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Abstract  17 

Anaerobic digestion (AD) could be considered as a mature technology and nowadays it 18 

can still play a pivot role because of the urgent need to provide renewable energy sources 19 

and efficiently manage the continuously growing amount of organic waste. Biochar (BC) 20 

is an extremely versatile material, which could be produced by carbonization of organic 21 

materials, including biomass and wastes, consistently with Circular Economy principles, 22 

and “tailor-made” for specific applications. The potential BC role as additive in the 23 

control of the many well-known critical issues of AD processes has been increasingly 24 
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explored over the past few years. However, a clear and comprehensive understanding of 25 

the connections between BC and AD is still missing. This review paper analyses and 26 

discusses significant references (review articles, research papers and international 27 

databases and reports), mostly published in the last 10 years. This review is aimed at 28 

addressing three key issues related to the better understanding of the BC role in AD 29 

processes: 1. Investigation of the influence of BC properties on AD performances and of 30 

their ability to counteract its main challenges; 2. Assessment of the optimal BC 31 

production chain (i.e. feedstock-pyrolysis-activation) to achieve the desired features; 3. 32 

Evaluation of the economic and environmental advantages connected to BC use in AD 33 

processes, compared to conventional solutions applied to address AD challenges.  34 

 35 
Highlights 36 

- Biochar key properties were specific surface, pores and surface functional groups 37 

- Lignocellulosic biomass, slow pyrolysis and physical activation made the best biochar 38 

- Biochar addition exhibited economic and environmental advantages 39 

- Biochar improved methane production (in average 25 %) and digestate quality 40 

 41 

Keywords: anaerobic digestion; biochar; bioenergy; biomass; circular economy; waste 42 

 43 

Abbreviations 44 

AD: anaerobic digestion; BC: biochar; BET: Brunauer–Emmett–Teller; CE: circular 45 

economy; CEC: cationic exchange capacity; CIC: controlling internal circulation; CLSM: 46 

confocal laser scanning microscopy; COD: chemical oxygen demand; DIET: direct 47 

interspecies electron transfer; EAC: electron accepting capacity; EDC: electron donating 48 

capacity; EU: European union; FAN: free ammonia nitrogen; FISH: Fluorescence in situ 49 
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hybridization; FW: food waste; GAC: granular activated carbon; GHG: green-house gas; 50 

HRT: hydraulic retention time; IET: interspecies electron transfer; LCA: life cycle 51 

analysis; MSW: municipal solid waste; OFMSW: organic fraction of municipal solid 52 

waste; OLR: organic loading rate; PAH: polyaromatic hydrocarbons; PCBs: 53 

polychlorinated biphenyls; S/I: substrate to inoculum ratio; SMP: specific methane 54 

potential; SS: suspended solids; SSA: specific surface area; TAN: total ammonia 55 

nitrogen; TPAD: two phased anaerobic digestion; TSS: total suspended solids; UASB: 56 

up-flow anaerobic sludge blanket; VFA: volatile fatty acids; WAS: waste activated 57 

sludge; WWTP: wastewater treatment plant; WV: working volume; V: volume. 58 
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1. Introduction 82 

The global energy consumption increased from around 8,800 million tonnes of oil 83 

equivalents (Mtoe, including coal, gas, oil, electricity, heat and biomass) in 1990 to 84 

14,400 Mtoe in 2018 [1]. In 2016 renewable energy sources met this demand for about 85 

14 % of primary energy supply, while fossil fuels accounted for 81% of greenhouse gas 86 

(GHG) emissions [2]. The need to decrease fossil fuel dependency and GHG emissions 87 

and to generate economic benefits is stimulating initiatives to produce energy as well as 88 

high-value chemicals and products from sustainable non-food biomass, residues, co-89 

products and wastes. 90 

Anaerobic digestion (AD) is a well-established technology for the treatment of 91 

wastewater and organic waste, e.g. the organic fraction of the municipal solid waste 92 

(OFMSW), waste activated sludge (WAS), animal manure, etc. Biogas can directly 93 

replace fossil fuels in heat and power generation or be upgraded to bio-methane as vehicle 94 

fuel or injected in the gas grid [3], while digestate can be employed as soil amendment 95 

[4,5]. Other benefits of AD, compared to alternative treatment options applied to organic 96 

waste, include control of odor and GHG emissions, removal of pathogens and adaptability 97 

to many substrates [6]. AD has been extensively implemented, from small-scale 98 

applications, particularly in rural areas and developing countries, to large-scale industrial 99 

plants [7]. Despite the rapidly growing number of biogas installations in Europe (from 100 

about 6,200 to 18,202 between 2009 and 2018) [8], many challenges regarding AD 101 

processes still persist. Different options have been explored to address these challenges: 102 

optimization of working parameters and bio-reactor configuration, co-digestion and 103 

nutrients control [9]; adoption of pre-treatments to enhance the degradability of various 104 

substrates [10,11]; use of inorganic and biological additives to support biomass 105 
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immobilization, supplement nutrients, mitigate inhibitors and improve process stability 106 

[12–14].  107 

Among the additives, conductive carbonaceous materials, as granular activated carbon 108 

(GAC) and biochar (BC), gained interest because of their ability of enhancing methane 109 

production [15,16]. BC may present several advantages over other additives; it can be 110 

produced with a wide variety of physico-chemical properties by controlling feedstock, 111 

pyrolysis operating conditions and the activation process [17,18], resulting “tailor-made” 112 

for specific applications. In recent years, several authors confirmed the possibility of 113 

increasing methane production through BC addition (Table 1), suggesting different 114 

potential mechanisms: (1) increase of the buffering capacity of the AD system; (2) 115 

mitigation of inhibition phenomena or agents; (3) support media for biomass 116 

immobilization; (4) promotion of syntrophic metabolisms; (5) enhancement of digestate 117 

quality; (6) biogas cleaning and upgrading. The most significant and updated scientific 118 

literature investigating the BC role within AD processes can be classified as follows 119 

(Table 1): 120 

- Studies considering the advantages of coupling AD with thermal processes 121 

(gasification, pyrolysis and hydrothermal carbonization) from a general point of view; 122 

- Studies exploring the positive influence of BC on AD, based on methane and/or biogas 123 

production enhancement and/or improvement of digestate quality; 124 

- Studies analysing in detail the BC features that may influence one or more of the 125 

above-mentioned mechanisms. 126 

Considering the digestate, BC has been reported to enhance its quality in terms of nutrient 127 

retention, increase of the carbon-to-nitrogen ratio and reduction of nutrient leaching [19]. 128 
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Consequently, BC doesn’t need to be separated from digestate at the end of its utilization 129 

in AD. 130 

 131 

Table 1. Overview of literature studies exploring the connections between BC and AD 132 

Studies considering the 

general advantages of 

coupling AD with thermal 

processes  

Studies exploring the 

positive influence of BC 

on AD, based on a general 

analysis of methane and/or 

biogas production 

enhancement 

Studies exploring the 

positive influence of BC 

on AD, based on a general 

analysis of the 

improvement of digestate 

quality 

Studies analysing in 

details the biochar features 

that may influence one or 

more of the six above-

mentioned mechanisms 

Pecchi and Baratieri, 

2019 [20] 

Fabbri and Torri, 2016 

[21] 

Hübner and Mumme, 

2015 [22] 

Salman et al., 2017 [23] 

 

 

 

Linville et al., 2017 [24] 

Torri and Fabbri, 2014 

[25] 

Sunyoto et al., 2016 [26] 

Jang et al., 2018 [27] 

Sun et al., 2019 [28] 

Zhao et al., 2015 [29] 

Inthapanya et al., 2012 

[30] 

Inthapanya and Preston, 

2013 [31] 

 

Bruun et al., 2011 [32] 

Shen et al., 2016 [33] 

Shen et al., 2017 [34] 

 

Fagbohungbe et al., 2017 

[19] 

Ye et al., 2018 [13] 

González et al., 2018 [15] 

Zhang et al., 2018 [16] 

Codignole Luz et al., 

2018 [35] 

Masebinu et al., 2019 [36] 

Pelaez-Samaniego et al., 

2018 [37] 

G. Wang et al., 2018b  

[38] 

D. Wang et al., 2017 [39] 

Fagbohungbe et al., 2016 

[40] 

Mumme et al., 2014 [41] 

Shanmugam et al., 2018 

[42] 

Su et al., 2019 [43] 

Lü et al., 2016 [44] 

Cruz Viggi et al., 2017 

[45] 

Li et al., 2018 [46] 

Martínez et al., 2018 [47] 

Luo et al., 2015 [48] 

Wang et al., 2019 [49] 

C. Wang et al., 2018 [50] 

Zhao et al., 2016 [51] 

Yu et al., 1999 [52] 

Cooney et al., 2016 [53] 

Dang et al., 2017 [54] 

Sasaki et al., 2010 [55] 

Martins et al., 2018 [56] 

S. Chen et al., 2014 [57] 

Pan et al., 2019b  [58] 

Qiu et al., 2019 [59] 

 

 133 
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 134 

To the best of our knowledge, despite the growing number of studies investigating the 135 

connections between BC and AD, three main issues still need to be explored: a clear 136 

comprehension of the above-mentioned six mechanisms; a correlation between BC 137 

features and their effects on AD processes; environmental and economic outcomes related 138 

to BC use. The present review is therefore aimed at addressing the following issues: 1) 139 

investigation of the influence of BC properties on AD performance and of their ability to 140 

counteract its main challenges; 2) assessment of the optimal BC production chain (i.e. 141 

feedstock-pyrolysis-activation) to achieve the desired features; 3) evaluation of the 142 

economic and environmental advantages connected to BC use in AD processes, compared 143 

to conventional solutions applied to address AD challenges. 144 

2. Review methodology 145 

The selection of scientific literature was made considering the following criteria: 146 

a) Relevant international databases and information sources. Bibliometric sources as 147 

Web of Science, Science Direct and Scopus were used to retrieve articles, book-chapters 148 

and proceedings of indexed conferences. Official international databases (Eurostat, 149 

International Energy Agency, European Biogas Association, etc.) were searched for the 150 

selection of technical reports and statistics; 151 

b) Chronological order. The majority of the references in this review are from 2015 to 152 

2019 (67 %) and from 2009 to 2014 (26 %), with the balance before 2009 (7 %); 153 

c) Relevant keywords for the topics of interest. A first survey adopted the following 154 

keywords in different combinations: “biochar, anaerobic digestion, methane, pyrolysis, 155 

economic assessment, environmental assessment, life cycle analysis, LCA”. Based on 156 
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this preliminary selection, the review questions have been identified. Thereby, additional 157 

keywords have been adopted to face specific issues, as: “biochar, buffer capacity, 158 

anaerobic digestion, volatile fatty acids”, “biochar, ammonia inhibition, ammonia 159 

removal, anaerobic digestion”, “syntrophic metabolisms, biomass immobilization, 160 

biochar, anaerobic digestion, DIET, electron transfer”.  161 

d) Selection of the references based on content analysis. After a first screening 162 

considering the abstracts of all identified reference sources, 259 relevant references 163 

were analyzed as full content and included in this review. The relevant scientific 164 

content was sourced from scientific articles (240 research papers and reviews – 93 %), 165 

book chapters and indexed conference proceedings (11 documents – 4 %), and 166 

international databases and reports (8 documents – 3 %). Considering only the 167 

scientific research papers and the reviews, they were related to (Figure 1): AD (31 %) 168 

and pyrolysis (10 %); coupling AD and thermal processes (10 %); BC features (25 %); 169 

BC and AD interaction mechanisms (14 %); economic and environmental aspects 170 

related to BC use (10 %). The distribution of the relative contributes of the scientific 171 

literature to the different topics concerning the investigation of BC role in AD in 2009 172 

– 2019 exhibits a clear increasing trend due to a growing interest, particularly in the 173 

last five years, for the topics covered by the present work and consequently strengthens 174 

the need to address the above mentioned review questions. 175 

This review is structured according to the contents outline. At the end of each section, the 176 

last paragraph summarizes the main findings and research gaps of the specific topic 177 

explored, which are finally condensed in the conclusions. 178 

 179 



9 
 

Figure 1. Relative contributions of the scientific literature selected for this work  180 

 181 

 182 
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3. Biochar 183 

BC is the porous carbonaceous solid residue of the complex physical and chemical 184 

phenomena simultaneously occurring during the thermochemical treatment of raw 185 

biomass [60–63]. While AD is particularly suitable to produce biogas and digestate from 186 

wet organic waste (Figure 2), pyrolysis is a thermochemical process able to convert solid 187 

dry biomass in an oxygen-limited environment into valuable liquid chemicals (bio-oil), 188 

as well as gaseous biofuels and charcoal (biochar, BC) [64–67]. Although pyrolysis was 189 

conventionally mostly focusing on the production of liquid biofuels from woods and 190 

purpose-grown energy crops, the most recent studies found that it is not cost effective 191 

unless the feedstock is inexpensive, dry and readily available, and there are valuable 192 

chemical co-products (liquid bio-oil and solid BC) or favorable government policies [68]. 193 

Both AD and pyrolysis can contribute to fulfill Circular Economy targets, but research 194 

on biological and thermochemical processes traditionally progressed along parallel and 195 

separate pathways, often in competition. 196 

In recent years, improved understanding of the characteristics of bio-oil and BC has 197 

helped to develop key quality requirements to expand their potential value [69]. High 198 

value liquid bio-oil products can be obtained from the pyrolysis of biomass residues, such 199 

as phenolic substitutes for adhesives or antioxidants [70,71]. However, there are 200 

limitations: the most valuable chemicals are usually mixed with impurities that impair 201 

their properties. Similarly, there are many promising applications for BC, such as soil 202 

improver [18], composite materials [72], activated carbon [73], electrodes for batteries or 203 

electrolysis cells [74], metallurgical coke substitute [75], catalyst for tars [76], and could 204 

be eligible for carbon credits [77]. The efficiency of BC in most applications significantly 205 
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depends on its physico-chemical properties and elemental composition, which are subject 206 

to variations depending on feedstock, pyrolysis conditions, pre- and post-processing 207 

treatments. 208 

The characteristics of AD and pyrolysis processes and products may offer interesting 209 

opportunities for the integration of such technologies (Figure 2), with the objective of 210 

contributing to the Circular Economy. For example, pyrolysis could be utilized to convert 211 

dewatered digestate into BC, which could then be used for a variety of applications 212 

[17,78,79], including its potential use to improve the quality of biogas and digestate [37], 213 

or to reduce instabilities and inhibition in digestors [16,24]. On the other hand, the acetic 214 

acid-rich aqueous pyrolysis condensate could be utilized as a feedstock for AD, possibly 215 

with the addition of BC for the selective adsorption of toxic inhibitors [21–23,25,80–88]. 216 

In conclusion, BC represents the key link between pyrolysis and AD and, consequently, 217 

in this section we wish to review its characteristics, including suitable feedstocks, 218 

production technologies, activation processes and characterization techniques. 219 

 220 
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Figure 2. Outline of potential integrations between anaerobic digestion and pyrolysis (derived from [20,21]). 221 

 222 

 223 
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3.1. Feedstocks 224 

During thermal processing under oxygen free or oxygen-limited conditions (as pyrolysis), 225 

as the temperature increases, the polymeric components of lignocellulosic biomass crack 226 

and liquid intermediate phases are formed with different visco-elastic behaviors [89,90]; 227 

under slow progressive heating, cellulose remains hard and elastic up to 400 °C, whereas 228 

hemicellulose softens within a relatively narrow temperature range (230 to 280 °C) and 229 

remains viscous, while lignin softens and bubbles over a broader temperature range (150 230 

to 350 °C) and remains mainly elastic. The overall process cannot be simply designed 231 

based on the linear combination of the behaviors of the individual components, but it is 232 

the result of their interactions at different temperatures and it is catalyzed by the mineral 233 

matter present in the ashes. As the temperature increases over these ranges, the 234 

depolymerized liquid undergoes two competitive processes, oligomer evaporation and 235 

crosslinking reactions, with the former favored at high heating rates, and the latter under 236 

slow pyrolysis. These findings explain why, under slow pyrolysis, the char yield is 237 

greater, and the particles globally keep the same macro-structure of the original biomass, 238 

although forming an intermediate soft material. Montoya et al. (2017) [91] confirmed the 239 

presence of molten liquid intermediates formed from cellulose, xylan and lignin and 240 

showed that the presence of minerals prevents the complete liquefaction of the xylan, 241 

therefore contributing to the preservation of the general shape and structure of the solid 242 

material during pyrolysis. 243 

Therefore, BC can be produced from a wide range of lignocellulosic materials, containing 244 

cellulose, hemicellulose (xylan), lignin, small quantities of other organic compounds 245 

(phenols, phytosterols and fats) and inorganics (P, N, S, Si, alkali and alkaline earth 246 

metals and traces of other minerals). Such materials include wood, agricultural and forest 247 
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residues, food waste, sugars, industrial organics, sewage sludge and manure. BC can be 248 

mesoporous or microporous depending on the operating conditions employed for its 249 

production and on the feedstock. 250 

3.2. Thermochemical production 251 

Recent reviews illustrated the different technologies and processes used experimentally 252 

and industrially to produce BC [17,92]. These include torrefaction, pyrolysis, 253 

gasification, combustion and hydrothermal carbonization [93]. Scale and potential 254 

mobility are important considerations in relation to the feedstock supply, logistics, 255 

seasonality, further refining, of products quantities, characteristics and value, and 256 

potential markets [17,60].  257 

Torrefaction involves biomass treatment at atmospheric pressure and within a 258 

temperature range of 200–300 °C, without oxygen or with limited oxygen supplies [94]. 259 

As discussed earlier, partial depolymerization and liquefaction of the biomass 260 

components take place reducing the biomass tenacity and improving grindability. 261 

Torrefaction produces char with less moisture, higher energy density, lower weight, lower 262 

O/C and H/C ratio, increased hydrophobic nature and resistance to biological degradation 263 

with respect to the original feedstock. Typical yields of torrefied biomass range between 264 

50 and 80 % [95].  265 

Gasification is a thermochemical process carried out at temperatures higher than 750 °C 266 

in the presence of a gasifying agent (air, oxygen, or steam) at atmospheric or at high 267 

pressures. Under these conditions, biochar yields are not sufficiently significant to 268 

consider gasification an appropriate BC production process. Similarly, combustion is not 269 

a suitable BC production process, since, under good combustion conditions, BC yield 270 

should be negligible. 271 
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The various modes of pyrolysis include slow, intermediate, fast, flash, and ultra-pyrolysis, 272 

carried out under vacuum, atmospheric pressure or under pressure [65,69]. As a result of 273 

the balance between primary, secondary cracking and recombination reactions, bio-oil 274 

yields are typically maximized (up to 70 %) at intermediate temperatures (450-550 °C), 275 

faster heating rates (100-500 °C/s) and short vapor residence times (< 1~2 s), which are 276 

characteristic of fast and flash pyrolysis. Under these conditions, BC yields are typically 277 

of the order of 15~20 %. On the other hand, higher BC yields (25~40 %) are achieved at 278 

moderate temperatures (300-450 °C), slower heating rates (~ 1 °C/s) and longer vapor 279 

residence times (> 5~10 s), representative of slow or intermediate pyrolysis, when bio-oil 280 

yields vary between 40 and 50 % with the balance being gas. 281 

Hydrothermal carbonization (HTC) is performed on wet biomass (moisture > 10 %) as 282 

feedstock, making the process highly energy-intensive [96]. HTC happens under water in 283 

a sealed confined system and heated at the temperature range of 175–300 °C for up to 16 284 

h under saturated pressure under subcritical conditions producing tar-free BC (hydrochar) 285 

with large number of functional groups [97–99]. Hydrochars are usually obtained at 286 

yields of 20-25 % [96], and they contain mainly aliphatic compounds and more oxygen 287 

functional groups and higher cation exchange capacity than conventional BC. On the 288 

other hand, they have lower surface area, microporosity and carbon stability [96,100]. 289 

Among the various thermal technologies, pyrolysis has been the most investigated 290 

technique and it is considered the best technology for the production of BC [101] from 291 

relatively dry feedstock (moisture content below 10 %). However, also HTC is gaining 292 

interest to produce hydrochar, particularly from wet biomass [96]. In a comparison 293 

between the chars, it should be noticed that BC yields are higher, as well as porous 294 

structure and aromatics and ash contents, while hydrochar exhibits a non-porous 295 
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structure, lower fixed and total carbon contents and higher amounts of alkyl functional 296 

groups [96]. 297 

3.3. Activation 298 

BC with different properties can be produced from a wide range of feedstock and by 299 

adjusting processing conditions. Further modification of BC chemical and physical 300 

properties can be achieved through a process defined “activation”, aimed at increasing 301 

BC porosity and modifying its pore size distribution (Figure 3), as well as to some extent 302 

surface chemistry. Activation can be carried out in a number of ways, depending on type 303 

of activation agents (e.g. physical and chemical activation) or mode of operation into 304 

single-stage or multi-stage activation. 305 

Chemical activation utilizes chemical agents, e.g., H3PO4, HNO3, KOH, NaOH, H2SO4, 306 

and ZnCl2 [102,103]. It typically involves two steps; in the first the feedstock is 307 

impregnated with a selected chemical agent, and then thermally treated in the second step. 308 

Another option is the activation of already produced BC by soaking it in a chemical agent, 309 

followed by a thermal treatment. Depending on the agent selected and thermal treatment 310 

conditions used, different degrees of activation can be achieved. The activated BC needs 311 

to be thoroughly washed with deionized water to neutralize its pH and to remove any 312 

remaining chemicals [104], and this procedure can contribute to a negative environmental 313 

impact of the technology. Oxidative activation that uses acidic or alkaline agents is among 314 

the most common activation methods. Besides enhancing porosity and surface area, it 315 

also creates oxygen-containing functional groups on the surface of BC (e.g. carboxyl, 316 

hydroxyl, lactone, phenol, carbonyl, and peroxide groups). These functional groups play 317 

an essential role in different applications of BC, such as for contaminant removal or 318 

nutrient sorption. 319 



17 
 

Physical activation does not utilize chemicals, thus avoiding some of the negative 320 

environmental impacts that can be associated with chemical activation. Instead, BC is 321 

exposed to physical oxidizing agents, such as steam, CO2, ozone or air/O2, typically at 322 

temperatures above 700 °C. These gaseous agents penetrate the internal structure of BC 323 

gasifying the carbon atoms, which results in opening and widening of pores [105]. 324 

Similarly to chemical activation, physical activation not only enhances BC porosity, but 325 

also modifies its surface functional groups, increasing the abundance of oxygen 326 

functional groups [105]. 327 

In conclusion, both chemical and physical agents can be used effectively to activate BC 328 

and obtain high porosity, surface areas over 1000 m2/g, and modified surface functional 329 

groups, tuned to specific applications. The key challenges of BC activation are without 330 

any doubt related to their potential negative environmental impacts, mainly for chemical 331 

activations, and high-energy intensity need. 332 

3.4. Physico-chemical characteristics  333 

The variability of BC physico-chemical properties resulting from the proper selection of 334 

feedstock, pyrolysis and activation can be adapted to a wide range of applications.  335 

Specific surface area (SSA), expressed as m2g-1, is the ratio between the total surface area 336 

and the total particle mass of BC [106], commonly determined by Brunauer–Emmett–337 

Teller (BET) analysis. The reported SSA values of BC can vary significantly, in the range 338 

100 - 102 m2g-1 [107,108] depending on pyrolysis temperature and feedstock, and up to 339 

over 103 m2g-1 after activation. SSA is a key parameter enhancing the adsorption capacity 340 

of BC, even if the chemical composition of its surface is determinant in the interactions 341 

with other species [109]. SSA is related to BC pore size distribution [18].  342 
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Porosity can be described by the pore volume (m3g-1) and by the pore size distribution, 343 

including micro-, meso-, and macro-pores (respectively < 2nm, 2-50 nm, >50 nm) [110], 344 

based on their internal diameters. The relative abundance of these pores produces 345 

different BC structures (Figure 3), since micro-pores have the major contribute to BC 346 

surface area, micro- and meso-pores are essential for its adsorption capacity, while macro-347 

pores can provide an appropriate habitat for microorganisms [18,111]. Yin et al. (2017) 348 

[112] stated that within a proper range, a high temperature results in a large surface area 349 

and pore formations. Trigo et al. (2016) [113] found that SSA increased between 350°C 350 

and 700 °C for different hardwood biochars, while Chen et al. (2014) [114] revealed an 351 

enhanced porous structure of BC from sewer sludge varying the temperature from 500 °C 352 

to 900 °C. 353 

Specifically considering the effect of the feedstock on BC characteristics [101], yields 354 

and aromatic functional groups are much higher from lignin (48.8 %) than from 355 

hemicellulose (21.1 %), while no differences were found in the elemental composition of 356 

resulting BCs. High lignin and mineral content in the feedstock result in higher yields of 357 

BC [115,116]. Woody and grassy biomasses generate a more carbon-rich BC when 358 

compared to sewage sludge and manure [32,117,118]. Specifically considering the effect 359 

of pyrolysis process on BC characteristics [119], increasing pyrolysis temperature 360 

decreased concentrations of aliphatic carbons, oxygenated functional groups, nitrogen, 361 

oxygen and hydrogen. However, carbon mass fraction, micropore volume, ash content, 362 

fixed carbon and carbon stability increase with higher pyrolysis temperatures. 363 

 364 
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Figure 3. SEM micrographs of (A) raw biomass (eucalyptus) and of derived (B) biochar and (C) physically activated biochar (Courtesy of 365 

the authors. The samples were produced at ICFAR and analysed at Politecnico di Torino). 366 

  367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 
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BC composition is mainly of C, H, O, N, and S, along with mineral trace components, 377 

such as K, Ca and Mg, varying according to pyrolysis conditions and feedstock [110]. 378 

The mineral content can be enhanced by increasing the temperature of pyrolysis [107]. 379 

The cationic exchange capacity (CEC) of BC can be defined as its ability of absorbing 380 

and attracting cations (nutrients and heavy metals) decreasing with higher pyrolysis 381 

temperature [18]. A high CEC value is due to a negative surface charge of BC. The 382 

presence of surface functional groups such as hydroxyl, carboxylic, and amino, expressed 383 

respectively as atomic ratio of H/C, O/C, and N/C (generally studied by Fourier transform 384 

infrared (FTIR) spectroscopy), mostly depends on the feedstock and it is reduced with a 385 

higher temperature of pyrolysis [107]. Further, the H/C ratio is considered as a measure 386 

of the degree of aromatization of BC and the O/C ratio as an indication of more 387 

oxygenated functional groups, contributing to high CEC values and hydrophilicity of BC 388 

[120,121]. An increase in pyrolysis temperature has been reported to negatively affect the 389 

amount of acidic functional groups and the CEC [112,122].  390 

pH values are generally basic and increase as the pyrolysis temperature grows, due to the 391 

volatilization of acidic functional groups and to the higher ash content [18]. Moreover, 392 

BC can present redox characteristics, being able to donate and accept electrons, and these 393 

tendencies are quantified respectively by the electron donating and accepting capacities 394 

[110]. Phenolic groups may be the electron donating species, while quinones and 395 

polycondensed aromatic structures the electron accepting compounds [110,123]. In 396 

addition, the electrical conductivity, expressed as S m-1, decrease as consequence of the 397 

increase of the pyrolysis temperature [17]. 398 

A full characterization of BC involves several analytical methods [124]. Scanning 399 

electron microscopy (SEM) is employed to investigate the superficial structure of BC, as 400 
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well as its chemical composition if coupled with energy dispersive X-ray spectroscopy 401 

(SEM-EDX); transmission electron microscopy (TEM) allows to observe BC bulk 402 

structure; X-ray diffraction (XRD) analysis detects the crystalline phases; nuclear 403 

magnetic resonance (NMR) spectroscopy investigates BC composition, specifically the 404 

aromatic structure; X-ray photoelectron spectroscopy (XPS) quantitatively analyses the 405 

superficial composition.  406 

4. Application of biochar as additive in anaerobic digestion 407 

4.1. Buffer capacity and alkalinity 408 

The volatile fatty acids (VFAs) produced as intermediates during AD tend to lower the 409 

pH [125]. This effect is generally counteracted by syntrophic acetogens and methanogens 410 

microorganisms, which convert VFAs to methane and carbon dioxide [126]. However, in 411 

case of high organic loads of easily biodegradable wastes (i.e. when the VFAs production 412 

rate exceeds the consumption rate), the accumulation of VFAs can occur, resulting in pH 413 

drop and even in the failure of AD [126,127]. The buffer capacity in a digestor is linked 414 

to the ability to neutralize VFAs, and it is considered a rate-limiting step in AD processes 415 

[38,39,128]. The buffer capacity is determined by the alkalinity of the AD system, mainly 416 

in the form of carbon dioxide and bicarbonate [6,125]. So it is technologically challenging 417 

to build a bioreactor aimed at digesting easily biodegradable feedstock with high pH 418 

buffer capacity [16]. Even if several methods have been proposed (Table 2) so far, the 419 

most diffused solution to improve buffer capacity implemented both at lab [129] and full 420 

scale [130] is co-digestion. In particular, manure or sewage sludge showed high buffer 421 

capacity, mainly due to the quite high ammonia content, which is able to counteract the 422 
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pH drop due to VFAs production. Therefore, manure or sewage sludge are often co-423 

digested with OFMSW and/or agricultural waste biomass. 424 

 425 

Table 2. Advantages and disadvantages of conventional methods for creating buffering 426 

capacity in bioreactors 427 

          Methods           Advantages                 Disadvantages 

Alkaline pretreatment 

[131] 

Cellulose more available to the 

enzymes 
Expensive and considered 

as the technological 

bottleneck 
Commercial alkaline 

materials (e.g. NaOH and 

CaCO3) [132,133] 

Easy pH adjustment  pH continually should be 

analyzed  
Temporary 
Lower biogas output at 

higher organic loads 
Co-digestion [16] Increasing methane yield  

Low cost and green 
Hard to achieve an 

appropriate mixture of 

feedstocks to limit VFAs 

production 
Geopolymer (Composite 

and monolith) [132,133] 

Controllable alkali leaching  
Prevent the need for continuous 

pH adjustment 

25 g L
-1

 costs around 0.10 

$ 

 428 

However, it still remains a great challenge to develop simple, permanent and cost-429 

effective methods to improve buffer capacity of AD systems. Nowadays, BC is 430 

considered as an attractive alternative to the aforementioned methods for two important 431 

reasons. Firstly, it can be produced via cost-effective and environmentally friendly 432 

approaches. Secondly, its physical and chemical properties can be matched with the 433 

operational conditions [19,40,41].  434 

BC’s buffer capacity mainly depends on two factors: 435 

I. Functional groups: Rapid accumulation of VFAs during AD process results in a 436 

medium with low pH value in which some functional groups of BC like amine 437 

adsorbs H+ and accepts electron. This phenomenon could mitigate the sudden pH 438 

drop. 439 
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II. Inorganic materials: Ash portion of biochar contains inorganic materials such as Ca, 440 

K, Mg, Na, Al, Fe, Si and S. Among them, alkali and alkaline earth metals (AAEMs) 441 

are responsible for alkalinity of biochar via reaction 1 (Ca and CxHxCOOH are 442 

selected as representative of AAEMs and VFAs, respectively) [16]: 443 

CaCO3 + 2CxHxCOOH à [CxHxCOO]2Ca + H2O + CO2   (1) 444 

Table 3 shows the literature data related to BC buffering capacity and its effects on bio-445 

methane production, showing total alkalinity, pH values and the increase in CH4 446 

production (%), ranging from 8 % up to about 26 %. Some studies suggest that the 447 

alkalinity of BC due to AAEMs in ash fraction could effectively contribute to the 448 

buffering capacity of AD against VFAs inhibition. Jang et al. (2018) [27] investigated the 449 

effects of BC from dairy manure on AD of dry dairy manure at 20°C, 35°C, and 55°C. In 450 

each case they observed a lower total VFAs concentration and increased methane 451 

production. They suggested the role of high nutrients (9.1% Ca, 3.6% Mg, 1.3% N, 0.14% 452 

P) and alkalinity potential of BC in enhancing methane production. Wang et al. (2017) 453 

[39] investigated the role of BC from vermicompost on the buffering capacity of AD of 454 

high organic loads of kitchen waste and chicken manure. The authors proved the high 455 

buffer capacity of vermicompost BC to different short-chain VFAs (700-3800 mg L-1), 456 

probably due to the presence of AAEMs and superficial functional groups. Linville et al. 457 

(2017) [24] studied the effects of BC from walnut shell during the AD of FW in 458 

mesophilic and thermophilic conditions. They observed that BC improved process 459 

stability by enhancing the total alkalinity from 2800 to 4800-6800 mg L-1 CaCO3 and pH 460 

(initial pH >8) in BC amended digesters. Wei et al. (2020) [134] found enhanced methane 461 

production and solids removal by adding BC from corn stover (rich of alkaline earth 462 

metals) to AD of primary sludge. The authors observed higher total alkalinity (3500-4700 463 



24 
 

mg L-1 CaCO3) and pH in BC amended reactors, suggesting that BC provided a strong 464 

buffering capacity. Ambaye et al. (2020) [135] investigated the role of BC from sewage 465 

sludge on the AD of fruit waste. They observed that the BC addition enhanced methane 466 

production and VFAs degradation. Further, the deficiency of some nutrients or trace 467 

elements in the substrate may cause an increase of VFAs inducing inhibition of microbial 468 

activity during AD [33,135]. Extra doses of trace metals may be required for an effective 469 

activity of methanogens without VFAs accumulation [136]. Thereby, it could be 470 

speculated that BC could provide adequate concentrations of trace metals for the stability 471 

of the AD system [135].  472 

In summary, BC addition can counteract VFAs inhibition in case of high loads of easy 473 

degradable wastes such as FW, OFMSW, primary sludge. The alkaline nature of BC 474 

determining its pH buffering capacity may contribute to prevent VFAs inhibition. The 475 

ash fraction of BC contains AAEMs possibly contributing to its acid-buffering capacity 476 

and important trace elements for microorganisms. However, further investigations are 477 

required to confirm the effectiveness of these mechanisms and to identify the optimal 478 

dose of BC related to these properties. Higher doses can be toxic for AD [24,134], perhaps 479 

due to inhibitory concentrations of alkali metals [137]. Besides, other mechanisms could 480 

be responsible of BC role in alleviating VFAs inhibition. Porous BC could provide 481 

support for biofilm growth and protection to selectively enriched functional microbes 482 

closely attached to it under acid stress [48]. Secondly, BC could promote the activity of 483 

microbial partners enhancing the syntrophic VFAs degradation and methane production 484 

under high organic loads [38,138]. The latter microbial mechanisms will be fully adressed 485 

in section 4.3.  486 

 487 
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Table 3. Results of pH drop and CH4 production/yield of AD processes in the presence 488 

of various types of BCs 489 
Pyrolysis Operational condition AD Operational conditions Results of buffering effect Ref 

Temp 
(Co) 

Time 
(min) 

Reactor Feedstock Temp 
(Co) 

HRTor 
duration 
(d) 

Substrate inoculum Total alkalinity 
(g L-1 CaCO3) 

pH   Increase 
in CH4 

(%) 

 

        Control BC Control BC   
350 180 Muffle 

furnace 
dairy 
manure 

20 35 dairy 
manure 

Anaerobic 
sludge 

1.8-4.8 5.3-
7.3 

7.18 7.71 26.47a  [27] 

350 180 Muffle 
furnace 

dairy 
manure 

35 35 dairy 
manure 

Anaerobic 
sludge 

1.8-4.8 5.3-
7.3 

7.09 7.68 24.90a  [27] 

350 180 Muffle 
furnace 

dairy 
manure 

55 35 dairy 
manure 

Anaerobic 
sludge 

1.8-4.8 5.3-
7.3 

7.12 7.55 24.69a  [27] 

500 120 Tube 
furnace 

vermi- 
compost 

35 50 chicken 
manure 

Anaerobic 
sludge 

6.0 7.3 7.0-7.1 7.8-
8.0 

N.P. [39] 

500 120 Tube 
furnace 

vermi- 
compost 

35 50 kitchen 
waste 

Anaerobic 
sludge 

0.0 2.3 3.5-3.7 4.7-
4.9 

N.P. [39] 

600 120 Kiln corn 
stover 

55 15 primary 
sludge 

Anaerobic 
sludge 

2.8 3.5-
4.7 

7.2 7.6-
8.0 

8.6-
17.8a 

[134] 

350 15  sewage 
sludge 
digestate 

37  fruit 
waste 

Anerobic 
sludge 

N.P. N.P. 4.5-5 7-8 13-27a [135] 

550 15  sewage 
sludge 
digestate 

37  fruit 
waste 

Anerobic 
sludge 

N.P. N.P. 4.5-5.5 7-
8.6 

12-22a [135] 

500 120 Slow 
pyrolysis 

rice straw 35 25 Municipal 
solid 
waste 

Anaerobic 
sludge 

  7.8 7.5 11.69a  
[139] 

a) CH4 Yield; N.P: Not provided. 
 490 
 491 

4.2. Adsorption of inhibitors 492 

Inhibition is often defined as the predominant cause of reduction of bio-methane yields 493 

and instability of AD processes. A substance can be identified as “inhibitor” when it 494 

determines an adverse shift in the microbial population or arrests of the bacterial growth 495 

[137]. There are direct inhibitors, such as metals (Cu2+, Zn2+, Cr3+, Cd, Ni, Pb4+, Hg2+, 496 

Na+, K+, Mg2+, Ca2+, Al3+), organic compounds (chlorophenols, halogenated aliphatics, 497 

pesticides, antibiotics, lignocellulose hydrolysate); and indirect inhibitors, such as VFAs, 498 

long-chain fatty acids, hydrogen, ammonium and sulphides [19]. Among the inhibitors, 499 

ammonia (NH3 or free ammonia nitrogen, FAN) and ammonium (NH4+) concentrations 500 

are considered crucial (ammonia and ammonium are together considered as total 501 

ammonia nitrogen, TAN). The optimal control of ammonia and ammonium may ensure 502 

stable bacterial growth and significantly contribute to the buffer capacity of the AD 503 
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system. However, excess FAN/TAN concentrations are major causes of AD failure 504 

[140,141]. Chen et al. (2008)  [137] reported a wide range of TAN concentrations 505 

(between 1.7 and 14 g L-1) causing a 50 % reduction in methane production. FAN 506 

concentration is considered the main cause of inhibitions for methanogens [140,142] and 507 

it was reported to have a toxic effect to anaerobes ranging from 150 to 1200 mg L-1 508 

[143,144]. Various mitigation strategies have been investigated to effectively counteract 509 

TAN/FAN inhibitory effects on AD. Some were based on the removal and 510 

immobilization of the inhibitor, as: dilution, co-digestion and microbial adaptation [145–511 

147]; struvite precipitation [148]; use of a microbial desalinisation cell [149]; ammonia 512 

stripping [150]. An alternative approach is based on the use of adsorbents, inorganic as 513 

zeolites [142] and organic as GAC [143] and BC [41].  514 

Based on several studies focusing on BC impacts on AD and ammonia inhibition (Table 515 

4), it seems that BC could effectively mitigate ammonia inhibition, resulting in reduced 516 

lag phase and enhanced methane production respect to control reactors. Some authors 517 

[33,34,151] promoted BC use in AD of sewer sludge. Mumme et al. (2014) [41] revealed 518 

that BC from pyrolysis of paper sludge and wheat husks could limit mild ammonia 519 

inhibition (2.1 g TAN kg-1). Su et al. (2019) [43] stated that the addition of BC may 520 

alleviate inhibition in case of up to 1500 mg L-1 ammonia-N in food waste AD [152]. Lü 521 

et al. (2016) [44] revealed that BC can support AD under high ammonium stress (up to 7 522 

g-N L-1). The above-mentioned studies suggest a positive effect of BC towards ammonia 523 

inhibition, however, there isn’t full agreement on the mitigation mechanisms 524 

hypothesized: cation exchange capacity [34,151]; chemical and/or physical adsorption 525 

capacity and surface functional groups [33,34,151]; promotion of direct interspecies 526 

electron transfer (DIET) [44,153]; immobilization of microorganisms [43,44]. 527 
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Therefore, BC may contribute to ammonia mitigation by direct (cation exchange capacity, 528 

adsorption, surface functionality) and/or indirect factors (DIET and immobilization of 529 

microorganisms), depending on the characteristics of both BC and digested substrate, 530 

along with the operating conditions of the AD process (e.g. pH and temperature). 531 

Focusing on direct factors, a better understanding of the interactions between BC and 532 

FAN/TAN is a key step to identify its physico-chemical properties able to maximise the 533 

ammonia removal. The mechanisms for ammonia adsorption on BC from wastewater and 534 

digestate have been studied in literature (Table 5), resulting in promising values of 535 

ammonium adsorption capacity (up to hundreds of mg NH4-N g-1 BC). Yin et al. (2017) 536 

[112] reported that physical sorption could be supported by high SSA and large porous 537 

structure. However, various studies suggested that porosity and SSA may not be the 538 

predominant factors in ammonium adsorption [154,155]. For instance, ion exchange may 539 

occur between acidic functional groups on BC surface and ammonium [112,156,157], 540 

and CEC could have a major role in enhancing the ammonium adsorption capacity of BC 541 

[157]. Zhang et al. (2014) [158] found that BC derived from pyrolysis of corn cob at 400 542 

°C exhibited higher ammonium adsorption capacity than those produced at 600 °C due to 543 

the presence of functional groups with higher acidity. Thus, the definition of the proper 544 

pyrolysis temperature and the other control parameters is crucial for enhancing the 545 

adsorption capacity of BC. 546 

In conclusion, various studies reported the potential of BC in alleviating ammonia 547 

inhibition (Tables 4 and 5) through different mechanisms. The direct adsorption of 548 

ammonia on BC may contribute to the mitigation of ammonia inhibition. However, 549 

further studies are required to clarify the effective role of direct mechanisms in complex 550 

AD systems in presence of other phenomena, i.e. the close bond between ammonia and 551 
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VFAs inhibition. In some cases the direct removal of ammonium may not be the main 552 

contribution to the mitigation of ammonia inhibition by BC [44,82,153]. Instead, other 553 

indirect mechanisms (immobilization and faster acclimation of biomass, DIET) have been 554 

suggested in literature and will be discussed in the next sections.   555 

 556 
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Table 4. A summary of selected works focusing on ammonia/ammonium inhibition mitigation by BC in AD processes (FAN: free ammonia 557 

nitrogen; TAN: total ammonia nitrogen). 558 

Biochar  Anaerobic digestion Reference  
Feedstoc

k 
Process: 

temperat

ure [°C] 

Dose of 

biochar 
Substrate Inoculum Inoculum 

to 

substrate 

ratio (VS 

basis) 

Temperatur

e  
[°C] 

pH Critical 

TAN conc. 

or as 

specified  
[mg L

-1
] 

Critical 

FAN 

conc. 

or as 

specifi

ed  
[mg L

-

1
] 

Ammonia 

removal by 

biochar 

Results and comments 
 

Fruitwo

od 
Pyrolysi

s: 800-

900°C 

10 g L
-1 Glucose 

solution  
(6 g L

-1
) 

Granular 

sludge from 

AD of 

paper mill 

wastewater 

1:6 35 7 260 - 
 

• ↑ Specified CH4 prod. rates increased by 

18.6%, 10.1% and 23.5% respectively  
• ↓ Lag phase by 30.4%, 12.7% and 23.8% 

respectively 

[44] 
3500 - 

 

7000 - 
 

1:2 (v/v) 

mix: 

- paper 

sludge 

- wheat 

husks  

Pyrolysi

s: 500°C 
6.67% w/w 

(2 g BC per 

30 g 

inoculum) 

- Meso. AD  
(TS = 

4.05%) 
+ 

Ammoniu

m 

carbonate 

Only 30 g 

of 

inoculum 

42 7.66 1626 - 2.4 mg TAN g
-1

 

BC 
• No clear effect on biogas production was 

observed 
[41] 

7.73 2126 - 2.0 mg TAN g
-1

 

BC 
7.93 3126 - 4.2 mg TAN g

-1
 

BC 
7.84 4126 - 4.5 mg TAN g

-1
 

BC 
8.07 6626 - 6.8 mg TAN g

-1
 

BC 
Macada

mia nut 

shells 

Pyrolysi

s: 350°C 
33.3 g L

-1 Food waste 

(+ water  

+ NaHCO3) 

AD from 

UASB 
(SS =34 g 

L

-

1

) 
 

- Room 

temperatu

re 

 

1500 - 
 

• ↑ COD removal from 78% without BC to 

90% with BC 
[43] 

Corn 

stover 
Gasificat

ion 
1.82, 2.55, 

3.06, 3.64 g 

BC g
-1

 TS 

sludge 

WWTP 

sludge 
Thermo 

WWTP AD 
2:1 55 7.5 1100 (total 

N) 
600 

(NH3-

N) 

 

• CH4 yield, biomethanation rate constant 

and ↑ max CH4 prod. rate up to 7.0%, 8.1% 

and 27.6% respectively  
• ↑ NH3-N concentration by 41.5% after AD 

without BC, while by 0.2-18.1% with BC 

[151] 

Pine 

pellets 
Gasificat

ion 
2.49, 4.97 g 

BC g
-1

 TS 

sludge 

WWTP 

primary 

sludge 
TS = 1.25% 

(inoc 

+subs) 
 

Meso. and 

thermo. 

WWTP AD 
TS = 1.25% 

(inoc 

+subs) 
 

2:1 37, 55 7.2-

7.3 
750 (total 

N) 
400-

450 

(NH3-

N) 

 • ↑ CH4 yield by 3.9-9.5%  
• ↑ NH3-N concentration by 67.0% after AD 

without BC, while by -7.2 to 4.7% with BC 
 

[33] 

White 

oak 

pellets 

2.20, 4.40 g 

BC g
-1

 TS 

sludge 

• ↑ CH4 yield by 5.7-9.6%  
• ↑ NH3-N concentration by 67.0% after AD 

without BC, while by -7.2 to 4.7% with BC 
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Corn 

stover 
Gasificat

ion: 

850°C 

0.25, 0.375, 

0.5, 1.0 g d
-1

  
Primary 

sludge + 

WAS 
(TS = 

7.01%) 

WWTP AD 

from 

TPAD: 
1 stage (TS 

= 6.14%) 
2 stage (TS 

= 3.77%) 

2:1 55 7.4 

(sta

ge 

1); 
5.3-

6.0 

(sta

ge 

II) 

- - 6.2-13.2% • ↑ CH4 content by 13.7-25.3%  
• ↑ CH4 prod. rate by 5.5-36.9% 
 

[34] 

Pine - - 3.6-11.2% • ↑ CH4 content by 0.7-9.1%  
• ↑ CH4 prod. rate by -2.3-16.6% 
 

Wheat 

bran 

pellets 
 

Pyrolysi

s: 800°C 
25 g L

-1 Food waste 

fermentate 
Anaerobic 

methanoge

nic culture 

(from WAS 

AD) 

- 20 7.5 
 

200–

250 

(NH3-

N) 

 • After acclimation: ↑ rate of VFAs 

degradation and ↓ lag-phase;  
• No adsorption of ammonia by BC 

[45] 

Coppice

d 

woodlan

ds 
 

Pyrolysi

s: 500°C 

 

Orchard 

pruning 
 

Pyrolysi

s: 500°C 

 

Wheat 

straw 
Pyrolysi

s: 350, 

450, 

550°C 

5% w/w 

(chicken 

manure) 

Chicken 

manure  
(+ water) 

Chicken 

manure 

meso. AD  

Inoculum: 

20% of 

WV of 

AD 

reactor 

35 Initi

al: 

6.7-

7.6 

3450-3540 
(average) 

472-

600 
(max) 

 • ↑ Cum. CH4 yield 
• ↓ TAN compared to control 
 

[82] 

Fruit 

wood 
Pyrolysi

s: 350, 

450, 

550°C 

     Initi

al: 

6.7-

7.0 

3440-3650 
(average) 

421-

634 
(max) 

up to 25% TAN  • ↑ Cum. CH4 yield up to 69% 
• ↓ TAN compared to control 
• ↓ FAN up to 58% compared to control 
 

 

Air-

dried 

chicken 

manure 

Pyrolysi

s: 350, 

450, 

550°C 

     Initi

al: 

6.9-

7.3 

3880-3960 
(average) 

496-

701 
(max) 

 • ↑ Cum. CH4 yield 
• ↓ TAN compared to control 

 

 559 

  560 
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Table 5. Ammonium adsorption capacity of different BCs (NA: not available) 561 

Biochar production Biochar properties Adsorption Reference 

Feedstock Pyrolysis temperature 

[°C] 

BET-

SA 

[m
2
g
-1

] 

pH CEC 

[cmolc kg
-1

] 

Total pore 

volume 

[mL g
-1

] 

Source of NH4+-N Initial 

NH4+-N 

[mg L
-1

] 

NH4+ adsorption 

capacity 

[mg NH4+-N g
-1

 biochar] 

Oak wood 400-450 NA 9.9 59.4 ± 8.1 NA Ammonium solution 1000 100.9 ± 3.4 

[154] 

Oak wood - NA 9.7 105.8 ± 

12.1 

NA  - 129.4 ± 34.8 

Greenhouse waste - NA 10.6 109.5 ± 

21.8 

NA - - 118.2 ± 26.9 

Municipal waste - NA 9.5 65.7 ± 16.2 NA - - 137.3 ± 0.6 

Presscake from 

AD 

- NA 10.3 51.0 ± 5.5 NA - - 105.8 ± 11.5 

Oak wood 600-650 NA 10.3 76.6 ± 0.7 NA - - 114.4 ± 3.4 

Oak wood - NA 8.6 65.2 ± 20.2 NA - - 123.5 ± 28.7 

Greenhouse waste - NA 11.0 146.2 ± 

32.3 

NA - - 99.3 ± 28.5 

Municipal waste - NA 10.2 67.9 ± 12.5 NA - - 128.3 ± 6.7 

Presscake from 

AD 

- NA 10.1 52.6 ± 11.5 NA - - 136.2 ± 18.1 

Hardwood 600 147.0 9.80 NA 0.176 AD slurry 500–580 114.2 

[159] Corncobs - 23.0 8.92 NA 0.098 - - 108.9 

Mixed sawdust - 6.80 8.60 NA 0.038 - - 24.7 
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Mixed wood 600 273.623 9.80 NA 0.176 Swine manure AD slurry 1400 mg N L
-1

 44.64 ± 0.602 

[155] Rice husk / 10.995 7.80 NA 0.038 - - 39.8 ± 0.54 

         

1:2 (v/v) mix: 

- paper sludge 

- wheat husks 

500 NA NA NA NA During anaerobic 

digestion 

1626 mg TAN kg
-

1
 

2.4 mg TAN g
-1

 

[41] 

  - - - - - 2126 mg TAN kg
-

1
 

2.0 mg TAN g
-1

 

  - - - - - 3126 mg TAN kg
-

1
 

4.2 mg TAN g
-1

 

  - - - - - 4126 mg TAN kg
-

1
 

4.5 mg TAN g
-1

 

  - - - - - 6626 mg TAN kg
-

1
 

6.8 mg TAN g
-1

 

Fruitwood 800-900 NA NA NA NA NH4Cl solution NA 2-3 mg N g
-1

 [44] 

562 
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4.3. Effects on microbial populations 563 

Many authors reported the positive effects of BC on microbial populations in AD (Table 564 

6). In semi-continuous and continuous AD experiments, BC addition improved methane 565 

production [34] keeping it stable even with rising OLRs [29,49] and resulted in higher 566 

COD removal rates [43,50,51].  567 

Although there is a good agreement among the studies in terms of enhancement of AD 568 

process performances (11-30 % reduction of lag phases and 11-50 % increments of 569 

methane production rates) (Table 6), there is not a common hypothesis to explain BC 570 

influence on microbial populations, and different possible mechanisms are proposed as 571 

follows. 572 

4.3.1. Microbial attachment and acclimation 573 

Immobilization and acclimation of balanced microbial consortia on various support media 574 

are commonly adopted for counteracting various drawbacks of AD processes [160], 575 

thanks to the intensification of syntrophic conversion relationships, along with a major 576 

resistance to inhibition effects [161]. Wang et al. (2018) [50] found that BC acted as an 577 

inert core for microbial aggregation, resulting in a higher microbial growth rate and 578 

accelerating sludge granulation. Cooney et al. 2016 [53] investigated the possibility of 579 

accelerating biofilm formation by adding BC during the start-up of a packed bed 580 

anaerobic digester at pilot scale. In a relatively short time, the AD system reached stable 581 

and good performances, suggesting the rapid development of biofilms rich in active 582 

methanogens. 583 

High SSA, proper porosity structure and particle size, superficial hydrophobicity seemed 584 

to be important properties favouring microbial immobilization [12,52]. Further, 585 

conductive materials may act as ideal support media due to their surface hydrophobicity 586 
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and porous structure [54,55]. In particular, macropores can help the attachments of 587 

bacterial cells [19,162,163]. Lü et al. (2016) [44] explored the influence of different 588 

particle sizes of BC (2-5 mm, 0.5-1 mm, 75-150 μm) on the microbial distribution during 589 

the AD of glucose under ammonium stress. They stated that bacteria could access more 590 

easily fine particles than coarse particles. As a consequence, the attachment and 591 

colonization of microbial populations on BC can limit the risks of wash-out, accelerate 592 

the acclimation of microbes during substrate-induced inhibition, reduce the distance 593 

between syntrophic bacteria and methanogens, facilitate interspecies electron transfer and 594 

exchanges of VFAs or other metabolites [16,36,137]. Li et al. (2018) [46] found that 595 

methanogens survived under acidic stress in presence of BC during co-digestion of FW 596 

and WAS. Further, the immobilization of microbes could significantly attenuate ammonia 597 

inhibition [43,44]. The colonization of porous materials by microbes can alter the 598 

dominant species, making them more resistant and more rapidly acclimatized to substrate-599 

induced inhibition [29,36,164]. Magnetic BC favoured the enrichment of acido/acetogens 600 

and methanogens absorbed on its surface shortening the microbial contact distance, thus 601 

VFAs produced by acido/acetogen bacteria could be more quickly transported to 602 

methanogens than in control digesters during AD of OFMSW in batch tests [16,139]. The 603 

distance of less than 1 μm has been reported to be essential for the oxidation of VFAs and 604 

hydrogen production [19,165]. 605 

4.3.2. Selective colonization of functional microbes 606 

The effect of BC addition on microbial communities was investigated with the aim of 607 

identifying the most abundant bacterial and archaeal populations and, indirectly, the main 608 

interspecies interactions (Table 6). In detail, most studies focused on: biofilm formation 609 

[26,48,53]; shifts of microbial populations [28,34,46,47]; selective enrichment of 610 
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microbial -DIET partners [38,44,49,50]; promotion of DIET [38,44–46,49,51,139]. The 611 

relevant anaerobic bacteria and archaea enriched in BC amended digesters are reported 612 

in Table 7, together with BC properties, substrate and inoculum used in AD tests. Many 613 

bacterial species were found in reactors supplemented with BCs, none of them identified 614 

as more recurrent. Among archaeae, most studies identified methanosaeta, 615 

methanosarcina, methanobacterium, and methanolinea species in BC amended reactors. 616 

Different studies [44,48,51] investigated the spatial distribution of bacteria and archaea 617 

by dividing sludge samples into different fractions, from suspended to attached to BC. Lü 618 

et al. (2016) [44] postulated an explanation for the spatial distribution of methanogens 619 

into BC pores by their cell morphology and dimension. The short fibrous form of 620 

Methanosaeta (0.8-7 μm in size) could explain its attachment into internal and external 621 

pores, while the long fibrous form of Methanobacterium (1.2-120 μm in length) could 622 

limit its penetration into BC pores [44,166].  623 

4.3.3. Promotion of syntrophic metabolisms 624 

Many studies (Table 7) suggested that BC addition may improve electron transfer 625 

mechanisms between anaerobic bacteria and archaea closely attached to BC surface. The 626 

overall AD efficiency depends on effective syntrophic interactions between bacteria and 627 

methanogens exchanging electrons to satisfy their energy requirements [56], happening 628 

through various routes: 629 

- Indirect interspecies electron transfer (IIET) via soluble (i.e. hydrogen, formate, 630 

acetate) [167,168] and insoluble (humic substances) [169,170] compounds; 631 

- Direct interspecies electron transfer (DIET) via electrical conductive pili, membrane-632 

bound electron transport proteins, and conductive materials (i.e. magnetite, biochar, 633 

granular activated carbon, carbon cloth) [171–173]. 634 
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In IIET hydrogen and formate operate as electron shuttles between syntrophic-producing 635 

bacteria and consuming-methanogens [56]. Diffusion regulates the transfer of a 636 

metabolite between microorganisms, as defined by Fick’s Law [174]: the shorter the 637 

distance, the higher the flux of metabolites between microbes. Thereby, when cells 638 

aggregate the rate of interspecies hydrogen transfer is enhanced by the moment anaerobic 639 

bacteria and methanogenic archaea form compact structures acting as an organ [174,175]. 640 

However, the diffusion of soluble metabolites is considered a relatively slow mechanism 641 

of energy and information transfer [173] and hydrogen IET is regarded as a bottleneck in 642 

methane production [171]. On the contrary, DIET consists in the formation of an electric 643 

current between electron-donating and electron-acceptor microorganisms without the 644 

mediation of electron shuttles [56]. DIET could be faster and more specific compared to 645 

IIET [173,176]. Park et al. (2018) [171] reported that direct exchange of electrons via 646 

conductive pili was observed in co-cultures between geobacter metalliriducens and 647 

geobacter sulfurreducens [176], methanosaeta harundinacea [177], or methanosarcina 648 

barkeri [178]. Conductive materials such as magnetite [179], GAC [180], and BC [57] 649 

were shown to effectively mediate DIET between syntrophic partners.  650 

Based on changes in the microbial community composition, many studies justified the 651 

enhancement of AD activity by means of the improvement of hydrogen and formate 652 

interspecies transfer mechanisms or, more frequently, by DIET via conductive biochar 653 

(Table 7). These findings are usually based on indirect observations, i.e. the enrichment 654 

of bacterial and archaeal species able to participate to DIET function as potential partners. 655 

Martinez et al. (2018) [47] found an enrichment of homoacetogenic bacteria, as 656 

Clostridium, Eubacterium and Syntrophomonas, and H2 using methanogens through the 657 

analysis of microbial communities in digesting WAS and orange peels with BC, 658 
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suggesting the formation of co-cultures enhancing methane production. Zhao et al. (2016) 659 

[51] observed the selective enrichment on BC of Geobacter and Methanosaeta during 660 

AD of synthetic wastewater with butyrate and propionate in UASB reactors. They 661 

suggested that butyrate and propionate could be degraded via DIET in the presence of a 662 

conductive material, and they found abundance of Syntrophomonas and Smithella, 663 

concluding that the metabolism via interspecies H2 transfer for butyrate and propionate 664 

degradation was probably present. Wang et al. (2018) [50] showed that the microbial 665 

community analysis in a BC amended reactor during AD of synthetic wastewater resulted 666 

in the selective enrichment of potential DIET-partners, as Geobacter and Bacteroidetes, 667 

as well as archaea Methanosaeta and Methanosarcina. They suggested that BC could 668 

enhance DIET among electrogenic microbes and archaea, improving the electron transfer 669 

characteristics of granular sludge, as well as COD removal and methane yield. Wang et 670 

al. (2018) [38] found that the addition of different BC doses increased methane production 671 

rate and shortened the lag phase during mesophilic AD of dewatered WAS and FW. 672 

According to the authors, BC counteracted the pH decrease due to VFAs accumulation 673 

through its buffering capacity, and it seemed to promote DIET. 674 

Aside from physical properties as SSA and porosity, favouring microbial colonization, 675 

other chemical and conductive characteristics of BC may be crucial in the promotion of 676 

electrons transfer. The role of electrical conductivity (EC) of BC in AD has been 677 

investigated in literature[59]. EC of digestate has been reported to increase in presence of 678 

BC  [50,151]. However, the EC of digestate seemed unrelated to the conductivity of BC, 679 

which varies depending on the metabolism and composition of microbial species [56]. 680 

The capability of BC in promoting DIET appeared to be comparable to that of GAC, even 681 

if the EC of BC was roughly 1000 times lower [57,171]. Barua and Dhar (2017) [181] 682 
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reported that multi-species aggregates from anaerobic digesters exhibited conductivity 683 

ranging 0.2-36.7 μS cm-1, suggesting its relation with DIET via conductive pili . Martins 684 

et al. (2018) [56] stated that conductive materials could have a similar role of humic 685 

substances in DIET, acting as electron shuttles by receiving and donating electrons. Wang 686 

et al. (2019) [49] suggested that BC from sawdust may act as a temporary electron 687 

acceptor for VFAs oxidation during thermophilic AD. They found a significantly higher 688 

and more stable methane yield at higher OLR values during anaerobic co-digestion in 689 

semi-continuous mode with the addition of BC from sawdust, while they did not show 690 

any enhancement of AD with the addition of BC from sewage sludge. The main effects 691 

of sawdust BC seemed to be the enhancements of microbial activities and syntrophic 692 

oxidation of VFAs. The EC of both BCs was similar, suggesting it was not a determinant 693 

factor in the promotion of syntrophic oxidation of VFAs. Instead, the authors speculated 694 

that the presence of redox-active phenazine structures in the BC from sawdust could 695 

promote VFAs degradation via DIET. Thereby, for better investigating whether BC from 696 

sawdust could substitute hydrogen as electron acceptor in syntrophic oxidation of VFAs, 697 

they conducted a series of batch experiments with butyrate or propionate as substrates in 698 

which methanogenesis was inhibited. The control reactors did not show degradation of 699 

butyrate and propionate, while the addition of BC stimulated their oxidation as well as 700 

the production of acetate, supporting the hypothesis of the electron-accepting capacity of 701 

BC in the syntrophic process.  702 

The adoption of a further control in AD tests amended with a non-conductive material 703 

can be crucial to investigate whether the stimulatory effects of BC on methane production 704 

can be more closely linked to its physical properties (i.e. SSA and porosity) rather than 705 

its electrical properties [56]. This was evident in the study of Cruz Viggi et al. (2017) 706 
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[45], where they introduced two controls without BC and with non-conductive silica sand 707 

for AD of FW. They found that VFAs degradation and methane production were faster 708 

in the case of BC amended reactors than both the control reactors, suggesting the 709 

predominant influence of the electrical properties of BCs. 710 
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Table 6. A summary of selected works focusing on positive effects of BC on microbial populations in AD processes 711 

Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

Sawdust  Pyrolysis: 

• 500°C 

• 1 h 

• 20°C min-

1 

10 g L-1 Food waste  

(TS = 94.2 g 

L-1) 

WAS  

(TS = 89.1 g L-

1) 

55°C Batch 

V = 120 mL 

S/I (VS) = 0.25 

- 3 

 

By ↑ OLR: 

• ↓ lag time 

• ↑ CH4 prod. rate 

 

• ↑ buffer capacity 

• Microbial attachment and acclimation on BC 

• Promotion of DIET 

• Selective succession of microbes 

[46]  

Pine 

sawdust 

Pyrolysis:  

• 650°C 

• 20 min 

 

8.3 - 33.3 g 

L-1 

Food waste 

(bread) 

(TS = 61.2%) 

WWTP-sludge 

(heated at 

95°C) 

35°C Batch 

V = 100 mL 

TPAD 

1st phase:  

• ↓ lag phase 

• Faster VFAs generation 

• ↑ H2 prod. rate 

• ↑ Cum. H2 prod. 

 

2nd phase: 

• ↓ lag phase (41-45%) 

• Faster VFA degradation 

• ↑ CH4 prod. rate 

1st phase: 

• Promotion biofilm formation 

• Providing temporary nutrients 

• Buffering pH by BC 

 

 

2nd phase: 

• Promotion methanogenic biofilm formation 

• No buffering pH by BC 

 

 [26] 

Macadam

ia nut 

shells 

Pyrolysis:  

• 350°C  

• 2 h 

33.3 g L-1 Food waste + 

water + (↑ N-

NH4 conc.) 

AD from 

U

A

Room 

temperatur

e 

CIC reactor 

V = 4.6 L 

HRT=16 h 

• ↑ COD removal by 15% 

 

• ↓ NH3 inhibition by BC 

• ↑ Alkalinity by BC 

• ↓ VFAs accumulation 

[43] 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

• 10°C min-

1 

 

S

B 

(SS = 34 g L-1) 

 

 • ↑ Selective enrichment of functional microbes 

• Microbial attachment and acclimation on BC 

Sawdust  Pyrolysis: 

• 500°C  

• 1.5 h 

• 10°C min-

1 

2 - 15 g L-1 Dewatered 

WAS 

+ Food waste 

(TS = 8.8%) 

+ water 

Meso. AD  

from brewery 

factory 

(TS = 6.8%) 

35°C Batch  

Serum bottles 

WV = 90 mL 

S/I = 0.75 - 3 

(VS) 

• ↓ lag phase by 27.5–64.4% 

• ↑ Max CH4 prod. rate 

by 22.4%–40.3% 

• Buffer capacity by BC (alleviate ↓ pH due to ↑ VFAs) 

• ↑ DIET by BC (temporary electron acceptor, due to the 

richness of surface functional groups)  

• Selective enrichment of microbial DIET-partners by BC 

[38] 

Sawdust Pyrolysis: 

• 500°C  

 

15 g L-1 Food waste  

+ Sewage 

sludge 

(TS = 9.2%) 

FW/Sludge = 

4:1 (TS) 

Brewery Meso. 

AD 

(TS = 5.2%) 

55°C Semi-

continuous 

Serum bottles 

WV = 150 mL 

↓ HRT, ↑ OLR 

• ↑ CH4 yield by 

16.0%−55.2% 

• Stable CH4 prod. at ↑ 

OLRs 

• ↑ VFAs syntrophic oxidation by BC 

• High SA of BC à microbial attachment (?), closer 

association of syntrophic partners 

• Electroactive functional groups of BC à stimulation of 

DIET (?) 

[49] 

 

Corn 

stover 

Gasificatio

n: 

• 850°C 

0.25 - 1.0 g 

d-1  

(2nd phase) 

Primary 

sludge + 

WAS 

(TS = 7.01%) 

WWTP AD 

f

r

o

m  

55°C Semi-

continuous 

V = 500 mL 

TPAD: 

• ↑ % CH4 by 13.7-25.3% 

• ↑ CH4 prod. rate by 5.5-

36.9% 

• Adsorption and precipitation of CO2 by BC 

• ↓ TAN  

• ↑ Alkalinity 

• ↑ Macro-/micro-nutrients in digestate 

• Shift in bacterial community 

[34,182] 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

TPAD: 

1 ph. (TS = 

6.14%) 

2 ph. (TS = 

3.77%) 

1) HRT = 5, 15 

d 

2) HRT = 13 - 

30 d 

 

• Inhibition at high BC doses 

Pine - - - - - - • ↑ % CH4 by 0.7-9.1% 

• ↑ CH4 prod. rate by 2.3-

16.6% 

  

Corn 

stover 

Gasificatio

n 

1.82 -3.64 

g BC g-1 

TS sludge 

WWTP 

sludge 

Thermo. 

WWTP AD 

55°C Batch 

V = 600 mL 

26 days 

• ↑ % CH4 (88.5-96.7%)  

• ↑ CH4 yield 

• ↑ buffer capacity 

• ↑ electrical conductivity in digester (+37%) 

à ? ↑ extracellular electron transfer  

• ↓ NH3 inhibition 

• CO2 sequestration by BC 

• ↑ macro-/micro-nutrients in digestate  

[151] 

Rice 

husks 

Gasificatio

n:  

• 900-

1000°C 

1%, 3% 

w/w 

Cattle 

manure + 

water 

(TS = 5%) 

- 35°C Batch 

V = 1400 mL 

• ↑ Biogas prod. by 31% by 

1% BC  

• ↓ % CH4 by 7% by 1% BC  

• No benefits by 3% BC 

• ? Microbial biofilm formation on BC [30] 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

Rice 

husks 

Gasificatio

n:  

• 900-

1000°C 

1%, 3% 

w/w 

Cattle 

manure + 

water 

(Mix: TS = 

5%) 

- 25-30°C Semi-

continuous 

WV = 12 L 

HRT = 20 days 

• ↑ Biogas prod. by 4-5% by 

BC  

• ↓ % CH4  

• ? Not enough time for biofilm formation [31] 

Dry dairy 

manure 

Pyrolysis:  

• 350°C 

• 3 h 

• 10°C min-

1 

0, 1, 10 g 

L-1 

Dry dairy 

manure 

Inoculum from 

lagoon, fed 

with dried 

manure  

(TS = 115.85 g 

L-1) 

20°C Batch: 

Serum bottles 

V = 280 mL 

S/I = 1 (VS) 

• ↑ CH4 yield up to 26.5% 

• ↓ lag phase  

• ↓ total VFAs 

 

• No biofilm formation on BC (?) 

• No effects on DIET by BC (?) 

• ↑ Alkalinity and ↑ pH (buffer capacity) 

[27] 

- - - - - 35°C - • ↑ CH4 yield up to 24.9% 

• ↓ lag phase  

• ↓ total VFAs 

 

• ↑ Alkalinity and ↑ pH (buffer capacity)  

- - - - - 55°C - • ↑ CH4 yield up to 24.7% 

• ↓ lag phase  

• ↓ total VFAs 

• ↑ Alkalinity and ↑ pH (buffer capacity)  

Vineyard 

prunings 

Pyrolysis:  

 • 550°C 

10, 30 g L-1 Co-digestion: WWTP AD  37°C Batch: 

• V = 250 mL 

Batch: 

• ↓ lag phase 

• Promotion of synthrophic metabolism by BC 

• Adsorption of inhibitors 

[47,183] 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

• Orange 

peels 

(TS = 311g 

kg-1) 

• Sewage 

sludge 

(TS = 28.7g 

kg-1) 

 

(TS = 35.5 g kg-

1) 

 

Semi-

continuous 

• V = 3 L  

• HRT = 10-30 

days 

• ↑ CH4 prod. 

Semi-continuous: 

• ↑ CH4 prod. 

 

• Adhesion and growth of microorganisms by BC SA  

Coconut 

shell 

Pyrolysis:  

• 450°C 

 

1:1 (TS) Citrus peel 

(TS = 16.6%)  

WWTP AD  

(TS = 11.0 %) 

35°C Batch 

V=500 mL 

S/I = 0.31 - 0.33 

(VS) 

• ↓ lag phase 

• ↑ Cum. CH4 prod. 

 

• Limonene adsorption by BC [40] 

Rice husk - 1:1 (TS) - - - - • ↓ lag phase 

• ↑ Cum. CH4 prod. 

 

• Limonene adsorption by BC 

• Adhesion and growth of microbes on BC 

 

Wood - 1:1; 1:2; 

1:3; 2:1 

(TS) 

- - - - • ↓ lag phase  

• ↑ Cum. CH4 prod. 

• Limonene adsorption by BC 

• Adhesion and growth of microbes on BC 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

Rice 

straw + 

FeCl3 

(3.2 g 

FeCl3:10

0 g rice-

straw) 

In FeCl3 

solution:  

• 2h 

Carbonizati

on: 

• 500°C 

• 2h  

0.5% w/w OFMSW + 

water 

(TS = 1.64%) 

OFMSW 

thermo. AD + 

water 

(TS = 2.19%) 

35°C Batch  

Serum bottles 

V = 500 mL,  

S/I = 1 (VS) 

• ↓ lag phase  

• ↑ CH4 prod. by 11.69% 

• No effects on NH3 by BC 

• No effects on pH by BC 

• ↑ syntrophic associations of bacteria on BC 

• (?) DIET by high conductivity of BC 

  

[139] 

Rice 

straw 

Carbonizati

on: 

• 500°C 

• 2h 

- - - - - • ↓ lag phase  

• ↓ CH4 prod. 

• No effects on NH3 by BC 

• No effects on pH by BC 

 

 

Cow 

manure 

Pyrolysis: 

• 500°C  

• 4 h 

• 100°C h-1 

2 – 14 g L-1 Dry beer lees 

(TS = 62.5%)  

Meso. WWTP 

AD 

(TS = 36.7%) 

35°C Batch 

WV = 150 mL 

TS = 25% 

S/I = 3 (TS) 

• ↓ lag phase  

• ↑ Max cum. CH4 prod. up 

to 82.9% 

• Promotion of DIET by BC conductive properties (?) 

• Microbial colonisation and biofilm formation on BC (?) 

• ↑ Alkalinity and ↑ pH (buffer capacity) 

• Selective enrichment of methanogens by BC 

[28] 

- - - - Thermo. 

WWTP AD 

(TS = 38.5%) 

55°C - • ↓ lag phase  

• ↑ Max cum. CH4 prod. up 

to 47.2% 

-  

Rice 

straw 

Pyrolysis:  

• 500°C 

4 g L-1 Synthetic 

wastewater 

WWTP sludge 35°C UASB UASB: 

• ↑ COD removal rate 

• No effects on pH by BC 

• BC inert core for microbial aggregation 

[50] 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

(SS = 25.2 g L-

1

) 

• Continuous 

mode 

• V = 5500 mL 

• HRT = 12 h, 

12-6 h 

 

Batch  

• Serum bottles 

• V = 550 mL 

 

• ↑ VFAs degradation 

• ↑ gran. sludge 

conductivity and quality 

 

Batch: 

• ↓ lag phase by 28.6% 

• ↑ biogas yield 

• ↑ %CH4 

• Selective enrichment of microbial DIET-partners by BC 

- Biochar - Grease trap 

waste 

wastewater 

(TSS = 1.04 g 

L-1) 

- 37°C Biochar packed 

bed anaerobic 

digester 

• V: 900 L 

+1500 L+ 1500 

L  

• ↓ HRT (3.1 – 

1.8 days)  

• COD removal:68% 

• Total VFAs: from 4.7 

(feed) to 1.46 g L-1 

(effluent) 

• %CH4 > 60% 

• Start-up: 59 days 

 

• ↑ Methanogenic biofilm communities on BC 

• BS as packing material for growth and retention of biofilm 

[53] 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

Wheat 

bran 

pellets 

Pyrolysis:  

• 800°C 

• 3h 

 

25 g L-1 Food waste 

fermentate  

Methanogenic 

culture (from 

WAS digestate) 

20°C Batch 

V = 120 mL 

 

After acclimation: 

• ↑ rate of VFAs 

degradation 

• ↓ lag-phase  

 

• No effects on pH via BC 

• No effects on NH3 via BC 

• Promotion of IET by BC  

[45] 

Coppiced 

woodland

s 

Pyrolysis:  

• 500°C 

 

- - - - -  -  

Orchard 

pruning 

Pyrolysis:  

• 500°C 

- - - - -  -  

Fruitwoo

d 

Pyrolysis:  

• 800-

900°C 

 

10 g L-1  Glucose  

(6 g L-1) 

AD gran. 

s

l

u

d

g

e 

+  

35°C Batch  

Serum bottles 

 

• ↓ lag phase by 5.9-23.9% 

• ↑max CH4 prod. rate by 

23.5-47.1% 

• Faster VFAs degradation 

• NOT NH4 adsorption 

• NOT ↑ buffer capacity 

• DIET promotion via BC 

• Affinity of methanogens with BC 

[44] 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

Ammonium: 

0.26, 3.5, 7 g-N 

L-1 

Fruit 

wood 

Pyrolysis:  

• 800°C 

 

10 g L-1 Nutrient 

solution  

+ glucose  

(2 - 8 g L-1) 

Meso. pulp 

sewage 

digestate 

(1 g VS L-1)  

35°C Batch 

Serum bottles 

V = 500 mL 

 

 

• ↓ lag phase by 11.4-30.3% 

• ↑ Max CH4 prod. rate by 

5.2-86.6% 

• ↑ VFAs production and 

degradation 

• Selective colonization of functional microbes by BC 

• Not ↑ buffer capacity 

• ? Biofilm growth on BC 

• ? Promotion of DIET or Hydrogen IET by BC 

[48] 

Pine 

wood 

Pyrolysis:  

• 600°C 

• 2h 

5 g L-1 Synthetic 

wastewater 

with butyrate  

WAS digestate 

(TSS = 13.1 g 

L

-

1

) 

37°C UASB 

WV = 1000 mL 

• ↑ CH4 prod. rate by 25% 

• ↑ COD removal 

• ↑ Butyrate degradation via DIET in UASB via BC 

• Selective enrichment of microbial DIET-partners by BC 

 [51,57] 

 

   Synthetic 

wastewater 

with 

propionate 

   • ↑ CH4 prod. rate by 16% 

• ↑ COD removal 

• ↑ Propionate degradation via DIET in UASB via BC 

• Selective enrichment of microbial DIET-partners by BC 
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Biochar Anaerobic digestion References 

Feedstoc

k 

Production  Dose of 

biochar 

Substrate Inoculum Temperatu

re  

[°C] 

Experimental 

mode 

Results  Possible mechanisms  

- Biochar 2.5 g L-1 Synthetic 

wastewater 

with ethanol 

WAS digestate 

(TSS = 13.1 g 

L

-

1

) 

37°C UASB 

WV = 1000 mL 

↓ HRT (24 - 8 

h) 

• ↑ COD removal: ≥ 93% 

(control: 75-83%) 

• ↑ CH4 prod. rate 

• (?) Promotion syntrophic metabolism via DIET with BC 

in UASB reactors 

[29] 

CIC: controlling internal circulation; COD: chemical oxygen demand; DIET: direct interspecies electron transfer; FW: food waste; HRT: hydraulic retention time; IET: interspecies electron transfer; OLR: organic loading 

rate; OFMSW: organic fraction of municipal solid waste; SA: surface area; S/I: substrate to inoculum ratio; SMP: specific methane potential; SS: suspended solids; TPAD: two phased anaerobic digestion; TSS: total 

suspended solids; UASB: up-flow anaerobic sludge blanket; VFA: volatile fatty acid; WAS: waste activated sludge; WWTP: wastewater treatment plant; WV: working volume; V: volume. 

 712 

  713 
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Table 7. A summary of studies reporting the selective enrichment of bacteria and archaea by BC addition during AD processes  714 

Biochar production Biochar properties Anaerobic digestion Reference 

Feedstock Pyrolysis temperature 

[°C] 

BET-SSA 

[m2g-1] 

Electri

cal 

condu

ctivity 

[S m-

1] 

Total pore 

volume 

[cm3 g-1] 

Temperature 

[°C] 

Substrate Identification technique Enriched Bacteria Enriched Archaea 

Wheat bran pellets 800 55 ± 1 49.9 0.0445 20 Food waste fermentate FISH- CLSM  More Methanosarcina-like 

Archaea rather than 

Methanosaeta like Archaea 

[45] 

Coppiced 

woodlands 

500 61 ± 1 1.6 0.0483       

Orchard pruning 500 13.7 ± 0.5 0.5 0.0165       

Macadam

ia nut shells 

350 12.7 - - Room 

temperature 

Food waste + water 16S rRNA sequencing Bacteroidales 

Anaerolineales 

Syntrophobacterales 

Methanoregulaceae 

Methanotrichaceae 

Methanobacteriaceae 

[43] 

Fruitwoods 800-900 - - - 35 Glucose 16S rRNA sequencing Enterobacteriaceae Methanobacterium 

Methanosaeta 

Methanosarcina 

[44] 

Fruit wood 800 - - - 35 Glucose 16S rRNA sequencing Syntrophomonas 

Clostridium 

Clostridiaceae 

Methanobacterium 

Methanosaeta 

Methanosarcina 

[48] 

Rice straw + FeCl3 

(3.2 g FeCl3:100 g 

rice-straw) 

500 51.14 - 0.0328 35 OFMSW + water 16S rRNA sequencing Bacteroides 

Clostridiaceae 

Porphyromonadaceae 

Moraxellaceae 

Methanosarcina 

Methanobacterium 

OTU in Methanomicrobiales 

Methanosaeta 

[139] 

Rice straw 500 111.5 - - 35 Synthetic wastewater 16S rRNA sequencing Bacteroidetes unclassified (23.65%) 

Bacteroidales unclassified (9.19%) 

Methanosaeta (77.18%) 

Methanosarcina (11.65%) 

[50] 
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Treponema (6.43%) 

Smithella (5.56%) 

Brooklawnia (5.45%) 

Geobacter (5.42%) 

Sawdust 500 248.6 - - 35 Dewatered WAS + 

food waste + water 

16S rRNA sequencing Anaerolineaceae 

Porphyromonadaceae 

Methanosaeta 

Methanobacterium 

Methanolinea 

[38] 

 

Cow manure 500 112.6 - 0.0156 35 Dry beer lees 16S rRNA sequencing Chloroflexi 

Bacteroides 

Proteobacteria 

Methanospirillum 

Methanosarcina 

Methanolinea 

[28] 

Vineyard prunings 550 240 ± 4.8 - - 37 Orange peels 16S rRNA sequencing Bellilinea 

Trepomena 

Clostridium 

Petrimonas 

Proteiniphilum 

Bacteroides 

 

Methanosaeta 

Thermogymnomonas 

Methanolinea  

Methanofollis 

[47] 

Vineyard prunings 550 240 

± 4.8 

- - 37 Sewage sludge 16S rRNA 

sequencing 

Clostridium 

Longilinea 

Curvibacter 

Eubacterium 

Syntrophomonas 

Methanosaeta 

Methanolinea 

Thermogymnomonas 

Methanobacterium 

 

Pinewood 600 209 4

.33 μS 

cm-1 

- 37 Synthetic wastewater 

with butyrate 

16S rRNA 

sequencing 

Attached sludge: 

Geobacter 

Thermanaerovibrio  

Syntrophomonas 

Attached sludge: 

Methanosaeta 

Methanosarcina 

Methanospirillum 

 

[51] 

Pinewood 600 209 4.33 

μS 

cm-1 

- 37 Synthetic wastewater 

with propionate 

16S rRNA sequencing Attached sludge: 

Geobacter 

Smithella 

Attached sludge: 

Methanosaeta 

Methanobacterium 

 



52 
 

Syntrophus Methanosphaerula 

Biochar - - - - 37 Grease trap waste 

wastewater 

 

16S rRNA sequencing Attached to BC: 

Aminobacterium 

Syntrophomonas 

Sporanaerobacter  

Escherichia 

Attached to BC: 

Methanobacterium 

Methanosarcina 

Methanobrevibacter 

[53] 

Sawdust 500 248 ± 34 - - 55 Food waste 16S rRNA sequencing Coprothermobacter (36.3%) 

Fervidobacterium (20.0%) 

Syntrophothermus 

Treponema 

Methanosaeta (43.9%) 

Methanosarcina (15.8%) 

[46] 

Corn stover 850 315.2 - 0.09 55 Primary sludge + 

WAS 

16S rRNA sequencing Firmicutes (Clostridia) 

Bacteroidetes 

Proteobacteria 

Methanothermobacter (>90%) 

Methanosarcina 

[34] 

Pine  353.1 - 0.23       

Sawdust 500 248.6 ± 9.4 0.11 

μS 

cm-1 

- 55 Food waste  

+ Sewage sludge 

16S rRNA sequencing Defluviitoga 

Tepidimicrobium 

 

Methanothermobacter 

Methanosarcina 

[49] 

NA: not available; CLSM: confocal laser scanning microscopy; FISH: Fluorescence in situ hybridization; OFMSW: organic fraction of municipal solid waste; SSA: surface area; WAS: waste activated sludge. 

 715 

 716 
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4.4. Effect of biochar on digestate quality 717 

Anaerobic digestate has been considered as soil improver because it is rich in nutrients 718 

[184–186]. However, challenges related to digestate management have recently grown in 719 

association with EU regulations on ammonia, volatile organic acids, phenolic 720 

compounds, heavy metals, PAHs and PCBs [4,187]. So far, most technologies available 721 

to exploit digestate as soil improver are based on mechanical/physical (e.g. mechanical 722 

dewatering, semipermeable membranes and evaporation) or chemical processes (e.g. 723 

ammonia stripping and nutrients adjustment) (Table 8). 724 

 725 

Table 8. Advantages and disadvantages of conventional technologies for digestate 726 

processing [188–191]. 727 

Methods Advantages Disadvantages 

Solid-liquid separation Rich in phosphorus and suitable for 

fertilizer application 

Liquid fraction has been considered 

as a surface and ground water 

pollutions 

Belt and drum dryers treatment and upgrading of digestate 

to a solid or concentrated product 

Rapid volatilization of ammonium 

causes severe ammonia emission 

High-Tech technologies (e.g. 

ammonia stripping, membrane 

process and vacuum evaporation 

exist) 

Production of several streams with 

different physical and chemical 

properties. 

Expensive 

Mixing solid digestate with desired 

nutrient 

Increasing value per ton - 

 728 

Dehydrated digestate could be used in non-agricultural markets as a heating fuel, 729 

however, this use implies nutrient and metal losses, which in turn have negative impacts 730 
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on the environment and crops. Consequently, three approaches have been conventionally 731 

applied to reduce diffuse pollution resulting from digestate application to land [19,188]: 732 

- Nutrient recovery from digestate; 733 

- Carbon to Nitrogen ratio adjustment;  734 

- Increasing of nutrient retention capacity using an additive. 735 

One of the key aspects that should be considered when supplying additives to AD process 736 

is their effects on the quality of digestate for subsequent uses, especially as soil improver. 737 

Despite literature has not explored enough the fate and properties of digestate with BC to 738 

land applications, some potential benefits of BC amendment can be identified as follows. 739 

BC remaining in digestate after AD acts as a nutrient retention improver and catalyst,  740 

mitigates leaching of heavy metals and pollutants via physical and chemical absorption 741 

of organics, phosphate, ammonium, nitrate, nitrite, metals and CO2 [19,192]. The 742 

improvements on digestate quality can be  related to BC features as SSA, surface 743 

functional groups, ash content and presence of metals (Table 9).  744 

 745 

Table 9. Biochar properties able to improve digestate quality 746 

Factors  Function Literature  Reference  

 

 

Textural 

properties 

(surface area, pore 

size) 

Higher content of functional 

group (e.g. Si–O–Si, O–H and 

C=O) 

HCl, NH3·H2O and KMnO4 modification 

were performed to obtain functional biochar 

from Swine manure digestate.  

[193] 

Increase of the pH and cation 

exchange capacity  

H2O2 and KOH modification were 

performed to obtain functional biochar from 

domestic sewage sludge digestate 

[104] 

Ash content  Alkali and alkaline earth metals 

increase the alkalinity 

Pinewood and white oak biochars made 

digestate a great alternative to agricultural 

lime fertilizer. 

[33] 
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Metals on the 

surface  

The cation form of the metal can 

bind with soluble phosphorus  

Ex: 

3Fe(OH)2
 + 2H3PO4

3- à Fe3(PO4)2+ 6H2O 

[151] 

Functional group  Negatively charged functional 

groups forms complexes with 

heavy metals 

Manganese oxide-modified biochar 

composite derived from corn straws 

improved heavy metal stabilization in the 

digestate  

 [194] 

 747 

BC supplement in digesters may be beneficial to the fertilizer value of digestates. Shen et 748 

al. [34,151] have found that BC addition can cause a substantial increase of the macro- 749 

and micro-nutrients as N, P, K, Ca, Mg, and Fe in digestate. Zhang et al. (2020) [195] 750 

reported a similar rise of nutrient content in digestate amended with BC, even if 751 

concentrations of certain nutrients did not fully meet limits of EU regulation on fertilizing 752 

products (Regulation EU 2019/1009). Research has shown that the joint amendment of 753 

BC and anaerobic digestate can reduce atmospheric greenhouses emissions from fields, 754 

such as N2O [196] and CO2 [197–199]. A mixture of dried anaerobic digestate and BC 755 

may be an alternative to standard formulations in horticultural potting media [200]. In 756 

addition, BC may contribute to improve the composting of digestate [153,201,202], 757 

particularly in terms of process performance, compost quality and its benefits on plants 758 

[203–205].  759 

Further research is needed to understand interactions between BC, digestate and soil for 760 

the potential use of the mixture as soil improver after AD. Future studies about the use of 761 

BC as additive in AD should also consider its effects on the agronomic value of anaerobic 762 

sludge (i.e. content in macro- and micro-nutrients, germination and phytotoxicity tests, 763 

and others [206]).  764 
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4.5. Effects on biogas upgrading 765 

Raw biogas from AD consists mainly of CH4 (50-70 % v/v) and CO2 (30-50 % v/v), along 766 

with minor compounds as water vapour, H2S, NH3, O2 and N2 [207]. Upgrading and 767 

cleaning biogas are required to meet the requirements and standards for engines and 768 

pipelines, although they represent energetic and economic costs up to 55 % of the total 769 

biomethane production cost [33,208,209]. To date, conventional technologies involve 770 

water scrubbing, cryogenic separation, physico-chemical absorption, and membranes, 771 

among the others [210,211]. Recently, BC has been investigated as adsorbent of CO2 and 772 

H2S for in-situ and ex-situ applications, as addressed in the following paragraphs.  773 

4.5.1. In-situ biogas upgrading 774 

A series of studies [24,33,34,151] investigated the feasibility of in-situ biogas upgrading 775 

by the addition of BC, obtaining methane contents up to pipeline quality (Table 10). Shen 776 

et al. (2015) [151] investigated the possibility of sequestering CO2 with BC during 777 

thermophilic AD of WAS for in-situ biogas cleaning and upgrading. They reported 778 

average methane contents of 88.5-96.7 % in BC amended reactors, compared to 67.9 % 779 

in control reactor, reaching CO2 removals of 54.9-86.3 % and residual H2S content below 780 

5 ppb. They suggested that CO2 removal could be promoted by the high porosity of BC, 781 

by the large SSA rich of basic sites and of hydrophobic sites. Shen et al. (2016) [33] 782 

assessed the AD of WAS with the addition of two woody BCs. They observed average 783 

methane content up to 92.3 % and 79.0 % in biogas from BCs amended reactors in 784 

mesophilic and thermophilic conditions compared to control reactors, corresponding to 785 

CO2 removals by up to 66.2 % and 32.4 %, respectively. They stated that both BCs owned 786 

desirable properties for CO2 sequestration, and in particular high values of: SSA, porosity, 787 
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chemical stability, degree of carbonization and alkaline nature. Linville et al. (2017) [24] 788 

investigated the influence of particle size and dose of BC from walnut shell on AD of FW 789 

in mesophilic and thermophilic conditions. They found higher CO2 removals compared 790 

to control reactors in the case of smaller particle size of BC (61.0 %) than coarse one 791 

(51.0 %), due to the larger SSA and ash content. However, according to other studies 792 

[33,151], they observed a reduction of methane production with higher BC doses, 793 

concluding that this could lead to inhibition caused by higher concentrations of cations 794 

released by the BC. Shen et al. (2017) [34] studied the effects of two BCs from corn stover 795 

and pine wood on AD of WAS in two-stage digesters. They reported an average methane 796 

content of 81.0-88.6 % in the reactor with BC from corn stover and 72.1-76.6 % with BC 797 

from pine wood, compared to around 70.0 % for the control. They stated that BCs would 798 

release base cations sequestrating CO2 by chemical sorption and forming 799 

bicarbonate/carbonate salts, and that its surface structure would help CO2 adsorption. 800 

Apart from CO2 adsorption on BC, the major formation of CH4 depends on the stronger 801 

syntrophic cooperation between organic acid-oxidising bacteria and CO2 reducing 802 

methanogens [36,58], underlying the key role of efficient interspecies electron transfers. 803 

Further confirmation by other authors to the attractive findings about biogas in-situ 804 

upgrading by BC would be beneficial.  805 

4.5.2. Ex-situ biogas cleaning and upgrading 806 

The use of BC and other carbonaceous adsorbents for CO2 capture from various gaseous 807 

streams recently attracted a growing attention [212–214]. Considering ex-situ 808 

applications of BC for biogas upgrading and cleaning, Table 11 shows CO2 and H2S 809 

adsorption capacity of different BCs. Clearly, the adsorption capacity for both CO2 and 810 

H2S is in a wide range, 0.4-2.3 mmol g-1 and 0.2-19.1 mmol g-1 respectively. Most of the 811 
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studies regarding CO2 capture do not specifically focus on biogas, investigating different 812 

BCs eventually subjected to activation. Sethupathi et al. (2017) [215] assessed the 813 

adsorption of CH4, CO2 and H2S in a synthetic biogas stream by four BCs in fixed bed 814 

adsorbers during continuous experiments. They reported that just CO2 and H2S were 815 

captured by BCs, which exhibited adsorption capacities up to 0.208 mmol g-1 for H2S and 816 

0.126 mmol g-1 for CO2. Creamer et al. (2014) [216] investigated the adsorption of CO2 817 

into BCs from bagasse and hickory wood. They found that BC could effectively capture 818 

CO2 (adsorption capacity up to 73.55 mg g-1 or 1.67 mmol g-1), suggesting the importance 819 

of surface area and superficial nitrogen groups in CO2 sequestration, mainly through 820 

physical adsorption. Creamer and Gao (2016) [217] reported that the main mechanism 821 

for CO2 sequestration by BC is physical adsorption, suggesting the importance of high 822 

SSA [100], adequate pore size (0.5-0.8 nm) [218] and pore volume, thanks to Van der 823 

Waals and electrostatic forces. However, the adsorption of CO2 can also be influenced by 824 

BC chemical properties, such as the presence of basic surface functional groups or alkali 825 

and alkaline earth metals, hydrophobicity and non-polarity [214]. For instance, Xu et al. 826 

(2016) [219] found that the adsorption of CO2 by three BCs during batch equilibrium tests 827 

was due to the presence of alkali and alkaline earth metals (Ca, Fe, K, Mg) by CO2 828 

mineralogical reactions together with physical sorption. Activation and surface treatments 829 

of BCs can provide high surface area and micropores for physical sorption and enrich 830 

surface functional groups and metal oxides for chemical sorption, leading to remarkable 831 

CO2 adsorption capacities (5.0-7.4 mmol g-1) [220].  832 

Other studies applied BC for removing H2S from biogas (Table 11). Sahota et al. 2018 833 

[221] found 84.2 %  removal of H2S from biogas with BC from leaf waste. Kanjanarong 834 

et al. (2017) [222] obtained a removal of 98 % of H2S (8.02 mmol g-1) from biogas with 835 
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BC, suggesting carboxylic and hydroxide radical groups as responsible of H2S adsorption. 836 

Finally, Pelaez-Samaniego et al. (2018) [37] found that BC from AD digestate could 837 

effectively remove H2S from a synthetic biogas, possibly facilitated by the presence of 838 

ash, porosity, or aromatics in BC. In contrast with CO2 for which adsorption onto BC 839 

seemed to be mainly physical, absorption of H2S seemed to involve many chemical 840 

mechanisms with BC surface [223].  841 

Overall, biochar seems to be a promising adsorbent for ex-situ biogas cleaning and 842 

upgrading applications. However, additional studies [215] should focus on the adsorption 843 

of CO2 and H2S along with NH3 from real or synthetic biogas, considering their 844 

competitive adsorptions, along with the influence of water vapour and the eventual 845 

removal of CH4.  846 

 847 

Table 10. Physic-chemical properties of biochars used in biogas in-situ upgrading 848 

Feedstock Production 

temperature 

[°C] 

BET-SA  

[m2g-1] 

Total pore 

volume 

[cm3g-1] 

Average pore 

diameter 

[nm] 

H/C 

[molar ratio] 

O/C 

[molar ratio] 

Ash 

[% wt] 

Reference 

Corn stover Gasification 315.30 0.09 6.50 0.075 ± 0.007 0.004 ± 0.001 45.18 ± 0.40 [34,151] 

Pine pellets Gasification 310.19 0.19 5.07 0.078 ± 0.009 

 

0.249 ± 0.014 18.69 ± 0.44 [33,34] 

White oak 

pellets 

Gasification 296.81 0.15 4.92 0.109 ± 0.026 0.051 ± 0.010 34.90 ± 0.65 

Walnut shell Gasification: 

900 °C 

86.5 0.16 7.06 0.20 ± 0.01 0.06 ± 0.01 43.2 ± 0.2 [24] 

 849 

Table 11. Biochar adsorption capacity (mmol g-1) of H2S and CO2 during ex-situ 850 

applications. 851 

Feedstock Pyrolysis/activati
on 

Surfac
e area 
[m2g-

1] 

Total 
pore 

volum
e 

[cm3g-

1] 

Gas Inlet H2S or 
CO2 

concentrati
on 

[ppm] 

H2S 
Adsorpti

on 
capacity 
[mmol g-

1] 

CO2 
Adsorpti

on 
capacity 
[mmol g-

1] 

Referen
ce 



60 
 

AD 
digestate 
fibres 

PY/500°C/60 
min 

134 0.037 Syntheti
c biogas 

2000 3.96 a  [37] 

 PY/600°C/60min 142 0.035 Syntheti
c biogas 

2000 15.90 a   

 PY/600°C/60min 
+Na2CO3 

- - Syntheti
c biogas 

2000 19.13 a   

Biomass 
from 
black 
liquor 

C/450°C/6min 60  N2+H2S 1000 2.14 a  [224] 

Pig 
manure 

PY/500°C/4hour
s 

47.4  Air + 
H2S 

1% (v/v) 1.75 a  [225] 

Sewage 
sludge 

PY/500°C/4hour
s 

71.6  Air + 
H2S 

1% (v/v) 1.29 a   

Potato 
peel waste 

C/500°C/5min 63  N2 + 
H2S 

1000 1.56 a  [226] 

Camphor PY/400°C/5hour
s 

20    3.21 a  [227] 

Rice hull PY/400°C/5hour
s 

115    11.23 a   

Bamboo PY/400°C/5hour
s 

58    9.88 a   

80% 
wood 
chips 
20% AD 
digestate 

PY/600°C   Biogas 1020 8.02 a  [222] 

Perilla 
leaf 

PY/700°C 473.4 0.1 Syntheti
c biogas 

 0.537 2.312 [215] 

Korean 
oak 

PY/400°C 270.8 0.1 Syntheti
c biogas 

 0.178 0.597  

Japanese 
oak 

PY/500°C 475.6 0.2 Syntheti
c biogas 

 0.167 0.379  

Soybean 
stover 

PY/700°C 420.3 0.2 Syntheti
c biogas 

 0.308 0.707  

Sawdust G/850°C 182.0
4 

0.003
6 

N2/CO2   1.08 b [228] 

 G/850°C + 
monoethanolami
ne 

3.17 0.007
0 

N2/CO2   1.02  b  

Sugarcane 
bagasse 

PY/600°C 401.0
0 

    1.67 b [216] 

Whitewoo
d 

PY/500°C 
+ steam 
activation 

840 0.55 He/CO2 30 % mol  1.34 b [229] 

Whitewoo
d 

PY/500°C 
+ CO2 activation 

820 0.45 He/CO2 30 % mol  1.43 b  

Whitewoo
d 

PY/500°C 
+ KOH 
activation 

1400 0.62 He/CO2 30 % mol  1.77 b  

Walnut 
shell 

C900°C/1.5hours 397 0.198    1.65 b [230] 

Pig 
manure 

PY/500°C/4hour
s 

31.57 0.044 N2/CO2   0.53 b [219] 

Wheat 
straw 

PY/500°C/4hour
s 

20.20 0.041 N2/CO2   0.78 b  

Sewage 
sludge 

PY/500°C/4hour
s 

10.12 0.022 N2/CO2   0.41 b  
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5. Economic and environmental assessments 852 

An economic and environmental evaluation of BC production and application in AD was 853 

performed, considering specifically four perspectives: 1. BC production according to 854 

feedstock composition and 2. to pyrolysis process conditions; 3. BC application in AD 855 

compared to current state of the art technologies addressing AD challenges; 4. integration 856 

of AD and pyrolysis processes (to our knowledge, specific studies related to the economic 857 

and environmental assessment of BC use in AD processes are not available). 858 

5.1. Economic assessment 859 

Considering BC production, the key parameters to evaluate the economic benefits of 860 

feedstocks (perspective 1) are: ash and lignin contents and O/C ratio, which affect 861 

pyrolysis yield, molecular weight of bio-oil and BC amount production [231]. Li et al. 862 

(2017) [232], based on regression model applied to 346 lignocellulosic feedstocks, stated 863 

that higher ash content increases BC production in a range of 12.5-15.5 %, reducing bio-864 

oil production, and consequently the incomes coming out from bio-oil trade, which makes 865 

pyrolysis economically profitable. With lower ash content and higher O/C ratio of 866 

feedstocks, higher biofuel yields are produced, which leads to better economic 867 

performance, in fact minimum fuel selling prices for lignocellulosic feedstocks ranged 868 

from 0.53-1.1 Euro/L. 869 

Considering the pyrolysis process (perspective 2), the investment costs for BC production 870 

from lignocellulosic feedstocks are: 43 % for pre-treatment and pyrolysis, 35 % for H2 871 

generation and 22 % for cooling and fractionations [232]. The average operating cost 872 

varies from 0.68 Euro/L for woody biomass to 0.86 Euro/L for straw biomass, due to the 873 

higher costs of disposal and pre-treatment of straw biomass, respectively 32 % and 34 % 874 
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of total operational costs [233]. Based on the economic analysis performed by Harsono 875 

et al. (2013) [234] and Sahoo et al. (2019) [235], the investment and operational costs 876 

related to BC production from lignocellulosic feedstock can only be balanced by a BC 877 

trade price of 470 Euro/t. 878 

Considering perspective 3, the need to enhance AD feasibility and applicability to 879 

unconventional substrates implied higher costs, which should be exceeded by the 880 

increased methane production and therefore by the additional electric energy potentially 881 

associated. Inorganic and biological additives as iron, micronutrients and ash are 882 

conventionally employed to reduce inhibition and facilitate organic matter solubilisation, 883 

thus improving methane production. Nevertheless, the application of additives in AD 884 

accounts as 3.60-4.10 euro/L of enzyme and as 13-16 euro/L of nutrients [236]. The 885 

overall costs of BC, depending on feedstock, pyrolysis process and activating agent 886 

(Table 12), could range from 0.2 to 0.5 USD/kg, making BC cheaper than granular 887 

activated carbon (GAC), which has production costs ranging between 0.6 and 20 USD/kg. 888 

 889 

Table 12. Comparison of granular activated carbon (GAC) and biochar (BC) production 890 

costs depending on feedstock, production process and activating agent 891 

Additive Feedstock Production 

process/ Activating 

agent 

Location Cost of 

production 

(USD kg-1) 

Reference 

GAC Poultry litter 

derived carbon 

Steam USA 1.44  [237] 

GAC Rice bran NaOH China 3.58-

3.77 

[237] 

GAC Red oak wood Steam USA 0.62-

1.27 

[237] 

GAC - 

commercial 

- - USA 1.19-

16.34 

[237] 

GAC Fruit processing 

waste 

Steam Malaysia 1.67 [237] 

GAC Rice bran CO2 Brazil 3.54 [237] 
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GAC Acid treated rice 

bran 

CO2 Brazil 20.45 [237] 

GAC Wood KOH - 2.49 [237] 

GAC Charcoal KOH - 1.25 [237] 

GAC Lignite KOH - 2.18 [237] 

GAC - 

commercial 

   1.93 [237] 

BC Empty fruit 

bunches 

Slow PY  Malaysia 0.533 [234] 

BC Straw Slow PY 

(large scale) 

UK 0.203 [18] 

BC Straw Slow PY 

(medium scale) 

UK 0.447 [18] 

BC Straw Slow PY 

(small scale) 

UK 0.351 [18] 

BC Short rotation 

coppicing, forestry 

residues, short rotation 

forestry 

Slow PY 

(large scale) 

UK 0.266 [18] 

BC Short rotation 

coppicing, forestry 

residues, short rotation 

forestry 

Slow PY 

(medium scale) 

UK 0.500 [18] 

BC Short rotation 

coppicing 

Slow PY  

(small scale) 

UK 0.434 [18] 

BC Forestry residue Slow PY 

(large scale) 

UK 0.345 [18] 

BC Forestry residue Slow PY 

(medium scale) 

UK 0.584 [18] 

BC Arboricultural 

arisings 

Slow PY  

(small scale) 

UK 0.213 [18] 

BC Pine wood Slow PY USA 0.220-

0.280 

[238] 

BC - - European 

market (2014) 

0.662-

0.811a 

[239] 

BC - - - 0.207 [239] 

BC - - - 0.600 [68] 

BC - - Global, 

market price 

(mean) 

2.06 [240] 

BC - - USA, 

market price 

(mean) 

2.48 

(0.08-13.48) 

[241] 

GAC: granular activated carbon; PY: pyrolysis. 

(a) exchange rate USD/euro (January 2014): 1.3516 

 

 892 
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Still considering perspective 3 and moving from the additive’s cost to the improvement 893 

of AD performances,  894 

The economic benefits of the integration of AD and pyrolysis technologies (perspective 895 

4) has been explored by literature. The integrated technologies of AD of waste biomass 896 

and pyrolysis of the digestate could increase the net electricity production respect to AD 897 

alone [80] and enhance its quality as soil amendment [81] with economic and 898 

environmental benefits [242]. However, up to date, there is uncertainty regarding the 899 

balance between input costs of BC supplementation and output of energy production from 900 

AD. Qiu et al. (2019) [59] proposed the energy input-output LCA method to estimate the 901 

total energy input for biogas production, by calculating the energy associated with each 902 

component used in AD, and the actual energy return of investment. Zhang et al. (2020) 903 

[243] investigated the addition of woody BC to improve the thermophilic AD of FW. 904 

They concluded that BC supplementation could be economically feasible to enhance 905 

thermophilic AD of FW. 906 

5.2. Environmental assessment 907 

Considering feedstocks (perspective 1), life cycle analysis (LCA) from cradle to cradle 908 

of the pyrolysis of lignocellulosic feedstocks stated that GHG emissions for husk/shell/pit 909 

ranged from 120-250 g CO2eq/MJ, while for other organic waste, wood and straw they 910 

ranged between 20-50 g CO2eq/MJ  [232]. This difference was due to the dominant 911 

contribution of indirect land use change from food production. Feedstocks having higher 912 

O/C ratio and 0 – 2 % ash content increased the GHG emissions [244]. Based on GREET 913 

database [245], GHG emissions reduction for lignocellulosic feedstocks was 85 - 98 % 914 

compared to the GHG emissions for petroleum fuels refining, which was equal to 93 915 
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gCO2eq/MJ. GHG emission reductions for lignocellulosic feedstocks satisfy the 50 % 916 

share of renewable fuel standard for GHG emission reduction requirement for advanced 917 

fuels [246].  918 

Considering BC production process (perspective 2), LCA from cradle to gate showed that 919 

BC produced from palm oil empty fruit bunches through slow pyrolysis had an energy 920 

content higher than the energy required for producing BC [234]. Furthermore, LCA 921 

cradle-to grave proved the positive energy balance of BC produced from different 922 

lignocellulosic materials [247]. Hence, the positive energy balance of BC production and 923 

application, due to the high-energy content of lignocellulosic feedstocks, represents a 924 

crucial benefit both from economic and environmental perspectives. One of the main 925 

issue of BC produced from renewable feedstocks as lignocellulose wastes (i.e. WAS, 926 

wood) and not from purpose grown feedstocks is the higher risk of having contaminants 927 

as heavy metals or organic compounds like dioxins, PAHs and PCBs [248].  928 

Still considering BC process production (perspective 2), pyrolysis and gasification were 929 

compared from the perspective of carbon equivalent abatement (CA): pyrolysis achieved 930 

the highest CA, ranging from 0.07 to 1.25 t CO2 eq/t feedstock, as cardboard and wood 931 

waste, while gasification reached the highest electricity generation outputs with 0.9 932 

MWhe/t of feedstocks [249]. Activation was proven to represent a high item cost both in 933 

terms of economic and environmental perspectives [250]. BC chemical activation costs, 934 

in line with non-renewable GAC activation, range between 1.38 and 1.48 Euro/kg, 935 

respectively with acidic and basic treatments [251].  936 

However, perspective 2 could also be explored considering the existing literature related 937 

to the conventional applications of BC as soil improver, adsorbent for water and air 938 

pollutants, catalyst for syngas upgrading and biodiesel production (Table 13). LCA 939 
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studies from cradle-to-grave of conventional BC applications measured in all cases 940 

positive environmental benefits compared to conventional perspectives. BC produced 941 

from waste forestry feedstock and applied as soil improver contributed to GHGs emission 942 

reduction up to 2.74 kg CO2 eq/ kg BC for the impact categories climate change (CC), 943 

natural gas avoided for fossil depletion (FD) and urea avoided for freshwater 944 

eutrophication (FE) and human toxicity (HT) [252]. A LCA from cradle to cradle [247] 945 

showed that BC production and application as adsorbent presented, compared to GAC 946 

deriving from virgin non-renewable feedstock, lower environmental impacts in terms of 947 

climate change (CC), fossil depletion (FD), freshwater eutrophication (FE) and terrestrial 948 

acidification (TA) impact categories, and that wood and wood chips achieved the highest 949 

environmental credits among the others feedstocks. In details, considering CC (expressed 950 

as kg CO2/kg adsorption material), GAC produced 1.44, while wood chips and corn stover 951 

had credits ranging between -3.42 to -3.57, whereas oil palm produced 11.1 [253]. 952 

Regarding FE (evaluated as kg P eq/ kg adsorption material), BC from lignocellulosic 953 

feedstock exhibited higher values than GAC, respectively ranging between 6.2 to 10.9 % 954 

[247], due to the organic matter of renewable feedstock [254]. Considering both TA and 955 

FD (respectively estimated as kg SO2 eq/ kg adsorption material and kg oil eq/ kg 956 

adsorption material), BC from lignocellulosic feedstock achieved higher credits than 957 

GAC, between 9.5 % and 32.0 %.  958 

Considering BC application in AD processes (perspective 3), to our knowledge the 959 

available scientific literature only focused on sequential processes, as pyrolysis followed 960 

by AD. A LCA from cradle to grave [255] considered BC produced from corn stover 961 

applied as carburant and soil amendment with sequential AD, achieving respectively: -962 
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2.47 kg CO2eq/t and energy saving of -6.53 MJ/ t for the first scenario and - 4.67 kg 963 

CO2eq/t and energy saving of -9.73 MJ/ t for the second scenario.  964 

 965 

Table 13. Environmental assessment of biochar (BC) production and uses 966 

 Positive effects Negative effects 
Feedstock (perspective 1) Lignocellulosic biomass 

exhibited more positive effects 
because of higher energy 
potential [247] 
Waste biomasses presented 
more advantages (e.g. avoided 
waste management) [256] 

Feedstock provision (transport) [93] 
Potential presence of contaminants 
(heavy metals, persistent organic 
pollutants) in waste feedstocks 
(sewage sludge) [256] 

Production process 
(perspective 2) 

Renewable energy from syngas 
and bio-oil [93] 
Stabilization of C in biomass 
feedstock [18] 

Large centralized pyrolysis units 
higher transportation distances 
compared to smaller decentralized 
units [256] 

Activation process 
(perspective 2) 

 Activation was proven to represent a 
high item cost both in terms of 
economic and environmental 
perspectives [250]. 
Use of chemicals and electricity is 
associated to higher impacts [257]. 

Applications   
Soil improver Biochar (C) sequestration in the 

soil [93] 
Binding /deactivation of pesticides, 
herbicides and nutrients in soil [258] 

 Reduced fertiliser requirements 
[93] 

BC as source of potential toxicants 
(heavy metals, PAHs, organics) [258] 

 Reduced N2O emissions  from 
soil [93] 

 

 Enhanced plants growth [18]  
 Reduced fossil fuel use in 

irrigation and cultivation [18] 
 

 Enhanced nutrient availability 
[258] 

 

 Increased H2O retention [258]  
 Reduced leaching and run-off of 

nutrients [258] 
 

Adsorbent BC lower impacts than activated 
carbon [247] 

 

 967 
 968 

In conclusion, focusing the environmental assessment on perspective 4, the integration of 969 

AD of waste biomass and pyrolysis of digestate, as shown in Figure 2, could increase the 970 
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net electricity production respect to AD alone [80] and enhance its quality as soil 971 

amendment [81] with economic and environmental benefits [242]. In conclusion, the 972 

integrated approach has been investigated by life cycle analysis and exhibited positive 973 

environmental outcomes if compared with non-integrated processes [255,259]. 974 

6. Conclusions  975 

This review addressed three key issues related to the comprehension of BC role in AD 976 

processes:  977 

1. Investigation of the influence of BC properties on AD performances and of their ability 978 

to counteract its main challenges. It is understood that BC properties are determined 979 

by the feedstock and by pyrolysis and activation processes. The key features were 980 

SSA, porous structure and distribution, nature of surface functional groups (related to 981 

CEC and adsorption capacity, buffer capacity, ability to immobilize microbial 982 

communities), elemental composition and ash content. However, some mechanisms 983 

(e.g. BC role in ammonium adsorption and BC influence on microbial mechanisms) 984 

still need to be fully understood and explained. Other challenges for future research 985 

are related to digestate management; in detail, the influence of BC relatively high doses 986 

on the rheological properties of the digestate should be explored, as well as the 987 

eventual leaching of pollutants in the environment as a consequence of digestate 988 

recovery as soil improver. 989 

2. Assessment of the optimal BC production chain (i.e. feedstock-pyrolysis-activation) to 990 

achieve the desired features. Lignocellulosic biomasses, slow pyrolysis and physical 991 

activation seemed to be a good combination in general, while other feedstocks and/or 992 

chemical activation should be evaluated for specific needs and tailor-made applications. 993 
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However, a systematic investigation of the correlations linking BC physico-chemical 994 

characteristics and AD performances, carefully exploring one by one the BC effects 995 

mentioned in this review, is highly needed for a deep understanding of BC role as 996 

additive in AD processes. 997 

3. Evaluation of the economic and environmental advantages connected to BC use in AD 998 

processes, compared to conventional solutions applied to address AD challenges. The 999 

main research gap related to this issue is the absence of specific literature related to 1000 

BC use in AD processes, therefore only general statements could be formulated. The 1001 

use of BC as additive could be cheaper and has less environmental impacts than of 1002 

conventional AD improvers (e.g. physico-chemical-biological pre-treatments) and of 1003 

GAC. The integration of AD and pyrolysis achieved economic feasibility and positive 1004 

environmental performances if compared with non-integrated processes. Future 1005 

research could investigate the optimization of technical, economic and environmental 1006 

performances of BC production chain and its integration in AD processes. 1007 
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