
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multiperiod transshipment location–allocation problem with flow synchronization under stochastic handling operations /
Giusti, Riccardo; Manerba, Daniele; Tadei, Roberto. - In: NETWORKS. - ISSN 1097-0037. - ELETTRONICO. -
78:1(2021), pp. 88-104. [10.1002/net.22007]

Original

Multiperiod transshipment location–allocation problem with flow synchronization under stochastic
handling operations

Publisher:

Published
DOI:10.1002/net.22007

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2840252 since: 2021-06-14T18:34:14Z

Wiley Periodicals, Inc.



Received: 7 November 2020 Accepted: 11 November 2020 Published on: 16 December 2020

DOI: 10.1002/net.22007

S P E C I A L I S S U E A R T I C L E

Multiperiod transshipment location–allocation problem with flow
synchronization under stochastic handling operations

Riccardo Giusti1 Daniele Manerba2 Roberto Tadei1

1Department of Control and Computer

Engineering, Politecnico di Torino, Turin, Italy
2Department of Information Engineering,

University of Brescia, Brescia, Italy

Correspondence
Riccardo Giusti, Department of Control and

Computer Engineering, Politecnico di Torino,

10129 Turin, Italy.

Email: riccardo.giusti@polito.it

Abstract
The transshipment location–allocation problem consists of locating transshipment

facilities (e.g., intermodal hubs) of a transportation network and allocating freight

flows through them, from several origins to several destinations, to satisfy demand

and supply constraints. The objective is to maximize the total net transportation util-

ity given by the total shipping utility minus the total cost to locate the facilities.

Moreover, flow synchronization at the facilities must also be ensured. Unfortu-

nately, the flow synchronization depends on a broad set of unknown events, which

could cause both unexpected reductions of the facility capacity and uncertain

utility of handling operations. In this paper, we first want to evaluate how uncer-

tainty on facility capacity and handling operations utility affects the transshipment

location–allocation problem in terms of complexity, net gain, and optimal solu-

tions. Moreover, we extend the problem from a single to a multi-period setting to

have a wider view of future scenarios realizations and consequently synchronize

the flows by using different facilities on different periods. We propose a two-stage

stochastic programming formulation with recourse and analyze, over a ground set of

instances, some well-known economic indicators to derive managerial insights on

the importance of addressing uncertainty for the problem. Finally, given the compu-

tational burden of solving the deterministic equivalent problem, we propose several

heuristics based on progressive hedging and test their performance.

KEYWORDS

progressive hedging, stochastic programming, synchromodality, transshipment

location–allocation problem

1 INTRODUCTION

Recently, a new paradigm called synchromodality has emerged in the field of transportation and logistics. This paradigm has

already shown its effectiveness in real implementations [28], European research projects [11, 12, 26], and it is also gaining

increasing attraction from academic research. Synchromodality, among several other aspects, focuses on the importance of syn-

chronizing operations to improve the efficiency and the sustainability of the supply chain. For its implementation in realistic

settings, Pfoser et al. [27] identified two main critical success factors, namely, the development of sophisticated planning meth-

ods and the use of efficient physical infrastructures (which in turn implies planning a good network design). On the other hand,

the increase of freight transportation, and e-commerce, in particular, is fostering the need to synchronize operations and modes

better, as well as to address different sources of uncertainty.
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In such complex logistic settings, the transshipment problem consists of minimizing the total transportation cost over a

network by using transshipment facilities as intermediate points for shipping freight from origins to destinations [24]. In the

literature, the utilization of transshipment facilities addresses several kinds of issues, such as consolidation, packing and unpack-

ing operations, inter-modal or inter-vehicle changes, and so on. When considering transshipment problems combined with

some settings of the well-known location–allocation problem [5], the main decisions to take are which intermediate hubs to

place and how to manage the flows throughout the network. These are the main characteristics of the so-called transshipment

location–allocation problem (TLAP).

However, as pointed out by Giusti et al. [13], dealing with unexpected events has a fundamental role in reducing the neg-

ative impact of disruptions in strategic/tactical planning of synchromodal networks. In fact, over a medium or long-term time

horizon, a transshipment facility is subjected to events with unknown probability, such as lateness of the incoming/outgoing

transportation modes, congestion, or unexpectedly slow execution of the handling operations. These events could cause sig-

nificant stand-by time for vehicles in a facility and, in turn, loss of transshipment connections and reduction in the expected

available capacity of the facilities.

In this work, we provide a stochastic programming (SP) formulation of the problem to evaluate the possible potentialities

to consider uncertainty explicitly. More precisely, according to realistic decision-making processes in logistics, a two-stage SP

model with recourse is proposed where the location of facilities is decided at the first stage. In contrast, the allocation of the

freight flows is agreed at the second stage. To achieve a model that can be practically solved through mathematical program-

ming techniques, a deterministic equivalent formulation of the stochastic model is derived by assuming certain probability

distributions for the random variables and discretizing them through the use of a finite (although significant) set of scenarios.

The number of scenarios required to discretize the random variables with a good approximation is experimentally found by per-

forming stability analysis. Then, several standard SP indicators (VSS, EVPI, LUSS, and LUDS) are calculated and analyzed to

show that the problem is worth to be studied since an explicit consideration of the stochasticity can lead to conspicuous gains.

Finally, to overcome the computational burden of solving the problem by state-of-the-art commercial solvers, we introduce sev-

eral matheuristic procedures based on the well-known progressive hedging (PH) approach of Rockafellar and Wets [30]. The

accuracy and efficiency of the proposed algorithms are tested over a broad set of representative instances.

The rest of the paper is organized as follows. In Section 2, we discuss the state-of-the-art regarding problems with sim-

ilar characteristics to the TLAP. In Section 3, we introduce the problem and present its stochastic (a two-stage model with

recourse) and deterministic equivalent formulations. In Section 4, we analyze the effects of introducing stochasticity in the

problem through the calculation of insightful SP indicators. The generation of the test instances and the stability analysis are also

described there. In Section 5, we present the scenario decomposition required to implement the PH, the steps of the algorithm,

the initialization, and the update of PH parameters. Section 6 provides the description of two PH variants and a primal heuristic

to improve computational performances. In Section 7, we discuss the results of the computational experiments regarding the

PH-based heuristic algorithms. Section 8 proposes conclusions of the work and future developments.

2 LITERATURE REVIEW

Location–allocation problems that make use of intermediate hubs for shipping goods from origins to destinations have been

primarily addressed in the literature to deal with modern global freight logistics. For instance, Di Francesco et al. [8] studied

the problem of a forwarder that needs to ship containers filled with pallets to intermediate depots of a two echelon-network

where pallets are unpacked and sent to different destinations. Instead, Zhao et al. [37] approached the location of consolidation

centers in China as transshipment facilities to ship freight by rail routes from China to Europe.

Moreover, as for other practices, our TLAP requires a strategic/tactical planning of facilities location beforehand as well

as more operational flow management. A similar decision process is typical, for example, when implementing the well-known

cross-docking procedure, which consists of processing the shipments as quickly as possible to minimize storage and handling

operations [14]. To achieve an effective cross-docking, it is crucial to choose distribution centers capable of managing the

continuous flow of shipments with handling operations, mainly consisting of moving goods from the inbound vehicles to the

outbound vehicles by consolidating the cargo based on the location of the customers [10].

Synchronization, which plays an essential role in our work, can be found in several papers. For example, Jin et al. [16]

pointed out that unsynchronized shipping services at hub ports generate operation issues and high costs. To improve synchro-

nization, they designed feeder vessel services to pick up and deliver containers between neighboring local ports, working like

transshipment facilities, and synchronize them with long-haul services improving the efficiency of container transshipment.

Other benefits of the synchronization in transshipment facilities are studied in Neves-Moreira et al. [23]. The authors developed

a method to provide long-haul services using short-haul jobs, over a logistics network of freight transportation in which trucks

are allowed to exchange semi-trailers through several transshipment points. In this case, the synchronization helps to reduce the
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empty truck journeys drastically and finds applications in a decision support system of a Portuguese logistics operator. In addi-

tion, cross-docking procedures require a reliable synchronization between the incoming and outgoing flows (see, e.g., Luo et al.

[19] who considered the synchronization between production and warehouse operations). On the other hand, synchronization

cannot be activated without a wise tactical facility location. Very recently, Qu et al. [29] considered synchronization of trans-

shipment flows at intermediate terminals, pointing out that, in some cases, overloaded terminals could cause delays and delay

propagation. Hence, locating the right facilities in advance and synchronizing flows can have a significant impact on limiting

this issue.

Another essential characteristic of our setting is the presence of uncertainty, which could disrupt optimal plans if not treated

correctly. Tadei et al. [33] proposed a model to maximize the total net utility, calculated by subtracting the total fixed cost of

the located facilities from the total shipping utility. The shipping utility is given by a deterministic utility for shipping freight

from origins to destinations via transshipment facilities plus a stochastic handling utility at the facilities. Eventually, a deter-

ministic approximation of the problem was provided by using some results from the theory of extreme values [31, 34]. Instead,

the model proposed in Baldi et al. [2] aimed to minimize the total cost by finding an optimal location of the transshipment

facilities for which the cost of their throughput in terms of freight are random variables with an unknown probability distri-

bution. Here, the total cost is given by a deterministic fixed cost plus the expected cost of the total freight flow. Lastly, Wang

et al. [36] proposed different types of belief degree constrained programming models (optimistic value, pessimistic value, and

Hurwicz criterion), in which costs and demands are studied as uncertain variables. They also addressed a problem that takes

into account sustainability issues by fixing the maximal CO2 emissions that cannot be exceeded by the whole transportation

system.

Similarly to Tadei et al. [33], our goal is to find a usage plan of a set of transshipment facilities that maximizes the total net

transportation utility (i.e., the total shipping utility minus the total cost to locate the facilities). While classical transshipment

problems only consider the allocation of flows to the existing facilities, our variant consists of finding transshipment facility

locations and allocating flows through them to satisfy customers’ demand. This involves both a network design problem (facility

location) and a network flow planning one (flow allocation), which are part of the strategic and tactical planning, respectively

[32]. A crucial focus is put on the consequences (in terms of transshipment capacity and loss) of possible unforeseen events in

the transshipment synchronization. For this reason, we consider for the first time in the literature, the uncertainty coming from

the capacity of the facilities and the handling utilities simultaneously. The uncertainty regarding the loss of capacity is explicitly

considered to model possible leftovers at the facilities due to non correctly synchronized operations.

Furthermore, we consider a multi-period setting instead of a single-period one. In fact, in strategic/tactical planning, deci-

sions must be taken on the long/medium-term horizon, which implies having a more comprehensive view of the problem and

not only on the next imminent set of operations. Considering only one period would possibly lead to design a network that can

perform well in many cases, but then having catastrophic losses of revenue in other situations. Hence, having more periods

allows us to have a more accurate view of the possible realization of the uncertainty and to avoid as much as possible the worst

consequences. In conclusion, we want to locate facilities to enable synchronization mechanism, so to provide a good trade-off

between locating capacities that remain unused and the risk of leftovers.

3 PROBLEM DEFINITION AND MATHEMATICAL MODELS

This section is dedicated to the formal definition of the TLAP. We propose a two-stage Stochastic Programming formulation

for the problem in Section 3.1 and its deterministic equivalent version in Section 3.2.

Let us consider the following sets

• I: set of origins;

• J: set of destinations;

• K: set of potential transshipment locations;

• T: set of periods representing the optimization horizon (say, a week); and the following parameters

• pi: the flow of freight supplied by origin i∈ I;

• qj: the demand required by destination j∈ J;

• f k: fixed cost (e.g., contract cost) of using a facility k∈K;

• ht
k: utilization cost to use a facility k∈K in a time period t∈T;

• cijk: the unitary cost to use an external carrier to ship a freight unit from origin i∈ I to destination j∈ J via transshipment

location k∈K;

• Ck: maximum deterministic capacity of a facility k∈K;
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FIGURE 1 An example of the network underlying our problem. Each origin, transshipment facility, and destination is accompanied by its supply, capacity,

and demand, respectively

• vijk(𝜉) = uijk + 𝜃(𝜉): stochastic utility of a unit of freight shipped from origin i∈ I to destination j∈ J via transshipment

location k∈K, subject to a random variable 𝜉. Without loss of generality, we consider such utility made by a deterministic

part uijk and a fluctuation 𝜃(𝜉);

• Ĉt
k(𝜉) ≥ 0: loss of capacity that reduce the maximum capacity of a certain facility k∈K in a specific period t∈T , subject

to a random variable 𝜉. The capacity fluctuations implicitly model the freight leftover in a facility because of possible

nonsynchronization or handling delays in previous periods.

Then, our stochastic multi-period TLAP aims at finding a facility location and flow allocation plan that maximizes the total

net transportation utility, given by the total shipping utility minus the total contract and handling costs of the located facilities,

subject to capacity constraints. Without loss of generality, we will assume throughout the paper that the transportation system

is balanced in terms of supply and demand, that is,
∑

i∈ Ipi =
∑

j∈ Jqj (standard methods for balancing a network can be found

in [1]). An exemplification of the network underlying our problem is shown in Figure 1, where two origins, three transshipment

facilities, and four destinations are considered.

3.1 Two-stage SP formulation
In this section, we provide a two-stage SP formulation of the problem. Readers are referred to Birge and Louveaux [4] and King

and Wallace [18] for an overview of this modeling paradigm. According to a realistic decision-making process, the first stage

is about deciding which facilities should be used (strategic planning), while the second-stage recourse actions are about how

to manage the flows at the transshipment hubs (tactical planning). Moreover, to always maintain the feasibility of the problem

concerning the supply/demand constraints, the transportation company is also allowed to pay for an external cost to ship the

freight.

Let us define the following variables:

• xk: first-stage boolean variables taking value 1 if facility k∈K is used for transshipment in any period, and 0 otherwise;

• yt
k: first-stage boolean variables taking the value 1 if facility k∈K is used for a transshipment in time period t∈T , and 0

otherwise;

• zt
ijk: second-stage continuous variables representing the freight from origin i∈ I to destination j∈ J transshipped via

facility k∈K in time period t∈T;

• wt
ijk: second-stage continuous variables, representing the freight shipped from origin i∈ I to destination j∈ J transshipped

via facility k∈K in time period t∈T by an external transportation company.

Then, our stochastic multi-period TLAP can be modeled as follows

max
x,y

E[Q(y, 𝜉)] −
∑
k∈K

fkxk −
∑
k∈K

∑
t∈T

ht
kyt

k (1)

subject to

yt
k ≤ xk, k ∈ K, t ∈ T (2)

xk ∈ {0, 1}, k ∈ K (3)

yt
k ∈ {0, 1}, k ∈ K, t ∈ T (4)
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where E[Q(y, 𝜉)] represents the expected total shipping utility over the whole time horizon, depending on the first-stage variables

y and the random variable 𝜉.

Constraints (2) states that a facility is used only if a transshipment is done in at least one of the time period. Constraints (3) and

(4) are binary conditions on the variables. The objective function (1) expresses the maximization of the total net transportation

utility given by the expected total shipping utility minus the total contract and handling costs of the located facilities. The

function Q(y, 𝜉) corresponds to the objective function value of the following second-stage optimization problem:

Q(y, 𝜉) ≔ max
z,w

∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

[vijk(𝜉) (zt
ijk − wt

ijk) − cijkwt
ijk] (5)

subject to ∑
j∈J

∑
t∈T

∑
k∈K

zt
ijk = pi, i ∈ I (6)

∑
i∈I

∑
t∈T

∑
k∈K

zt
ijk = qj, j ∈ J (7)

∑
i∈I

∑
j∈J

(zt
ijk − wt

ijk) ≤ [Ck − Ĉt
k(𝜉)]yt

k, k ∈ K, t ∈ T (8)

∑
i∈I

∑
j∈J

zt
ijk ≤ Ckyt

k, k ∈ K, t ∈ T (9)

wt
ijk ≤ zt

ijk, i ∈ I, j ∈ J, k ∈ K, t ∈ T (10)

zt
ijk,wt

ijk ≥ 0, i ∈ I, j ∈ J, k ∈ K, t ∈ T . (11)

The objective function (5) aims at maximizing the total shipping utility given by the freight correctly transshipped at the

facilities over the time horizon minus the cost to use external shipments. Constraints (6) and (7) ensure that supplies in all origins

are collected and that all demands in all destinations are satisfied, respectively. Constraints (8) ensure that, in each period and

for each located facility, freight flow does not exceed the available capacity. Constraints (9) ensure that, in each period, flows

pass only through the facility that we decided to use. Constraints (10) ensure that the external shipments (i.e., flows leftovers)

never exceed the total freight. Finally, constraints (11) are nonnegative conditions on variables.

3.2 Deterministic equivalent problem
Resorting to the solution of a deterministic equivalent problem (DEP) is, in most cases, the only way to duly approximate SP

models (see [35]). Therefore, instead of explicitly considering the stochastic variable 𝜉, its probability distribution is discretized

in a finite number of scenarios. Hence, let us define:

• S: set of scenarios representing the possible realization of the uncertainty;

• 𝜋s: probability of a scenario s∈ S to occur (note that such probabilities are derived so to ensure the standard axiom∑
s∈ S𝜋

s = 1).

The above discretization makes the second-stage variables as well as the stochastic parameters dependent on the scenarios.

Hence, our DEP is as follows

max
∑
s∈S

𝜋s
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

[vs
ijk(zts

ijk − wts
ijk) − cijkwts

ijk] −
∑
k∈K

fkxk −
∑
k∈K

∑
t∈T

ht
kyt

k (12)

subject to

yt
k ≤ xk, k ∈ K, t ∈ T (13)∑

j∈J

∑
t∈T

∑
k∈K

zts
ijk = pi, i ∈ I, s ∈ S (14)

∑
i∈I

∑
t∈T

∑
k∈K

zts
ijk = qj, j ∈ J, s ∈ S (15)

∑
i∈I

∑
j∈J

(zts
ijk − wts

ijk) ≤ (Ck − Ĉts
k )yt

k, k ∈ K, t ∈ T , s ∈ S (16)

∑
i∈I

∑
j∈J

zts
ijk ≤ Ckyt

k, k ∈ K, t ∈ T , s ∈ S (17)
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wts
ijk ≤ zts

ijk, i ∈ I, j ∈ J, k ∈ K, t ∈ T , s ∈ S (18)

xk ∈ {0, 1}, k ∈ K (19)

yt
k ∈ {0, 1}, k ∈ K, t ∈ T (20)

zts
ijk,wts

ijk ≥ 0, i ∈ I, j ∈ J, k ∈ K, t ∈ T , s ∈ S (21)

where zts
ijk, wts

ijk, vs
ijk, and Ĉts

k have the same meaning of zt
ijk, wt

ijk, vijk(𝜉), and Ĉt
k(𝜉) for a particular scenario s∈ S.

The constraints (13)–(21) correspond to the constraints of the stochastic model (2)–(4) and (6)–(11) exploded by scenarios

when depending by stochastic parameters. The objective function (12) maximizes the expected value over all possible real-

izations of the scenarios of the total net transportation utility given by the total shipping utility minus the total contract and

handling costs of the located facilities.

Note that, given the discretization in scenarios, we can calculate the expected value in the objective function as a linear

expression. Hence, our DEP belongs to the class of mixed-integer linear problems (MILP), which are, in general, difficult to

solve for real-life instances. Moreover, the complexity of the problem also grows with the cardinality of S, namely the number

of scenarios used to discretize the probability distributions of the random variables.

4 IMPACT OF THE UNCERTAINTY

In this section, we want to analyze the economic impact of explicitly consider the uncertainty in our multiperiod TLAP instead

of using classical deterministic estimators (such as the expected value) for approximating the stochastic parameters. Since our

problem incorporates two main sources of uncertainty (transshipment capacity and handling utility), we also assess the impact of

each source separately. Moreover, we consider some properties of the solutions obtained by the deterministic estimation to derive

useful algorithmic insights for the efficient solution of the stochastic problem. In Section 4.1, we describe how deterministic

instances are generated and stochastic parameters are modeled. In Section 4.2, we present the results of the stability analysis,

which helped us to define the number of scenarios needed to calculate the SP indicators presented in Section 4.3.

4.1 Instances generation
To be consistent with the literature, we adapt our generation procedure from Tadei et al. [33], in which a similar problem is

studied. However, we propose some modifications to take into account the multi-periodic structure of the problem.

For each instance, the representative parameters are generated as follows (we will use the notation  [a, b] to represent a

Uniform distribution in the range [a, b])

• the flow supply pi, i∈ I, is drawn from  [900|T|1000,T];
• the flow demand qj, j∈ J, is drawn from  [0.5q, q], where q ≔

∑
i∈Ipi|J| . Note that, in order to guarantee a balanced system,

the demand of the last destination is adjusted afterward;

• the maximum deterministic capacity Ck, k∈K is drawn from different distribution ranges to create three different types

of facilities (small-, medium-, and large-sized). For each size, about
1

3
|K| facilities are generated. The distributions used

for small-, medium-, and large-sized facilities are  [4C, 8C],  [8C, 12C], and  [12C, 16C], respectively, where

C ≔

∑
j∈Jqj

|K||T| ;

• the deterministic part uijk of the utility, i∈ I, j∈ J, k∈K, is drawn from  [1, 10];
• the contract cost f k, k∈K, and the handling cost ht

k, k∈K, t∈T , are equal to
0.3 Ck

∑
i∈I

∑
j∈J

∑
k∈K uijk

|I||J||K| ;

• the unitary cost cijk of using an external transportation company, i∈ I, j∈ J, k∈K, is equal to 1.3
(

uk + uijk + 2fk
Ck

)
, where

uk is the average utility for each facility k∈K, that is uk ≔

∑
i∈I

∑
j∈Juijk

|I||J| . Note that such a generation avoids pathological

situations in which it would be more convenient to use an external carrier instead of the planned transportation services.

Given any deterministic instance generated as above, we derive the data dependent on each scenario s∈ S as follows

• the realized utility vs
ijk ≔ uijk + 𝜃s for each i∈ I, j∈ J, k∈K where 𝜃s is drawn from a Gumbel distribution having a

location parameter 𝜇 = uk and a scale parameter 𝛽 = 0.32 uk truncated in the range [1, 20].

• the realized loss of capacity Ĉts
k , for each k∈K, t∈T , is drawn from a Normal distribution having a mean value 𝜇 = 0.3Ck

and a standard deviation 𝜎 = 2Ck truncated in the range [0, Ck]. Basically, we are simulating that, on average, the whole
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FIGURE 2 Percentage ratio between the standard deviation and the mean of the RP of 10 instances (corresponding to combinations |I|-|J|-|K|-|T|), over 10

random generations of the stochastic parameters [Color figure can be viewed at wileyonlinelibrary.com]

capacity of the facility will not be available and the probability of having almost all the capacity is higher than having no

space at all.

Eventually, we decided to consider 30 different and reasonable combinations of number of origins |I | ∈ {2,3,5}, number of

destinations |J | ∈ {15,20,25,30,40}, number of transshipment facilities |K | ∈ {10,12,15,17,20}, and periods |T | ∈ {7,14,31}.

4.2 Stability analysis
We performed an in-sample stability analysis on instances corresponding to 10 out of the 30 combinations of |I|, |J|, |K|, and |T|
described above. For each combination, uniquely defined by the label |I|–|J|–|K|–|T|, we calculated the value of the recourse

problem (RP) by solving the DEP (see Section 3.2). Then we computed the percentage ratio between the standard deviation and

the mean of the RP over 10 random generations of the stochastic parameters, that is, using different random seeds (see, e.g.,

[22]). We repeated this calculation for increasing number of scenarios, that is, for |S | ∈ {5,10,25,50,75,100}.

The RP solutions are obtained by applying the CPLEX solver on the plain DEP formulation, with a MIP gap of 0.5% [15].

The results of this analysis are presented in Figure 2 and can help us to determine the number of scenarios needed to have RP
solutions stable enough. To make this decision, we must consider that we used a MIP gap of 0.5% that can cause small errors in

calculating the ratios. So, even if 50 and 75 scenarios already show good stability (under 1%), we preferred to use 100 scenarios

to ensure stability that guarantees a ratio under 0.5%.

4.3 Stochastic programming indicators
In this section, we present the analysis of several SP indicators for three different versions of our stochastic problem: the first

one considering both stochastic utilities and losses of capacity (TLAP-vĈ), the second one considering only stochastic utilities

(TLAP-v), and the last one considering only stochastic losses of capacity (TLAP-Ĉ). Before discussing the results, we briefly

describe the indicators computed.

The value of the stochastic solution (VSS), introduced by Birge [3], is an SP indicator largely used in the analysis of stochas-

tic models, representing the value of studying the stochastic model versus the deterministic one. The VSS is calculated as

VSS≔RP−EEV , where the expectation of the expected value problem (EEV) is computed by solving the DEP in which the

first-stage variables are fixed to the values given by the so-called expected value problem (EV) solution, that is, the solution to

the problem in which their mean values simply substitute random variables. In particular, we will calculate a percentage VSS
with respect to the RP solution, that is, VSS % ≔ 100 (RP−EEV) / RP.

Another largely studied SP indicator, presented by Dempster [7], is the expected value of the perfect information (EVPI),

representing the maximum value of profitable investments to forecast uncertainties. The EVPI is calculated as EVPI ≔WS−RP,

where the wait-and-see (WS) solution value corresponds to the mean of the DEP solved separately for each scenario. In particular,

we will calculate a percentage EVPI with respect to the RP solution, that is, EVPI % = 100 (WS−RP) / RP.

We also present the loss of using the skeleton solution (LUSS) and the loss of upgrading the deterministic solution (LUDS),

presented Maggioni and Wallace [20]. These indicators are not used frequently in the literature, but they can provide additional

insights about the EV solution and the characteristics of the problem. The LUSS is calculated as LUSS≔RP−ESSV , where the

expected skeleton solution value (ESSV) is computed by solving the DEP in which the first-stage variables are fixed to the values

http://wileyonlinelibrary.com
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given by the EV solution only if they take the value of their lower bound. Instead, the LUDS is calculated as LUDS≔RP−EIV ,

where the expected input value (EIV) is computed by solving the DEP in which the lower bounds of the first-stage variables are

fixed to the values given by the EV solution. In particular, we will calculate a percentage LUSS and LUDS with respect to the

RP solution, that is, LUSS % = 100 (RP−ESSV) / RP and LUDS % = 100 (RP−EIV) / RP. Note that, since all our first-stage

variables are binary, the ESSV can be calculated by excluding all the facilities not selected in the EV . In contrast, the EIV can

be calculated by ensuring the utilization of all the facilities selected in the EV solution.

Table 1 presents all the indicators, for all the TLAP variants, calculated for 30 instances corresponding to all the consid-

ered combinations of parameters |I|, |J|, |K|, and |T|. First, we analyze the results concerning the TLAP-vĈ, in which the

two stochastic parameters are studied together. The high values of VSS% show that the deterministic solution does not per-

form well, whereas explicitly considering the uncertainty can lead to an increase on revenues. In fact, the EV solution tends

to be more conservative by using the least number of facilities to ship all the demand, thus causing a great amount of left-

overs when stochastic losses of capacity are considered. Instead, the values of EVPI% clearly show that we could increase

a lot our profit if we knew the exact realization of random parameters in the future. Then, we can notice that LUSS% and

VSS% are always the same, which implies that EEV = ESSV . To avoid recourse costs, the ESSV solution selects the same

facilities of the EV solution, since forced not to open new facilities. Finally, even if the EV solution does not perform well,

LUDS% tends to 0, indicating that the deterministic solution can be used as a good lower bound for the stochastic one. The

EIV solution can open new facilities besides those already selected in the EV solution to find the right balance between

facility cost and the risk of having leftovers. Note that the behavior of LUSS and LUDS remains the same for TLAP-v and

TLAP-Ĉ.

Concerning TLAP-v, we can see that the percentage of the VSS tends to 0, and this seems reasonable because leftovers have

a more significant negative impact on revenues. The recourse function adds costs if we are exceeding the available capacity.

Hence, by considering losses of capacity as deterministic parameters is sufficient to use the EEV results to avoid leftovers. This

implies that considering only the stochastic utilities does not bring significant economic benefits in comparison to the average

utilities. Moreover, we can see that also, LUDS and VSS are almost the same for all instances, indicating that the deterministic

solution cannot be upgraded. Since the EV solution already selected enough capacity, it does not seem convenient to open more

facilities, even if they have better utilities in a stochastic environment.

Instead, concerning TLAP-Ĉ, it results in clear that losses of capacity have a more significant impact on VSS. We can notice

how the VSS% for TLAP-Ĉ represents, on average, about 70% of the VSS% for the whole problem. The values of the EVPI% for

TLAP-v and TLAP-Ĉ are more or less half of the ones in TLAP-vĈ, showing that both stochastic parameters have an impact

on that indicator. The results for TLAP-vĈ are sort of a combination of the results for TLAP-vĈ and TLAP-vĈ. More precisely,

it seems that considering both the stochastic parameters together leads to indicators, which are always, on average, higher than

the sum of the relative indicators for the other two variants.

In conclusion, this analysis shows that the stochastic problem with both stochastic utilities and losses of capacity is the

most interesting to be studied and can bring to great economic benefits. Moreover, the analysis of LUDS showed that it is

possible, in some cases, to derive first-stage solutions very close to the optimal ones. Based on this insight, we will pro-

pose a variant of the PH algorithm firmly based on the EIV solution (see Section 6.2) in order to provide better lower

bounds.

5 PROGRESSIVE HEDGING-BASED HEURISTIC ALGORITHM

Given the complexity of the stochastic problem, CPLEX and other commercial solvers do not perform well in terms of com-

putational time to solve the DEP model, especially against large instances. Hence, we decided to develop a PH approach to

overcome this limit.

The basic PH algorithm has been introduced by Rockafellar and Wets [30]. It is based on the decomposition of the problem

by scenario, after having relaxed the nonanticipativity constraints, and on a subgradient method to converge to the first-stage

decision consensus. Variants of this algorithm have been used in recent studies with excellent results in terms of approximation

of the exact solution and computational time on various kinds of problems. For instance, the PH has been used to solve problems

regarding the social engagement paradigm [9], scheduling and planning in industry [25], suppliers selection [21], expansion

plans for electric vehicle charging station [17], and fixed-charge capacitated multicommodity network design [6]. Therefore,

we decided to implement a generic version of the PH and to propose some interesting variants to improve its performance in

several ways.

The section is organized as follows. In Section 5.1, we propose a decomposition of the problem, suitable to the PH algorithm.

Section 5.2 summarizes the general framework of the algorithm, while Section 5.3 discuss the initialization and updating of the

PH parameters.
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5.1 Scenario decomposition
To implement the PH approach we need to make our DEP decomposable by scenario.

First, we make the first-stage variables scenario dependent, that is, we will consider variables xs
k, k ∈ K, and yts

k , k ∈ K, t ∈ T ,

to represent the copy of xk and yt
k variables, respectively, for a specific scenario s∈ S. Then, the DEP can be rewritten as follows

max
∑
s∈S

𝜋s
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

[vs
ijk(zts

ijk − wts
ijk) − cijkwts

ijk] −
∑
k∈K

fkxs
k −

∑
k∈K

∑
t∈T

ht
kyts

k (22)

subject to

yts
k ≤ xs

k, k ∈ K, t ∈ T , s ∈ S (23)∑
j∈J

∑
t∈T

∑
k∈K

zts
ijk = pi, i ∈ I, s ∈ S (24)

∑
i∈I

∑
t∈T

∑
k∈K

zts
ijk = qj, j ∈ J, s ∈ S (25)

∑
i∈I

∑
j∈J

(zts
ijk − wts

ijk) ≤ (Ck − Ĉts
k )yts

k , k ∈ K, t ∈ T , s ∈ S (26)

∑
i∈I

∑
j∈J

zts
ijk ≤ Ckyts

k , k ∈ K, t ∈ T , s ∈ S (27)

wts
ijk ≤ zts

ijk, i ∈ I, j ∈ J, k ∈ K, t ∈ T , s ∈ S (28)

xs
k = xk, k ∈ K, s ∈ S (29)

yts
k = yt

k, k ∈ K, t ∈ T , s ∈ S (30)

xs
k ∈ {0, 1}, k ∈ K, s ∈ S (31)

yts
k ∈ {0, 1}, k ∈ K, t ∈ T , s ∈ S (32)

zts
ijk,wts

ijk ≥ 0, i ∈ I, j ∈ J, k ∈ K, t ∈ T , s ∈ S. (33)

To ensure that the copies of the first-stage variables take the same values in all scenarios, we introduced the so-called nonan-

ticipativity constraints (29) and (30), where xk ∈ {0, 1} are first-stage decisions on the selection of each facility k∈K, whereas

yt
k are first-stage decisions on the usage of each facility k∈K in any time period t∈T .

Second, we use an augmented Lagrangian technique to relax constraints (29) and (30), by introducing the free Lagrangian

multipliers 𝜆s
k and 𝜇ts

k and the penalty factors 𝜌1 ≥ 0 and 𝜌2 ≥ 0. Hence, the scenario-separable model for each scenario s∈ S can

be rewritten as follows

max
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

[vs
ijk(zts

ijk − wts
ijk) − cijkwts

ijk]+

−
∑
k∈K

xs
k

(
fk + λs

k +
𝜌1

2
− 𝜌1xk

)
+ xk

(
𝜌1

2
− λs

k

)
+

−
∑
k∈K

∑
t∈T

yts
k

(
ht

k + 𝜇ts
k + 𝜌2

2
− 𝜌2yt

k

)
+ yt

k

(
𝜌2

2
− 𝜇ts

k

)
(34)

subject to
yts

k ≤ xs
k, k ∈ K, t ∈ T (35)

∑
j∈J

∑
t∈T

∑
k∈K

zts
ijk = pi, i ∈ I (36)

∑
i∈I

∑
t∈T

∑
k∈K

zts
ijk = qj, j ∈ J (37)

∑
i∈I

∑
j∈J

(zts
ijk − wts

ijk) ≤
(
Ck − Ĉts

k
)
yts

k , k ∈ K, t ∈ T (38)∑
i∈I

∑
j∈J

zts
ijk ≤ Ckyts

k , k ∈ K, t ∈ T (39)

wts
ijk ≤ zts

ijk, i ∈ I, j ∈ J, k ∈ K, t ∈ T (40)

xs
k ∈ {0, 1}, k ∈ K (41)

yts
k ∈ {0, 1}, k ∈ K, t ∈ T (42)

zts
ijk,wts

ijk ≥ 0, i ∈ I, j ∈ J, k ∈ K, t ∈ T . (43)
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5.2 PH main framework
Our PH algorithm (see pseudocode in Algorithm 1) can be subdivided into three phases: initialization, consensus, and

finalization. In the description of the algorithm, we will use the symbol 𝜏 to indicate the iteration number.

In the initialization phase, we calculate the EV solution (Step 2), and the solution found is used to assign a value to xk and yt
k,

which represent the so-called temporary global solution (TGS). Then, we initialize the Lagrangian multipliers and the penalties

(Step 3). After the initialization phase, we move to the consensus phase (Steps 4–16), which can be executed for a maximum of

𝜏max iterations (Step 5). In each iteration, we solve all the scenario dependent subproblems (Steps 6–8), and we use the obtained

results to update the TGS (Step 9). Then, if the consensus is met (Step 10) we terminate the iterations (Step 11), otherwise,

we update the Lagrangian multipliers and penalties (Step 13). After the consensus phase, we move to the finalization phase, in

which we fix the first-stage variables that reached the consensus during the second phase, and we solve the simplified MILP

problem (Step 17).

Algorithm 1. PH algorithm

1: 𝜏 = 0

2: Solve the EV problem to find the initial xk and yt
k

3: Initialize all the Lagrangian multipliers and penalties (Section 5.3)

4: 𝜏 = 1

5: while 𝜏 ≤ 𝜏max do
6: for each scenario s∈ S do
7: Solve the corresponding sub-problem

8: end for
9: Update xk and yt

k
10: if full consensus is met then
11: break
12: else
13: Update the Lagrangian multipliers and penalties (Section 5.3)

14: end if
15: 𝜏 = 𝜏 + 1

16: end while
17: Fix the first-stage variables for which the consensus is met and solve the model

5.3 Initialize and update PH parameters
The PH parameters (x(𝜏)k , yt(𝜏)

k , 𝜆
s(𝜏)
k , 𝜇

ts(𝜏)
k , 𝜌

(𝜏)
1 , 𝜌

(𝜏)
2 ) must be initially set and then updated at each iteration 𝜏. The choice of such

parameters value can be used to tune the algorithm.

Initially (for 𝜏 = 0), we set the TGS by using the result values of the EV solution, hence x(0)k and yt(0)
k can be either 0 or 1. All

the Lagrangian multipliers start with a value equal to 0, more precisely 𝜆
s(0)
k = 0, k ∈ K, s ∈ S and 𝜇

ts(0)
k = 0, k ∈ K, t ∈ T , s ∈ S.

Finally, since the starting values for penalties 𝜌1 and 𝜌2 must be small and positive.

At the end of each iteration (𝜏 > 0) the parameters must be updates. First, we calculate the TGS to check the consensus by

using Equations (44) and (45):

x(𝜏)k =
∑
s∈S

𝜋sxs(𝜏)
k , k ∈ K (44)

yt(𝜏)
k =

∑
s∈S

𝜋syts(𝜏)
k , k ∈ K, t ∈ T . (45)

Then, we update the multipliers and the penalties by using Equations (46)–(49):

𝜆
s(𝜏)
k = 𝜆

s(𝜏−1)
k + 𝜌

(𝜏−1)
1 (xs(𝜏)

k − x(𝜏)k ), k ∈ K, s ∈ S (46)

𝜇
ts(𝜏)
k = 𝜇

ts(𝜏−1)
k + 𝜌

(𝜏−1)
2 (yts(𝜏)

k − yt(𝜏)
k ), k ∈ K, t ∈ T , s ∈ S (47)

𝜌
(𝜏)
1 = 𝛼1𝜌

(𝜏−1)
1 , k ∈ K, t ∈ T (48)

𝜌
(𝜏)
2 = 𝛼2𝜌

(𝜏−1)
2 , k ∈ K, t ∈ T (49)

where 𝛼1 and 𝛼2 are constant factors strictly greater than 1.
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6 PH VARIANTS AND PRIMAL HEURISTIC

In this section, we discuss two PH variants (Sections 6.1 and 6.2) and a primal LP-based heuristic (Section 6.3).

6.1 PH-Bounds
To improve the performance of the PH algorithm we implemented a variant named PH-Bounds (see Algorithm 2).

Algorithm 2. PH-Bounds algorithm

1: 𝜏 = 0

2: Solve the EV problem to find the initial xk and yt
k

3: Initialize all the Lagrangian multipliers and penalties (Section 5.3)

4: Initialize LB and UB

5: 𝜏 = 1

6: while 𝜏 ≤ 𝜏max do
7: for each scenario s∈ S do
8: Solve the corresponding sub-problem

9: end for
10: Update xk and yt

k
11: if full consensus is met then
12: break
13: else
14: Update the Lagrangian multipliers and penalties (Section 5.3)

15: Fix to 1 all x and y with x ≥ UB and y ≥ UB

16: Fix to 0 all x and y with x ≤ LB and y ≤ LB

17: Increase LB and decrease UB

18: end if
19: 𝜏 = 𝜏 + 1

20: end while
21: Fix the first-stage variables for which the consensus is met and solve the model

Compared to the classical PH presented in Section 5.2, PH-Bounds forces the consensus at each iteration by fixing to 0 or 1

those variables of TGS with a value outside a range defined by a specific upper and lower bound (UB and LB, respectively).

The rationale behind this variant of the algorithm is to simplify, iteration by iteration, the underlying model to solve. More

precisely, both bounds are initialized to a value representing a percentage of the consensus (Step 4). During the iterations, every

time the consensus is evaluated and is not reached, we fix to 1 the variables whose value is not less than UB (Step 15) and to

0 the ones that do not exceed LB (Step 16). To speed up the variables fixing process, LB is increased, and UB is decreased at

each iteration (Step 17).

6.2 PH-LUDS
Since in Section 4.3 we recognized that the values of LUDS tend to the perfect upgradability, we decided to implement a PH

variant (PH-LUDS) based on the concept of expected input value (EIV). In practice, we initialize the TGS with the EIV solution.

Using the EIV solution ensures to start from a solution with a good approximation, especially in the case that the termination

criterion of the PH leads to solutions far from the optimal.

6.3 Primal LP-based heuristic
To achieve intermediate feasible solutions during the PH, and not just at the very end, we implemented an LP-based heuristic

that is executed at the end of each iteration (i.e., after Step 14 of Algorithm 1) if the consensus is not met.

The primal heuristic works as follows. First, we sort the variables xk and yt
k in decreasing order of value currently shown in

the TGS. Then, we scan the ordered list of xk and fix a variable to 1 if its value is greater than or equal to 0.5 or until we do not

obtain at least the same number of facilities opened (
∑

k∈Kxk) as in the EV solution (
∑

k∈Kx(EV)
k ). We execute a similar fixing

procedure for yt
k, but we will ensure that, for a certain k∈K, a variable yt

k, t∈ T , can be fixed to 1 only if the corresponding
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xk has been already fixed to 1. Therefore, we scan the ordered list of yt
k and fix a variable to 1 if its value is greater than or

equal to 0.5 or until we do not obtain a number of facilities opened in any period (
∑

k∈K
∑

t∈Tyt
k) that is at least equal to that

in the EIV solution (
∑

k∈K
∑

t∈Tyt(EIV)
k ) for the PH-LUDS variant, whereas is at least the 20% more than that in the EV solution

(
∑

k∈K
∑

t∈Tyt(EV)
k ) in all the other PH variants. The last choice depends on the fact that, in general, the EV solution tends to open

fewer facilities and, particularly, in fewer periods with respect to the RP solution. In contrast, the EIV solution tends to select a

correct number of facilities. Finally, we fix to 0 all the first-stage variables that have not been fixed by the above procedure and

simply solve the remaining LP problem.

Note that this heuristic has a low cost in terms of computational time since we fix all the binary variables and thus solve an

LP problem. Therefore, we have implemented this improvement in all the PH variants presented.

7 COMPUTATIONAL EXPERIMENTS

We test the computational performance of the different PH variants by solving five different instances (generated with ran-

dom seeds) for all the 30 combinations of some origins |I|, destinations |J|, facilities |K|, and periods |T|, for a total of 150

instances. All the tests have been done on an Intel(R) Core(TM) i7-5930K CPU@3.50 GHz machine with 64 GB RAM and

running Windows 7 64-bit operating system. The algorithms have been implemented in Java. We also implemented a parallel

execution to solve the decomposed problems in the consensus phase to speed up even further the computation performance of our

heuristics.

We compare the results of the classical PH and its two variants (PH-Bounds and PH-LUDS) with the CPLEX solver

v12.9, by setting a time limit of 3 h. CPLEX is also used as a black-box solver within our PH, set with a Benders’ strategy

resolution and a MIP gap of 1%. Instead, during the consensus phase, the MIP gap is set to 5% to speed up the solu-

tion time of each single-scenario problem. Moreover, to effectively implement the PH algorithms, several parameters must

be calibrated. Such calibration has been done through an empirical evaluation, that is, by observing the results provided

by the approach against different parameter configurations on a representative subset of instances. Eventually, we decided

to set:

• 𝜏max = 15 (see Section 5.2);

• 𝜌
(0)
1 = 0.005, 𝜌

(0)
2 = 0.01, 𝛼1 = 1.5, and 𝛼2 = 3 (see Section 5.3). We decided to have smaller penalties for the parameters

related to x variables, since excluding a facility makes impossible its utilization for any time period;

• starting value of UB and LB equal to 1 and 0, respectively. Moreover, at each iteration 𝜏, UB(𝜏) = UB(𝜏 − 1) − 0.02 and

LB(𝜏) = LB(𝜏 − 1) + 0.02 (see Section 6.1).

In Table 2, we present the results regarding the accuracy of CPLEX and our methods. In particular, the first four columns

denote the instance, column five reports the average percentage MIP gap achieved by CPLEX. In comparison, the remaining

three columns present the percentage deviation (Δ%avg) of each specific PH solution with respect to the CPLEX one. A positive

deviation indicates that CPLEX performs better, whereas a negative value indicates that the PH achieves a better solution. Note

that the lines of the table have been divided into two groups. We have noticed that in some instances, the MIP gap is not too

large (less than 10%), indicating that CPLEX can find solutions close to the optimum (which provide reasonable benchmarks

for the PH variants). Instead, for other instances, MIP gaps tend to increase a lot to enormous values, thus making the CPLEX

solver not suitable anymore. This division allows us to better describe the relative statistics.

In general, all the three heuristics have a good approximation with respect to the CPLEX solution. First, it is clear that the

PH variants solutions are mostly better than CPLEX ones for the second part of the table, showing an average Δ%avg about

−400% with some extreme cases where the deviation are less than −1000%. However, it is more interesting to focus on those

results in which CPLEX provides reasonable benchmarks (first part of the table). Here, we can see that our PH variants have

deviations often close to 0 and, in several cases, even below. In particular, on average, the classical PH method achieves a

deviation of about 0.6%, PH-Bounds performs slightly worse with a deviation of about 0.9%, whereas PH-LUDS outperforms

all the methods providing a deviation of about −0.2%. So, the most precise method results to be the PH-LUDS, which takes

advantage of using the upgradability of the deterministic solution. Note that this variant, except for the combination 2-15–10-7,

always shows a Δ%avg below 1%, with a best-case of about −5%. For the other two PH variants, the worst-case combination

shows a Δ%avg of about 2.8%.

In Table 3, instead, we compare the computational times of the methods. In particular, the first four columns denote the

instance, while the remaining columns report, for CPLEX and the different PH variants, the average computational time (tavg)

and the average time-to-best (ttbavg), that is, the time to reach the best solution.

From the table, we can see that PH-Bounds is (as expected) the fastest method, both in terms of total execution time and the

time-to-best. In particular, PH-Bounds needs, on average, half the time with respect to the other PH variants to be completed
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TABLE 2 Accuracy of the CPLEX solver versus the PH variants over 5 instances for 30 combinations of |I|, |J|,|K|, and |T|
Instance CPLEX PH PH-Bounds PH-LUDS

|I| |J| |K| |T| MIP gap%avg 𝚫%avg 𝚫%avg 𝚫%avg

2 15 10 7 0,63 2,37 2,70 1,06

2 15 12 14 1,61 1,95 2,24 0,47

2 15 10 14 2,31 1,08 2,01 0,51

2 15 10 31 1,35 0,51 1,38 0,21

2 15 12 7 0,85 2,83 2,89 0,81

2 15 15 7 1,09 2,13 1,47 0,48

2 20 10 7 2,71 1,04 1,50 0,03

2 20 10 14 3,75 -0,07 0,76 -0,49

2 20 12 7 1,55 1,48 2,29 0,53

2 20 15 7 3,00 0,74 0,88 0,24

2 20 12 14 7,09 −4,16 −3,85 −5,06

2 25 12 7 2,44 1,70 1,60 0,66

2 25 15 7 3,60 1,35 1,05 0,13

2 25 17 7 3,39 1,32 1,40 −0,21

3 15 10 7 1,19 1,08 1,85 0,45

3 15 12 7 2,93 0,15 1,16 0,03

3 15 15 7 2,54 1,44 1,00 0,31

3 20 10 7 3,86 0,31 0,76 0,06

3 20 12 7 2,84 1,01 1,36 0,50

3 25 15 7 3,05 0,22 0,27 −0,03

3 40 20 7 4,13 −0,60 −0,81 −1,17

5 25 17 7 7,12 −4,52 −3,90 −4,41

Average 2,86 0,61 0,91 −0,22

Best 0,63 −4,52 −3,90 −5,06

Worst 7,12 2,83 2,89 1,06

2 20 10 31 120,56 −115,28 −114,27 −116,26

2 25 15 31 99 052,14 −185,46 −183,28 −186,71

3 30 12 31 357 932,73 −447,76 −441,46 −449,45

3 30 20 7 860,54 −811,75 −814,08 −829,59

5 15 10 14 75,35 −72,41 −70,91 −72,41

5 30 15 7 150,09 −140,34 −137,07 −140,52

5 30 17 7 182,39 −173,15 −172,95 −174,56

5 40 17 7 242 291,95 −1264,36 −1269,13 −1274,79

Average 87 583,22 −401,31 −400,39 −405,54

Best 75,35 −1264,36 −1269,13 −1274,79

Worst 357 932,73 −72,41 −70,91 −72,41

without reducing too much the accuracy. For CPLEX, 3 h is often not enough to reach the optimum or even a good solution,

making the solver not competitive in terms of computational time respect to the PH heuristics. By comparing the tavg of the

classical PH, PH-Bounds, and PH-LUDS with the CPLEX one, we can see that our heuristics can find good solutions in 13%,

6%, and 16% of the CPLEX execution time. The best tavg among all the instances for the PH, PH-Bounds, and PH-LUDS are,

respectively, 182, 128, and 221 s, whereas the best ttbavg are 114, 62, and 63 s. PH-LUDS requires additional computational

effort to compute the EIV solution.

In general, we can say that the three PH variants have excellent performance in terms of both approximation and com-

putational time. Some additional information about the heuristics can be found in Table A1 (see Appendix A) where, for

the different PH variants, the best and the worst values of the percentage deviation and of the computational time are

given. Note that our PH methods could be further improved by developing a tailored and more efficient algorithm to solve

the single-scenario problems during the consensus phase. We have noticed that using CPLEX as an internal solver is not

very efficient. To speed up the process, we had to set a MIP gap of 5%, with bad consequences on the quality of the

solutions.
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TABLE 3 Efficiency of the CPLEX solver versus the PH variants over 5 instances for 30 combinations of |I|, |J|, |K|, and |T|.
Computational times are in seconds

Instance CPLEX PH PH-Bounds PH-LUDS

|I| |J| |K| |T| tavg ttbavg tavg ttbavg tavg ttbavg tavg ttbavg

2 15 10 7 7165 5901 182 146 128 62 221 89

2 15 12 14 10 800 8964 309 196 204 124 417 138

2 15 10 14 10 800 9962 420 398 281 175 499 87

2 15 10 31 10 800 10 510 573 573 367 235 702 473

2 15 12 7 8296 6613 255 146 162 98 311 63

2 15 15 7 9649 9053 275 114 197 147 370 98

2 20 10 7 10 800 9549 355 222 196 109 410 63

2 20 10 14 10 800 10 800 375 308 231 169 519 294

2 20 10 31 10 800 10 800 1567 1458 956 778 1944 952

2 20 12 7 9279 7443 375 211 218 113 470 159

2 20 15 7 10 800 10 747 230 132 168 105 308 108

2 20 12 14 10 800 10 012 836 313 480 228 1060 243

2 25 12 7 10 800 9488 418 180 287 215 515 142

2 25 15 7 10 800 10 409 553 443 362 232 676 154

2 25 17 7 10 800 10 476 603 265 404 204 746 175

3 15 10 7 10 020 8944 337 277 193 141 424 173

3 15 12 7 10 800 9635 424 335 263 174 585 364

3 15 15 7 10 800 9503 432 211 302 172 598 216

3 20 10 7 10 800 8828 663 387 310 228 786 489

3 20 12 7 10 800 9580 550 339 355 217 701 213

3 25 15 7 10 800 9040 1091 770 597 203 1344 397

3 25 15 31 10 800 10 559 5007 4001 2900 1776 6236 2450

3 30 12 31 10 800 10 800 4705 4705 2594 1607 6294 3804

3 30 20 7 10 800 8167 1650 824 883 613 1951 584

3 40 20 7 10 800 9679 1914 770 1081 508 2289 627

5 15 10 14 10 800 8808 1521 1521 628 458 1951 1951

5 25 17 7 10 800 9880 2110 981 1024 519 2662 1209

5 30 15 7 10 800 10 123 3521 3521 1209 786 4128 2801

5 30 17 7 10 800 10 415 3897 3309 1504 1012 4473 1532

5 40 17 7 10 800 10 800 6207 5455 2231 1905 7345 2610

Average 10 480 9516 1378 1084 691 444 1698 755

Best 7165 5901 182 114 128 62 221 63

Worst 10 800 10 800 6207 5455 2900 1905 7345 3804

8 CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper, we presented a TLAP by considering a synchromodal network in which flows are synchronized at intermedi-

ate facilities under the uncertainty of transshipment capacities and utilities. The SP indicators studied in the paper pointed out

that optimizing a stochastic version of the problem provides better revenues by avoiding leftovers as much as possible. The

deterministic solution was always underestimating the number of facilities needed to reduce the impact of the worst scenario

realizations, that is, those with the highest losses of capacity. Given the computational burden of solving the stochastic problem

by commercial solvers, we developed three Progressive Hedging-based heuristic methods. Since studying the LUDS we discov-

ered that a good subset of facilities could be pre-selected by solving the deterministic problem. We used this insight to develop

a PH variant (PH-LUDS) and also to implement a primal LP-based heuristic. For the future, it will be interesting to study how

other sources of uncertainty (e.g., demand and costs), distributions, and constraints impact on the problem. For example, we

would like to understand if the almost perfect upgradability of the deterministic solution is related to the problem itself or this

stochastic setting only.

Regarding computational experiments, the PH methods perform far better than CPLEX for hard-to-solve instances in much

lower computational time, but also provide solutions very close to the CPLEX one for the other instances. The limit of the

PH methods mainly concerns the solution time of the single-scenario problem during the consensus phase, which sometimes
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leads to high total computational time. Implementing a faster approach, exact or even heuristic, to solve the single-scenario

problem could be of primary importance to improve the PH performance further. Lastly, the PH-Bounds showed that strategies

for fixing variables could speed up the algorithm with a small loss of accuracy. Hence, exploring new criteria to perform the

fixing procedure might be of interest for future work.
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APPENDIX A: ADDITIONAL PH RESULTS
TABLE A1 Additional results for the PH variants

Instance PH PH-Bounds PH-LUDS

|I| |J| |K| |T| tbest tworst ttbbest ttbworst 𝚫%best 𝚫%worst tbest tworst ttbbest ttbworst 𝚫%best 𝚫%worst tbest tworst ttbbest ttbworst 𝚫%best 𝚫%worst

2 15 10 7 128 240 39 240 0.83 3.39 89 156 9 106 1.08 4.32 162 276 22 216 0.37 1.91

2 15 12 14 278 340 71 317 1.31 2.59 194 212 84 183 1.12 3.26 379 467 85 222 0.19 0.75

2 15 10 14 262 509 155 509 −0.55 1.99 184 354 59 266 0.60 2.85 354 613 61 105 −0.58 1.20

2 15 10 31 462 673 462 673 −0.74 1.05 348 411 42 328 0.04 3.05 578 787 114 787 −1.32 1.05

2 15 12 7 148 323 12 323 1.18 4.53 102 194 42 194 0.42 5.71 183 374 47 102 0.40 1.22

2 15 15 7 163 341 14 307 1.11 3.07 114 232 54 232 0.54 2.48 195 461 38 138 0.09 0.98

2 20 10 7 210 559 39 559 0.00 1.84 122 225 54 159 −0.51 3.15 265 634 48 88 −0.63 0.87

2 20 10 14 339 400 48 400 −0.83 1.05 211 250 126 211 −0.09 2.31 508 540 128 511 −1.67 0.35

2 20 10 31 987 1931 987 1931 −458.93 1.08 624 1209 495 1072 −459.58 2.03 1212 2650 225 2650 −463.07 1.08

2 20 12 7 219 456 29 441 0.32 2.15 158 283 30 283 0.31 4.09 279 551 74 358 0.03 1.01

2 20 15 7 212 240 50 212 0.29 1.08 159 182 37 148 0.35 1.31 267 374 71 204 −0.55 0.88

2 20 12 14 503 1438 41 717 −23.93 1.04 329 633 91 378 −23.93 1.55 641 1806 144 378 −25.63 0.26

2 25 12 7 251 530 33 394 1.31 2.60 194 352 172 282 0.70 2.29 319 596 66 297 0.30 1.27

2 25 15 7 284 720 75 671 0.03 3.50 216 490 121 320 0.13 2.14 423 847 101 179 −0.89 1.27

2 25 17 7 369 862 53 440 0.41 2.33 255 560 66 326 0.51 2.37 419 1074 69 267 −0.59 0.43

3 15 10 7 184 428 21 428 −0.37 1.96 127 250 22 195 −0.37 3.76 232 535 45 535 −0.71 1.21

3 15 12 7 209 642 35 642 −0.92 0.88 154 354 35 354 0.52 1.58 306 911 70 911 −0.92 0.71

3 15 15 7 270 562 46 488 −0.29 3.79 202 386 60 291 −0.28 2.85 365 776 145 363 −0.50 1.06

3 20 10 7 358 1135 56 1135 −2.34 1.65 204 402 58 402 −0.22 1.55 454 1324 102 1324 −2.34 1.23

3 20 12 7 362 797 34 797 0.41 1.45 255 465 109 465 0.49 2.96 467 1033 126 323 0.02 0.99

3 25 15 7 637 1388 76 1388 −0.44 0.98 377 741 46 478 −0.90 0.98 883 1728 244 571 −0.68 0.98

3 25 15 31 3665 5998 894 5559 −309.37 0.02 2114 3717 471 2892 −303.55 1.29 5075 7444 1502 6062 −309.51 0.02

3 30 12 31 3766 6958 3766 6958 −674.28 −319.46 2138 3768 81 2539 −662.76 −314.85 4636 9238 989 9238 −674.28 −320.81

3 30 20 7 1202 2920 146 1452 −3005.09 1.11 718 1332 134 1044 −3005.09 −0.52 1372 2997 454 691 −3066.15 −1.12

3 40 20 7 1366 3044 195 1724 −4.04 1.41 902 1280 244 866 −4.04 0.93 1849 3199 336 1108 −4.89 0.51

5 15 10 14 786 2065 786 2065 −351.90 0.58 510 861 192 861 −347.99 1.13 1169 2477 1169 2477 −351.90 0.58

5 25 17 7 1633 2901 112 2050 −22.76 0.74 788 1320 108 1087 −21.51 1.20 2051 3434 454 3038 −22.97 0.78

5 30 15 7 2892 4275 2892 4275 −564.96 −0.44 980 1420 139 1196 −553.91 1.02 3288 4939 513 4939 −565.56 −0.44

5 30 17 7 3111 4997 435 4997 −823.15 1.44 1309 1796 133 1796 −822.81 1.24 3626 5596 562 3626 −826.37 −0.05

5 40 17 7 4332 6998 571 6998 −2490.95 −8.73 1991 2464 1114 2464 −2502.01 −8.78 5124 8415 817 8340 −2516.83 −9.02

Best 128 240 12 212 −3005.09 −319.46 89 156 9 106 −3005.09 −314.85 162 276 22 88 −3066.15 −320.81

Worst 4332 6998 3766 6998 1.31 4.53 2138 3768 1114 2892 1.12 5.71 5124 9238 1502 9238 0.40 1.91
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