes
that are close to the dominant ones or the intensity of the noise.

Moreover, it is possible to estimate the mode shapes of the structure by looking
at the singular vectors associated with the frequencies of the identified peaks.

This method has several advantages, including the ability of identifying very
close or even coincident modes, which would be almost impossible with the Peak-
Piking method. Moreover, it is computationally simple and fast to execute.

Different variants of this method are present in literature, as for example the
EFDD (Enhanced Frequency Domain Decomposition) method [31] or the Frequency-
Spatial Domain Decomposition (FSDD) method [69].

Polyreference Least-squares Complex Frequency-Domain Method (Poly-
MAX)

The frequency domain methods illustrated in the previous paragraphs (PP and
FDD) belong to the category of the so-called nonparametric methods, meaning that
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the eigenfrequencies are obtained without using a model for fitting data. Along with
these methodologies, methods in which a parametric model is estimated from data
are also extensively used, falling within the so-called parametric OMA methods.
The Polyreference Least-squares Complex Frequency-Domain Method (PolyMAX)
[53] is one of the most used parametric method in modal analysis applications.
It starts from the least-squares approach and uses multiple-input-multiple-output
FRF as primary data.

An extensive literature is available for the analytical description of the method
[53], [57]. In this paragraph, a summary of the main points underlying the Poly-
MAX method is reported.

PolyMAX method starts by identifing the FRF matrix using the right matrix-
fraction (RMFD) model:

[H(ω)] = [B(ω)][A(ω)]−1 (3.31)

where H(w) is the FRFs matrix in which the FRFs between inputs and outputs
are included, B(w) is the numerator matrix polynomial while A(w) is the denom-
inator matrix polynomial. With reference to equation 3.31, one single raw of the
RMFD model is obtained as:

∀k = 1,2, . . . , l : ⟨Hk(ω)⟩ = ⟨Bk(ω)⟩ [A(ω)]−1 (3.32)

where:

⟨Bk(ω)⟩ = ∑︁p
r=0 Ωr(ω) ⟨βkr⟩

[A(ω)] = ∑︁p
r=0 Ωr(ω)[αr]

(3.33)

in which Ωr(ω) represents the polinomial basis functions while βkr and αr are
the unknown parameters, collected in a single matrix θ, as shown below:
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βk =

⎛⎜⎜⎜⎝
βk0
βk1
. . .
βkp

⎞⎟⎟⎟⎠ ∈ R(p+1)×m(∀k = 1,2, . . . , l)

α =

⎛⎜⎜⎜⎝
α0
α1
. . .
αp

⎞⎟⎟⎟⎠ ∈ Rm(p+1)×m

θ =

⎛⎜⎜⎜⎜⎜⎜⎝
β0
β1
. . .
βl

α

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R(l+m)(p+1)×m

(3.34)

The objective of this method is to estimate these unknown coefficients by using
experimental data. In particular, an error minimization process is used, consider-
ing the non-linear least-squares (NLS) equation errors described by the following
equation:

ϵNLS
k (ωn, θ) = ωk(ωn)(Hk(ωn, θ) − Ĥk(ωn)) (3.35)

which can be written as:

ϵNLS
k (ωn, θ) = ωk(ωn)(Bk(ωn, βk)A−1(ωn, α) − Ĥk(ωn)) (3.36)

where ωk(ωn) is the weighting function, used to evaluate the differences be-
tween all the collected outputs. The minimization problem is realized through the
following cost function:

lNLS(θ) =
l∑︂

k=1

Nf∑︂
n=1

tr
{︂
(ϵNLS

k (ωn, θ))HεNLS
k (ωn, θ)

}︂
(3.37)

this minimization equation can be written in the form of:

[J ][θ] = [0] (3.38)

where [J ] is the Jacobian matrix defined as follows:
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[J ] =

⎡⎢⎢⎢⎢⎣
[Γ1] [0] . . . [0] [Υ1]
[0] [Γ2] . . . [0] [Υ2]
... ... . . . ... ...

[0] [0] . . . [Γl] Υl]

⎤⎥⎥⎥⎥⎦ (3.39)

where the matrices [Γl] and [Υl] are obtained as:

[Γ] =

⎡⎢⎢⎢⎢⎣
[1 z1 . . . zm

1 ]
[1 z1 . . . zm

1 ]
. . .

[1 zNf
. . . zm

Nf
]

⎤⎥⎥⎥⎥⎦ (3.40)

[Υ] =

⎡⎢⎢⎢⎢⎣
−[1 z1 . . . zm

1 ]⨂︁[Ĥk(ω1)]
−[1 z2 . . . zm

2 ]⨂︁[Ĥk(ω2)]

−[1 zNf
. . . zm

Nf
]⨂︁[Ĥk(ωNf )]

⎤⎥⎥⎥⎥⎦ (3.41)

where the symbol ⨂︁ indicates the Kronecker product. Under this transforma-
tion, the cost function can be expressed by:

lLS(θ) = tr([θ]H [J ]H [J ][θ]) (3.42)

where, by reducing the dimension of matrix equation:

[J ]H [J ][θ] =

⎡⎢⎢⎢⎢⎣
[R1] . . . [0] [S1]

... . . . ... ...
[0] . . . [Rl] [Sl]

[S1]H . . . [Sl]H
∑︁l

k=1 [Tk]

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
[β1]

...
[βl]
[α]

⎤⎥⎥⎥⎥⎦ = [0] (3.43)

with:

[Rk] = [Γk]H [Γk]

[Sk] = [Γk]H [Υk]

[Tk] = [Υk]H [Υk]

(3.44)

so, in order to minimize the cost function 3.42, its derivatives calculated with
respect to θ are put equal to zero:
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∂lLS(θ)
∂βk

= 2(Rkβk + Skα) = 0,∀k = 1, . . . , l (3.45)

∂lLS(θ)
∂α

= 2
l∑︂

k=1
(ST

k βk + Tkα) = 0 (3.46)

Since the poles and modal participation factors are contained in the coefficient α,
it is possible to reduce the dimension of the problem by neglecting the βk coefficient,
considering the following equation obtained from the 3.45:

[βk] = − [Rk]
−1

[Sk] [α] (3.47)

as a consequence, the so-called reduced normal equations are obtained:

l∑︂
k=1

([Tk] − [Sk]H [Rk]−1[Sk])[α] = [M ][α] = [0] (3.48)

From equation 3.48 it is possible to obtain the [α] coefficients, imposing some
necessary contraint in order to avoid the solution [α] = 0. Once [α] coefficients have
been calculated, [βk] coefficients can also be determined through equation 3.47.

3.4.3 Time Domain Methods
Ibrahim Time Domain (ITD)

One of the first OMA identification methods is the Ibrahim time domain (ITD)
technique, which was introduced for the first time in 1987 by Mikulcik and Ibrahim
[49]. This methodology belongs to the Time Domain methods, namely those pro-
cedures in which measured time signals are used directly. More specifically, the
ITD approach falls within the class of OMA methods identified as NExT (Natural
Excitation Technique). These techniques, starting from the methods developed for
the traditional input–output applications, are based on the possibility of expressing
the correlation function of a structural response under a unknown ambient exci-
tation as sum of decaying sinusoids. The modal information of the structure can
therefore be deduced from the modal properties of these sinusoids. In particular,
the Time Response Function (TRF) has to be obtained as first step and then the
identification of the structural dynamic properties can be performed through the
common TD methods.
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ITD method starts from the free response of a structure subjected to random
input forces. As known, any respose can be decomposed as a linear combination of
modes, as follows:

y(t) = y(n∆t) = ψ1e
λ1n∆t + ψ2e

λ2n∆t + · · · = ψ1α
n
1 + ψ2α

n
2 + . . . (3.49)

It is thus possible to arrange the measured free vibration response in a matrix:

Y =

⎡⎢⎢⎢⎢⎣
y(0) y(1) . . . y(n− 1)
y(1) y(2) . . . y(n)

... ... ... ...
y(n− 1) y(n) . . . y(2n− 2)

⎤⎥⎥⎥⎥⎦ (3.50)

This matrix is commonly known as a block Hankel matrix, considering that the
sampled dynamic response vectors (the blocks) are constant along the anti diago-
nals. The described matrix, comparing equations 3.49 and 3.50, can be rewritten
in the form:

Y =
[︂
ψ1 ψ2 . . .

]︂ ⎡⎢⎢⎣
α0

1 α1
1 . . .

α0
2 α1

2
... . . .

⎤⎥⎥⎦ = ψΛ (3.51)

where [Ψ] is the matrix of modes shapes while [Λ] contains information about
the system poles. The Henkel matrix could be divided in two parts by time-shifting
the blocks in the matrix, thus obtaining:

[Y1|n] = [Ψ1][Λ] (3.52)

The system matrix [A] is able to relate the two modal matrices as follows:

[Ψ1] = [A][Ψ] (3.53)

Therefore, considering equations 3.52 and 3.53, is it possible to rewrite the
second Henkel matrix as:

[Y1|n] = [A][Ψ][Λ] (3.54)
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this means that, by substituting equation 3.50 in equation 3.56, the following
expression can be obtained:

[Y1|n] = [A][Y0|n−1] (3.55)

The eigenvectors and eigenvalues can therefore be obtained by solving the eigen-
value problem of the matrix [A]:

[A] = [Y1|n][Y0|n−1]T (3.56)

The solution of the eigenvalue problem allows obtaining the eigenvalues, which
represent the system poles, and the corresponding eigenvectors, that are an esti-
mation of the mode shapes of the system.

Covariance-driven Stochastic Subspace Identification Method (Cov-SSI)

One of the most common and powerful methods in the Time Domain is the
Covariance-Driven Stochastic Subspace Identification (Cov-SSI) method. This method-
ology is based on the stochastic realization problem, according to which a stochastic
state-space model can be estimated from vibration measurements [33]. The Cov-SSI
methodology fall within the so called parametric methods.

Starting from the random measured accelerations, identified as [Y ], the corre-
lation matrices can be calculated as follows:

[Ri] = [Y1|N−i][Yi|N ]T
N − i

(3.57)

where N is the number of samples, [Y1|N−i] and [Yi|N ] are obtained from the [Y ]
matrix by eliminating the last i samples and the first i samples respectively. The
following Toeplitz matrix [T1|i] can be constructed with the calculated sub-matrices,
representing the correlation between all the measurement channels:

[T1|i] =

⎡⎢⎢⎢⎢⎢⎣
Ri Ri−1 . . . R1

Ri+1 Ri
. . . R2

... ... . . . ...
R2i−1 R2i−2 . . . Ri

⎤⎥⎥⎥⎥⎥⎦ (3.58)

The correlation matrices R are square matrices of lxl dimensions; this means
that the Toeplitz matrix has dimensions lixli.

In order to obtain an extimation of the state-space model, which is able to
describe the dynamics of the monitored system, it is crucial to ensure that all the
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relevant system states are both controlled (excited) and observed. To determine if a
system is or not controllable and observable, some condition have to be fulfilled. In
particular, with reference to the so-called controllability and observability matrices,
it is necessary to verify that the rank of these matrices is equal to the order of
the considered system. This means that a system of order k can be considered
observable and controllable only if the rank of both observability and controllability
matrices is exactly equal to k. All this translates into the need to have a number
of rows in the Toeplitz matrix, indicated with li, greater than or equal to the order
of the system (n) to be identified:

li ≥ n (3.59)

According to equation 3.59, a proper i value can be selected, once the order of
the system has been estimated. The Toeplitz matrix can thus be rewritten as a
function of the corresponding observability and controllability matrices:

[T1|i] = [Oi][Γi] (3.60)

where [Oi] is the observability matrix, defined as:

[Oi] =

⎡⎢⎢⎢⎢⎣
[C]

[C][A]
...

[C][A]i−1

⎤⎥⎥⎥⎥⎦ (3.61)

while [Γi] is the controllability matrix, defined as:

[Γi] =
[︂
[A]i−1[G] . . . [A][G] [G]

]︂
(3.62)

In equations 3.61 and 3.62, matrices [A] and [C] are the state matrix and the
output matrix respectively, according to the state-space model described in detail
in section 3.3.3. It is important to emphasize that [Oi] and [Γi] have dimensions li
x n and n x li, which leads to a rank of the block Toeplitz matrix equal to n.

Singular Value Decomposition (ref. section 3.4.2) has been applied to the
Toeplitz matrix, as follows:

[T1|i] = [U ][Σ][V ]T (3.63)

After computing the SVD of the Toeplitz matrix, it has to be truncate to the
model order n, thus obtaining:
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[T1|i] = [Oi][Γi] = [U1][Σ1][V1]T (3.64)

starting from equation 3.64, it is possible to obtain [Oi] and [Γi], by splitting
the SVD in two parts:

[Oi] = [U1][Γ1]1/2[T ] (3.65)

[Γi] = [T ]−1[Γ1]1/2[V1]T (3.66)

It is then possible to obtain the state matrix A as follows:

[A] = [Oup
i ]+[Odown

i ] (3.67)

where [Oup
i ] and [Odown

i ] are formed starting from matrix [Oi] and removing
the last or the first l rows respectively. The output matrix [C], containing the
information about the mode shapes, is also obtained from [Oi] selecting the first l
rows:

[C] = [Oi]1:l (3.68)

so, the eigenvalues and corresponding eigenvectors can be obtained from eigen-
value decomposition of the state matrix [A].

3.5 Numerical case study
The purpose of this paragraph is to compare some of the main OMA identifi-

cation methods described above, in order to identify the most suitable one to be
applied for the automatic real-time monitoring case studies presented in this dis-
sertation. In particular, 4 methods have been selected: PP, FDD, Cov-SSI and
PolyMAX. The following numerical tests are intended to evaluate the effectiveness
of each of these methods in different operating conditions, considering the uncer-
tainty due to some factors such as noise levels, data synchronization, number of
reading points etc...The numerical model assumes the use of time-based discrete
sensors, replicating those applied on full-scale structures for damage detection and
health state assessment.

45



3 – Dynamic Monitoring

3.5.1 Numerical FEM Model
A numerical 3D finite element (FE) model of a tipical highway bridge was

developed using FEM software SAP2000 [62].

Description of the structure

In order to asses the performances of the different OMA methodologies, the
acceleration response data sets from a finite element model of a simply-supported
bridge were used. One of the main advantages of using a numerical model for this
purpose is that the modal properties of the analyzed system are known a priori and
thus it is possible to evaluate the accuracy of the dynamic characteristics identified
using one or more OMA methods.

The structure modeled using the finite element code is a pre-stressed simply-
supported concrete girder bridge. The choice of this structure is motivated by
the fact that, due to its geometric and design features, it can be considered as
representative of many highway infrastructures designed around the 1960s and ’70s.

The structure is composed by eight simply-supported pre-stressed concrete spans.
The spans are 21.4 m long and are supported by seven concrete columns and two
concrete abutments. The cross-section is a pre-stressed reinforced concrete girder in
which nine longitudinal beams and four transversal beams are the primary support
for the deck, a reinforced concrete slab. The beams cross-section has a constant
height in the longitudinal direction of about 1.2 m. The bridge develops slightly in
curve; the roadway has a width of 9.8 m, while the total size of the decks in the
transverse direction is 11 m. Figure 3.3 and Figure 3.4 show a plan view, elevation
and cross-sections of the described structure.

The different elements of bridge spans (including beams, slabs, and diaphragms)
were modelled as elastic one-dimensional frame elements; each element has been
assigned the mechanical characteristics of the corresponding reinforced concrete
section. Bridge bearings were modeled as spring elements connecting the super-
structure with the piers. In particular, in order to account for the difference be-
tween longitudinal and tranversal restrained action, each span has been constrained
by an alignment of fixed longitudinal supports (FL) to which one fixed transveral
joint (FT) has been added , in order to prevent translational lability. The material
characteristics used for the FE model have been extracted from design drawings.

The complete FE model of the bridge has a total number of 4413 elements and
2460 nodes. Figure 3.5 shows a 3D view of the FE model.

In the following section, in order to simplify the result reading, only one of
the simply-supported bridge spans is considered. Being simply-supported spans,
similar considerations apply to the remaining spans.
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(a)

(b)

Figure 3.3: (a) Plan view and (b) elevation of the analyzed bridge

(a)

(b)

Figure 3.4: Cross-sections of the bridge: (a) A-A’ section (b) B-B’ section

Description of the dynamic model

In order to test the effectiveness of the selected methods (mentioned above)
for identifying the resonance frequencies of the highway bridge chosen as reference,
an artificial input force has been used to excite the analyzed system. The most
common dynamic loads on bridges come from traffic and wind, which are assumed
to be continuous and random inputs. Thus, a white noise signal, named ei, has
been generated with the following characteristics:
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Figure 3.5: 3D view of the FE model of the analyzed bridge

E [ei] = 0 (3.69)

E [eiej] = λδij (3.70)

where λ is the covariance and δij represents the Kronecker symbols which is 1
if i=j and 0 otherwise.

Artificial input data were generated at a sampling frequency of 300 Hz dur-
ing 600 s (10 minutes). The following figure shows the input signal in the three
measurement directions x, y, z for the first 100 seconds.
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Figure 3.6: White noise signal used as input for the numerical model
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System dynamics has been simulated through a state-space model in MAT-
LAB/Simulink. State-space formulation is a really useful method for modeling
dynamic systems in time domain (ref. Paragraph 3.4). In particular, state-space
models can be easily implemented by using a Simulink block diagram, which allows
solving step by step state equations in order to obtain a discrete output represent-
ing the response of the system to a given input.Figure 3.7 shows the block diagram
used to simulate the system dynamics.

Figure 3.7: Simulink block diagram used for simulating the system dynamics

With reference to equation 3.20, A, B and C are the discrete state-space matrices
describing the phisical system subjected to a white noise input. In order to simulate
the real operating conditions of a civil engineering infrastructure that is monitored
through the use of a series of acceleration sensors, noise has been added to the
output signal. More in detail, a random peak-to-peak noise of 3 mV has been
considered for each channel. Moreover, the sensitivity of a MEMS accelerometer of
250 mV/g with a 5g full scale has been taken into account. A signal-to-noise ratio
(SNR) of about 9 dB as been calculated as the logarithm of the ratio of the main
and noise signals. In order to replicate the standard behavior of accelerometers
used for structural health monitoring, output data have then been obtained for all
the considered sensors nodes in the 3 measurement directions x, y, z. These signals
have been properly undersampled at a frequency of 100 Hz and a Butterworth anti-
aliasing filter has been also applied before the sampler, with the aim of reproducing
the discrete accelerometer sampling. With reference to Figure 3.5, the output
signals of two accelerometers, located respectively in the middle of the span and
near the left support, are considered.
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3.5.2 Results discussion
The aforementioned methodologies have been applied to output signals with the

aim at selecting the method able to identify more precisely the resonance frequencies
of the structure. In particular, in view of a full-scale application, the main purpose
is to identify natural frequencies automatically over time; this means that it is
necessary to choose a OMA procedure that is as reliable and robust as possible.
The first 6 resonance frequencies have been considered for the methods evaluation.
Frequency values and the corresponding mode shapes are listed in Table 3.1

Table 3.1: Natural Frequencies from FEM model
Mode 1 Mode 2 Mode 3

f1=5.434 Hz f2=6.648 Hz f3=15.413 Hz

Mode 4 Mode 5 Mode 6
f4=19.570 Hz f5=20.293 Hz f6=21.161 Hz

Identified frequency values are thus compared with those extracted from the
FEM model. The mean percentage error (MPE) is computed as the average of
percentage errors (on the 6 considered frequencies) in order to estimate how much
the indentified values differ from the actual values. The mean percentage error is
obtained using the following expression:

MPE = 100%
n

n∑︂
i=1

freal − fid

freal

(3.71)

where freal is the actual value of the natural frequency, fid is the identified
freqeuncy by the OMA method and n is the numer of considered frequencies.

Peak-Picking (PP)

From the acceleration signal time-histories, power spectral densities (PSDs)
are calculated for each sensor by using Welchs modified periodogram method [68].
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Figure 3.8: Spectral envelope between the three measurement directions x, y and
z: (a) Sensor located in the middle of the span; (b) Sensor located at left support

In more detail, 30 s data blocks were considered, corresponding to a frequency
spacing of 0.03Hz. Estimation of PSD by Welch’s method has been performed by
using a no-overlap Hanning window, considering its good frequency resolution and
reduced spectral leakage. Figure 3.8 shows a resulting characteristic spectrogram
concerning the response in the three measurement directions x, y and z of the
considered accelerometers, with the computed spectral envelope.

From PSDs, natural frequencies were obtained through automated peak-picking
algorithm. The algorithm has been developed to identify peaks in signal spectrum
without knowing a priori their number, shape or location. The main idea consists
in selecting prevailing local maxima in the PSD curve and discarding a certain
number of frequencies according to the following criteria:

• Consider only local maxima with amplitude above a threshold calculated in
function of the median of the spectrum;

• Remove all local maxima approaching another higher local maxima and mark
it as a peak. Local maxima are indeed ordered by height and, by starting
from the highest, all the maxima close to it (a specific frequency range is
defined) are discarded;

• For the selected peaks, the amplitude-prominence ratio is calculated and all
peaks under a predefined threshold are discarded.

The identification of the natural frequencies through the PP procedure is shown
in Figure 3.10 (a).

The identified frequency values are listed in Table 3.2.
As shown in the table 3.2, only three (modes 1, 3, 4) of the six considered

natural frequencies were correctly identified, while the remaining three (modes 2,
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Table 3.2: Natural Frequencies - PP results
Mode freal fid Error

[Hz] [Hz] [%]
1 5.434 5.401 0.61 %
2 6.648 - 100 %
3 15.413 15.402 0.07 %
4 19.570 19.536 0.17 %
5 20.293 - 100 %
6 21.161 - 100 %

5, 6) were not identified by the PP method. The identified frequencies show an
identification error in the order of a few hundredths of Hz (0.03Hz, 0.01 Hz, 0.05
Hz respectively), which is comparable to the expected variation in the event of
damage occurring.

MPE value has also been obtained for the PP method, that is:

MPE = 50% (3.72)

As can be deduced from the the above, the PP method provides accetable es-
timates of resonance frequencies if vibration modes are well separated. However,
if close modes are present (as in this case), this procedure is not able to prop-
erly distinguish them, leading to incorrect and incomplete dynamic identification.
Moreover, in the case of low excitation or higher noise levels, the identification of
peaks would be affected by an increasing error value. Therefore this methodology,
although has the advantages of being quite simple and time effective (it does not re-
quire long processing times), results to be not reliable for continuous and automatic
monitoring systems.

Frequency Domain Decomposition (FDD)

As underlined in section 3.4.2, FDD is a non-parametric OMA method, which
is based on the evaluation of the spectral matrix and the consecutive application of
the Singular Value Decomposition (SVD) procedure at each frequency line. This
methodology, contrary to the PP approach, is able to identify close modes, thus
obtaining better results. In fact, the decomposition into SDOF systems allows to
separate modes with very close frequencies.

FDD technique has been applied to output time-series, by considering data win-
dows of 30s, without overlapping. Sigular Values (SV) have been extracted using
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Figure 3.9: SVD diagram: (a) Sensor located at left support; (b) Both sensors (left
support and middle of the span)

SVD of the power spectral density. In Figure 3.9, SVD diagrams obtained con-
sidering one accelerometer (installed on the left support) and both accelerometers
(left support and middle of the span) are illustrated.

As shown in Figure 3.9, the bridge has two close modes (1st frequency 5.434 Hz
and 2nd frequency 6.648 Hz) which are well indentified by two different singolar
values. It is noteworthy that in the case of SVD calculated using time series from
both accelerometers (Figure 3.9 (b)) the peaks are more easily identifiable (espe-
cially looking at the II singular value) than in the case of a single accelerometer
(Figure 3.9 (a)).

From SVD diagrams, frequencies were subsequently extracted through the peak-
picking algorithm described above, applied to singular values curves. Table 3.3
listed the identified frequencies, with the corresponding error with respect to actual
values and the Singolar Values (SV) for the identified modes.

Table 3.3: Natural Frequencies - FDD results
Mode freal fid Error SV

[Hz] [Hz] [%]
1 5.434 5.435 0.02% I
2 6.648 6.636 0.18% II
3 15.413 15.44 0.18% I
4 19.570 19.56 0.05% I
5 20.293 20.81 2.55% I
6 21.161 21.21 0.23% I

It is shown in Table 3.3 that both first two frequencies, which are pretty close
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to each other, have been detected using FDD method. Moreover, with reference
to Figure 3.10 (a) and (b), it is possible to observe that, although both methods
(PP and FDD) use peak-picking approach to detected frequencies, FDD method
presents smoother and more explicit curve with respect to PSD, so that peaks are
more easily identified.

MPE value has also been obtained for the FDD method, that is:

MPE = 1% (3.73)

As deduced from the MPE value, FDD method proved to be more accurate than
the previous one (PP). This approach is used usually as a multi-channel method,
which means that the responses of all the sensors installed on the bridge are taken
as input of the FDD. Using multiple measurements leads to a more correct and
complete frequency identification. Moreover, as underlined before, close modes can
be easily distinguished by decomposing the spectral density matrix into a set of
single degree of freedom systems.

However, the identification of some frequencies (modes 5, 6) is not very accurate,
with errors in the order of tenths of Hz (0.5 Hz and 0.05Hz respectively), which are
unacceptable in a damage identification process.

Covariance-driven Stochastic Subspace Identification Method (Cov-SSI)

Cov-SSI method, whose analytical description is given in section 3.4.3, utilizes
the covariance functions, estimated from raw measurements, for the modal param-
eter identification. A block Hankel matrix of covariance functions has been used
to develop SSI-Cov algorithm. Stabilization diagrams were adopted to distinguish
physical modes from spurious modes, in order to correctly estimate the modal
parameters of the bridge. In fact, physical modes should appear with consistent
modal properties (e.g. frequencies) at various model orders while spurious ones
should show a non-constant behavior. Physical modes are separated from spuri-
ous mathematical ones by identifying alignments of stable poles, since the spurious
ones tend to be more scattered and typically do not stabilize. More in detail, the
following stability requirements have to be fulfilled for stability condition:(︄

|f(n) − f(n+ 1)|
f(n)

)︄
< 0.01 (3.74)

(︄
|ξ(n) − ξ(n+ 1)|

ξ(n)

)︄
< 0.05 (3.75)
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Once identified, noise modes are discarded and only real modes are considered.
Figure 3.10 (c) illustrates the stabilization charts obtained from the processed time
histories plotted together with the PSD curve.

From Figure 3.10 (c) it is possible to note that stable and noise modes have been
successfully recognized in the frequency range of 0-50 Hz. Moreover, the identified
resonant frequencies show a good agreements with the peak frequencies from PSD.
As for the previous methods, identified frequencies are listed in Table 3.4, with the
corresponding error with respect to actual values.

Table 3.4: Natural Frequencies - Cov-SSI results
Mode freal fid Error

[Hz] [Hz] [%]
1 5.434 5.431 0.07%
2 6.648 6.648 0.00%
3 15.413 15.411 0.01%
4 19.570 19.568 0.02%
5 20.293 20.261 0.16%
6 21.161 21.127 0.16%

As can be seen, all the considered resonance frequencies have been detected
with quite good precision. MPE value, that is:

MPE = 0.07% (3.76)

is in fact lower than the two previous methods. This methodology, which has
proved to provide consistent and sufficiently accurate results, is recognized by the
literature [19] as one of the most reliable OMA methods, due to its relatively short
computational time, the accurancy of results, even in the case of very close modes,
and the possibility of making the identification automatic, given its quite simple
theoretical formulation. However, some considerations must be made on setting
the input parameters. The following section will clarify such a point.

Polyreference Least-squares Complex Frequency-Domain Method (Poly-
MAX)

A very common parametric method working in the frequency domain is the
Polyreference Least-squares Complex Frequency domain method, known with the
name of PolyMAX, as described in section 3.4.2.

Stabilization diagrams, obtained by cyclically repeating the PolyMax procedure
for increasing model order, were used for separating the physical system poles from

55



3 – Dynamic Monitoring

mathematical ones, as described for Cov-SSI method. Figure 3.10 (d) illustrates
the stabilization charts obtained from the processed time histories plotted together
with the PSD curve.

From Figure 3.10 (d) it is possible to note that stable and noise modes have
been successfully recognized in the frequency range of 0-50 Hz. The identified
resonant frequencies show a good agreements with the peak frequencies from PSD.
As for the previous methods, identified frequencies are listed in Table 3.5, with the
corresponding error with respect to actual values.

Table 3.5: Natural Frequencies - PolyMAX results
Mode freal fid Error

[Hz] [Hz] [%]
1 5.434 5.444 0.20%
2 6.648 6.650 0.02%
3 15.413 15.424 0.08%
4 19.570 19.574 0.02%
5 20.293 20.284 0.04%
6 21.161 21.148 0.06%

As can be seen, all the considered resonance frequencies have been detected
with quite good precision. MPE value is:

MPE = 0.07% (3.77)

which is the same value obtained from the Cov-SSI method.
Results show that this method allows to obtain very well ‘stabilized’ poles, with

a very limited number of unstable poles. The stabilization charts are certainly
clearer if compared to Cov-SSI results; however this method is a more time con-
suming process.

3.5.3 Final Considerations about OMA methods
In the previous paragraphs, results from the application of some of the more

widely used OMA methods to a numerical case study have been illustrated. Far
from being a comprehensive evaluation of all the different OMA techniques, the
application of the aforementioned methodologies to a numerical case study provided
an overview of the main advantages and disadvantages of each method, giving the
opportunity to make some considerations aimed at choosing one of these methods to
be applied for the automatic and continuous monitoring of a network of structures.
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Figure 3.10: Comparison between different OMA identification methods: (a) Peak-
Piking; (b) Frequency Domain Decomposition; (c) Covariance-driven Stochastic
Subspace Identification Method; (d) PolyMAX

Based on the above, this paragraph summarizes the main comparative results
of the previously illustrated OMA methods. The following observations underlie
the selection of the OMA approach implemented into the real-time monitoring
system, which has been installed on a significant number of structures currently
under control.

Peak-Peaking is one of the first developed and widely applied method for modal
identification problems of civil engineering structures. It is a very simple, fast
and easy to implement method. However, despite its historical relevance, it shows
obvious limitations compared to more robust and recently developed methods. First
among them, this method is unable to separate and distinguish closely spaced
modes, as observed for the presented case study. Moreover, the accuracy of this
method is very limited and therefore it is not suitable for being used in a monitoring
system with automatic alarm activation, because a large number of false alarms
would be produced.
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A more accurate method compared to Peak-Peaking is the FDD approach. This
methodology is also quite fast and simple to implement and can be advantageously
used for providing acceptable estimates of the modal parameters. Moreover, FDD
is able to identify very close or even coincident modes, which would be almost
impossible with the Peak-Piking method. However, although the accuracy of this
method is quite good if compared with PP results, there are methods able to
guarantee much higher levels of precision, such as Cov-SSI and PolyMAX methods.

PolyMAX is a parametric method used for identifying very closely spaced modes
through a polynomial model. This method is able to provide very accurate estimates
of modal parameters by making the selection of the system poles very effective,
almost completely eliminating the presence of unstable poles. It performs also very
well for the automation of the modal identification process, thanks to the very
limited number of spurious poles. However, it is more complicate to implement
and computational demanding with respect to others equally performing methods.

Cov-SSI belongs to the subspace methods and it is both less computational
demanding with respect to PolyMax and and very accurate in estimating modal
parameters. Indeed, since linear algebra is used to solve the identification problem,
lower computational effort is needed for estimating the dynamic properties of the
system. These advantages have made this method very popular and widely used
for structural monitoring applications.

Based on these considerations, the Cov-SSI method was chosen for the contin-
uous and automatic monitoring system installed on all the structures described in
this dissertation.
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Chapter 4

Proposed Methodology

4.1 Chapter Introduction
This chapter describes a new methodology for continuous and long-term mon-

itoring of a network of structures, equipped with a large number of sensors. As
mentioned in Chapter 3, dynamic monitoring has increasingly gained attention
among the scientifc community in the past two decades. Over the years, a large
number of damage identification algorithms have been developed, from the sim-
plest to the most sophisticated, capable of identifying even very small variations
in the dynamic behavior of a structure. However, in most cases, these techniques
have been tested and applied on small structures with a limited number of sensors.
But, as is known, the number of civil engineering structures affected by aging and
degradation worldwide is very large and tends to increase more and more over time.
This means that being able to monitor as many structures as possible in the coming
years is currently a priority. With this in mind, the proposed methodology aims to
provide a framework for continuous and long-term monitoring of a large number of
infrastructures, in an automatic and effective way.

4.2 Aim of the proposed Methodology
The main goal of the proposed methodology is to provide a complete data-driven

method, able to automatically generate system health indicators without any spe-
cific analysis on the monitored structure. Indeed, the currently used monitoring
systems are based on a system driven approach, which requires a strong knowledge
of the structure under observation. However, in the case of a large number of moni-
tored systems, it is impossible to analyze each structure individually. Furthermore,
considering that structures could be instrumented with a dense array of sensors,
real-time data processing could prove to be very expensive on a computational level
and often useless (for example in the case of a non-excited structure).
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It is important to emphasize that all the techniques currently used for structural
health monitoring are aimed at detecting, localizing and quantifying damages, in
order to predict the remaining life of a structure. However, with a view of in-
strumenting a large number of structures with long-term monitoring systems, it is
difficult, if not impossible, to go beyond the damage detection. In fact, to estimate
the location and extent of the damage, a very large number of sensors would be
required, which is very arduous in a view of a network of structures for costs and
amount of data generated to manage. Therefore, the challenging goal of a reliable
long-term monitoring system is to notice an evolving damage in its initial stage, in
order to trigger more detailed analysis.

For these reasons, a multilevel monitoring system has been developed, based on
different levels of complexity to assess the health status of a structure. In particular,
this methodology does not need any by-hand configuration and is able to automat-
ically set proper threshold values with the aim of effectively detect any structural
damage. In order to make the monitoring system, and therefore the damage identi-
fication algorithms, reliable, efficient and robust, modal parameters were combined
with statistical analysis and machine learning approaches with the goal of detecting
anomalous behaviour from acceleration time series continuously acquired by sensors
while reducing the occurrence of false alarms. One of the main advantages of using
different types of analysis lies in the possibility of having a global view of the health
condition of the structure, observed from different perspectives. This means that a
damage can be detected (but not localized or quantified) without measuring points
close to the damaged zone. Moreover, the multilevel approach allows, on one hand,
making the alert signals sufficiently robust and reliable while, on the other, avoid-
ing high computational cost and time. Therefore, the monitoring methodology is
crucial in this context.

Taking into account the aforementioned needs, the following main objectives
have been achieved by the developed methodology:

1. development, implementation and testing of a data acquisition and storage
procedure, in order to efficently collect data from sensors by discarding those
deemed to be lacking in information and therefore limiting the amount of
data stored and analyzed. More in detail, this topic includes:

• development of a Principal Component Analysis (PCA) procedure aimed
at recognizing significant (and thus useful) dataset while discarding not
sufficiently excited vibration data;

• definition of a proper (minimum) time-window of continuous and syn-
chronized acceleration data to be used for obtaining accurate modal
parameter estimates;

• implementation of a statistical procedure to identify observations that
appear to be rare given the available data. The main goal is to identify
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exceptional (and instantaneous) events, such as earthquakes, landslides,
explosions, in order to analyze in real-time the effect of these events on
the monitored structure, by triggering further actions;

• conception and implementation of spatial logics between sensor nodes,
in order to create a communication network that takes into accont the
measurement exchanged among neighbouring devices.

2. development and implementation of a strategy to efficiently elaborate a large
amount of data in the shortest possible time fully exploiting the resources of
the cloud platform;

3. conception and development of a multilevel damage detection procedure,
aimed at provinding an early-stage alert of anomalous conditions that should
trigger more detailed analysis or, if necessary, in situ inspections. In partic-
ular, the proposed methodology is based on different levels of alarm (three
levels), fully exploiting the potentiality of the monitoring system, where the
interaction between different sites of computational capability has been used
to produce a reliable alert in case of damage. The main contributions of the
proposed methodology are:

• the definition and implementation in each sensor node of a first level of
alarm, which is computationally inexpensive, to make a first selection of
the possible anomalous conditions;

• the definition and implementation of a second level of alarm, performed
inside the IoT gateway, based on a machine learning model;

• the definition and implementation of a third level of alarm, checked by
the IoT cloud, based on OMA methods that requires more computational
capacity, used for verifying whether the reported anomalous condition
was actually a structural damage or not;

• implementation of a new parametric methodology to perform the auto-
matic tuning of the parameters used for OMA identification algorithms,
in order to provide a tool that can independently and automatically set
the best values to be use for each monitored structure;

• evaluation of the influence of environmental factors on modal parameters
and implementation of a procedure able of automatically remove this
influence from data.

4. application of the proposed methodology for the long-term real-time moni-
toring of a significant number of structures (about 15 bridges) currently in
operation;
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5. automatic and real-time identification of damages occurred on two of the
currently monitored structures, demostrating the robustness and reliability of
the proposed methodology. The two aforementioned case studies, illustrated
in detail in chapter 5 and chapter 6, are:

• a box composite highway bridge, strengthened by both internal and ex-
ternal prestressing, where all the features of the proposed methodology
were applied and permitted to prove the effectiveness, feasibility and
reliability of the adopted techniques, being able to detect real damages
occurred during the monitoring period;

• a pre-stressed concrete bridge from the early 1965s, where real changes in
structural stiffness were identified through a dynamic monitoring system
in which the proposed methodology has been adopted;

6. effective management of Big Data generated continuously by a large number
of sensors installed on a large number of structures, ensuring a high level
of data quality and accessibility for the assessment of the health status of a
system.

In the following paragraph, the proposed methodology is described in detail.
Moreover, it has been successfully applied to more than 15 concrete highway bridges
currently monitored (a large set of traffic-excited vibration data is available for each
structure) and allowed to identify real stiffness changes occurred in the last 3 years
on some of the monitored systems.

4.3 Monitoring system description
In this dissertation an innovative framework for long-term continuous moni-

toring systems is proposed. In particular, a multi-level distributed structure is
adopted, in order to make the system lasting and more efficient. The proposed
monitoring system is based on vibration measurement through the use of MEMS
accelerometers and data acquisition systems able to measure the response of the
studied structure under a unknown excitation. MEMS (Micro Electromechanical
Systems) sensing techniques have been widely used since the 1990s, mainly due
to their lower costs, greater miniaturization and the possibility of using them in
a greater number of applications [14]. It has been shown [58] that MEMS sensors
present overall good performances for the estimation of dynamic parameters.

Civil engineering structures, such as bridges, are instrumented with a network of
cooperative tri-axial accelerometers, which are dispersedly installed on the structure
to monitor its dynamic behavior over time.

Each tri-axial MEMS accelerometer provides data in the 3 orthogonal directions
(x, y, z). Dealing with bridges, the x axis is the transversal direction of the deck,
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Figure 4.1: IoT Monitoring system overview

y axis is parallel to the longitudinal extension of the bridge and z axis points
downwards so that it is aligned with gravity.

The main problem to be faced dealing with long term monitoring systems is
the maximum data streaming rate, a real sticking point when working with ac-
celerometers, as well as the maximum allowable sampling rate per channel. For
these reasons, the system was properly designed in order to cope with the monitor-
ing needs. In particular, the installed SHM system can be divided into three main
parts: the sensor nodes, the IoT gateway and the Data Center, also known as IoT
Cloud.

Sensor nodes can be defined as nodes in a sensor network that can perform some
processing inside the node itself, collect information and communicate with other
connected nodes in the network. Therefore, a sensor node is something different
from traditional sensors adopted for SHM: in fact, in addition to the sensor, it also
includes a microcontroller which is able to perform tasks like local sampling, data
elaboration to compress information and the management of data that have to be
transferred to the gateway through a wired or wireless connection. Moreover, a hu-
midity and temperature sensor is includeed in the sensing device, in order to collect
environmental data which must be taken into account when processing acceleromet-
ric data (especially temperature). The tri-axial accelerometers are characterized by
a range of ±2.5 g and a bandwidth of 50 Hz. To increase accuracy, acceleration
data are sampled at the sensor level at 25.6 kHz, filtered down and down sampled
to finally obtain a sampling rate of 100 Hz; this sampling frequency is the maximum
allowable sampling rate per channel, due to the data streaming limitation through
the network.

Once collected, acceleration data are encoded by the microcontroller into a CAN
BUS driven network and sent to a local IoT gateway. The IoT gateway is able
to collect data from the measurement nodes, do some preliminary preprocessing
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and send a set of chosen information to the cloud. Pre-processing is especially
aimed at filtering acceleration data, in order to detect unusual patterns that do not
conform to the expected behavior (outliers), discard corrupted data and generate
anomaly alert messages when needed. Moreover, the IoT gateway can calculate
different parameters for a preliminary quick inspection, such as the average (AVG),
maximum/ minimum (MIN/MAX) and root-mean-square(RMS) values on interval-
by-interval basis. As it will be explained in the following paragraphs, the IoT
gateway represents an interesting stage of the monitoring system, where a first step
of the damage detection process can be carried out at a higher level than just on
one sensor node; as at this level, more channels can be evaluated, accounting for
the available cross sensor information.

Finally, the acceleration, temperature and humidity time series coming from
measurement nodes are sent to the cloud monitoring infrastructure. Indeed, the
monitoring system is connected to the internet via a 5 GHz point-to-point Wi-
Fi link between two access points, located on the structure. An Ethernet cable
connects the access points to the two IoT gateways.

Data are then available to be accessed, downloaded or processed on a IoT
cloud environment. Considering that the amount of stored data is of noticeable
dimensions, the main challenge when designing the system is to elaborate this huge
amount of information in the shortest time by using cloud resources at best. Taking
advantage of the high parallelism (up to 1000 simultaneous executions) available in
the IoT cloud, data composed by time series of length T seconds can be subdivided
into m slot of Tw seconds such that the algorithm can elaborate a slice of data with
low time and memory consumption.

It is important to notice that the different components of the monitoring system
(sensor nodes, IoT gateway, IoT cloud..) can be remotely accessed, so it is possibile
to change the system configuration and the control parameters if necessary during
the monitoring period.

The main challenge is, then, exploiting all the potentiality of the monitoring
system, avoiding waste of resources. Being aware of the capacity and limits of the
different components, a strategy for early detection damages has been developed.

The following paragraph describes in detail the proposed methodology. In par-
ticular, the focus is primarily on the data acquisition and storage procedure, aimed
at efficently and automatically collect acceleration records from sensors while dis-
carding unnecessary data. Subsequently, the multilevel procedure for damage detec-
tion is detailed, allowing real-time structural system identification through model-
free techniques.
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4.4 Acquisition and Storage Protocol
As aforementioned, the goal of the proposed methodology is mainly to provide a

framework for continuous and long-term monitoring of a large number of structures.
With reference to paragraph 4.3, in order to monitor as many structures as possible
with an adequate number of acceleration sensors, low-cost systems based on MEMS
sensing techniques are used, taking into account practical and economical SHM
needs. As it can be easily imagined, a network of accelerometers installed on a
network of structures generates a large amount of sensor data per second. This
means that, if multiple structures are monitored for long time (years), the amount
of data becomes enormous. Efficiently dealing with this Big Data in a resource-
constrained system is then a challenge. Indeed, vast amounts of data require an
infrastructure to store them, which often means investing in cloud solutions that are
more expensive the more data are stored in them. Moreover, the more data you need
to store, the more complex these problem will become. In parallel, the collected
data must be processed and analyzed to generate information, which implies a
large computational power consumption in relation to the amount of data to be
processed.

For all these reasons, smart data acquisition and storage is therefore essential
in order to limit the amount of data to be archived (and therefore the space needed
to store them) and to be analyzed.

The proposed methodology is based on the idea that only data that can effec-
tively be used to generate information on the health status of a structure must be
acquired and stored. These data correspond to the moments in which the structure
is sufficiently excited, i.e. when the acceleration values exceed a predetermined
threshold. Dealing with bridge structures, the main excitation sources are traffic
and wind. The proposed framework is based on a wake-up mechanism according
to which, if the traffic rate (or wind) is sufficently high, the sensor "wakes up",
acquiring and storing the corresponding accelerometric readings while, if the traffic
is low or absent, data are discarded.

More in detail, the developed smart data recording and storing procedure con-
sists of the so called "active/passive" sensing status. In passive mode, sensor
nodes collect vibration data continuously and can intelligently understand whether
recorded data are significant or not. If meaningful data are recognized, active mode
is activated and data are processed and stored. Unnecessary data are discarded,
improving the performances of the network and simplifying data management.

The standard deviation (STD), which is a measure of the dispersion of the
acceleration data relative to its mean, was chosen as the representative parameter
of the vibration energy contained in the signal. The reason for this choice can be
found in the nature of the expected input (mainly traffic or wind), which is perceived
as an impulse by the accelerometers. This means that, if the structure is excited,
the standard deviation increases (the variation of data around the mean would
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increase due to the impulse recorded); on the contrary, if the excitation is poor
or absent, the standard deviation tends to a very low constant value, which is the
intrinsic noise of the instrument. Therefore, the measure of the energy contained
in the vibration signals is carried out by evaluating the STD value during the
preprocessing of data at node level. However, some considerations must be made
regarding the acquisition and storage protocol:

• it is necessary to define a threshold value that is able to "wake-up" the system
when an appropriate excitation level is detected;

• a fundamental aspect is then the definition of a proper (minimum) time-
window of continuous and synchronized acceleration data to be used for ob-
taining accurate modal parameter estimates. In fact, if only meaningful data
(above threshold) were stored, the risk exists of storing and analysing many
time histories few seconds long (corresponding, for example, with the cars
passing on a bridge), which would not allow an adequate modal identification
process. For this reason, it is essential to evaluate a minimum number of sam-
ples (Nmin) needed for an accurate identification of the dynamic parameters
of the structure;

• once a minimum time-window to carry out a modal analysis has been identi-
fied, it is necessary to define a second threshold value to evaluate whether the
data included in the window are significant or not. To better understand the
topic, imagine that a minimum time-window of 10 minutes (corresponding to
6 ∗ 104 samples) of consecutive vibration data has been defined for an high-
way bridge. It could happen that the system is awakened by the passage of
a vehicle (which would generate an STD value above the threshold) and that
for the next 10 minutes no other vehicles cross the bridge. This would involve
acquiring and storing 10 minutes of data that is actually meaningless. There-
fore, in addition to the wake-up threshold, another threshold value, aimed at
evaluating whether the data collected within the identified time-window are
sufficiently excited or not, has been defined;

• it is also fundamental to consider that, for an effective identification of modal
parameters, data collected by all the sensors installed on a single structure
must be synchronized. This means that, even if the threshold check takes
place on each sensor node, the data storing action must be triggered for all
sensors together. This implies the definition of a minimum percentage of
sensors, whose threshold exceeding is capable of triggering the data storage
action;

• it is also essential to take into account sudden and exceptional events. The
main idea is that, if an extreme event occurs generating vibrational levels
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far outside the standard values recorded under normal operating conditions,
storage and analysis logics of these data must follow a different protocol with
respect to the normal acquisition procedures. Indeed, civil engineering in-
frastructures can experiment sudden and exceptional events, such as natural
disasters like earthquakes and landslides, or human-induced hazards like ex-
plosions, traffic accidents etc...It is thus crucial on the one hand detecting
such sudden events, in order to trigger further actions aimed at assessing the
condition of the structure, and on the other make sure that the acceleration
signals relating to the event are properly stored. For these reason, a specific
threshold has been defined in order to cope with the aforementioned needs.

Based on these cosiderations, three different threshold values are defined:

• Wake-up threshold (TW U): the wake-up threshold is calculated on the STD
value obtained by dividing the available time series in segments of 1 second
(100 samples), corresponding to the sampling frequency of the measuring in-
strument, 100 Hz. It indicates that the measured vibration data correspond
to a significant (traffic induced) excitation level of the structure. This thresh-
old is used to wake up the system and start storing (on the IoT Gateway) the
defined minimum number of samples (Nmin);

• Trigger threshold (TT ): the trigger threshold is calculated on the defined
minimum number of samples (Nmin) and indicates whether the data packet
consisting of Nmin samples is significant or not. In case of meaningful data,
samples are stored and analyzed;

• Sudden event threshold (TSE): the sudden event threshold indicates that an
abnormal vibration level has been reached, so data must be acquired and
further actions must be activated.

A graphical representation of the implemented acquisition and storage proce-
dure can be found in Figure 4.2.

As can be deduced from the flow chart, the implementation of the acquisition
and storage protocol follows the following steps:

1. acceleration signals are continuously acquired at a sampling rate of 100 Hz by
sensor nodes, in the 3 measurement directions x, y, z. The expected output
ai is given by:

ai =

⎡⎢⎣xi

yi

zi

⎤⎥⎦ (4.1)
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Figure 4.2: Acquisition and storage procedure

2. in order to take into account the contribution of all axes, the modulus of ai

is determined as:

mi =
√︂
x2

i + y2
i + z2

i (4.2)

3. standard deviation value (STD) is calculated every 100 samples for each sensor
node;
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4. STD value is compared with the TSE threshold for each sensor. The infor-
mation regarding this check is exchanged among neighbouring sensor nodes
in order to verify whether the minimum percentage of sensors exceeding the
threshold has been reached or not;

5. if the minimum percentage of sensors exceeding the TSE threshold has been
reached, other actions are triggered (ref. Paragraph 4.4.3 );

6. if the minimum percentage of sensors exceeding the TSE threshold has not
been reached, STD value is compared with the TW U threshold for each sensor.
The information regarding this check is exchanged among neighbouring sensor
nodes in order to verify whether the minimum percentage of sensors exceeding
the threshold has been reached or not;

7. if the minimum percentage of sensors exceeding the TW U has not been reached,
meaning that no significant energy is contained in the signal, data are dis-
carded and the acquisition process continues without storing that time series;

8. if the minimum percentage of sensors exceeding the TW U threshold has been
reached, a clock is activated synchronously for all sensors and data starts to
be stored in a local buffer until reaching the pre-defined number of sample
Nmin (corresponding to a pre-defined time-window);

9. standard deviation value (STD) is calculated for the Nmin samples;

10. STD value is compared with the TT threshold for each sensor. The information
regarding this check is exchanged among neighbouring sensor nodes in order
to verify whether the minimum percentage of sensors exceeding the threshold
has been reached or not.

11. if the minimum percentage of sensors exceeding the TT threshold has been
reached, data (of all sensors) are sent to the IoT cloud and stored;

12. if the minimum percentage of sensors exceeding the TW U has not been reached,
meaning that no significant energy is contained in the signal, data are dis-
carded and the acquisition process continues without storing that time series;

The minimum percentage of sensors exceeding the threshold has been set, for
all the applications described in this dissertation, at 80% for all types of threshold.
The idea behind this choice is that all the ponits of the structure are subjected to
the same environmental conditions (traffic, wind or exceptional events); it follows
that any event that generates an excitation on the structure must be recorded
by most of sensors. The remaining 20% take into account any compromised (or
malfunctioning) sensors in the system.
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In the following paragraphs all the procedures used for defining and calculating
the aforementioned threshold values and for identifying the minimum time-window
necessary for an adequate modal identification process are illustrated.

4.4.1 Thresholds definition - Principal Component Analy-
sis (PCA) approach

This paragraph describes the methodology applied to calculate the value of
thresholds TW U and TT . In particular, the developed methodology allows to auto-
matically set the most suitable threshold values for each sensor, in order to identify
the excitation of the structure. To achieve this goal, a Principal Component Anal-
ysis (PCA)-based approach has been used.

Principal Component Analysis is a multivariate procedure whose main purpose
"is to reduce the dimensionality of a data set in which there are a large number of
interrelated variables...by transforming them to a new set of variables, the principal
components, which are uncorrelated and ordered so that the first few retain most of
the variation present in all of the original variables" [36]. PCA has been widely used
in SHM for damage detection purposes, with the aim of extracting data features
that allows to distinguish between the health status and the damaged one [26].
However, the use of PCA in long-term continuous monitoring systems has several
limitations mainly due to its computational cost and data memory footprint, which
makes it difficult to use for damage detection in applications where a network of
structures is equpped with a large number of sensors.

Nevertheless, in this context, the use of PCA is proposed as a tool for identify-
ing the most suitable thresholds to be used for the acquisition and storage needs.
The main idea behind this approach is to use the reconstruction error as the key
parameter for identifying the most appropriate threshold value. More in detail, an
iterative algoritm has been implemented, using a very low initial threshold guess
(close to zero) to generate a sequence of higher solutions until reaching the conver-
gence criterion limits.

Before going into detail about the proposed approach, some basic assumptions
have to be underlined:

1. threshold values are updated once a day up to the first month from the
installation of the monitoring system and then, they remain unchanged until
a possible subsequent update;

2. a one month training period is considered, in order to obtain a valid repre-
sentation of the system dynamics. During the first month of monitoring, the
training period increases day by day up to 30 days;

3. the threshold values must be periodically updated as the amount of data
collected increases in time. In particular, threshold values are updated once

70



4.4 – Acquisition and Storage Protocol

a month, if no anomaly is registered;

Principal Component Analysis (PCA)

PCA is a data simplification technique mainly used in multivariate statistics. It
was first proposed in 1901 by Karl Pearson and then developed by Harold Hotelling
in 1933. The method is aimed at reducing the number of variables that describe a
set of data to a smaller number of latent variables, describing most of the available
variance. This reduction process occurs through an orthogonal linear transforma-
tion that projects the original data into a new coordinate system, in which the first
new variable (first principal component) with the greatest variance is projected
on the first axis, the second new variable (second principal component), second
by variance, on the second axis and so on (ref. Figure 4.3 for a two-dimensional
features space).

Suppose that [X] ∈ RpxN is the dataset matrix of p random variables and N
observations:

[X] =

⎡⎢⎢⎢⎢⎣
x11 x12 . . . x1N

x21 x22 . . . x2N
... ... . . . ...
xp1 xp2 . . . xpN

⎤⎥⎥⎥⎥⎦ (4.3)

where the columns represent the N observations and the rows are the p random
variables, data are summarized by reducing the number of columns of the data
matrix [X] defining a number q(q < p) of artificial variables. Therefore, a matrix
[Y ] ∈ RqxN of new data composed of q variables uncorrelated with each other is
obtained by a linear combination of the former:

[Y ]qxN = [L]Nxq[X]pxN (4.4)

where [L] is the principal components matrix while [Y ] is the transformed data
matrix (score matrix). In order to obtain the described transformation, the eigen
decomposition of the correlation matrix is performed, after normalizing the signals:

[CX ] = 1
N

[X][X]T (4.5)

[CX ] is a square symmetric matrix giving the degree of linear relationship be-
tween each pair of elements belonging to the data set. The objective is then to
maximize the variance in the directions containing the most significant informa-
tion, represented by the diagonal of the covariance matrix, and to minimize the
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redundancy of data and noise, represented by the covariance found in the non-
diagonal elements. More in detail, the eigenvectors with the highest eigenvalues
represent the most significant trends recognized in the dataset with the largest
quantity of information.

Once the transformation is done, dimensionality reduction can be obtained by
projecting the dataset onto the calculated eigenvectors corresponding to the first
eigenvalue only. The main components can therefore be used to reconstruct the
original dataset. In particular, it is possible to project back the [Y ] matrix onto
the original space, and obtain the reconstructed data matrix [ˆ︂X] as follows:

[ˆ︂X] = [Y ][L]T (4.6)

It is thus possible to evaluate the accuracy of the PCA results by calculating
the error between the original data and its reconstruction. More in detail, the
average reconstruction error can be defined as the distance between the original
data points and their projection onto a lower-dimensional subspace (ref. Figure 4.3).
Considering a generic signal instance x and its reconstruction ˆ︁x, the recontruction
error Ex can be obtained as:

Ex =
N∑︂

i=1
∥xi − ˆ︁xi∥2 (4.7)

(a) (b)

Figure 4.3: Principal Component Analysis. (a) PCA explanation in a two-
dimensional feature space; (b) Projection of recontruction error ei

The reconstruction error has to be minimized in order to obtain a more accurate
approximation of the original matrix [X].
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PCA is by definition a non-iterative process, which finds the best squared error
fit through a linear representation. However, the following paragraph will illustrate
how to integrate PCA into an iterative process aimed at finding the most suitable
threshold values for identifying the excitation level of a structure, using as control
parameter the recontruction error Ex.

Iterative process

The proposed methodology integrates the PCA technique described in the pre-
vious paragraph within an iterative process aimed at automatically obtaining the
two threshold values TW U and TT . In particular, as aforementioned, a training pe-
riod of one month is considered. The proposed algorithm for automatic threshold
selection based on the reconstruction error of the PCA is structured as follows:

1. Sensors samples are divided in slot of 100 samples (1 second long, which
corresponds to the sampling frequency of accelerometers) and the STD value
is obtained for each slot;

2. A compression level of the signal is defined, based on the desired level of
accuracy for the PCA reconstruction algorithm;

3. An initial very low STD threshold is set. This value will be increased sequen-
tially in a feedback-loop process;

4. All the STD values above the threshold are used as training set for the PCA
while the slots under the threshold are discarded as noise. Figure 4.4 shows
the application of the described selection process for a currently monitored
bridge. In particular, Figure Figure 4.4 (a) illustrates as an example vibra-
tion data collected during a time period of 2 hours and corresponding STD
values obtained for each data slot of 100 samples. Moreover, Figure 4.4 (b)
depicts the histogram distribution of STD data, together with a threshold
that separates accepted samples from not accepted ones. As expected, STD
data are lognormally distributed, with a large concentration of low values
(corresponding to the signal noise) and a lower concentration of high values
(corresponding to the dynamic energy in the signal). If the selected dataset
has noise inside, the PCA algorithm will not be able to reconstruct it ade-
quately, since by definition the signal noise is a random quantity without any
pattern inside. This means that the recostruction error will be higher. On the
contrary, if the selected dataset is composed only of the dynamic response of
the structure, the PCA will provide an adequate reconstruction of the input
data and consequently the reconstruction error will be smaller. This implies
that, as the threshold increases, the reconstruction error tends to decrease
until the convergence condition is reached.
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Figure 4.4: Principal Component Analysis example. (a) raw vibration data and
corresponding STD values; (b) STD distribution

5. Selected data (above threshold) are used to train the PCA algorithm after
removing windows behind the energy threshold;

6. The recontructed data are compared with the original ones by evaluating the
reconstruction error, according to the convergence condition (the partial sums
become closer and closer to a limit number). If the convergence is reached, it
is possible to exit the loop and define the threshold value. On the contrary,
if the convergence is not reached, the threshold value is increased and the
algorithm restart from point 4.

4.4.2 Time-Window Size
This paragraph illustrates the approach used for defining the minimum time-

window (number of samples Nmin) to perform an accurate dynamic analysis of the
monitored structure.

As aforementioned, when dealing with the acquisition and storage issue, a fun-
damental aspect is the definition of a proper (minimum) time-window of continuous
and synchronized acceleration time-series to be used for obtaining accurate modal
parameter estimates. The definition of the most appropriate time-window mostly
rely on empirical evaluates and tipically vary from few minutes up to one hour for
each time window. The evaluation of the most suitable size must be carried out
taking into account varius parameters, which are:
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• sensor buffer memory, which is the holding place for data recorded by each
sensing device. In fact, when the system wake-ups after exceeding the TW U

threshold, data are temporarily stored in the sensor local memory in order to
evaluate the excitation level of the entire set of data composed of Nmin sam-
ples. Thus, it is necessary that sensor buffers have sufficient storing capacity
to contain Nmin samples and to provide extra memory to be used in case of
anomalous events.

• frequency resolution, which is related to the decrease of Leakage error in the
frequency domain and can be defined as the capability of distinguishing close
frequency components as separate spectral peaks. The frequency resolution
can be obtained as the ratio

Fr = Fs

N
(4.8)

where Fs is the sampling frequency and N is number of data points used for
spectral analysis. Since the sampling frequency is a constant value for each
sensor (equal to 100 Hz in this case), the frequency resolution depends only
on the length of the window used for the spectral analysis (the window size
represents the number of samples and thus the duration of the signal). It
follows that, with reference to equation 4.10, if higher resolution is required,
a longer record must be used.

• time resolution, which is the discrete resolution of a measurement with respect
to time. The time resolution is by definition inversely proportionate to the
frequency resolution and is defined as:

Tr = N

Fs

(4.9)

this means that the longer the window, the less images of the signal evolution
in time are available.

• signal to noise ratio, which is a comparison between the level of the desired
signal with the level of background noise. In particular, the larger the signal
excitation, the smaller the window size needed to perform an accurate modal
identification.

These requirements could create very challenging demands to the hardware
architecture, asking for very long data sets. It is therefore necessary to find a
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solution that can match all these needs, while ensuring a good accuracy of the
analysis results.

Considering the frequencies we are interested in, some consideration can be
made.

First of all, MEMS accelerometers have limited buffer memory, able to store at
most 256 kB of data without generating overflow problems. Thus, considering a
sampling rate of 100 Hz on three measuring axes, this means a maximum of 426
seconds of data (about 7 minutes). This value must be reduced by considering an
extra memory to be used in case of exceptional events.

Secondly, working with civil engineering structures such as bridges, the mini-
mum identifiable frequency variation that is expected in case of damage is in the
order of 0.005 Hz. This means that, considering a sampling frequency of 100 Hz,
a window size of at least 20000 samples (about 3min20sec) is required to obtain a
frequency resolution of 0.005 Hz.

Finally, the acquisition and storage procedure described in paragraph 4.4.1 al-
lows to select only sufficiently excited time-windows, increasing the signal to noise
ratio value. In this way, limiting the presence of signal noise and selecting only
the most excited time-series, the accuracy of modal identification is considerably
improved. Moreover, acceleration records are post-processed with different type
of algorithms that work in the frequency or in the time domain, which take into
account that the noisy part of the signal has to be decreased as much as possi-
ble. This can be achieved in the frequency domain by splitting the whole signal
in smaller windows of length Nw that are used for the computation of the Pwelch
of the total record and thus averaging out the noisy component of the measured
acceleration. Instead, in the time domain, this can be achieved by computing the
Auto and Crosscorrelation functions between all the different acceleration chan-
nels by delaying one signal with respect to another, step by step from a minimum
deltaTao (equal to zero) up to a maximum (deltaTaoMax), but not overtaking the
total length of the recorded acceleration signal.

For all the above-mentioned consideration and in order to considerably improve
the accuracy of modal identification, the minimum number of samples Nmin has
been chosen as:

Nmin = 33000samples (4.10)

corresponding to a time-window of about 5min30sec. In this way, a frequency
resolution of 0.003 Hz is obtained and about 58 kB of memory are left for any
sudden and exceptional event.

76



4.4 – Acquisition and Storage Protocol

4.4.3 Sudden Events Threshold
This paragraph describes the methodology implemented to determine the TSE

threshold value, used for recognizing sudden events that could affect the monitored
structure. In particular, exceptional events such as earthquake, landslides, explo-
sions and so on, can be identified by detecting anomalous acceleration values that
are not normally assumed by the structure under standard operating conditions.
Statistical analysis is thus a critical component in determining which acceleration
value can be considered anomalous or exceptional. Since the nature and type of the
possible sudden event are unknown, threshold values cannot be determined based
on a priori information. They can therefore be determined adaptively, starting from
data collected during a “training phase” and then adjusted as the amount of data
increases over time (during the first few months of monitoring).

The proposed methodology uses statistical analysis to identify vibration data
that appear to be rare or exceptional given the available dataset. It is important to
highlight that the aim of this approach is to make sure that observations relating
to sudden events are properly stored and processed. This means that the values
identified by the proposed algorithm can be anomalous events as well as exceptional
traffic conditions or outliers. But, the method described in this paragraph is helpful
in shedding light on rare events, regardless of their nature, properly storing the
related time-series and triggering more in-depth analysis.

The population used for the statistical analysis is composed, for each sensor,
by all the samples collected during the first month after the installation of the
monitoring system. In particular, as the main goal is highlighting the presence
of any abnormal behaviors in terms of vibration energy, the standard deviation
(STD) value has been chosen as reference parameter. Indeed, the STD, calculated
every 100 samples (once per second), represents the dispersion of a set of data
relative to its mean that is the measure of the energy contained in the vibration
signals collected by each sensor. This means that, if a sudden event occurs, the
variation of data around the mean would increase drastically due to the strong
impulse recorded.

In order to define the TSE threshold value, the Interquartile Range Method
was used. The Interquartile Range (IQR), also known as midspread, is a method
widely used in descriptive statistics for measuring the statistical dispersion ([66]).
It is obtained as the difference:

IQR = Q3 −Q1 (4.11)

where Q3 and Q1 are the 75th and the 25th percentiles respectively. In other
words, the IQR can be clearly seen on a box plot on the data (Figure 4.5).

The IQR can be used to to find samples that are far from the mean value, by
defining limits that are a factor k of the IQR below the 25th percentile or above

77



4 – Proposed Methodology

Figure 4.5: Boxplot of the InterQuartile Range (IQR)

the 75th percentile. k factor is usually put equal to 1.5 for oultiers but, for extreme
“far out” observations, a k factor of 3 can be used.

IQR approach has been applied to STD values calculated for the whole dataset
and pre-filtered to eliminate the noisy windows.

In particular, the implemented automatic procedure includes the following steps,
summarized in Figure 4.6:

1. the whole considered dataset (one month of data) is subdivided in n slots of
100 samples (one second), such that the algorithm can elaborate a slice of
data within time and memory limits. Windows are not overlapped; however,
the method can be extended to the case where a certain level of overlap is
expected;

2. calculate the modulus mi, in order to take into account the contribution of
all axes (ref. equation 4.2);

3. calculate the standard deviation (STD) value for each window;

4. pre-filter the obtained STD values through the procedure described in para-
graph 4.4.1, in order to discard all windows containing a noisy signal (below
the TW U threshold) and keep only those in which environmental excitation is
recognized;
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Figure 4.6: InterQuartile Range (IQR) procedure

5. calculate the probability distribution of filtered STD values;

6. calculate the 75th and 25th percentiles of the selected dataset and compute
the IQR as the difference between the two percentiles;

7. calculate the TSE threshold as:

TSE = Q3 + 3IQR (4.12)

It is important to underline that the identification of sudden and anomalous
events is aimed on one hand at properly storing the time series relating to the
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event and on the other at triggering further more detailed analyzes (ref. Paragraph
4.5). Regarding the data storage, once the event has been identified, it is necessary
to send to the IoT cloud and store not only the time windows exceeding the TSE

threshold, but a wider time interval at the turn of the event. It is in fact essential
to keep a record of both the instants preceding and following the event, in order to
better analyze its nature and effects on the structure.

Considering that the effects of a sudden event on the structure arise after the
event, a not symmetrical time window with respect to the event has been considered.
In particular, taking into account the minimum time-window of 5min30sec defined
in paragraph 4.4.2, it was decided to store:

• if ∆tout ≤ 3min30sec:

∆tbef = 1min00sec
∆taft = 4min30sec− ∆tout

• else if ∆tout > 3min30sec:

∆tbef = ∆taft = 1min00sec

where ∆tout is the time window in which the standard deviation is beyond
the TSE threshold while ∆tbef and ∆taft are the stored time windows before and
after the event respectively. It is important to underline that the IoT gateway
always stores the last 3 minutes of data in its local memory, which are continuously
overwritten as a new dataset is collected. This means that if the TSE threshold is
exceeded, the previous 1 minute of data is always available.

4.5 Multilevel damage detection procedure
This paragraph illustrates the proposed multilevel decision approach to be ap-

plied to a distributed sensor network for identifying damages in civil engineering
structures. The “multilevel” attribute indicates that various methods, having dif-
ferent approaches, reliability and robustness in detecting damages, have been in-
tegrated in a diagnostic framework, able to perform an "information fusion". As
aforementioned, when dealing with a network of structures (hundreds of structures)
instrumented with a network of sensors, the main objective is just to identify a
damage occurrence, postponing the localization and the extension evatuation to
in-depth and subsequent analyzes.

An extensive literature is available on all the methods developed over the years
for identifying damages in civil engineering structures. However, no method is
capable of providing by itself a reliable, comprehensive and robust answer to all the
classical monitoring questions about whether, where and how serious the failure is.
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For this reason it is essential to merge all the information coming from different
methods and, at the same time, integrate data from all sensors of the network,
which can be considered as many eyes looking at the same physical phenomenon.
In facts, dealing with complex structural systems, it is important to take into
account both the behavior of the structure working as a whole and the behavior of
the structure composed by many elements or subsystems. The main challenge for
detecting a system damage is thus recognize the global or local symptoms shown
when a structural change occurs over time. Moreover, the intrinsic nature of failure
mechanisms must be considered. For civil engineering structures, damages could
be caused by a sudden change of state or a slow change of state.

Sudden change of state refers to all that cases in which the whole structure or a
part of it breaks almost instantly, with little or absent elastic and plastic deforma-
tions. The failure can be caused by exceptional natural events, such as earthquakes
or a landslide, by man-made events, such as explosions or road accidents, or fi-
nally by the achievement of the ultimate strength of a structural element that has
a brittle behavior, such as the breakage of a prestressing tendon or shear failures
in beams. In all these cases, if a dynamic monitoring system is installed on the
system, a strong excitation would be recorded by accelerometers and, if the sudden
event causes a damage to the structure, a modification of the structural behavior
(and therefore of the modal parameters) would be observed. This means that it is
necessary to have an indicator able to detect the occurrence of the sudden/brittle
event, which would trigger more detailed analyzes aimed at assessing the health
status of the structure following the event.

Slow change of state refers to all that cases in which the whole structure or a
part of it experiences significant plastic deformation before breaking. Therefore,
the damage evolves slowly over time. This means that it is necessary to monitor
the evolution of some significant parameters over time, in order to highlight any
evolutionary trend that could indicate a progressive damage of some element of the
structure (or the structure as a whole).

Based on these considerations, the monitoring system could be smart enough
for indentifying both types of failure. In this regards, the proposed multilevel
methodology has the objective of recognizing the symptoms generated as a result
of faults (ductile or brittle) and to identify their local or global nature. More in
detail, the multilevel methodology is based on 3 different levels of alert, aimed
at providing a robust damage detection framework able to detect any abnormal
condition, avoiding false alarms as much as possible. The three implemented levels
of alert are defined as follows:

1. Level 1: the first level of alert is verified in real-time (once per second) inside
the sensor node. It is aimed at highlighting any abnormal behavior in terms
of vibration energy. Being computed at sensor level, it is computationally
inexpensive, considering the limited resources available inside the low-end
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devices. The reference parameter is the standard deviation (STD) value,
which is a measure of the energy contained in the vibration signals collected
by sensors. The first level of alert aims at ensuring the continuous and real-
time control of the structure, in order to identify any sudden and brittle event
and trigger the subsequent level checks;

2. Level 2: The second level of alert is computed inside the IoT gateway and it
is normally checked once a day or when level 1 is exceeded. It makes use of
an unsupervised machine learning algorithm (described in detail below) for
detecting damages, having knowledge of the normal condition of the system.
The main idea is to combine the physical parameters (level 3) with statistical
pattern recognition approaches, in order to take full advantage of the system
resources for building a damage detection framework as robust and reliable as
possible. The level 2 check is based on a data-driven model (an autoencoder,
which is a type of artificial neural network, is used), constructed by learning
- in an unsupervised manner - a representation (encoding) of a given dataset.
Once performed the learning process, the neural network would try to pro-
duce, for each new dataset coming from sensors, a representation as close
as possible with respect to the original input. The reconstruction error has
been chosen as reference parameter for identifying damaged conditions. This
means that, if the structure is undamaged, the reconstruction error will be
more or less constant over time while, in case of damages, the recontruction
error would increse dramatically, being the autoencoder unable to reconstruct
data.

3. Level 3: The third level of alert is computed inside the IoT Cloud and it is
normally checked once a week or when levels 1 or 2 are exceeded. Reference
parameters are natural frequencies, which are intrinsic characteristic of the
structure. The choice of the weekly check is motivated considering that the
type of phenomenon to be observed (damages) are ductile in nature and
therefore their evolution is very slow over time. This means that it is possible
to save computational cloud resources, while ensuring continuous monitoring
of any sudden events (level 1). An OMA algorithm is used to identify natural
frequencies, as described in the following paragraphs.

The following diagram (Figure 4.7) summarizes the proposed multilevel proce-
dure:

The three described alert levels are interrelated to each other and are able to
take into account the spatial distribution of the sensor network. In particular, as
aforementioned, information on the structural health status must be provided by
a number of sensors, which are part of the network of devices installed on the
structure. In fact, if a damage occurs in the structure, be it localized or global, a
number of sensors would record it. Let’s take the example of a simply-supported 10
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Figure 4.7: Proposed Multilevel damage detection procedure

span bridge. If a beam belonging to the first span suffers damage, several sensors
of that span should be involved in recording the event while those installed on the
other spans should not notice anything. This means that spatial logics are needed
to identify and localize damages in complex structures with many independent
elements. The proposed methodology takes into account the following two spatial
logics:

1. sensor groups: sensor groups are defined according to the geometry of the
structure. In order to automatically define the groups, a procedure based on
sensor names has been developed. Indeed, each sensor is given a name which
depends on its specific position on the structure. In this way it is possible
to identify sensors close to each other and sensors distant from each other.
Sensor groups are mainly used to identify localized damages;

2. minimum percentage of sensors: a minimum percentage of sensors outside the
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threshold is defined to consider an alert level reached.

Summarizing the above, the multilevel methodology includes a real-time check
carried out through alert level 1, a daily check according to alert level 2 and a
weekly check through alert level 3.

In particular, Level 1 assesses in real-time the occurrence of sudden events of
a brittle nature. If level 1 is exceeded, which means that either a group of sen-
sors or the minimum percentage of sensors has exceeded the pre-defined STD
threshold, a triggering signal is generated and levels 2 and 3 are immediately
activated.

– if at least one of levels 2 or 3 are exceeded, which means that either a
group of sensors or the minimum percentage of sensors has exceeded the
pre-defined thresholds, an ALARM message associated with a phone call
is automatically generated, indicating the group or percentage of sensors
out of threshold;

– if, on the other hand, no other threshold is exceeded, a WARNING
message is automatically generated, indicating the group or percentage
of sensors out of first level threshold.

Level 2 assesses once per day the evolution of damages of a ductile nature.
If level 2 is exceeded, which means that either a group or the minimum
percentage of sensors has exceeded the pre-defined threshold, a triggering
signal is generated and level 3 are immediately activated.

– if level 3 is exceeded, which means that either a group or the mini-
mum percentage of sensors has exceeded the pre-defined thresholds, an
ALARM message associated with a phone call is automatically gener-
ated, indicating the group or percentage of sensors out of threshold;

– if, on the other hand, no other threshold is exceeded, a WARNING
message is automatically generated, indicating the group or percentage
of sensors out of second level threshold.

Level 3 assesses once per week the evolution of damages of a ductile nature.
If level 3 is exceeded, which means that either a group or the minimum
percentage of sensors has exceeded the pre-defined threshold, an ALARM
message associated with a phone call is automatically generated, indicating
the group or percentage of sensors out of threshold.

The two automatically generated alert messages, WARNING and ALARM type,
are defined as follows:
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WARNING: the warning message refers to anomalous conditions which are
not connected to structural deficiencies and would thus require further inves-
tigation to be clarified. No actions are therefore required;

ALARM: the alarm message refers to significant anomalous conditions which
are potentially connected to structural damages or failures. An on-site in-
spection is required together with more in-depth data analysis.

The following paragraphs detail all the procedures used for the three defined
levels of alert.

4.5.1 First alert level - Sudden Events Threshold
The first alert level is computed in real-time (once per second) within the sensor

node and it is aimed at verifing that no abnormal vibrational levels occur (with
respect to the standard dynamic behavior of the structure). The procedure and all
the steps followed for defining the threshold values is detailed in paragraph 4.4.3.

4.5.2 Second alert level - Machine Learning Approach
As aforementioned, the second level of alert implies the application of an unsu-

pervised machine learning algorithm for identifying anomalies in the structure.
Artificial Neural Network (ANN) can be defined as brain-inspired systems, able

of learning how to perform specific tasks, replicating the way humans learn. In
recent years, neural networks have increasingly been used as damage detection
tools for structural health monitoring purposes. Several examples can be found in
literature, [56], [27], [13].

In this dissertation, a machine learning algorithm has been implemented for
classifing the structure state of health based only on data representing the standard
behaviour of the system, that is, the undamaged condition. This technique, called
unsupervised learning, allows the model to discover information and learn on its
own, without any supervision. Indeed, considering that in real cases data from
a damaged scenarios are not available, the main idea is to train the network for
reconstructing the healthy state of the structure in order to detect any novelty,
which would be flagged as damage.

For the applications described in this work, an autoencoder has been used. An
autoencoder is an artificial neural network that is able to generate a new dataset
by first compressing input data into a space of latent variables and subsequently
reconstructing the output on the basis of the information acquired. In particular,
an autoencoder learns how to reconstruct the input data x from a reduced encoded
representation, to output data ˆ︁x which are as close to the original input as possible.

With reference to Figure 4.8, the 4 main parts that characterize an autoencoder
are the following:
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Figure 4.8: Autoencoder architecture

• Encoder: the encoder is the stage in which the model takes the input layer
and reduces its dimension by compressing it in an encoded representation;

• Code: the code stage, also known as bottleneck or latent representation, con-
tains the compressed representation of the input data, that is, the information
needed to traverse the full network, through the lowest possible dimensions
of the first layer;

• Decoder: the decoder is able to recontruct the data from the encoded rep-
resentation to be as similar as possible to the original dataset.

• Reconstruction Error: the recontruction error measures how close the out-
put data is to the input data,that is how well the autoencoder is working. The
autoencoder objective is therefore the minimization of this parameter.

The autoencoder approach works very well if input data are correlated because
the encoding operation relies on the correlated features to compress the data. Based
on this assumption, the steps followed in the second alert level are as follows:

1. Define the autoencoder architecture: in this work, an autoencoder has been
designed as a feedforward network, having 1 layer in both the encoder and
decoder, without considering the input and output (Figure 4.8). The number
of hidden layers has been chosen considering both training and generalization
error. Indeed, few hidden units have shown to perform better than more
hidden units, which return low training error but high generalization error
due to overfitting and high variance. Acceleration time series recorded by
accelerometers installed on the structure in the 3 measurement directions x,
y, z are used as input data. The output data are also acceleration time
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series. The number of nodes in middle layers is automatically set according
to the input size (i.e. number of sensors), so that a suitable compression level
is guaranteed. More in detail, the number of hidden neurons per layer has
been set as 80% and 50% of the input size. The number of hidden units has
been obtained by training several networks and estimating the training and
generalization error of each. In particular, better performances have been
observed having a large first layer and thinner last layer (code). Indeed,
the first large layer allow the net to compute powerful representations of
acceleration data, which help the code computing denser representations. The
rectified linear units (ReLU) has been used as activation function, since it
allows model to learn faster and perform better. Moreover, BackPropagation
algorithm (BP) has been used to train the model.

2. Define a training dataset: to perform the autoencoder training, it is necessary
to select a training dataset, which can be defined as a set of "examples" used
to fit the parameters of the model. Indeed, the autoencoder learns from this
training dataset and then it would able to predict the output from an input not
encountered during its training. The choice of the suitable training dataset is
therefore essential for the performance of the network. In this work, a dataset
comprising acceleration time series collected by each sensor node has been
used as training dataset. In particular, in order to prevent the autoencoder
from overtraining and to take into account environmental influences, different
traces have been considered. In particular, the training dataset has been
assembled using several time series belonging to the first month of monitoring
and collected at different times (day, night, week, weekend), in order to take
into account all the possible scenarios that can occur in standard operating
conditions.

3. Validating and Testing the network: validating and testing the trained ANN
using an appropriate dataset, in order to obtain the final model to be used for
damage detection. More in detail, from the training dataset, two samples of
data are held back, in order to use them for validating and testing the neural
network after the training process is completed. The validation dataset is
mainly used for model selection, that is for optimizing model’s hyperparame-
ters. On the other hand, once the final model is defined, test dataset is used
to give an unbiased evaluation of the ANN performances.

4. Define a threshold level for the reconstruction error: once the autoencoder
has been trained, in order to use the trained network as a tool for damage
detection, a threshold level has to be defined for the reconstruction error,
chosen as key parameter, representative of the quality of the reconstruction.
More in detail, a threshold value equal to 0.1% of the reconstruction error
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is automatically set with reference to the average of the reconstruction error
obtained throughout the training phase.

The described process allows to check the health of the structure once per day.
Indeed, Autoencoders are used to predict the structure vibration signals under
environmental and operational conditions, assuming a given state of preservation
of the bridge. Any discrepancy between predicted and measured responses can be
interpreted as a modification in the structural behaviour and therefore can be linked
to damages. In practical terms, this means that, for each new dataset collected
by sensors, the prediction made by the trained neural network is compared with
the time histories recorded by the monitoring system and the reconstruction error
between prediction and real data is calculated. If the reconstruction error is higher
than the preset threshold (0.1% of the average error obtained during training), an
automatic alarm signal is generated.

4.5.3 Third alert level - Frequency in time
The third level of alert is computed inside the IoT Cloud and it is normally

checked once a week or when levels 1 or 2 are exceeded. The main goal is to iden-
tify the modal parameters, more specifically natural frequencies, of the monitored
structure from the collected dynamic responses, in order to use them for assessing
the current structural health condition. For this purpose, it is therefore essential
to process real-time data coming from sensors through robust and powerful algo-
rithms, able to perform an automatic and reliable frequency identification. Special
attention must be paid to environmental influences (temperature, wind, etc.) which
can lead to variations in the dynamic response of the structure.

Based on the above, the proposed methodology includes, for this level of check,
the following automatic steps, summarized in Figure 4.9:

• collecting and storing real-time vibration data coming from sensors installed
on the monitored structure. Signals are collected under normal operating
conditions and thus excitation sources are assumed to be "white noise";

• preprocess the incoming data, according to what has been described in chapter
3;

• applying OMA methodologies (in this specific case, Cov-SSI method was cho-
sen) for the identification of the selected dynamic parameters. In particular,
natural frequency values are obtained once a week or when levels 1 or 2 are
exceeded;

• removing environmental influences, expecially temperature, on the modal pa-
rameters. Indeed, the effect of external factors may lead to relevant fluctua-
tions that can generate false alarms and, at the same time, mask modifications
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Figure 4.9: Main processing steps of the third alert level - Evolution of natural
frequencies

due to damages. The issue of removing environmental influences on modal
parameters is widely addressed in the literature [42], [35] and a number of
significant methodologies have been developed for this purpose. However,
for a first version of the proposed methodology, a linear regression approach
has been implemented for removing temperature influence on frequency val-
ues. Nonetheless, improvements can be made by using more sophisticated
methodologies;

• evaluating the evolution of natural frequency values over time, detecting any
anomalies in the monitored structure. More in detail, frequency values are
compared to a pre-set threshold value, in order to identify any reduction in
stiffness.

As regards the threshold values, these should be set specifically for each struc-
ture, according to the expected damage scenarios. However, as widely explained at
the beginning of this chapter, the purpose of the proposed methodology is to pro-
vide a complete data-driven method, able to automatically generate system health
indicators without any specific analysis on the monitored structure. For this reason,
a threshold of 0.1Hz is automatically set for any structure when the monitoring
system is installed. The reason for choosing this threshold value is justified by the
following considerations:

• The entity of frequency shifts due to damages is strongly influenced by the
associated mode shapes. Indeed, the frequency shift ∆fi is usually larger for
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the higher modes compared with the lower modes. However, since the civil
engineering structures to which this methodology is directed (bridges) have
in general low frequency values (in the range 0-12/15 Hz), it is possible to
assume a single ∆fi threshold for all frequencies, which correspond to the
minimum detectable frequency shift.

• Numerical modeling of the most typical damages that can occurr in the ana-
lyzed structures (mainly bridges) allowed to identify the minimum frequency
variation that can be observed following a damage. However, this result was
compared with the minimum frequency variation detectable by the automatic
algorithm, in order to limit false alarms as much as possible.

Notwithstanding, this threshold can be updated if specific analyzes are per-
formed for a particular structure.
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Chapter 5

Continuous Monitoring - Case
Studies 1

5.1 Chapter Introduction
This chapter describes a significant case study of continuous monitoring sys-

tems applied on an highway bridge located in northern Italy. In particular, the
main objective is to illustrate how the proposed methodology allowed the identifi-
cation of anomalous conditions in this structure, which was and still is continuously
monitored. Indeed, the monitoring framework described in chapter 4 is currently
implemented on about 20 bridges, providing real-time information on their health
status.

5.2 Dynamic monitoring of a box composite high-
way bridge

In this pararaph, the application of a SHM system to a real operating bridge
is described, in order to demonstrate the potential of the proposed methodology
for the continuous and automated monitoring of structures. More in detail, the
structure under examination is being monitored continuosly trought a dynamic
monitoring system since September 2017.

Vibration signals are acquired by a network of MEMS tri-axial accelerometers
installed on the pre-stressing tendons of the bridge. These sensors are g-sensitive
and their behavior is influenced by environmental factors so a pre-processing is
required in order to remove environmental and operational effects on the measured
dynamic properties. The fully automated monitoring process, described in detail
in chapter 4, comprehends three main steps: (i) pre-processing data at node and
gateway level, (ii) sending and storing data in an IoT Cloud, (iii) processing real-
time data in the IoT Cloud.
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A database of statistical and dynamic features of every monitored element has
been therefore continuously updated since the system was put in operation, rep-
resenting an interesting case study in how the issues of big data management and
damage detection strategies in a SHM perspective can be overcome through the
integration of IoT technologies and OMA methodologies.

In a first part of this paragraph, a description of the monitored bridge and
monitoring elements is reported. Afterwards, the application and operation of
the automated monitoring strategy is presented. Finally, results from 2 years of
monitoring are illustrated, emphasizing the most relevant outcomes regarding the
damage detection methodology presented in this dissertation. Part of this work
was already published in [8].

5.3 Bridge Description
The monitored structure is a highway concrete bridge located in Italy. The

bridge, opened to traffic in 2006, is a composite box girder in which the concrete
webs are replaced with corrugate steel plates to reduce the self-weight and simplify
the construction. Mixed prestressing (internal/external) was used to strengthen
the structure. Two abutments are supporting the bridge at the end points and five
concrete piers clamped into the girder are holding up the 6 spans. The bridge is
590 m long and it is characterized by four equally spaced continuous spans with a
length of 120 m each, one continuous span with a length of 70 m and one simply
supported end span 40 m long. The main girder has a cross-section height varying
from 6.0 m (at the bearings) to 3.0 m (on the centerline of each span). A single
expansion joint is present at pier P5, holding together the two separated decks while
absorbing temperature-induced expansion and contraction of bridge materials. The
structural details of the bridge are shown in Figure 5.2 while a 3D bridge view is
shown in Figure 5.1.

The bridge is strengthened by both internal and external pre-stressing. More
in detail, the pre-stress of the structure is provided by means of bonded tendons
arranged in the upper flanges of concrete slab and unbonded external tendons com-
posed of 27 strands placed in the hollow section of the box girder. The external
pre-stressing tendons are encapsulated within a protective polyethylene duct where
a grout is injected to protect the cable. Detailed information about tendons geo-
metric and mechanical characteristics are listed in Table 5.1. Moreover, Figure 5.3
schematically shows the geometry and positioning of the pre-stressing tendons.

During an inspection carried out inside the box girder, some tendons were found
broken; the failure point was identified for all tendons at an upper location, near
the anchorages. The origin of this phenomenon was found in an incorrect grout
composition that caused an accelerated corrosion of the strands. The investiga-
tions carried out on the failed cables have shown that, at break points, the steel
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Figure 5.1: (a) Bridge 3D view. (b) Pictures of the bridge both under construction
and in operating conditions.

Table 5.1: Geometric and mechanical characteristics of external pre-stressing ten-
dons

Characteristic Unit Value
Num strands - 27
Internal diameter mm 110
External diameter mm 115
Area mm2 139
Yield strength fyk N/mm2 1670
Tensile strength ftk N/mm2 1860

strands were completely corroded and the ducts were empty of grout near the an-
chorage plate. Indeed, the problem related to the corrosion of steel tendons in
post-tensioned structures due to the lack of grount in the ducts is widely addressed
in the literature [9], [1].

The assessment of failed external post-tensioned tendons led to the installation
of a continuous monitoring system with the aim of identifying tendons condition
during the service life of the structure and possibly anticipating future collapse of
the tendons. Moreover, the long-term dynamic monitoring system allows checking
the effects of the heavy daily traffic traveling on the bridge as well as understanding
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Figure 5.2: Structural details of the bridge: plan view, elevation and two different
cross-sections (at the bearings and on the centerline of the span).
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Figure 5.3: External pre-stressing tendons layout. (a) External pre-strssing draw-
ings; (b) picture of one anchorage of external tendons; (c) external tendons posi-
tioning inside the bridge.

the dynamic response of the bridge under operational conditions. The bridge is in
fact crossed every day by a large number of heavy vehicles, so special attention has
to be paid to the dynamic interaction between traffic and bridge as well as to the
consequences on the structural performance of the bridge during its service life.

5.4 Monitoring System Description
The monitoring system was installed between June and September 2017, being

fully active since 20 September 2017. External tendons were instrumented with
88 MEMS tri-axial accelerometers, 2 for each monitored tendon. These MEMS
accelerometers are ultra compact low-power three-axis linear accelerometers that
include a sensing element and an IC interface able to take information from the
sensing element and to provide a corresponding analog signal. Accelerometers have
a dynamically user selectable full-scale of ±2g/± 6g and they are capable of mea-
suring accelerations over a maximum bandwidth of 1.8 kHz for all axes. They
operate with a noise spectral density of 50µg/

√
Hz and a sensitivity of Vdd/5

[V/g], considering a full scale of ±2g and a Vdd (power supply) of 3.3V.
A long lasting preliminary experimentation has allowed assessing the accelerom-

eter performances, which were fit for the high expected excitation levels, especially
produced by the heavy traffic travelling on the bridge both during day and night,
with just a small reduction during the weekends.

As mentioned in paragraph 4.3, each tri-axial MEMS accelerometer provides
data in the 3 orthogonal directions (x, y, z), oriented as shown in Figure 5.4. The
x axis is the transversal direction of the deck, y axis is parallel to the longitudinal
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(a) (b)

Figure 5.4: Accelerometer coordinate system: (a) Signs convention; (b) Measure-
ment axes (x, y, z) orientation

extension of the tendon and z axis corresponds to the vertical direction.
The system was properly designed in order to cope with the monitoring needs,

integrating sensor nodes with an IoT gateway and a Data Center, also known as
IoT Cloud, as explained in detail in paragraph 4.3.

In this specific case, each of the 88 sensor nodes is equipped with a tri-axial
MEMS accelerometer, a microcontroller and a sensor of humidity and temperature,
in order to collect environmental data which must be taken into account when pro-
cessing accelerometric data (especially temperature). The tri-axial accelerometers
are characterized by a range of ±2.5 g and a bandwidth of 50 Hz; preliminary tests
carried out before designing the monitoring system proved the adopted MEMS sen-
sors to be effective in measuring tendons vibration, whose frequency range in the
order of 40 Hz can be considered enough to get any eventual damage detection. To
increase accuracy, acceleration data are sampled at the sensor level at 25.6 kHz,
filtered down and down sampled to finally obtain a sampling rate of 100 Hz; this
sampling frequency is the maximum allowable sampling rate per channel, due to the
data streaming limitation through the network. The measurement nodes are placed
in 10 cross-sections of the bridge, close to the steel protection screens as shown in
Figure 5.5. More in detail, the devices are placed on top of the pre-stressed cables
and fastened to it (Figure 5.5).

Once collected, acceleration data are encoded by the microcontroller into a CAN
BUS driven network and sent to a local IoT gateway. The acceleration, temperature
and humidity time series coming from the 88 measurement nodes are then sent to
the cloud monitoring infrastructure. Indeed, the monitoring system is connected to
the internet via a 5 GHz point-to-point Wi-Fi link between an access point located
at one end of the bridge and an "Ubiquity Nano M5" station located at the P2 pier,
halfway between the viaduct ends. An Ethernet cable connects the station to the
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Figure 5.5: Sensor nodes positioning on the pre-stressing tendons

two IoT gateways installed on the bridge: one for the sensors installed on the left
side, one for those installed on the right side of the bridge.

Data are then available to be accessed, downloaded or processed on a IoT cloud
environment. Considering that the amount of stored data is of noticeable dimen-
sions, the main challenge when designing the system was to elaborate this huge
amount of information in the shortest time by using cloud resources at best. Tak-
ing advantage of the high parallelism (up to 1000 simultaneous executions) available
in the IoT cloud, data composed by time series of length T seconds can be sub-
divided into m slot of Tw seconds such that the algorithm can elaborate a slice of
data with low time and memory consumption.

The main challenge is, then, exploiting all the potentiality of the monitoring
system, avoiding waste of resources. Being aware of the capacity and limits of the
different components, a strategy for early detection of tendon damage has been
developed. The description of the methodology and some interesting results are
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Figure 5.6: Tendons naming convention

shown in the following.

5.4.1 Naming Convention
For confidentiality reasons, a fictitious naming convention is adopted to describe

the various elements belonging to the monitoring system. As aforementioned, the
measurement points were placed in 10 cross-sections of the bridge, starting from
the abutment called AB1 up to the abutment called AB2, as shown in Figure 5.5.

A maximum of 12 tendons can pass through each of the cross sections. The
cables are numbered from 1 to 6 distinguishing those installed on the right side of
the bridge and those installed on the left side of the bridge, as illustrated in Figure
5.6. Sensors installed on each tendon are then named according to the following
nomenclature:

<Section> [Circuit] <sensor number>
where:

• <Section> - identifies the transversal cross-section to which the sensor be-
longs and varies from 1 to 10. In each span there are 2 trasversal sections,
near the piers;

Circuit - identifies the circuit to which the sensor belongs and can be Left (L) or
Right (R); the reference system is looking towards the abutment AB2 (back
to abutment AB1);

• <sensor number> - indicates the cable on which the sensor is installed, ac-
cording to the aforementioned convention.

Below is a summary table of all sensors installed on the structure.
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Span Section Tendon number Sensor name
Left Right

AB1 - P1

1 1 1L1 1R1
2 2L1 2R1
1 2 1L2 1R2
2 2L2 2R2
1 3 1L3 1R3
2 2L3 2R3
1 4 1L4 1R4
2 2L4 2R4
1 5 1L5 1R5
2 2L5 2R5
1 6 1L6 1R6
2 2L6 2R6

P1 - P2

3 1 3L1 3R1
4 4L1 4R1
3 2 3L2 3R2
4 4L2 4R2
3 3 3L3 3R3
4 4L3 4R3
3 4 3L4 3R4
4 4L4 4R4
3 5 3L5 3R5
4 4L5 4R5
3 6 - -
4 - -

P2 – P3

5 1 5L1 5R1
6 6L1 6R1
5 2 5L2 5R2
6 6L2 6R2
5 3 5L3 -
6 6L3 -
5 4 5L4 -
6 6L4 -
5 5 5L5 -
6 6L5 -
5 6 5L6 5R6
6 6L6 6R6

P3- P4

7 1 7L1 -
8 8L1 x
7 2 7L2 7R2
8 8L2 8R2
7 3 - 7R3
8 - 8R3
7 4 - -
8 - -
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7 5 - 7R5
8 - 8R5
7 6 - 7R6
8 - 8R6

P4- P5

9 1 9L1 -
10 10L1 10R1
9 2 9L2 9R2
10 10L2 10R2
9 3 9L3 9R3
10 10L3 10R3
9 4 9L4 -
10 10L4 -
9 5 - -
10 - -
9 6 - 9R6
10 - 10R6

Table 5.2: Naming convention of all sensors installed on the bridge

5.5 Preliminary analysis
Before the installation of the monitoring system, some preliminary analyses were

carried out.
Firstly, given that the objective of the monitoring system was to check con-

tinuously the health status of the external prestressing tendons of the bridge, a
preventive evaluation of the expected damage scenario was carried out. In par-
ticular, based on the observations made during the inspection, it was proved that
the tendons breakage was caused by a corrosive phenomenon. More in detail, an
important lack of grout, togheter with oxidation marks on strads and a relevant
reduction of the tendon cross section was observed. The localized absence of grout
in the duct, due to an incorrect grout composition which led to a bleeding of the
grout during construction, causes a local corrosion attack in the form of pitting in
the upper part of the tendons. As the corrosion proceeds, the individual strands
begin to break. The breakage of a number of strands leads to a reduction of the
pre-stress force and therefore to a consequent reduction of the tendon stiffness.
Consequently, a decrease in cable stiffness would produce an abrupt reduction of
its own natural frequencies.

This means that, as soon as the system is installed, it is possible to carry out a
preliminary evaluation of the health status of each tendon only by comparing the
expected theoretical frequencies with the measured ones.

Ambient vibration measurement were collected in a first stage of the monitor-
ing process, without disturbing the normal use of the bridge. More in detail, time
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Figure 5.7: Comparison between (a) Frequency Domain Decomposition and (b)
Covariance-driven Stochastic Subspace Identification Method for frequency identi-
fication

series were collected for each tendon during a 24 hours time period, before the fully
operation of the monitoring system was reached. Modal parameters, in particu-
lar resonant frequencies, were identified using two OMA identification techniques,
described in detail in chapter 3: Frequency Domain Decomposition (FDD) and
Covariance-driven Stochastic Subspace Identification (Cov-SSI) methods. The use
of these methodologies was aimed at verifying that the results were consistent be-
tween them. Results from both methods are shown in Figure 5.7 for one of the
sensors installed on the bridge.

Table 5.3: Identified Natural Frequencies
Mode Frequency

[Hz]
1 7.614
2 15.293
3 15.408
4 23.068
5 23.275
6 31.005
7 31.278
8 39.316
9 39.971

As it can be seen from Figure 5.7 resonant frequencies, summarized in Table 5.3,
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were clearly identified (indicated with dashed vertical lines) between 0 and 50 Hz. In
particular, both methods allowed the identification of all the extremely close modes
of the axially symmetric cables (vibrating in two orthogonal planes). However, for
the preliminary analysis carried out at the installation of the monitoring sytem,
only the fundamental frequency was considered. This is justified by the fact that,
since the monitored element is a cable, the theory of the vibrating string can be
applied. Consequently, whatever the initial conditions are, tendon vibration will
always be periodic and more precisely it will be given by the superposition of (in
general infinite) elementary harmonic vibrations, each characterized by a specific
harmonic frequency. All these harmonic frequencies are integer multiple of the first
fundamental frequency. This means that any observation made on the fundamental
frequency can be considered valid also for all the identified modes, being multiples
of the first natural frequency.

At the same time, knowing the length and mass of each tendon, it was possible
to calculate the theoretical first frequency using the following expression:

fi = 1
2Li

√︄
Ti

mi

(5.1)

where Li, mi and Ti are respectively the length of the cable, its mass and the
axial force acting on it. In the case of tendons injected with cement mortar, only
stress variations are taken into account, as mass and lenght losses are not physically
acceptable. It is important to underline that the axial force and the length of each
tendon were measured in situ before the installation of the monitoring system and
therefore they can be considered as known quantities.

Tables 5.4 and 5.5 shows a comparison between the expected first natural fre-
quency for each tendon and the value measured in September 2017, immediately
after installing the monitoring system.

Span Sensor
Tendon Tendon Numerical Measured Frequency
Lenght Mass Frequency Freq 09/2017 Variation

[m] [kg/m] [Hz] [Hz] [Hz]

AB1 - P1

1L6 18,32 46,30 8,60 8,58 0,02
1L5 18,35 46,30 8,59 8,60 -0,01
1L4 18,35 46,30 8,53 8,30 0,23
1L3 20,93 46,30 7,55 6,98 0,57
1L2 20,89 46,30 7,55 7,55 0,01
1L1 20,93 46,30 7,49 7,48 0,02
1R6 18,24 46,30 8,64 8,53 0,11
1R5 20,75 46,30 7,60 7,53 0,07
1R4 20,69 46,30 7,56 7,35 0,22
1R3 20,83 46,30 7,59 7,25 0,34
1R2 20,74 46,30 7,61 7,60 0,01
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1R1 20,70 46,30 7,57 7,56 0,01

P1 - P2

3L5 20,76 46,30 7,68 7,70 -0,01
3L4 21,07 46,30 7,58 7,52 0,07
3L3 21,09 46,30 7,50 7,41 0,09
3L2 21,06 46,30 7,53 7,35 0,18
3L1 21,10 46,30 7,54 7,38 0,17
3R6 20,93 46,30 7,62 7,54 0,08
3R5 20,89 46,30 7,63 7,62 0,01
3R3 20,98 46,30 7,54 7,47 0,07
3R2 20,89 46,30 7,59 7,55 0,04
3R1 17,58 46,30 9,05 9,04 0,01

P2 - P3

5L6 21,03 46,30 7,57 7,41 0,17
5L5 21,06 46,30 7,56 7,37 0,19
5L4 21,06 46,30 7,58 7,56 0,02
5L3 20,49 46,30 7,71 7,71 0,01
5L2 21,05 46,30 7,52 7,43 0,09
5L1 21,09 46,30 7,53 7,45 0,08
5R4 20,84 46,30 7,65 7,53 0,12
5R3 20,37 46,30 7,76 7,70 0,06
5R2 20,59 46,30 7,69 7,61 0,08

P3 - P4

7L2 20,91 46,30 7,56 7,51 0,05
7L1 20,31 46,30 7,81 7,80 0,02
7R5 20,91 46,30 7,61 7,43 0,18
7R4 20,89 46,30 7,63 7,46 0,17
7R2 20,91 46,30 7,57 7,40 0,17
7R1 20,91 46,30 7,59 7,40 0,20

P4 - P5

9L3 20,91 46,30 7,65 7,47 0,18
9L2 20,88 46,30 7,66 7,59 0,07
9L4 17,89 46,30 8,95 8,62 0,33
9L1 17,43 46,30 9,21 - -
9R2 18,41 46,30 8,69 8,18 0,51
9R4 20,97 46,30 7,63 7,49 0,14
9R1 20,92 46,30 7,67 7,51 0,16

Table 5.4: Comparison between numerical and measured frequencies - odd sensors

Span Sensor
Tendon Tendon Numerical Measured Frequency
Lenght Mass Frequency Freq 09/2017 variation

[m] [kg/m] [Hz] [Hz] [Hz]

AB1 - P1

2L6 18,50 46,30 8,64 8,53 0,11
2L5 18,53 46,30 8,64 8,44 0,20
2L4 21,07 46,30 7,58 7,37 0,22
2L3 21,11 46,30 7,58 7,07 0,52
2L2 21,06 46,30 7,60 7,53 0,07
2L1 20,81 46,30 7,50 7,44 0,07
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2R6 20,96 46,30 7,63 7,56 0,07
2R5 20,92 46,30 7,65 7,49 0,16
2R4 20,87 46,30 7,65 7,26 0,40
2R3 21,01 46,30 7,62 7,09 0,53
2R2 20,92 46,30 7,65 7,41 0,24
2R1 20,88 46,30 7,48 7,40 0,08

P1 - P2

4L5 18,09 46,30 8,83 8,84 -0,01
4L4 18,09 46,30 8,85 8,86 -0,01
4L3 21,10 46,30 7,51 7,53 -0,01
4L2 20,75 46,30 7,65 7,65 0,00
4L1 21,10 46,30 7,55 7,61 -0,06
4R6 20,95 46,30 7,62 7,58 0,04
4R5 20,91 46,30 7,64 7,63 0,01
4R3 21,00 46,30 7,55 7,52 0,03
4R2 20,91 46,30 7,60 7,56 0,04
4R1 20,57 46,30 7,75 7,69 0,06

P2 - P3

6L6 20,93 46,30 7,62 7,26 0,36
6L5 20,92 46,30 7,62 7,30 0,32
6L4 20,89 46,30 7,65 7,51 0,14
6L3 20,99 46,30 7,54 7,30 0,24
6L2 20,92 46,30 7,58 7,33 0,25
6L1 20,92 46,30 7,61 7,53 0,08
6R4 18,35 46,30 8,71 8,32 0,39
6R3 20,99 46,30 7,54 7,53 0,01
6R2 20,92 46,30 7,58 7,46 0,13

P3 - P4

8L2 20,86 46,30 7,59 7,50 0,09
8L1 20,25 46,30 7,85 7,87 -0,02
8R5 18,39 46,30 8,66 8,49 0,17
8R4 20,92 46,30 7,63 7,52 0,11
8R2 20,93 46,30 7,57 7,42 0,15
8R1 20,95 46,30 7,59 7,47 0,12

P4 - P5

10L3 7,19 46,30 21,78 21,69 0,09
10L2 7,15 46,30 21,90 21,87 0,04
10L4 7,20 46,30 22,04 22,02 0,02
10L1 7,10 46,30 22,03 22,00 0,03
10R2 7,67 46,30 20,42 19,79 0,63
10R4 7,51 46,30 21,15 21,08 0,07
10R1 7,15 46,30 21,88 21,86 0,02

Table 5.5: Comparison between numerical and measured frequencies - even sensors

By analyzing the discrepancy between the theoretical values and the measured
quantities, it was possible to obtain an indication about the cables with potential
stiffness reduction. In particular, in tables 5.4 and 5.5 those tendons for which the
difference between the theoretical frequency value and the measured one was higher
than 0.3 Hz (red lettering) have been highlighted using red font. These tendons,
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given the significant frequency difference with respect to the expected theoretical
values, could present corrosive phenomena that had already caused the breakage of
one or more strands before the installation of the monitoring system. This means
that these cables are more likely to break than the others, having already lost some
of their stiffness before installing the monitoring system. For this reason, particular
attention was paid to these structural elements.

5.6 Methodology
In order to effectively detect any damage in the analyzed structure, the method-

ology described in chapter 4 has been applied.The aim was to provide, through a
permanent and long-term monitoring system, an early-stage alert of anomalous
conditions that should trigger more detailed analysis or inspections. In the case
of tendons, detecting the breakage of a strand could allow the prior replacement
of the cable and prevent it from breaking, that would have serious consequences
on the entire safety of the bridge due to the enormous release of energy. In fact,
as aforementioned, the corrosive phenomenon causes a progressive collapse of the
strands until the break of tendon is reached.

The proposed and adopted methodology is based on three levels of alarm (ref.
chapter 4, fully exploiting the potentiality of the monitoring system, where the
interaction between the different sites of computational capability has been used
to produce an alert for the maintenance. The main idea was to have a damage
detection framework organized as follows:

• Level 1: the first level of alert, that shoud be computationally inexpensive, is
verified in real-time (once per second) inside the sensor node. It is aimed at
highlighting any abnormal behavior in terms of vibration energy.

• Level 2: The second level of alert is computed inside the IoT gateway and it
is normally checked once a day or when level 1 is exceeded. It makes use of
an unsupervised machine learning algorithm for detecting damages, having
knowledge of the normal condition of the system.

• Level 3: The third level of alert is computed inside the IoT Cloud and it
is normally checked once a week or when levels 1 or 2 are exceeded. Refer-
ence parameters are natural frequencies, which are intrinsic characteristic of
the structure. The main goal is to verify whether the reported anomalous
condition was actually a structural damage or not.

In this way, the monitoring system is sufficiently robust and reliable, able to
automatically detect any structural damage and at the same time identify abnormal
conditions that are not necessarily attributable to structural problems.
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The first level of alarm is verified at node level, and its main output is highlight-
ing the presence of any abnormal behavior in terms of tendons vibration energy.
The reason for this choice is to be found in the brittle nature of the strand failure,
which is associated with the release of a large amount of energy that would be per-
ceived as an impulse by the accelerometers. A measure of the energy contained in
the vibration signals collected by sensors is carried out by evaluating the standard
deviation (STD) value during the preprocessing of data at node level. In fact, the
standard deviation represents the dispersion of a set of values relative to its mean.
This means that, if a strand breaks, the variation of data around the mean would
increases drastically due to the strong impulse recorded.

According to the methodology described in chapter 4 and in order to set proper
threshold values for each sensor, data were collected and analyzed for a training pe-
riod of one month, where only data associated to a normal behavior of the structure
have been taken into account. In this way, it was possible to define and set a range
of acceptable values that the STD can assume under normal operating conditions
of the bridge.

More in detail, thresholds values were obtained with reference to the STD cal-
culated by dividing the available time series in segments of 1 second (100 points),
corresponding to the sampling frequency of the measuring instrument, 100 Hz. In
particular, the procedure described in paragraph 4.4.3 has been followed.

The result of the training phase is showed in Figure 5.8, where TW U and TSE

values, evaluated considering a training period of one month, are represented for
one sensor of the structure. As a result of the training phase, all the sensors
belonging to the last span on the right side of the bridge (between piers 4 and 5)
were characterized by higher vibration levels with respect to the other four spans,
which showed a similar behavior between them. This result is attributable to the
geometric characteristics of these cables, which are shorter than the cables of the
remaining spans (ref. Table 5.5).
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Figure 5.8: Threshold values for one sensor installed on the structure
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If the first level of alarm is reached, the IoT node sends an alert message to
the IoT gateway and cloud. The analysis is then moved to the gateway and cloud
environment, where a deeper insight in the portion of abnormal data is conducted,
with the aim of distinguishing high level of energy associated to exceptional opera-
tional loading (such as exceptional maintenance works on the bridge, earthquakes,
. . . ) from that associated to the release of energy due to the failure of a strand.

The second level of alarm allows to check the health of the structure by means
of an Artificial Neural Network (ANN). More in detail, when a warning signal
is generated by the IoT node, the autoencoder check is activated inside the IoT
gateway, with the aim of identify any change in the structural behaviour.

More in detail, a threshold equal to 0.1% of the reconstruction error is auto-
matically set within the IoT gateway. This threshold is checked with reference to
the average of the reconstruction error values once a day.

Together with the second level check, the third level of alarm, which is based on
a physical interpretation of the vibration data in the frequency domain, is activated.
In particular, when a warning is triggered by the IoT node or gateway, meaning that
the first and/or second level threshold has been exceeded, data are sent to the cloud
where a OMA algorithm is activated to check if a changing in the tendon natural
frequencies occurred. In order to identify the natural frequencies of tendons, the
Covariance-driven Stochastic Subspace Identification (Cov-SSI) method has been
adopted (ref. chapter 3). In this specific case, in order to define significant threshold
values, the following procedure was followed:

• The axial force reduction corresponding to a strand breaking has been calcu-
lated, considering that a strand collapse produces a reduction of the tendon
cross section;

• The fundamental frequency shift associated with the obtained variation in the
tendon stress was calculated, considering the mass and length of the cable as
constants;

• A threshold corresponding to about 70% of the obtained frequency shift has
been set;

• A similar threshold value has been set for the remaining natural frequencies,
as multiples of the threshold value obtained for the fundamental frequency.

Therefore, once the third level check procedure is activated on the cloud, follow-
ing the overcoming of the first and/or second level of alert, the algorithm identifies
the natural frequency values through the chosen OMA method (Cov-SSI) and com-
pares them with the pre-set threshold values.

An alarm is activated if three of the identified frequencies exceed the preset
thresholds for three successive identifications, carried out at time intervals of 5
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minutes. In this case, a report is sent to the infrastructure manager, signaling the
anomaly.

5.7 Monitoring Results
This section summarizes the main results obtained from the large-scale mon-

itoring system installed on the pre-stressed concrete bridge, as described in the
previous paragraphs. In particular, experimental results obtained under normal
operating conditions are presented.

As aforementioned, the dynamic monitoring system has been in continuous
operation since September 2017, therefore collecting a large database of acceleration
time series. It should be highlighted that the bridge was opened to traffic for the
entire monitored period; the traffic was and still is mainly composed of passenger
cars as well as small and heavy trucks.

5.7.1 Statistical Analysis of Dynamic Signals
The dynamic input of the structure is very variable and is significantly higher

at day, with intensive traffic, than during the night or weekends. Two examples of
acceleration time series recorded during the night and during the day are illustrated
in Figure 5.9, in order to show the difference between the level of acceleration
observed in the two different scenarios.
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Figure 5.9: Acceleration time series collected from one sensor (a) during the night,
(b) during the day.

The average acceleration value recorder for the three directions is close to a
constant value for all the sensors installed on the bridge (about 0 g for x and y
directions, about 1 g for the z direction), resulting from an average of periodic and
almost symmetrical oscillations of the cable.

The process of trend recognition has been carried out on acceleration time series
by using mean and standard deviation values, calculated within the sensor node
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every 100 readings (once per second). In particular, for each measured direction
(x, y, z), the signal is pre-processed by applying a high pass filter and mean (µ)
and standard deviation (σ) values are then obtained from the filtered data.

Standard deviation has been considered as a good indicator of the average vi-
bration activity induced by traffic loads, wind and/or other external agents under
standard or exceptional conditions. In addition, maximum and minimum values
have been considered as relevant for detecting possible anomalous behaviors of the
tendons. Figure 5.10 and Figure 5.11 show the variation of the aforementioned
parameters (standard deviation, maximum and minimum acceleration values) for
the reference direction z (the most excited one) of some sample sensors, located in
position 1 on the left side of the bridge for all the monitored sections, calculated
over a time period of one month.
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Figure 5.10: Standard Deviation (STD) evolution in time.

The day-night traffic cycle is clearly recognized: the maximum vibrations are
mainly recorded during the day hours (from 6 a.m. to 10 p.m.) with an appreciable
decrease at night (from 10 p.m. to 6 a.m.). Moreover, the x and z axes are the most
excited ones, with respect to the y axis. This is indicative of an elliptical vibration
of the cable in the x-z plane, which is orthogonal to the longitudinal development
of the tendons. Y direction shows in fact reduced vibration levels (one order of
magnitude smaller than x and z directions), meaning that it has a lower sensitivity
with respect to traffic variations and environmental noise. Figure 5.10 and Figure
5.11 display also the weekly tendon vibration response. Indeed, higher acceleration
values can be observed from Monday to Friday with a significant reduction in traffic
during the weekend.
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Figure 5.11: Maximum and minimum acceleration values calculated over a time
period of one month.

5.7.2 Environmental effects
The influence of environmental factors on frequency values is a well documented

issue [48], [34]. With reference to what has been described in detail in chapter 4,
the environmental variations, and in particular temperature variations, can have
a strong influence on frequency values such as to lead to the exceeding of the
pre-set thresholds, with the consequent generation of false alarms. On the other
hand, if the environmental influences are not properly removed, structural changes
due to damages can be masked by the variations of reference parameters caused
by the temperature. For this reason, environmental influences must be removed
from processed data within the automated process. With a view to a long-term
and automated monitoring system, although other environmental and operational
factors such as wind, humidity and traffic loading may also affect the resonance
frequencies, temperature shows a far higher effect and therefore the only influence
of the temperature is considered.

In order to characterize the correlation between temperature and modal param-
eters (mainly frequency), the evolution of frequencies in time has been observed
during a training period of 6 months, from 21 September 2017 to 21 March 2018.
The evolution in time of the third natural frequency with respect to temperature is
illustrated in Figure 5.12 for one sensor installed on the structure. The choice of the
third natural frequency is motivated by the fact that frequency variations are am-
plified and therefore more clearly recognizable in modes at higher frequencies than
the fundamental frequency. The correlation between frequency and temperature is
however the same observed for the other frequencies.

Figure 5.12(a) shows an average temperature of about 20°C, ranging from a
minimum value of about 5°C to a maximum value of about 30°C. By comparing
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Figure 5.12: Correlation between temperature and frequency. (a) Temperature and
Frequency evolution over time (b) Temperature vs Third natural frequency

temperature and frequency trends, it is possible to observe that there is an explicit
inverse correlation between them over the selected time period. Indeed, for the
selected sensor, frequency increases from September 2017 to November 2017, when
temperature falls. The relation between natural frequencies and temperature may
be further clarified by Figure 5.12(b) .

The interdependence between temperature and frequency values has been ex-
amined by performing a linear Pearson correlation analysis. Pearson Correlation
Coefficient (PCC) measures the linear correlation between two random variables.
In order to assess the interdependence between temperature (T ) and frequency
values (fi), PCC (ρT f ) was calculated as follows:

ρT f = cov(T, f)
σTσf

(5.2)

where cov is the covariance, σT is the standard deviation of T and σf is the
standard deviation of f .

The correlation between two statistical variables can be mainly of three types:

• if ρT f> 0, temperature and frequency are directly correlated;

• if ρT f = 0, temperature and frequency are uncorrelated;

• if ρT f <0, temperature and frequency are inversely correlated.

Furthermore, depending on the value that the correlation coefficient assumes,
the following types of correlation can be distinguished:

• if 0 <|ρT f |< 0.3, there is a weak correlation;
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• if 0.3 <|ρT f |< 0.7, there is a moderate correlation;

• if 0 <|ρT f |> 0.7, there is a strong correlation.

Consequently, if two variables are independent, meaning that no linear correla-
tion can be identified between them, the correlation coefficient is equal to 0 whereas,
if the two variables are perfectly linearly correlated, the correlation is 1 or -1.

PCC has been calculated for all the sensors installed on the bridge.
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Figure 5.13: Pearson Correlation Coefficient calculated for all the sensors

Figure 5.13 shows the Pearson Correlation Coefficient ρT f (y axis) calculated
for all the sensors installed on the structure (x axis). As can be seen, 90% of the
sensors showed a ρT f value lower than -0.7, indicating a strong inverse correlation
between the evolution of natural frequencies and temperature.

Therefore, given that all sensors showed a strong linear correlation between
frequencies and temperature, a linear regression model was used to remove the en-
vironmental influence from frequency data. The implemented regression model has
been incorporated in the automatic and real-time processing of the data collected
at the bridge.

Results from the regression model are illustrated in Figure 5.14, where the time
evolution of the third natural frequency before and after removing the environmen-
tal influences is represented. As it can been seen, the resulting trend is almost
constant for the entire monitored period. Moreover, it could be noted that no
particular anomalies in peaks evolution have been observed over time. All the fre-
quencies are included in a range between 23.12 Hz and 23.16 Hz, without values
clearly outside the normal oscillations around a constant mean value. Moreover,
by observing the histograms associated with data before and after the removal of
the thermal influences, it is clearly shown that the range of variation of the natural
frequencies is considerably reduced after the application of the regression model.
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Figure 5.14: Third natural frequency evolution over time and relative histogram.
(a) before removing the thermal influence (b) after removing the thermal influence

5.7.3 Damage Detection
This section illustrates the main events observed during the monitoring period,

with particular focus on the damages automatically detected by the long-term and
real-time monitoring system described in the previous paragraphs. It is important
to emphasize that the presented methodology allows the automatic identification of
damages using 3 levels of alert, defined through specific threshold values which have
been implemented respectively within the gateway and the cloud environments,
after a data pre-processing (for the reduction of termal effects for example) executed
within the sensor node.

The proposed strategy has been adopted for monitoring the integrity of tendons
in the period between September 2017 and July 2019. In this time period, three
main events occurred, being detected by the automated monitoring system. The
three events, called for simplicity event 1, 2, 3, will be described in detail in the
following sub-sections.
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Event 1 - Earthquake

The first significant event was recorded in November 2017. Indeed, on 19/11/2017
the first level threshold was exceeded by all the sensors of the structure. No alarm
was produced by the automatic monitoring system but, since all the sensors had
exceeded the first level of thresholds, more in-depth analyses were carried out.

Figure 5.27 shows the STD values (calculated as described in chapter 4) on
November 19, 2017, which exceeded the first level threshold values set for each
sensor. As illustrated in Figure 5.15 (a) and in the corresponding plan view (Figure
5.15 (b)), all the sensors showed STD values significantly higher than the pre-
defined thresholds, indicating an anomaly condition that covered the whole bridge.
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Figure 5.15: Sensors that excedeed the first level threshold during the earthquake
(a) STD values, (b) Plan view

In particular, by analyzing the individual measurement directions x, y and z
(Figure 5.15), it is possible to observe that the y direction, which normally shows
very low standard deviation values, recorded STD values comparable to the x and
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z directions. This observation excluded the possibility that the recorded anomalous
behavior was associated to the excitation caused by exceptional traffic conditions
on the bridge, as the y direction would not have been affected as it was.

Once the first level threshold was excedeed, levels 2 and 3 were activated.
However, neither level 2 nor level 3 have exceeded the predetermined threshold,

indicating that no changes to the intrinsic characteristics of the structure have
occurred.

Figure 5.16 illustrates the evolution of the third natural frequency for some of the
monitored tendons during the period under analysis (section 2R). A focus on this
graph around the date in which the event occurred shows that frequencies did not
change during the considered time period, remaining constant for all the tendons,
meaning that no structural changes happened on those elements. Indeed, when
the first level threshold was exceeded, the second level check was automatically
activated on the cloud for all tendons, in order to verify the frequency trend at the
alerted time instant, but no frequency shifts were observed.
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Figure 5.16: Frequency evolution over time - Section 2R

The overcoming of the first level threshold for all the sensors was in fact justified
by the occurrence of an earthquake in the vicinity of the structure. In particular,
an earthquake of magnitude 4.4 occurred at about 50 km from the bridge. The
hypocentral depth was estimated to be 32 km.

The STD values calculated on acceleration data recorded by sensors during
the earthquake were, of course, out of bounds, due to the considerable amount
of energy contained in the signal following the seismic input. In fact, as known,
standard deviation is only related to the signal amplitude that, in this case, was
extremely high due to the seismic shock. Figure 5.17 shows the time series recorded
by two sensors installed on the bridge respectively at the center of the deck and
near the abutment AB1.
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Figure 5.17: Acceleration time series collected during the earthquake (a) sensor
7L2, (b) sensor 2L2.

By looking at Figure 5.17 it is possible to note the large amount of energy
released during the earthquake, especially in the y direction, which justifies the
overcoming of the first level of thresholds.

However, it is worthwhile to mention that the second threshold was not exceeded
and no shifts in natural frequencies were observed; consequently, the automatic
anomaly detection procedure did not report any structural alarms, demonstrating
the reliability and robustness of the implemented methodology.

Event 2 - Strand breakage

On December 2017 another significant event occurred on the monitored struc-
ture. In particular, the first level threshold was exceeded by some sensors installed
in the first span of the bridge, as shown in Figure 5.27.

The event was recorded mainly by one of the sensors installed in the first span,
as highlighted in the graph, where it is possible to observe that sensor 1L3 reached
the highest standard deviation level. At the same time, all the sensors installed in
the remaining spans did not show anomalous STD values, indicating that the event
triggering the alarm affected only the first span of the bridge (AB1-P1).

Following the first level alert, the second (autoencoder) and third (natural fre-
quencies) alert levels were automatically activated by the monitoring system on the
IoT gateway and cloud for all the sensors that exceeded the first threshold check.
As a result of the second level analysis, one of the tendons located in the first span
(AB1-P1) of the monitored bridge exceeded both the second and third threshold
levels, indicating a possible structural damage.

As aforementioned, the second level of alert takes advantage of an unsupervised
machine learning agorithm (more specifically an autoencoder) to detect changes
in structural behavior which is characterized by several variables. The reference
parameter is the reconstruction error, which is used to measure how well the decoder
is performing. Figure 5.18 shows the trend of the reconstruction error for sensor
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1L3 from the beginning of December 2017 until 15/12/2017.
As can be observed from the graph, the reconstruction error assumes almost

constant values around 0.8% from the beginning of the monitoring period until
09/12/2017. On 09/12/2017 a sudden increase in the reconstruction error has been
detected, passing from an average value of 0.8%, to values of around 0.95%, thus
exceeding the preset threshold value equal to 0.1% of the reconstruction error mean
value.
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Figure 5.18: Reconstruction Error at the anomalous event - sensor 1L3

This sudden shift indicated that the autoencoder was no longer able to recon-
struct the vibration signal with the same accuracy as before due to a change in
the intrinsic characteristics of the structural element, which affects the dynamic
characteristics of the signal collected by sensors.

Moreover, as regards level 3, a shift in frequency values was detected for cable
L3 located in span AB1-P1, left side of the bridge. Figure 5.19 shows the PSDs
calculated for sensor 1L3 before (black line) and after (red line) the anomalous
event. A sudden right shift of natural frequency values can be clearly observed,
meaning that a damage occurred in of the tendon.

Moreover, 5.20 shows the evolution over time of the third natural frequency
obtained for all the sensors affected by the anomaly, with the indication of the date
on which the event occurred.

As can be observed from the graph, tendon L3 of the span AB1-P1, on which
sensors 1L3 and 2L3 are installed, showed a significant shift in fundamental fre-
quency value of about 0.33Hz, corresponding to the expected frequency reduction
in case of failure of one of the strands of the cable. The registered shift in frequen-
cies could thus be caused by the failure of one of the strands of the tendon L3, that
exceeded the second level threshold. Indeed, as aforementioned, a strand break
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Figure 5.20: Frequency evolution over time - Section 1L - with zoom on sensor 1L3
which showed a significant shift in fundamental frequency values

causes a partial loss of prestress force in the tendon, which results in a stiffness
reduction of the element itself. This reduction in tendon stiffness translates into
a reduction of natural frequencies as a function of the severity of tendon damage
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(the number of strand breaks) and the location of the damage.
Moreover, if a strand breaks, a significant amount of vibrational energy would be

released, being recorded as a dynamic input by the immediately nearby sensors. In
fact, by looking more in detail at which sensors showed STD levels above-average,
the following could be observed:

• Section 1
The monitoring section 1 is located at the abutment AB1. In this section,
the highest standard deviation values have been recorded and therefore it
is supposed to be potentially closer to the point where the strand breakage
occurred. The sensor 1L3, installed on the tendon L3 in this section, registered
strong vibration levels in the 3 directions of measurement x, y, z.
In particular, with reference to Figure 5.21 (a), it can be observed that some
sensors in close proximity to sensor 1L3 registered STD levels considerably
higher than the pre-set threshold values in y and z directions, while in x
direction the anomaly was observed only on 1L3 sensor. This observation
could be justified by the fact that the possible breakage of one strand of the
L3 tendon generated a vibration impulse along the y and z axes, being a
phenomenon that develops mainly in the longitudinal direction of the cable.
This impulse was then transmitted to the deviator (located at the abutment
AB1) and therefore to the tendons close to L3. It is thus understandable that
there is no particular evidence of the event in the x direction in the cables
located near tendon L3.

• Section 2
The monitoring section 2 is located at the pier P1. The sensor 2L3, installed
on the tendon L3 in this section, registered strong vibration levels only along
y and z directions, while no anomalies were observed in x direction. With
reference to Figure 5.21 (b), it can be observed that some sensors in close
proximity to sensor 2L3 registered STD vaues considerably higher than the
pre-set threshold values in y and z directions. This observation, as explained
before, could be justified by the fact that the strand breakage generates a
vibration impulse mainly in the longitudinal direction of the cable. This
impulse was then transmitted to the deviator (located at the pier P1) and
therefore to the tendons located close to cable L3.

It is important to stress that this tendon showed frequency values considerably
lower than the expected theoretical ones already when the monitoring system was
installed. In fact, with reference to Table 5.4, it is possible to notice that, in
September 2017, a fundamental frequency of 6.98 Hz was identified against the
expected 7.55 Hz, evaluated considering the length and stress of the cable obtained
from the in situ measurements carried out before the installation of the monitoring
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(a)

(b)

Figure 5.21: Sensors that excedeed the TSE threshold along the 3 measurements
axes x, y, z. (a) Section 1, (b) Section 2

system. This means that, at the time of system installation, there was a difference
between experimental and theoretical frequencies of about 0.57 Hz. This could
indicate that, already in September 2017, there was a corrosive phenomenon in
progress that could have caused the breaking of some strands of the cable. In
particular, this frequency shift would correspond to the breaking of 4 strands, with
an associated reduction in the tendon axial force of about 15%. Based on these
considerations, the hypothesis according to which the frequency shift observed in
December 2017 was caused by the break of a strand seems realistic.

Following the exceeding of the second threshold level, an alert communication
was sent to the infrastructure manager, who arranged an inspection of the L3
tendon. During the inspection, the protective envelope of the tendon showed visible
swelling near the monitoring section 1 (at the abutment AB1), as showed in Figure
5.22, indicating a localized increase in volume of the cementitious grout injected in
the tendon duct to encapsulate and protect the tendon itself.

However, no maintenance or replacement actions were carried out on the alerted
tendon immediately after the inspection, which took place in February 2018.

Event 3 - Tendon breakage

At the beginning of April 2018, the first threshold level was exceeded by all the
sensors installed in the first span of the bridge (between abutment AB1 and pier
P1) and by some sensors installed in the second span (between piers P1 and P2), as
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(a) (b)

Figure 5.22: Inspections carried out in February 2018. (a) Inspected tendons, (b)
localized increase in volume of the damaged tendon compared with safe one.

highlighted in Figure 5.23 (a) and Figure 5.23 (b). Moreover, a monitoring system
malfunction alert was generated because of the breakdown in data flow from all the
sensors on the left side of the first span (AB1-P1) of the bridge.

More in detail, a strong impulse was recorded by all the sensors belonging to
sections 1 and 2 and in particular:

• Section 1 - all the sensors installed on the right side (1R) of the span AB1 -P1
recorded a strong impulse, which caused the first alert level to be exceeded,
while the sensors installed on the left side (1L) interrupted trasmitting data
to the IoT cloud at the anomalous event (ref. Figure 5.24);

• Section 2 - all sensors installed in section 2 recorded a strong impulse, which
caused the first alert level to be exceeded, except for sensors 2L3 and 2L6
which recorded a significant mean shift in the acceleration time series at the
anomalous event (ref. Figure 5.25).

Following the first level alert, the second and third alert levels were automati-
cally activated by the monitoring system on the IoT gateway and cloud for all the
sensors that exceeded the first threshold check. However, as a result of the second
and third level analysis, no anomalies were detected.

Nevertheless, considering that many sensors belonging to the same section af-
fected by the anomalous event of December 2017 were no longer reachable by the
IoT cloud and all the others exceeded the first level threshold, a specific visual
inspection was performed inside the box girder.

During the inspection, cable L3 was found broken, as shown in the Figure 5.26.
The accelerometers installed on the tendon that suffered the breakage are sensors
1L3 and 2L3.
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Figure 5.23: Sensors that excedeed the first level threshold during the tendon break-
age (a) STD values, (b) Plan view

The breakage of the L3 tendon caused the cutting of the system cable connecting
all the sensors installed of the left side of section 1 (whose readings were therefore
interrupted) and the detachment of two sensors installed on section 2, 2L3 and 2L6,
as aforementioned. The break point of the tendon was located inside the abutment
AB1.

Based on the inspection outcomes and on the analysis conducted for the po-
tential breakage of a strand belonging to the same cable in December 2017, it is
possible to assume that the breakage was caused by the achievement of the ultimate
tensile strength of the tendon, induced by the loss of a critical number n of strands.
More in detail, the most realistic hypothesis is the following:

1. One of the strands composing the tendon L3 broke at section 1;
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Figure 5.24: Acceleration time series related to the tendon breakage - Section 1

2. The strand breakage caused the achievement of the ultimate steel tensile
strength in the remaining strands (therefore assuming that a number m of
strands have already broken and the latter was just the m+ 1th strand);

3. The tendon broke in a section located inside the abutment AB1;

4. The energy released during the occurrence of the sudden tendon break caused
the cable to ’slide’ inside the abutment until it stopped due to the friction
with the concrete. At the same time, the sliding of the tendon produced the
left power cable to break in section 1 and sensors 2L3 and 2L6 to detach from
the tendon duck in section 2.

The breakage of the L3 cable was extremely relevant because it confirmed even
more the effectiveness of the proposed methodology, which identified the state of
damage of this cable in December 2017, when a change in the modal parameters of
the structure was observed.

Figure 5.27 summarizes the 3 main events recorded during the monitoring period
and described in detail above. In particular, the trend of the STD value from
from 01/10/2017 to 05/05/2018 is represented for each sensor installed on the
structure. The standard deviation (STD) value, calculated every 100 samples (once
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Figure 5.25: Acceleration time series related to the tendon breakage - Section 2

Figure 5.26: Broken tendon

per second) with respect to the signal modulus, as described in detail in Chapter 4,
was chosen as reference parameter for the first alert level. This parameter is aimed
at highlighting any abnormal behaviours in terms of vibration energy.

In order to detect the most significant events occurred on the structure during
the monitoring period of time and to identify the areas involved for each event,
the maximum STD value recorded by each sensor has been considered for each
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Figure 5.27: Evolution of the STD values calculated for each sensor in the moni-
toring period from 01/10/2017 to 05/05/2018 - identification of three main events

monitoring day. Figure 5.27 clearly illustrates three days (events) with STD values
considerably higher than the standard behavior:

• on November 19, 2017, all the sensors recorded STD values that exceeded
the TSE threshold. It is noteworthy that the extent of the overcoming is
comparable between all the sensors, which is in line with the phenomenon
that triggered the first alert level, that is the earthquake.

• anomalous STD values were afterwards recorded on 09/12/2017, exceeding
the first alarm level. As we can infer from the graph, the event mainly affected
the span AB1-P1, where the highest STD values have been observed. Span
P1-P2 also recorded STD values outside the threshold, even if of a lesser
extent, while the remaining spans did not record the event. This is consistent
with the hypothesized strand breakage.

• finally, in early April 2018, another significant event was recorded by all the
sensors of the structure. In particular, some sensors of the AB1-P1 span have
stopped sending data to the cloud while the remaining sensors of the same

125



5 – Continuous Monitoring - Case Studies 1

span have reported STD values significantly above the TSE threshold. On
the other hand, all the remaining spans recorded STD values exceeding the
threshold, even if with lower values.

5.8 Final Remarks
This chapter describes the application of the methodology proposed in this

dissertation to a significant case study, concerning the monitoring system installed
on the external tendons used to pre-stess a concrete highway bridge located in
norther Italy.

The chapter started with the description of the dynamic monitoring system
installed on the highway bridge, for the continuous and automated monitoring of
the pre-stressing tendons. This application is completely innovative both for the
monitoring system itself, which has been designed for allowing the continuous mon-
itoring of the structure through a large number of sensors for several years, and for
the type of application, in which sensors have been installed directly on the external
prestressing tedons, with the aim of predictive maintenance of these elements sub-
jected to a gradual corrosion process due to an incorrect grout composition. The
main challenge in designing and managing such a monitoring system has been the
full exploitation of all the potentialities of the implemented infrastructure, being
aware of the capacities and limits of the different components and avoiding waste
of resources. For this reason, some important aspects associated with the design
and management of dynamic monitoring systems for large civil engineering struc-
tures were discussed together with the description of the solutions adopted for the
analyzed bridge. In this regard, the operation of the installed monitoring system
for more than two years demonstrated its robustness and reliability.

Afterwards, some preliminary analyses were carried out to evaluate the health
state of the structure (and expecially of tendons) at the installation of the moni-
toring system. These preliminary ambient vibration tests were essential for under-
standing the state of the structure before installing the sensors.

Once the preliminary analyses were carried out, the proposed methodology was
applied in order to detect any damage in the monitored structure. Appropriate
threshold values have been automatically generated by the system and the imple-
mented framework has been activated for the permanent and long-term monitoring
of the bridge, in order to ensure an early-stage alert of any anomalous condition.

Subsequently, the main results obtained during the monitoring period were pre-
sented. Firstly, some statistical analyses were performed in order to understand
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excitation trends (e.g. traffic, wind..). For this purpose, the large database col-
lected during the years allowed to clearly recognize day-night and week-weekend
traffic trends. Moreover, differences were also identified between the excitation
levels of the 3 measurement axes x, y and z. After that, the influence of environ-
mental and operational variables on the modal parameters has been addressed and
removed through a linear regression model, which have been automatically cali-
brated for each monitored tendon. The implemented model permitted to minimize
the effects of environmental and operational factors on natural frequencies, thus
allowing to correctly detect the frequency shift caused by damages.

Finally, real damage scenarios observed during the monitoring period have been
described. In particular, 3 different events have been detailed:

• the first significant event concerns an earthquake that occurred in November
2017. This event caused the first level threshold to be exceeded by all the
sensors of the structure, triggering more in-depth analysis (levels 2 and 3 were
activated). However, neither level 2 nor level 3 were exceeded, indicating that
no damages occurred to the monitored structural elements. This event has
proven the effectiveness of the implemented automatic multilevel methodol-
ogy, capable of distinguishing real damage scenarios from anomalies that do
not generate structural problems;

• the second meaninful event is the potential breakage of a strand within one
of the monitored cables. In particular, the first level threshold was exceeded
by some sensors installed in the first span of the bridge in December 2017.
Following the first level alert, the second and third checks were automatically
activated by the monitoring system and, as a result of the these deeper anal-
ysis, one of the tendons exceeded both the second and third threshold levels,
indicating a possible structural damage. This event is particularly relevant
as it allowed the automatic and reliable identification of a structural anomaly
which affected one of the monitored tendons.

• On april 2018 the cable that had suffered the damage in December 2017, was
found broken. The relevance of this event is very high if referred to what has
been observed previously. In fact, it demonstrated that the event recorded
in December 2017 was actually related to the breaking of a tendon’s strand
and therefore represented an unequivocal symptom of the degradation of the
structural element. This occurrence has highlighted the potentiality of the
monitonoring system for the early detection of degradation processes on the
structure and thus, the preventive maintenance operations.

To sum up, it was demonstrated that the proposed methodology allowed the
continuous, automatic and reliable evaluation of the state of health of the monitored
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structure over time, effectively detecting changes of the modal parameters that are
indicators of the occurrence of structural degradation which, in this specific case,
corresponded to the breakage of one or more strands inside the prestressing tendon.
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Chapter 6

Continuous Monitoring - Case
Study 2

6.1 Chapter Introduction
This chapter describes a meaningful case study of continuous monitoring sys-

tems applied on a concrete highway bridge located in northern Italy. As for the
previous case study, the main goal is demonstrating the potential of the proposed
methodology for the identification of anomalous conditions in this structure, which
was and still is continuously monitored.

6.1.1 Dynamic monitoring of a pre-stressed highway bridge
An interesting case study of a damaged operating bridge located in Italy is il-

lustrated in this chapter. In particular, the structure under examination is being
monitored continuosly trought a dynamic monitoring system since March 2019, af-
ter some visual inspections that revealed that one span of the structure was in a
state of advanced deterioration. Following more in-depth analysis, strengthening
works were planned on the damaged span, through the adoption of external pre-
stressing tendons. In particular, this type of intervention improves the ultimate
bearing capacity and thus the performances of the bridge, increasing the lifespan
and durability of the structure. In order to track the behavior of the bridge during
and after the maintenance procedure, a series of triaxial accelerometers were in-
stalled on the structure. The very short time needed for the restoration works only
allowed to set up a line of sensors in each span, for a check on natural frequencies
and modal damping, and only roughly accounting for the mode shapes. All the
same, this has been considered a very important chance to compare a damaged and
undamaged bridge behavior.

The measurements started before the strengthening works so that a dataset
representative of a damaged state was collected. The opportunity to have evidence
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Figure 6.1: Plan and elevation view of the monitored bridge

of a damaged structure is extremely important especially in case of civil structures,
for which data referred to the damaged state are usually not available.

In a first part of this chapter, a description of the monitored bridge and mon-
itoring elements is reported. Afterwards, the application and operation of the au-
tomated monitoring strategy is presented. Finally, a very clear representations of
the state of the structure before and after the maintenance works is illustrated, em-
phasizing the most relevant outcomes regarding the damage detection methodology
presented in this dissertation.

6.2 Bridge Description
The monitored structure is a pre-stressed concrete bridge from the early 1965s,

located in northern Italy. This bridge, due to its geometric and design features, can
be considered as representative of many highway infrastructures in Italy. In fact,
pre-stressed concrete was a very common way of designing bridges at that time.

The structure is composed by two independent roadways, each characterized
by nine simply supported pre-stressed concrete spans. Each span is 35.0 m long,
corresponding to a support distance of 33.9 m. The cross-section is a pre-stressed
reinforced concrete slab with a constant height in the longitudinal direction of
about 1.5 m. Two abutments are supporting the bridge at the end points and nine
concrete piers are holding up the nine simply supported spans. Figure 6.1 and
Figure 6.2 show the plan view, elevation and cross-section of the bridge.

The individual spans are constrained such as to guarantee an isostatic behav-
ior with regard to vertical actions, while the horizontal (longitudinal) actions are
transmitted to the abutments by means of two kinematic chains, one for each way.
A single expansion joint, aimed at absorbing temperature-induced expansion and
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Figure 6.2: Cross-section of the monitored bridge

Figure 6.3: Bridge pictures

contraction of bridge materials, is present at pier P5. The eight piers have a circular
cross-section with a constant diameter of 2.60 m.

Internal prestressing was used to strengthen the bridge. In particular, the pre-
stress of the structure is provided by means of 14+14 post-tensioned prestressing
tendons, arranged symmetrically with respect to the centerline of the decks. Each
tendon is composed of 12 strands with a nominal strand diameter of 0.6 inches.

In March 2019, some visual inspections were carried out on the bridge. During
the investigation activities, damage evidences have been observed at span 6 (left
way), which led to more in-depth analysis. In particular, moisture spots were
observed on the lower surface of the deck, as shown in Figure 6.4. Furthermore, in an
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Figure 6.4: Damage evidences highlighted during visual inspections

area close to the center line of the span, several transversal and longitudinal cracks,
which extended to full width and continue on the lateral sides of the transversal
section, were highlighted. Water infiltrations inside the tendon ducts were also
hypothesized.

In order to deepen the health conditions of the structure and inspect the ten-
dons, two windows, approximately 20 cm wide along the transversal extension of
the concrete slab, were opened straddling the center line of the bridge. Concrete
demolition was deepen until reaching the prestressing tendons. The existing ducts
were cut and partially removed so as to be able to evaluate the condition of the
cables. Seven of the 28 tendons were found significantly correded, with some broken
strand wires (ref. Figure 6.4).

The assessment of the damaged state of the span 6, left way, led to the decision
of carrying out strengthening works on the structure. At the same time, a contin-
uous monitoring system was installed on the bridge, with the aim of checking the
condition of the structure before and after the maintenance procedure.

6.3 Monitoring System Description
As aforementioned, the monitoring system was installed in March 2019, in or-

der to characterize the behavior of the structure before and after the strengthening
works. Each span of the bridge was instrumented with 5 MEMS tri-axial accelerom-
eters, located at 1/4, 1/3 and 1/2 of the bridge length, for a total number of 90
sensors installed on the entire structure, 45 for each of the two independent road-
ways. These MEMS accelerometers are ultra compact low-power three-axis linear
accelerometers that include a sensing element and an IC interface able to take in-
formation from the sensing element and to provide a corresponding analog signal.
Accelerometers have a dynamically user selectable full-scale of ±2g/± 6g and they
are capable of measuring accelerations over a maximum bandwidth of 1.8 kHz for
all axes. They operate with a noise spectral density of 50µg/

√
Hz and a sensitivity
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Figure 6.5: Sensors positioning on the bridge - Plan and elevation view

Figure 6.6: Sensors positioning on the bridge - Cross-section

of Vdd/5 [V/g], considering a full scale of ±2g and a Vdd (power supply) of 3.3V.
Figure 6.5 and Figure 6.6 show the positioning of sensors on the bridge while

Figure 6.7 depicts some pictures related to the installation of sensors.
As mentioned in paragraph 4.3, each tri-axial MEMS accelerometer provides

data in the 3 orthogonal directions (x, y, z), oriented as shown in Figure 6.8. The
x axis is the transversal direction of the deck, y axis is parallel to the longitudinal
extension of the bridge and z axis corresponds to the vertical direction.

This choice of this sensors layout deserves some deepening, as the use of MEMS
allows to adopt a wider number of measurement points in a trade-off against
their expected performances. Preliminary laboratory testing has allowed to fix the
MEMS sensors features, not so far from those of more expensive instrumentation,
anyway suitable for giving the needed information. Conversely, their low cost has
allowed to have a very dense bridge sensing, which was considered of fundamental
importance for the planned operation. Consequently, dealing with the huge data
streaming represented the real challenge that forced a new data evaluation strategy
(ref. Chapter 4).

Each of the 90 MEMS accelerometers (sensor nodes) was equipped with a 32-bit
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Figure 6.7: Sensors installed on the bridge

Figure 6.8: Measurement axes (x, y, z) orientation along the deck

microcontroller and humidity and temperature sensors, in order to collect environ-
mental information which must be taken into consideration for the correct analysis
of the acceleration data. To increase accuracy, acceleration data are sampled at
the sensor level at 25.6 kHz, filtered down and down sampled to finally obtain a
sampling rate of 100 Hz.

Once collected, acceleration data are encoded by the microcontroller into a CAN
BUS driven network and sent to a local IoT gateway, located between spans 5 and
6. The IoT gateway is connected to the IoT cloud, where data are available to be
accessed, downloaded and processed, as illustrated in Chapter 4.

6.3.1 Naming Convention
For confidentiality reasons, a fictitious naming convention is adopted to describe

the various elements belonging to the monitoring system.
The bridge develops starting from the abutment called AB1 up to the abut-

ment called AB2. As aforementioned, the structure is composed by two indepen-
dent roadways, called respectively "Right way" and "Left way", looking towards
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the abutment AB2 (back to abutment AB1). Spans are named with progressive
numbers from 1 to 9 for both directions. Sensors installed on each span are named
according to the following convention:

<Direction> [Span] <sensor number>
where:

• <Direction> - identifies the roadway and can be Left (L) or Right (R);

• [Span] - identifies the span to which the sensor belongs and varies from 1 to
9 starting from abutment AB1 to the abutment AB2;

• <sensor number> - indicates the number of the transversal cross-section to
which the sensor belongs and varies from 1 to 5, starting from abutment AB1
to the abutment AB2. In each span there are 5 trasversal sections, located
at 1/4, 1/3 and 1/2 of the span length.

Figure 6.5 shows the naming convention for the sensors installed on span 5 of
the bridge, for both carriageways, which are also listed in Table 6.1.

6.4 Strengthening Works
As aforementioned, serious structural deficiencies were identified in the sixth

span of the left roadway of the bridge, during an inspection campaign carried out
in March 2019.

In particular, more in-depth investigations pointed out a significant loss of pre-
stressing in the analyzed span, due to the breakage of a significant number of
pre-stressing tendons in the concrete slab. The failure of pre-stressing tendons, as
well as the high level of oxidation of the strand wires, was probably caused by a
widespread corrosive phenomenon, as shown in Figure 6.4.

Following the identification of the damage, the infrastructure operator decided
to carry out a reinforcement intervention on the bridge. In particular, the intro-
duction of additional external pre-stressing tendons has been chosen as the method
to strengthen the structure. This method has been widely used over the years
as a means of strengthening or rehabilitating existing bridge which are considered
inadequate to meet safety requirements. Indeed, the external post-tensioning has
proved to be very useful in increasing the capacity of concrete span bridges [20],
being at the same time a very efficient and economic solution that can be realized
without affecting the normal operating conditions of the structure.

External pre-stressing tendons were thus placed outside the concrete section in
May 2019 and the pre-stressing force was transferred to the concrete by means of
end anchorages. In particular, an additional axial load combined with a hogging
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Table 6.1: Naming convention of all the sensors installed on the bridge
Span Left Side Right Side Span Left Side Right Side

L1.1 R1.1 L6.1 R6.1
L1.2 R1.2 L6.2 R6.2

1 L1.3 R1.3 6 L6.3 R6.3
L1.4 R1.4 L6.4 R6.4
L1.5 R1.5 L6.5 R6.5
L2.1 R2.1 L7.1 R7.1
L2.2 R2.2 L7.2 R7.2

2 L2.3 R2.3 7 L7.3 R7.3
L2.4 R2.4 L7.4 R7.4
L2.5 R2.5 L7.5 R7.5
L3.1 R3.1 L8.1 R8.1
L3.2 R3.2 L8.2 R8.2

3 L3.3 R3.3 8 L8.3 R8.3
L3.4 R3.4 L8.4 R8.4
L3.5 R3.5 L8.5 R8.5
L4.1 R4.1 L9.1 R9.1
L4.2 R4.2 L9.2 R9.2

4 L4.3 R4.3 9 L9.3 R9.3
L4.4 R4.4 L9.4 R9.4
L4.5 R4.5 L9.5 R9.5
L5.1 R5.1
L5.2 R5.2

5 L5.3 R5.3
L5.4 R5.4
L5.5 R5.5

bending moment has been applied to the structure in order to improve the strength
capacity of the structural members. This means that the application of external
pre-stressing led to a structural system with an increased stiffness and reduced
in-service deflections.

A total number of 24 externally mounted post-tensioned bars were anchored on
each end of the inspected span, as shown in Figure 6.9.

However, the effectiveness and the corresponding effect given by the introduction
of external pre-stressing tendons as bridge reinforcement method is not so easily
assessable after tendons installation.

In the following paragraph, the main results deriving from the monitoring of the
described bridge, before and after the intervention, will be presented in order to
verify the change in structural stiffness, confirming the effectiveness of the adopted
intervention in improving the structural properties.
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Figure 6.9: External pre-stressing tendons installed for strengthening the structure
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Figure 6.10: Comparison between (a) Frequency Domain Decomposition and (b)
Covariance-driven Stochastic Subspace Identification Method for frequency identi-
fication

6.5 Preliminary analysis
In a first phase after installing the monitoring system, some preliminary analysis

were carried out in order to identify the dynamic characteristics of the structure.
More in detail, time series were collected for few weeks, before the reinforcement in-
tervention. Modal parameters, in particular resonant frequencies and mode shapes,
were identified using two OMA identification techniques, described in detail in chap-
ter 3: Frequency Domain Decomposition (FDD) and Covariance-driven Stochastic
Subspace Identification (Cov-SSI) methods. Results from both methods are shown
in Figure 6.10 for one span of the bridge (span L5).

As it can be seen from Figure 6.10 resonant frequencies were clearly identified
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(indicated with dashed vertical lines) between 0 and 15 Hz. These two method-
ologies have been used to verify the consistence of the estimates provided by the
two approaches. However, for modal shapes reconstruction, only results from FDD
method are shown.

With reference to Figure 6.10, it is possible to observe that the main frequency
band is between 0 Hz and 15 Hz, therefore the analysis was limited to this interval.
In particular, in the analysed frequency band, there are 5 alignments of stable poles.
The identified frequencies are listed for all spans in Table 6.2 for the right side of
the bridge and in Table 6.3 for the left side.

Table 6.2: Identified Natural Frequencies - Right spans

Span Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
[Hz] [Hz] [Hz] [Hz] [Hz]

R1 2.08 2.83 3.01 3.28 9.82
R2 2.08 2.74 2.93 3.30 9.65
R3 2.08 2.68 3.04 3.39 9.57
R4 2.08 2.70 3.05 3.40 9.61
R5 2.08 2.78 3.03 3.31 9.67
R6 2.08 2.72 3.01 3.28 9.69
R7 2.08 2.74 2.99 3.45 9.70
R8 2.08 2.79 3.01 3.27 9.68
R9 2.09 2.81 3.05 3.26 9.53

Table 6.3: Identified Natural Frequencies - Left spans

Span Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
[Hz] [Hz] [Hz] [Hz] [Hz]

L1 2.02 2.70 3.07 3.26 9.36
L2 2.06 2.71 3.01 3.24 9.42
L3 2.02 2.60 3.05 3.21 9.44
L4 2.02 2.64 3.07 3.24 9.45
L5 2.01 2.70 3.01 3.19 9.48
L6 2.01 2.19 2.64 2.80 8.71
L7 2.02 2.70 3.09 3.19 9.51
L8 2.01 2.61 3.08 3.21 9.32
L9 2.00 2.68 3.01 3.20 9.61

The local and global mode shapes were identified in the selected frequency
range. Natural frequencies and mode shapes of the selected mode estimates are
presented in Figure 6.11 for span L5, taken as an example; the remaining spans are
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almost equivalent. It can be observed that mode shapes of very good quality were
obtained.
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Figure 6.11: Results of the FDD analysis for the vertical and out-of-plane bending
modes for L5 span

Figure 6.11 highlights that, among the five identified natural frequencies, only
the first one is related to a lateral mode (mode 1) while the others are related to
bending modes. Unfortunately, having only one longitudinal alignment of sensors,
it is not possible to correctly reconstruct torsional modes. This fact justifies the
existence of modes with different natural frequencies but similar bending mode
shapes at the deck level, since some of these could be torsional.

By observing the frequency values listed in Table 6.2 and in Table 6.3 and
represented graphically in Figure 6.12 for two spans, it is possible to observe that
span L6 shows considerably lower frequency values than all the remaining spans of
the structure, having values that are more consistent with each other.
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Figure 6.12: Comparison between PSD curves of some sensors installed on span L5
and L6 - axes x, y, z

Furthermore, Figure 6.12 illustrates the comparison between the Power Spec-
tral Density (PSD) obtained for two sensors located at mid span and at bearings
respectively, for spans L5 and L6.

Looking at the graph, it is evident the difference between frequency values of
span L6 and those of span L5, representative of all the remaining spans of the
structure. Indeed, natural frequency peaks of span L6 are significantly shifted to
the left with respect to the nearby span L5. The significantly lower frequency values
are symptomatic of the reduced deck stiffness due to the detected state of damage
of span L6. In particular, it is possible to observe that frequencies of modes 2,
3, 4, 5 were significantly lower than those belonging to all the remaining spans,
while the frequency linked to mode 1 did not show any particular difference when
compared with the other spans. This evidence could be related to the nature of the
damage identified in span L6. In fact, the partial loss of prestressing in the deck
due to the tendon corrosion (has described in paragraph 6.2), may have generated
a bending stiffness reduction in the damaged span. This means that all the flexural
or flexural-torsional vibrational modes (modes from 2 to 5) were affected by the
damage in a consistent way, with the associated natural frequencies reduction of
about 0.4 - 0.8 Hz. The mode at frequency of 2.01 Hz instead, being connected
to the out of plane stiffness of the structure, was not affected by the damage and
therefore there were no obvious variations in stiffness compared to the other spans.
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6.6 Monitoring Results

6.6.1 Statistical Analysis of Dynamic Signals
The acceleration time series coming from the dynamic monitoring system in-

stalled on the pre-stressed concrete bridge, sampled at 100 Hz, were statistically
analyzed in order to identify similar trends and behaviors between the 18 spans of
the bridge.

One of the first observations that can be made beforehand is that the dynamic
input on the structure is extremely variable, depending on the traffic. Indeed, the
accelerations measured during the day, with intensive traffic levels, are considerably
higher than those measured during the night, with limited traffic. Figure 6.13
illustrates two examples of acceleration time series recorded during the night (a)
and during the day (b).
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Figure 6.13: Acceleration time series collected from one sensor (a) during the night,
(b) during the day.

Furthermore, a noticeable difference can also be observed by comparing vibra-
tional levels recorded during the week and over the weekend. Standard deviation
has been considered as a good indicator of the average vibration activity induced
by traffic loads, wind and/or other external agents under standard or exceptional
conditions. Figure 6.14 shows a comparison between the probability distribution
of standard deviation values collected by sensor L1.3, chosen as an example, along
the z axis during day and night hours for a weekly day (a) and during the weekend
(b).

As it can be seen from Figure 6.14, there is a significant difference between the
STD values recorded during the day and during night for a weekly day. Indeed,
the maximum vibration levels are mainly recorded during the day hours with an
appreciable decrease at night. On the other hand, this difference is not so marked
during the weekend, where the vibrational levels between day and night are closer
and lower if compared with those recorded during the weekly day, indicating reduced
traffic levels.
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Figure 6.14: PDF of STD values collected along z axis during day and night hours
- week and week-end

Another significant observation can be made with respect to the vibrational
levels recorded along the 3 measurement axes x, y, z. More in detail, the potential
difference between the 3 measurement axes needs to be addressed considering the
position in which sensors are installed (corresponding to the different points of the
deck). In particular, the acceleration recorded in the middle of the span and at
supports, in the 3 measurement axes, would be different according to the dynamic
modes. Figure 6.15 shows a comparison between the probability distribution of STD
values collected from 01/06/2019 to 20/06/2019 for the 3 measurement directions
x, y and z for both a sensor placed in the middle of the span (sensor L1.3) and a
sensor installed at supports (sensor L1.1).

Figure 6.15 illustrates a significant difference between the 3 measurement axes.
In particular, the probability distribution calculated for the z-axis shows a sig-
nificantly higher mean and standard deviation value than the x and y axes for
both sensors. Furthermore, it can be observed that the x-axis has a higher mean
value than the y-axis, indicating a higher vibration amplitude. Moreover, no major
differences can be detected between the two sensors of the structure.

This observations can be justified, with reference to natural frequencies and
modal shapes identified in paragraph 6.5, through the following considerations.
The lower modes of the bridge excited by traffic involve all 3 measurement direc-
tions, in a frequency range from 2 to 3.5 Hz (for all the spans of the structure).
However, looking at Power Spectral Density (PSD) plot shown in Figure 6.12, it
can be observed that most of the power is in the vicinity of the first eigenfrequency
identified along z-axis, associated with the first flexional mode which involves, pre-
dominantly, the flexural stiffness (along z) of the structure. This means that the
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Figure 6.15: PDF of STD values collected from 01/06/2019 to 20/06/2019 - sensors
L1.1 and L1.3; axes x, y, z

first mode along z-axis is the most excited one; thus, it makes sense that accelera-
tion values recorded along z-axis are greater than those recorded by x and y axes.
Similar considerations can be done by comparing x and y directions.

A very interesting comparison has been also made among all the spans of the
structure, in terms of vibrational levels. Indeed, all the spans of the bridge have
the same length and the same geometric characteristics. This means that, with
the same input, the behavior of all spans should be about the same. However,
some differences have been observed by comparing the undamaged spans with the
damaged one (L6), before carrying out the reinforcement works.

In particular, the standard deviation values (STD) of the acceleration time
series, collected along the z direction and calculated once per second, have been
obtained for the time period between 01/04/2019 and 30/04/2019, that is before
the strengthening intervention. Figure 6.16 and Figure 6.17 show a comparison
between STD values obtained for all the spans of the left side of the bridge, so as
to have the same input (traffic), for both sensors located in the center of the span
and at supports.

Figure 6.16 shows a boxplot displaying the distribution of data based on the
minimum, first quartile (Q1), median, third quartile (Q3), and maximum values.
As can be seen, the minimum, first quartile, median and third quartile values are
approximately comparable for all spans and for all sensors (installed both in the
middle of the spans or at supports). However, with reference to maximum values,
a difference between sensors installed on the L6 span and those installed on the
remaining spans can be identified. Indeed, the same consideration can be made by
observing Figure 6.17, in which span L6 shows STD values under traffic definitely
higher than the other spans.
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Figure 6.16: Boxplot of STD values along the z direction between 01/04/2019 and
30/04/2019; (a) sensors located at supports; (b) sensors located at mid-span
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Figure 6.17: STD values along the z direction between 13/04/2019 and 25/04/2019;
(a) sensors located at supports; (b) sensors located at mid-span

With reference to natural frequency values reported in Table 6.3, it is possible to
correlate the higher vibrational levels to the lower bending stiffness of this span due
to its state of damage. This could lead to the conclusion that larger acceleration
amplitudes correspond to lower stiffness values.

6.6.2 Monitoring during the strengthening works
This paragraph summarizes the main results obtained during and after the

reinforcement installation. More in detail, the proposed methodology has been
applied for detecting the strengthening works and for comparing the bridge behavior
before and after the installation of the external pre-stressing tendons.
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As described in chapter 4, the proposed methodology allows the automatic iden-
tification of changes in the structural behavior, both in terms of natural frequencies
and vibration response, using 3 levels of alert, defined through specific threshold val-
ues which are implemented for all the monitored structures respectively within the
sensor node, the gateway and the cloud environment. Changes within the dynamic
characteristics of structures are detected, for each alarm level, with respect to the
standard behavior, that is, with respect to a behavior considered "normal", which
corresponds to the installation of the monitoring system. Therefore, if the struc-
ture changes its behavior with respect to this standard condition, an alert signal
is generated. This means that, even if the reinforcement works caused an increase
in the stiffness of the structure, the behavior of the bridge after the intervention
would be different than before; therefore, this case study has been effectively used
to verify the effectiveness of the proposed methodology in identifying changes in
structural properties.

The strengthening works took place on May 9th, 2019 and were entirely recorded
by the accelerometers installed on the structure. During the restoration works the
highway was open to traffic in both directions.

All sensors installed in span L6 recorded a strong impulse when tendons were
tensioned, causing the first alert level to be exceeded.

Following the first level alert, the second and third alert levels were automat-
ically activated by the monitoring system on the IoT gateway and cloud for all
the sensors that exceeded the first threshold check. As a result, both the second
and third threshold levels were exceeded for the selected span, indicating a possible
variation of the modal parameters (stiffness) of the structure.

As regard the second level of alert (autoencoder check), activated by the IoT
gateway following the first level alarm, it is possible to notice a remarkable increase
in reconstruction error values for all sensors installed on span L6, following the
reinforcement works.

More specifically, with reference to Figure 6.18 in which the trend of recon-
truction error is shown for sensor L6.3 from April 21, 2019 to May 18, 2019, it
is possible to observe that the recontruction error assumes almost constant values
around 1.05% from the beginning of the monitoring period until 09/05/2019. On
09/05/2019, when the reinforcement works took place, a sudden increase in the
reconstruction error has been detected, passing from an average value of 1.05%, to
values of around 1.22%, thus exceeding the preset threshold value equal to 0.1% of
the reconstruction error mean value, indicating a variation in the dynamic behavior
of the structure. As aforementioned, the second level of alert takes advantage of an
unsupervised machine learning agorithm to detect changes in structural behavior
which is characterized by several variables. The reconstruction error is thus used
to measure how well the decoder is performing.

The underlined variation in recostruction error mean value indicated that the
autoencoder was no longer able to reconstruct the vibration signal with the same
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Figure 6.18: Reconstruction Error at the anomalous event - sensor L6.3

accuracy as before due to a change in the intrinsic characteristics of structural
elements, which affects the dynamic characteristics of the signal collected by sensors.

On the other hand, the third level threshold was also exceeded. More in de-
tail, a sudden increase in frequency values was detected in correspondence of the
strengthening works, indicating a stiffening of the structure. In Figure 6.19, the
trend of the resonant frequency, corresponding to the first fours modes listed in
Table 6.3, is reported over time.
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Figure 6.19: Frequency evolution over time at the reinforcement works

As can be observed from the graph, the reinforced span showed a significant shift
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Figure 6.20: PSD calculated for the 3 measurement directions (x, y, z) before and
after the strengthening works

in the frequency of the fist bending mode (mode 2) of about 0.25Hz, indicating a
stiffening of the structure. This variation is evident also by looking at the other
frequencies, even if of a lesser extent. Moreover, the same phenomenon is clearly
identifiable by analyzing the signal spectra. Indeed, since the signals are of random
nature, the power spectral density (PSD) can be used to evaluate the system natural
frequencies in a first stage. The choice of using PSD spectrum comes from the need
of analysing the effect of the strengthening works along the 3 orthogonal directions
(x, y z), in order to highlight the different stiffening contribution provided by the
intervention. The averaging process has been carried out with a sub-records wth
a length of 200 s and overlap of 66% (Hanning window). The peaks of the PSD
correspond to the natural frequencies of the structure under examination.

Figure 6.20 shows the PSDs calculated for the sensor located at mid span in the
three directions x, y, z before and after the strengthening works (May 8th, 2019
and May 10th, 2019). It can be observed that the reinforcement caused a shift to
the right of the natural frequencies of the span, meaning that a stiffening of the
system occurred. It is noteworthy that this translation is more evident in the y and
z directions, while in the x direction, transversal to the longitudinal extension of the
viaduct, this variation is hardly recognized. This is consistent with the observation
that external pre-stressing causes a flexural stiffening of the structure mainly in the
y-z plane, with minor effect in the x-y plane.

Following the identification of the reinforcement works consequences on the
structure using the methodology proposed in this thesis, a series of additional anal-
yses were also carried out in order to evaluate the effect of externally mounted
post-tensioned bars on the selected span.

Specifically, acceleration time series were averaged through a moving average
smoothing procedure, in which each element of the series has been replaced by the
average of n surrounding elements, where n is the width of the smoothing window.
The average of the acceleration signal has been used for calculating the angular
tilt along two orthogonal axes, x and y. Indeed, 3-axis accelerometers may also be
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Figure 6.21: Tilt measurements using a single axis of the accelerometer

used for angular tilt calculation [43].
With reference to Figure 6.21, MEMS accelerometers measure, in static condi-

tions, the projection of the gravity vector on the sensing axis. The amplitude of
the sensed acceleration changes according to the sine of the angle α between the
sensing axis and the horizontal plane:

A = g · sin(α) (6.1)

This means that, using equation 6.1, it is possible to estimate the tilt angle as:

α = arcsin

(︄
A

g

)︄
(6.2)

where A is the measured acceleration and g is the Earth’s gravity vector.
However, tilt is a static quantity; thus, it is necessary to average acceleration

time series recorded by sensors installed on the structure (and subject to traffic
input), on windows of at least 1 second, to obtain the equivalent static reading.
Since sensors are most responsive to changes in tilt angle when the sensing axis is
perpendicular to the force of gravity, only x and y axes have been considered.

As it can be observed from Figure 6.22, the averaged acceleration data along
y axis highlighted an instantaneous shift in the tilt values when the external force
was transferred to the bridge members. The shift is particularly evident for the
two sensors located near the span ends and less visible from the sensor positioned
at mid span, as expected. However, this result is very interesting especially with
regards to sensor L6.3.

Indeed, pre-stressed concrete bridges are assumed to have an elastic structural
behaviour during normal operating conditions. As a consequence, the middle point
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Figure 6.22: Averaged acceleration data along y axis at the strengthening works

of a simply supported span bridge should always show a null tilt value. However,
as can be seen from Figure 6.22, L6.3 sensor showed a detectable variation in
its average value, indicating an initial non-zero rotation value. This means that,
before the reinforcement was installed, a residual deformation under heavy traffic
combined with deterioration was recognizable in the analyzed span, confirming the
damage scenario detected during the inspections.

In addition, always referring to Figure 6.22, it is possible to observe that the tilt
variation due to the strengthening works occurred in the opposite direction with re-
spect to the bridge deformation under traffic loads, indicating that the external pre-
stressing has caused a counter-balance in the bridge. Starting from data recorded
before and after the reinforcement intervention, it was thus possible calculating the
deformation experienced by the bridge under the pre-stressing intervention.

Figure 6.23 shows the bridge deformation, in terms of vertical displacements,
experienced by the structure following the strengthening works. The black dotted
curve was calculated by linear interpolation of the tilt values obtained averaging
acceleration time series in the y direction, after removing the value measured before
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Figure 6.23: Deformed shape of the L6 span after the reinforcement works

the intervention. As can be seen from the graph, following the reinforcement works,
the structure experienced a camber of about 1 cm at the centreline of the span,
indicating a recovery of the residual deformation.

This means that, before the reinforcement works were carried out, the struc-
ture had accumulated a plastic deformation under dead weight as a result of the
experimented damage, which was partially recovered following the installation of
the additional external pre-stressing tendons.

The results obtained through these further analysis confirmed the considerable
variation of the intrinsic characteristics of the structure following the installation
of the additional pre-stressed external tendons.

The results produced by the dynamic monitoring system have proved to be
reliable and robust as it was possible to automatically detect changes in the stiffness
of the structure after the reinforcement intervention.

6.7 Final Remarks
This chapter describes the application of the proposed methodology for identi-

fying changes in the dynamic behavior of a prestressed concrete bridge, following
some strengthening works. The analyzed structure is located in northern Italy and
has been continuosly monitored through a dynamic monitoring sysyem since March
2019, being still monitored. The relevance of this case study lies in the reinforce-
ment works carried out in May 2019, following the identification of a damaged
scenario in one of the bridge spans. In order to track the behavior of the structural
elements during and after the strengthening works, triaxial accelerometers were
installed on all the bridge spans.

The chapter started with the description of the highway bridge and the dynamic
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monitoring system installed on it, for the continuous and automated monitoring of
the dynamic characteristics of the structure. Subsequently, the inspection campaign
carried out in March 2019 is described in detail, highlighting the serious structural
deficiencies that have been identified in the sixth span of the left roadway of the
bridge.

Afterwards, some preliminary analyses were carried out in order to evaluate the
standard behaviour of the structure at the installation of the monitoring system.
These preliminary analysis were essential for understanding the state of the struc-
ture when the sensors were installed. In particular, at first, the identification of
natural frequencies and the corresponding mode shapes has been carried out for
all the spans of the bridge. Then, statistical analysis were performed on the time
series collected by sensors during the monitoring period. Results from the prelimi-
nary analysis highlighted the significant difference between the damaged span and
the remaining spans of the bridge both in vibrational and in modal terms. Indeed,
natural frequency values associated with the damaged span proved to be consider-
ably lower than the undamaged spans, confirming the hypothesized reduced deck
stiffness. At the same time, vibration levels were also obtained for the entire bridge,
revealing a marked difference between damaged and healthy spans, being vibration
levels for the damaged span significantly higher than the standard behavior.

Subsequently, the main results obtained during the monitoring period were pre-
sented. The analysis focused mainly on the reinforcement intervention carried out
in May 2019 and entirely recorded by the sensors. This event was extremely relevant
as it allowed to verify the effectiveness and robustness of the proposed methodology
on a real scenario in which variation of the dynamic characteristics of the structure
occurred.

In particular, during the strengthening works, the first level threshold was ex-
ceeded by all the sensors installed in the damaged span of the bridge, due to the
strong impulse recorded when external tendons were tensioned. Following the first
level alert, the second and third checks were automatically activated by the mon-
itoring system and, as a result of the these deeper analysis, both the second and
third threshold were exceeded by a group of sensors, indicating a possible struc-
tural damage. As a consequence, an alarm message, together with a phone call,
was automatically generated.

In conclusion, the reinforcement intervention on one of the spans of the moni-
tored bridge, which showed significant damage evidences, have permitted to prove
that the developed and implemented methodology for the automatic and continuous
identification of modal parameters make possible a very detailed characterization
of the structural intrinsic characteristics over time. Indeed, changes of the modal
parameters of the bridge were effectively detected by the system, following the
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strengthening works, which caused the stiffening of the structure.

This case study was very important to demonstrate that the proposed method-
ology for the effective and automatic monitoring of infrastructures presented in this
dissertation is really reliable and, at the same time, flexible enough to be used on
diverse civil engineering structures.

A very important aspect is that the data coming from the structure in damaged
conditions have been observed and this represents a very rare case in the field
of SHM of real operating civil structures. Therefore, knowing the outputs of the
analyzes obtained when the structure was in a state of advanced and widespread
deterioration, the use of supervised learning techniques can be adopted allowing to
have indications on the progress of pre-stressing loss for future SHM purposes.
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Chapter 7

Conclusion

This chapter is intended to provide a cohesive summary of the main contri-
butions achived in this work as well as a discussion on possible future research
developments.

7.1 Main Outcomes
The present dissertation illustrates the main outcomes and advantages obtained

regarding the Structural Health Monitoring of civil engineering infrastructures. In
particular, two main topics have been addressed and discussed:

• development and implementation of a generalized methodology to be applied
for the structural health monitoring of many structures equipped with many
sensors, which allows identifying any evolving damage in their initial stage;

• management of Big Data generated continuously by a large number of de-
vices installed on a large number of structures, using big data analytics for
structural diagnosis as well as for data storage and accessibility.

This thesis comprehends an overview of the state of the art related to structural
health monitoring methods and application. Particular attention was paid to long-
term and automatic monitoring systems, in order to highlight the shortcomings of
the literature and outline the area in which the present research fits.

Subsequently, a detailed description of the theoretical background behind some
of the main operational modal analysis methods, used for the dynamic identification
of civil engineering structures, has been reported. Four methods have been selected
and assessed with numerical simulations, in order to choose the method that it is
better suited to be integrated inside the framework for the real-time and automatic
monitoring of full-scale bridge structures, under operating conditions.

The developed and proposed methodology for the continuous and long-term
monitoring was therefore detailed. The main goal of the proposed methodology
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was to provide a complete data-driven method, able to automatically generate
system health indicators without any specific analysis on the monitored structure.
In this way, it is possible to apply the developed framework on a large number of
structures, always having control of each of them without the need of analyzing
structures individually.

The accuracy and reliability of the implemented methodology was evaluated
through two significant case studies, where variations in the stiffness of the struc-
tural elements were recorded in the monitored period.

In light of this, the developed research permitted to achieve the following main
results and conclusions, which are synthesized in the following list.

1. development, implementation and validation of a new methodology for con-
tinuous and long-term monitoring of a network of structures, equipped with
a large number of sensors, which allows to efficiently obtain reliable system
health indicators, used for carrying out a preventive diagnostics of any pro-
gressive damage on structural elements. More in detail, the proposed method-
ology includes the following main outcomes:

• development, implementation and testing of a data acquisition and stor-
age procedure, in order to efficently collect data from sensors by discard-
ing those deemed to be lacking in information and therefore limiting the
amount of data stored and analyzed.

• development and implementation of a strategy to efficiently elaborate
a large amount of data (big data) in the shortest possible time fully
exploiting the resources of the cloud platform;

• conception and development of a multilevel damage detection procedure,
aimed at provinding an early-stage alert of anomalous conditions that
should trigger more detailed analysis or, if necessary, in situ inspections.
In particular, the proposed methodology is based on different levels of
alarm (three levels), fully exploiting the potentiality of the monitoring
system, where the interaction between different sites of computational
capability has been used to produce a reliable alert in case of damage.

• effective management of Big Data generated continuously by a large
number of sensors installed on a large number of structures, ensuring
a high level of data quality and accessibility for the assessment of the
health status of a system.

2. application of the proposed methodology for the long-term real-time moni-
toring of a significant number of structures (about 15 bridges) currently in
operation;

3. automatic and real-time identification of damages occurred on a box compos-
ite highway bridge, strengthened by both internal and external prestressing,
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where all the features of the proposed methodology were applied and per-
mitted to prove the effectiveness, feasibility and reliability of the adopted
techniques, being able to detect real damages occurred during the monitoring
period;

4. automatic and real-time identification of stiffness variation occurred on a pre-
stressed concrete bridge from the early 1965s, where real changes in structural
stiffness were identified through a dynamic monitoring system in which the
proposed methodology has been adopted.

The illustrated case studies proved that the proposed automated methodology
was able to provide a very detailed characterization of the time evolution of the
dynamic characteristics of the structures. Thus, this was an important result to
demonstrate that the proosed methodology is flexible to be used and generalized for
a large variety of civil engineering structures, being at the same time very reliable
and effective.
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