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Summary  

Gait analysis is the study of human locomotion and is widely used to assess 

normal and pathological functions of human walking. Particularly, the instrumented 

gait analysis allows for collecting signals from several sensors (i.e. basographic and 

electromyographic sensors) placed on the subject body, and to obtain a fully and 

completely operator-independent statistical analysis of the gait. However, the ag-

gregation and the correct interpretation of data collected is a crucial point to provide 

an objective and correct assessment of the characteristics of human walking, usable 

for clinical practice. 

In a previous work, a method based on a fuzzy logic classifier, named 

GAITSCORE, was developed to aggregate data collected from basographic sen-

sors: the result of the system is a gait impairment score, that provide an objective 

and quantitative measurement of gait impairment. A further improvement of this 

system would be the integration of the information related to the timing of muscular 

activation during gait. However, human locomotion is characterized by a large in-

tra-subject variability in muscle activation patterns: muscle activation onsets and 

offsets markedly vary from stride-to-stride also in individuals without neurological 

or orthopedic disorders. Therefore, before being able to correctly use the infor-

mation extracted from the EMG signals, it is necessary to develop strategies to iden-

tify the variability in the muscle activation patterns and to provide tools for a correct 

interpretation of the acquired data. Particularly, for a correct interpretation of EMG 

data, a promising strategy consists in grouping strides characterized by similar 

EMG activation patterns. 

The CIMAP (Clustering for Identification of Muscle Activation Patterns) is the 

method, based on machine learning techniques, that has been developed for this 

purpose: it allows to group strides in clusters sharing similar EMG activation pat-

terns. Once the clusters are obtained, an element that is characteristic of each cluster 
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is defined. This element is the prototype and it represents all the elements of a spe-

cific cluster. 

The first part of the thesis presents the CIMAP method, its optimization and the 

final validation. The CIMAP is applied to EMG signals acquired from different 

muscles of lower limb of both healthy and pathological subjects. The results ob-

tained have proved that this method definitively improves the correct interpretation 

of the acquired signals. At first the method provides an organized representation of 

the most common type of muscle activation patterns of the individual, that may be 

useful to clinicians to simply identify possible criticism in subject walking. Then, 

the characterization of the all the strides belonging to a specific cluster with a single 

element (the prototype) allows for introducing the concept of principal activation. 

From the biomechanical point of view, the principal activations represent those ac-

tivations necessary for accomplishing a specific motor task and they describe the 

essential contributions of a specific muscle to the movement. In practice, the prin-

cipal activations of each muscle are extracted as the intersection of the correspond-

ing cluster prototypes, obtained using CIMAP. The introduction of the concept of 

principal activations allows characterizing a subject with a single muscle activation 

pattern, representative of the specific muscle. This characterization allows for per-

forming complex analysis of entire group of subjects.  

To illustrate the potentialities of the principal activation concept, a first study 

is performed on a population of 100 school-age children. The results show that, 

analysing gait data using principal activations only, it is possible to clearly under-

stand the biomechanical contribution of the analyzed muscles to the movement and 

to describe muscle activity in an simple form that may be useful in clinical practice, 

for a correct interpretation of gait data. As an example, in this study, it is possible 

to identify and describe phenomena related to gait maturation. 

It is followed by two studies aimed to compare muscle activation in healthy and 

pathological subjects, using principal activations. In the first study gait data ac-

quired from a group of patients effected by normal pressure idrocephalus are com-

pared with gait data acquired from a group of age-matched healthy subjects (con-

trols). In the second study, gait data acquired from 20 patients with Total Hip Ar-

throplasty at 3, 6 and 12 months after surgery and 20 age-matched controls are an-

alysed and compared. The dataset comparison has always been a very challenging 

problem due to the EMG intra-subject variability. The results obtained in these stud-

ies highlight how the application of the CIMAP algorithm and the principal activa-

tion extraction may be powerful tools for the aggregation of EMG results of huge 

dataset, and they may allow a clear comparison between different datasets. 
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Then, two studies are presented in order to introduce tools, based on muscle 

principal activations, for the quantification and interpretation of specific aspects of 

gait. In the first study an EMG asymmetry index, for assessing muscle-activation 

asymmetry in cyclic movements, is introduced and validated over o population of 

114 subjects consisting of healthy subjects and both neurological and orthopaedic 

patients. Different asymmetry levels are expected to be found on each group, con-

sidering the different disorders and treatments which patients underwent. The value 

obtained for the asymmetry index are consistent with the expected asymmetry level 

of each specific group and this suggests that the index can be successfully used in 

clinics for an objective assessment of the asymmetry of muscle activation patterns 

during locomotion. 

In the second study, two indices are presented. The first one is a muscle-specific 

functionality index that quantifies the similarity of the activation pattern of a spe-

cific muscle of a subject with that of the corresponding muscle of a healthy popu-

lation. The second one, considering a pool of muscles, is a global index to quantify 

the distance between the functionality of a specific subject and that of a reference 

population. The effectiveness of the muscle-specific and global indices is validated 

by applying these indices to a group of 25 healthy children and to a group of 25 

hemiplegic children to measure the distance of specific subjects and of the entire 

populations from a reference population of 55 healthy children. The results obtained 

show that these indices may be useful in clinics: it may be used for providing an 

overall evaluation of muscle functionality during both the first instrumental exam-

ination of a subject and when a subject is evaluated successively, along a rehabili-

tation program. 

A brief introduction to the application of principal activation extraction to mus-

cle synergy analysis is then provided. The results suggest that this kind of pro-

cessing provide a more interpretable assessment of the modular organization of the 

central nervous system during a walking task without any loss of information.  

In conclusion, this thesis describes several tools that have been developed and 

validated to analyse the muscle activation characteristics during gait.  They may be 

useful in clinical practice (to help clinicians in the interpretation of data of single 

individuals or to assess patient improvement during a rehabilitation protocol) and 

in clinical studies (to characterize gait anomalies correlated to a specific pathology). 

Moreover, they may be used in research studies as demonstrated by the muscle syn-

ergies application. 

Finally, a future work will be the integration of the indices in GAITSCORE to 

construct an initial dashboard for analysing the gait of a subject. 
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Chapter 1 

Introduction 

1.1 Gait analysis 

Gait analysis is the study of human locomotion and is used to assess normal 

and pathological functions of human walking [1]. In clinical scenario, gait analysis 

is widely used to identify gait abnormalities [2], to assess residual walking ability 

in patient with neurological disorders [3], to define and assess rehabilitation proto-

col after orthopedic surgery [4] and to evaluate clinical outcomes [5]. 

Gait analysis can range from the simple observation of the subject during a 

walking session, to using fully computerized three-dimensional motion analysis 

systems [6], but, until recently, the ability of studying human gait was limited 

mainly to qualitative naked eye observation [7]. 

In 1970s, thanks to the availability of low-cost video cameras and computers, 

the stereophotogrammetric systems became a milestone in the story of human mo-

tion analysis, allowing a 3D reconstruction of human gait. At present, these systems 

are used in many motion analysis laboratories, but they require complex and expen-

sive instrumentation, have high maintenance costs and are quite difficult to use in 

the clinical routine practice [8]. Moreover, stereophotogrammetric systems, even if 

based on 3D techniques, allow to obtain reliable measurements of joint angles only 

in the sagittal plane and in a limited volume of space. 

Since 1980s, the instrumented gait analysis has emerged as a new powerful tool 

for human locomotion analysis, based on cheaper and simpler systems that do not 

required a settled laboratory environment to be operated. These tools are based on 

multichannel recording systems, connected through several sensors, on the subject 
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body. Signals coming from the sensors are acquired by means of a personal com-

puter and processed using a dedicated software. These systems allow to collect sig-

nals from several sensors placed on the subject body, and to obtain a fully and com-

pletely operator-independent statistical analysis of gait. For these reasons, the in-

strumented gait analysis has revealed to be a powerful tool to provide quantitative, 

repeatable and reliable measure of gait parameters. 

 

1.2 Instrumentation and signals in gait analysis 

In gait analysis, measurement instruments commonly used include foot-

switches and electromyographic sensors, for the acquisition of basographic and 

electromyographic signals, respectively. 

1.2.1 Basographic signal 

Foot-switches are sensors placed under the foot, in specific anatomical land-

marks, aimed to reveal the foot-floor contact and to measure the corresponding tem-

poral parameters. For example, using three sensors (one placed beneath the heel and 

the other two on the first and fifth metatarsal heads), among eight different condi-

tions of support can be identified. Using a digital-to-analog converter, it is then 

possible to go from three digital signals to eight analog levels, obtaining a so-called 

“8-level basography”. However, during a normal gait of a heathy subject, only six 

of these eight levels can be observed (Figure 1.1a). Moreover, the 8-level basogra-

phy may result too detailed and variable to be used in practise for gait analysis. 

Hence, it is simplified in order to obtain the corresponding 4-level basography (Fig-

ure 1.1b), in which the four levels correspond to heel contact (H), flat foot contact 

(F), push off (P) and swing (S), respectively. More specifically: 

• during H phase only the foot-switch under the heel is closed; 

• during F phase the foot-switch under the heel is closed and at least one 

of the foot-switches under the forefoot is closed; 

• during P phase the foot-switch under the heel is open and at least one 

of the foot-switches under the forefoot is closed; 

• during S phase all the foot-switches are open. 
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During a walking session for gait analysis, basographic signals of both feet are 

acquired continuously and they give a “time reference frame” used to evaluate all 

the other collected signals [8].  

 

1.2.2 Electromyographic signal 

The surface electromyography (sEMG) is commonly used for studying 

the muscle activity during gait [6]. Figure 1.2 shows an example of sEMG acquisi-

tion from the Tibialis Anterior muscle of a healthy adult during gait: the signal rep-

resents the muscle electrical activity during four consecutive strides (gait cycles). 

In sEMG the choice of the electrodes to be used – and the inter-electrode dis-

tance – is a critical aspect and it strongly depends on the anatomy of the muscle of 

interest and its relationship with the other neighboring muscles. Commonly, surface 

probes consist of two or three detection surfaces of conductor material and, in active 

probe, an amplifier stage is positioned close to electrodes. At present, active probes 

are preferred because of their ease of use and because they guarantee better perfor-

mance with respect to the passive ones.  

In general, to obtain high quality EMG recordings, it is a good practice to have 

different probes and to choose the proper one based on the anatomical characteris-

tics of the muscles of the specific subject. More details about the different EMG 

probes used in gait analysis can be found in [8]. 

 

 
Figure 1.1. Basographic levels. 

Representation of (a) six basographic levels derived from an 8-level basography and (b) the correspond-

ing simplified 4-level basography. 
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1.3 Statistical gait analysis 

In Figure 1.3 the activity of Tibialis Anterior muscle of four strides, acquired 

during a walking session of a healthy adult is reported. Muscular activation intervals 

are highlighted with a red square. As it emerges from the figure, even considering 

only a few strides, the muscle activation results quite different from one stride to 

another: a high variability both in the number of activation intervals and in the du-

ration of activation itself is present. The richness and the variability of muscle acti-

vation patterns during gait has been studied and assessed in literature. In [9], sEMG 

signals of eight muscles of lower limbs were acquired from 25 healthy subjects 

between the age of 20 and 40 years. All the subjects walked indoors, barefoot, at 

several different self-selected walking speeds; a minimum of 10 strides were ac-

quired at each speed. The resulting EMG activation patterns demonstrated a con-

siderable amount of inter-individual variability, at each speed. Other evidence of 

the EMG intra-subject variability are reported in [10], [11] and [12]. 

 

 
Figure 1.2. Example of EMG signal. 

EMG signal of Tibialis Anterior muscle during four consecutive strides, acquired from a healthy adult 

(male, 51 years old). 
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 Hence, to deal with this variability, hundreds of strides are needed to be ac-

quired to correctly study gait behaviour. In this context, a powerful methodology 

that allows for preserving the information during the acquisition of so many con-

secutive strides is the statistical gait analysis (SGA). 

The SGA is based on the “statistical” characterization of gait parameters, both 

spatio-temporal and EMG derived, and it is used to describe gait functionality in 

condition similar to the everyday life walking. Systems used in SGA are user-inde-

pendent and do not hinge on the laboratory characteristics. 

Notice that, to guarantee high repeatability of the results, it is convenient to 

study only those strides related to a straight path: it is necessary to have a walking 

platform of at least 10 meters that will be walked over a certain number of times 

[8]. During the acquisition the subject walks back and forth the platform, so it is 

 
 

Figure 1.3. Example of intra-subject variability in EMG signal. 

Tibialis Anterior EMG signals extracted from a 2-minute walk of a healthy adult (male, 51 years old). 

Activation intervals are highlighted with red square. 
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then necessary to identify and remove those strides related to acceleration, deceler-

ation and changes of direction that are different from those strides relative to “re-

gime” walk. 

1.3.1 Segmentation and classification of gait cycle 

A crucial point in SGA is the automatic segmentation and classification of gait 

cycles, since, during a walk, different basographic cycles can be observed. In 

healthy subjects, the most frequent basographic cycle is represented by the HFPS 

sequence that can be considered as the typical foot-floor contact sequence. How-

ever, a small percentage of “atypical” cycles showing a not-HFPS sequence can be 

observed (usually less than 5% of the total number of gait cycles). Figure 1.4 shows 

an example of the basographic cycles obtained during a walking session acquisition 

of a healthy adult: 144 HFPS cycles, 2 PFPS cycles, 1 FPS and 1 HFP cycle, are 

classified for left side, while 141 HFPS cycles, 4 PFPS cycles, 1 FPS and 1 HFH 

cycle, are classified for the right side. 

SGA can be performed only after the classification of the basographic cycles in 

the various sequence typologies, since the analysis must be carried out separately 

for the different type of basographic cycles. Therefore, due to the high number of 

strides necessary for SGA, it is important to segment and classify gait cycles in a 

 

 
 

Figure 1.4. Example of basographic classification. 

Classification of basographic cycles of a healthy subject (male, 51 years old). 
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user-independent and automatic way. In [13] an automatic algorithm for segmenta-

tion and classification of gait cycles is presented.  

1.3.2 Observation of muscle activations 

Several recent studies in literature [14]-[16] have shown that there is a great 

intra-subject variability in the EMG activation patterns, even in healthy subject per-

forming a single walking session along a straight path. This behaviour is particu-

larly interesting in clinical scenarios, hence it is desirable to obtain, for each muscle, 

a representation of the different activation patterns characteristic of the subject 

walking and their frequency. For this purpose, it is necessary to apply proper algo-

rithms for the detection of onset and offset time instants of muscle activity. In the 

last decades, several approaches have been proposed to solve this challenging task 

[17]-[20]. 

Once onset and offset timings have been detected, the identified activation in-

tervals has to be time-normalized with respect of gait cycle duration and then, in 

order to perform a proper data analysis, it is necessary to group strides showing the 

same number of activation intervals and consider each group separately. 

 

1.4 STEP32: a movement analysis system 

STEP32 (Medical Technology, Italy) is a multichannel wearable system for the 

acquisition and analysis of gait data. It is able to document in an objective and re-

peatable way the temporal and space parameters that characterize the gait, such as: 

• the sequence and duration of each gait phase, using basographic sensors 

placed under the foot; 

• the neuromuscular activation intervals of the analysed muscles, through 

the analysis of the raw electromyographic signals acquired with surface 

electromyographic probes. 

Each sensor is cable-connected to a “patient unit”, extremely compact in size 

(60mm x 30mm x 150mm, weight: 300g) directly applied to the patient by means of 

an elastic belt. During a walking acquisition session, the data acquired by the patient 

unit are transferred, through a cable, to a PC and then processed using a dedicated 

software. The analysis of all the gait parameters is performed using as time refer-

ence the sequences and the duration of the basographic cycles.  
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1.4.1 Sensors 

The basographic sensor consists of a rectangular membrane switch (10mm of 

side), placed at one end of a flexible and insulating plastic strip (Figure 1.5). A 

connector is placed at the opposite end, necessary for the connection to the pream-

plifier/decoder. The connector can receive up to three basographic contacts and pro-

vides a signal at coded levels in relation to the number of contacts pressed at any 

time. 

 

The probes used for acquiring the electromyographic signals incorporate a dif-

ferential amplifier stage. They guarantee signal stability, and they reduce movement 

artifacts, disturbances to the network frequency and the microphonic phenomena of 

the connection cable. Two types of EMG probes are available (Figure 1.6): fixed 

geometry single differential probes (the two acquisition electrodes are incorporated 

in the probe positioned at a fixed distance) and variable geometry probes (the two 

acquisition electrodes are separated from the pre-amplification part and can be po-

sitioned on the patient skin at variable distance). 

 
 

Figure 1.5. Basographic sensors connected to preamplifier/decoder. 
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The electromyographic signal can be amplified from a minimum of 1000 to a 

maximum of 50.000 times. 

1.4.2 Basographic and electromyographic analysis 

The routine included in STEP32 for data analysis allows for obtaining the num-

ber of cycles showing a specific sequence of gait phases (i.e. Heel contact, Flat foot 

contact, Push-off, Swing: HFPS cycles) and the average cycle duration for each 

side. Once selected the desired basographic sequence, the EMG signals are pro-

cessed using the routine for data analysis integrated in STEP32 system. For each 

muscle, the processing consists of the following pipeline: 

1. The signal is segmented into separate gait cycles and time-normalized 

to the stride duration [21]. 

2. Only the strides showing a specific sequence of gait phases (for exam-

ple HFPS) and related to the straight path [15] are selected.  

3. For each stride, the ON/OFF activation intervals are identified using a 

double threshold statistical detector [22]. 

4. Strides are grouped together according to their number of activation 

intervals (modalities). This result is represented using a series of histo-

grams (Figure 1.7): each bar represents the frequency with which the 

identified modalities occur (expressed in percentage). 

5. Only those strides belonging to the most represented modality are se-

lected. 

 

 
 

Figure 1.6. EMG probes. 

Example of fixed geometry single differential probe (a) and variable geometry probe (b). 
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6. ON/OFF timings of these strides are averaged in order to obtain a rep-

resentative activation pattern (Figure 1.8). The mean value, standard 

deviation and standard error related to each onset and offset timings of 

the representative activation patterns are computed and expressed as 

percentage of gait cycle. 

 

Hence, using STEP32 system it is possible to obtain several data, both baso-

graphic and electromyographic. The aggregation and the correct interpretation of 

these data is a crucial point to provide an objective and correct assessment of the 

characteristics of human walking, usable for clinical practice. 

In a previous work, a method based on a fuzzy logic classifier, named 

GAITSCORE, was developed to aggregate data collected from basographic sen-

sors: the result of the system is a gait impairment score, that provide an objective 

and quantitative measurement of gait impairment [23]. Particularly, 8 basographic 

parameters for each lower limb were extracted from the foot-switch signal recorded 

during a subject’s walk. These parameters were used as inputs for a Mamdani clas-

sifier, based on 36 rules, for the classification of gait. The classifier returned one 

 
 

Figure 1.7. Histograms of muscle activity modalities. 

Example of histograms representing the frequency (express as percentage) of each modality during a 

walking session. The analyzed EMG signals were extracted from a walking session of a healthy adult (female, 

55 years old). Signals of six muscles were acquired, from both left and right side: Tibialis Anterior (TA), 

Gastrocnemius Lateralis (LGS), Rectus Femoris (RF), Lateral Hamstring (LH), Vastus Medialis (VM) and 

Vastus Lateralis (VL). 
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output for each lower limb and then they were aggregate into a unique score repre-

senting the global walking impairment of the subject. 

 

 

 

 

Figure 1.8. Representation of EMG activation intervals (example 1). 

Example of representation of EMG activation intervals resulting from the analysis of a walking session 

of a healthy adult (female, 55 years old). Activation intervals of six muscles (left side) are represented: Vastus 

Lateralis (VL), Vastus Medialis (VM), Lateral Hamstring (LH), Rectus Femoris (RF), Gastrocnemius Lat-

eralis (LGS) and Tibialis Anterior (TA). In the table are reported, for TA muscle, the mean values, the standard 

deviation and the standard error of the onset and offset timings, computed considering all the strides presenting 

a 3-activation modality. In the image, activation intervals are represented with the thicker segment (green, red, 

yellow), while standard deviation is represented with the orange segment. The different colors with which the 

activation intervals are represented refers to the different activation intensity (green: low intensity, yellow: 

medium intensity, red: high intensity). 
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A further improvement of the GAITSCORE system would be the integration 

of the information related to the timing of muscular activation during gait. How-

ever, human locomotion is characterized by a large intra-subject variability in mus-

cle activation patterns, as already discussed and even considering strides showing 

the standard basographic sequence (HFPS) and belonging to the same activation 

modality, there are evidences of a great EMG intra-subject variability. 

Figure 1.9 shows the EMG results obtained acquiring gait data from a healthy 

adult (male, 51 years old). Left (Figure 1.9a) and right (Figure 1.9b) activation pat-

terns of four muscles are reported: Lateral Hamstring (LH), Rectus Femoris (RF), 

Gastrocnemius Lateralis (LGS) and Tibialis Anterior (TA). 

From Figure 1.9a emerges that the TA muscle (left side) presents, in the second 

activation interval, high values of standard deviation related to both the onset and 

offset timings (17.14 and 18.98% of gait cycle, respectively). 

Similarly, from Figure 1.9b, emerges that the LGS muscle (right side) presents, 

in the first activation interval, a high value of standard deviation related the onset 

timing (28.7% of gait cycle). Moreover, in the second activation interval, high val-

ues of standard deviation are found related both to the onset and offset timing (17.26 

and 19.3% of gait cycle, respectively). 

 

Hence, in addition to the variability in the number of modalities that a subject 

expresses during walking [14], [24], it has to take into account that also different 

types of activation pattern are present, even considering the same modality (Figure 

1.10). Therefore, for a correct interpretation of EMG signals acquired during walk-

ing and a correct aggregation of EMG data into GAITSCORE system, it is neces-

sary to adopt proper strategies for grouping cycles sharing not only the same acti-

vation modality, but also similar activation patterns. 
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Figure 1.9. Representation of EMG activation intervals (example 2). 

Examples of EMG activation intervals resulting from the analysis of a walking session of a healthy adult 

(male, 51 years old). Activation intervals of four muscles are represented: Lateral Hamstring (LH), Rectus 

Femoris (RF), Gastrocnemius Lateralis (LGS) and Tibialis Anterior (TA). The tables report, for (a) TA muscle 

(left side) and (b) LGS muscle (right side), the mean value, the standard deviation and the standard error of 

the onset and offset timings of each activation interval. 
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Figure 1.10. Example of EMG pattern variability. 

a) Strides are grouped according to their number of activation intervals (modalities). b) Strides belonging 

to the modality with 3 activation intervals are grouped together: a great intra-modality variability in the EMG 

activation patterns is evident. 
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Chapter 2 

CIMAP: Clustering for Identifica-

tion of Muscle Activation Patterns 

2.1 Introduction 

In order to cope with the issues presented in the previous chapter, a method to 

group gait cycles showing homogeneous EMG activation patterns was developed. 

Clustering methods are a class of methods suitable for this purpose, because 

they are able to identify groups of elements among a dataset, sharing similar char-

acteristics. The similarity among the elements is evaluated using a distance metric. 

The goodness of the clustering result is evaluated assessing the variability among 

the elements assigned to the same cluster (it should be as slow as possible), and the 

distance between the resulting clusters (the more the distance between clusters is 

large, the more the clusters are clearly distinguishable). 

Among the existing clustering methods, the most suitable solution for the prob-

lem is the dendrogram, an agglomerative hierarchical clustering method that organ-

izes data in a hierarchical tree based on a proximity measure [25]. Particularly, the 

agglomerative hierarchical clustering is a method that works using a "bottom-up" 

approach: each element of the dataset starts in its own cluster, and pairs of clusters 

are merged at each iteration. The hierarchical relationship between elements is most 

commonly represented using a dendrogram diagram (cluster tree). The elements are 

allocated to final clusters by “cutting the tree” at a certain level according to specific 

defined criteria. 
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In literature, there are a few works in which clustering methods have been ap-

plied to EMG data analysis and they are limited to three main field: segmentation 

[26] and decomposition [27] of EMG signals, analysis of subjects’ populations [28], 

and the analysis of subject variability during different walking session [29]. The 

clustering approach has never been applied to deal with the intra-subject variability 

in the EMG activation patterns. 

The CIMAP (Clustering for Identification of Muscle Activation Patterns) is the 

method, based on agglomerative hierarchical clustering, developed for grouping 

strides with similar EMG activation patterns [30], [31]. 

In this chapter and in the following sections of the thesis, several datasets are 

used to test and validate the proposed algorithms. In Appendix A, a full description 

of these datasets can be found. 

 

2.2 Method 

Figure 2.1 shows the CIMAP processing pipeline. The pipeline of the method 

is based on two main steps: 

1. EMG signal pre-processing, consisting of signal segmentation, stride ex-

traction and activation interval detection. 

2. Implementation of the CIMAP algorithm, consisting of dataset preparation 

and clustering of each dataset. 

2.2.1 EMG signal pre-processing 

The EMG signal pre-processing step consists of: 

1. Signal segmentation. EMG signals collected during a walking session are 

segmented into separated strides and time-normalized to the stride duration 

[13]. 

2. Stride extraction. Among all the strides, only those corresponding to a spe-

cific foot-floor contact type are extracted (i.e. HFPS strides). Moreover, 

those strides related to deceleration, turning, and acceleration in corre-

spondence of direction changes are discarded using a multivariate statisti-

cal filter [15]. 

3. Activation intervals detection. The double threshold statistical detector de-

scribed in [22] is used to identify the activation intervals of each stride 

previously extracted. 
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As a result of the pre-processing step, a collection of separated strides is ob-

tained and, for each stride, the onset-offset timings of EMG activity are detected.  

2.2.2 Implementation of the CIMAP algorithm 

The CIMAP algorithm is applied separately on each muscle, following two 

phases: a) datasets preparation, and b) clustering of each dataset. 

Dataset preparation 

The strides of both lower limbs are joined to obtain a higher number of gait 

cycles for the clustering procedure. Strides are then split into different datasets ac-

cording to their activation modality. More specifically, every stride i of a specific 

dataset is identified by m couples of time instants (ONj, OFFj) where m is the num-

ber of activation intervals within the stride: 

 

 

 

 
 

Figure 2.1. CIMAP processing pipeline. 
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𝑠𝑡𝑟𝑖𝑑𝑒𝑖 = {𝑂𝑁𝑖,1, 𝑂𝐹𝐹𝑖,1, … , 𝑂𝑁𝑖,𝑗, 𝑂𝐹𝐹𝑖,𝑗 , … , 𝑂𝑁𝑖,𝑚, 𝑂𝐹𝐹𝑖,𝑚}        (2.1) 

 

For the further analysis, only datasets consisting of at least three strides are 

considered.  

Clustering of each dataset 

The clustering procedure is applied separately to each dataset. At first, each 

stride represents a single-element cluster. Then, the cluster tree is constructed by 

merging, at each iteration, the two closest clusters. Particularly, each cluster (A) is 

characterized by its centroid (CLCA) defined as a vector containing the mean values 

of the ON and OFF timings of all the strides belonging to the cluster:  

 

𝐶𝐿𝐶𝐴 =
1

|𝐴|
∑ 𝑎𝑖 = {𝑂𝑁1, 𝑂𝐹𝐹1, … , 𝑂𝑁𝑗 , 𝑂𝐹𝐹𝑗 , … , 𝑂𝑁𝑚, 𝑂𝐹𝐹𝑚} 𝑎𝑖∈𝐴      (2.2) 

 

In (2.2), |A| is the cardinality (number of strides) of the cluster A and ai is the i-

th element (stride) belonging to cluster A. 

At each iteration, the two clusters with the closest centroids are merged. The 

Chebyshev distance is used as distance metric to assess the similarity between two 

clusters A and B: 

 

𝑑(𝐶𝐿𝐶𝐴, 𝐶𝐿𝐶𝐵) = max (max
𝑚

(𝑂𝑁𝐴 − 𝑂𝑁𝐵) , max
𝑚

(𝑂𝐹𝐹𝐴 − 𝑂𝐹𝐹𝐵))       (2.3) 

 

The Chebyshev distance was chosen to avoid merging elements showing a sin-

gle, markedly different, onset (or offset). 

 

Finally, an automatic rule consisting of three steps is used to identify the den-

drogram cut point: 

1) At each iteration k, when two clusters (A and B) are merged, the Rk index is 

computed as follows:  

 

    𝑅𝑘 =
∑ 𝑑𝑖𝑠𝑡(𝑠𝑡𝑟𝑖𝑑𝑒𝑖,𝐶𝐿𝐶𝐴∪𝐵)𝑠𝑡𝑟𝑖𝑑𝑒𝑖∈(𝐴∪𝐵)

𝑚𝑎𝑥(∑ 𝑑𝑖𝑠𝑡(𝑠𝑡𝑟𝑖𝑑𝑒𝑖,𝐶𝐿𝐶𝐴),∑ 𝑑𝑖𝑠𝑡(𝑠𝑡𝑟𝑖𝑑𝑒𝑗,𝐶𝐿𝐶𝐵)𝑠𝑡𝑟𝑖𝑑𝑒𝑗∈𝐵𝑠𝑡𝑟𝑖𝑑𝑒𝑖∈𝐴 )
          (2.4) 
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The index represents the ratio between the intra-cluster variability of the 

new formed cluster (AUB) and the maximum between the intra-cluster var-

iability of the two original clusters A and B. The intra-cluster variability is 

computed as the sum of all the Euclidean distances between each element 

(stride) belonging to the cluster and the cluster’s centroid. The Rk values are 

low at the beginning of the merging process and grows gradually in the sub-

sequent iterations. 

2) The Rk values only of the last 20% iterations are considered, to avoid cutting 

the tree at a very low level. 

3) The iteration k with the maximum Rk value is identified and the tree is cut 

at iteration k-1, obtaining the clustering result. 

For each cluster, left and right strides are divided, obtaining two different clus-

ters (one per side). Finally, clusters with less than 5% of the total number of strides 

(of the side under consideration) are discarded.  

 

2.3 Testing 

A dataset consisting of twenty healthy subjects aged from 20 to 51 years (7 males/13 

females, height: 167 ± 8 cm; weight: 62.5 ± 10.7 kg) was collected and used as Test 

Set for testing the CIMAP method. All the subjects walked barefooted at self-se-

lected speed back and forth along a 10-m walkway for at least 2.5 min. 

 

The acquisition system STEP32 for gait analysis was used to acquire baso-

graphic signals and surface EMG signals. Three foot-switches were placed under 

the foot-soles, beneath the first and fifth metatarsal heads, and beneath the back 

portion of the heel. After skin preparation, the surface EMG probes were placed 

bilaterally over the muscle’s belly of the analyzed muscles. EMG probes were ac-

tive and utilized AgCl-disks as electrodes. The signal amplifier had a gain of 1000 

and a 3-dB bandwidth from 10 Hz to 400 Hz. The sampling frequency was 2 kHz 

and signals were converted by a 12-bit analog to digital converter. 

 

Since the purpose of this first phase of the study was to verify that the CIMAP 

algorithm could help with the problem of EMG intra-subject variability, for each 
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subject only one muscle (Tibialis Anterior - TA) was analyzed and only the modal-

ity with the higher number of strides, resulted using STEP32 analysis tool, was 

considered. 

 

To compare the stride variability with and without clustering, the average intra-

cluster variability among strides belonging to the same cluster was compared with 

the average variability among strides belonging to the same activation modality. 

Particularly, for a specific cluster, the intra-cluster variability was defined as the 

average standard deviation (SD) of the ON and OFF timings among the cluster’s 

strides:  

 

    𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑆𝐷 = [𝑆𝐷(𝑂𝑁1), 𝑆𝐷(𝑂𝐹𝐹1), … , 𝑆𝐷(𝑂𝑁𝑚), 𝑆𝐷(𝑂𝐹𝐹𝑚)]      (2.5) 

 

 For each subject’s lower limb, the average Cluster_SD was calculated across 

all the resulting clusters and then, Cluster_SD values of left and right side were also 

averaged. 

The variability among strides sharing the same activation modality was calcu-

lated in the same manner. The intra-modality variability was defined as the average 

SD of the ON and OFF timings among the modality’s strides:  

 

    𝑀𝑜𝑑𝑎𝑙_𝑆𝐷 = [𝑆𝐷(𝑂𝑁1), 𝑆𝐷(𝑂𝐹𝐹1), … , 𝑆𝐷(𝑂𝑁𝑚), 𝑆𝐷(𝑂𝐹𝐹𝑚)]      (2.6) 

 

For each subject’s lower limb, the Modal_SD was calculated across the selected 

modality, and then, the values of both sides were also averaged. 

In Figure 2.2 an example of clustering result is reported, both for left and right 

side. As it emerges from the figure, the CIMAP algorithm allows for extracting the 

representative activation patterns of a subject’s muscle, each corresponding to a 

cluster centroid. Even considering only the most represented activation modality, 

several clusters were obtained, confirming the richness of muscle activation pat-

terns during gait, already documented in literature [32], [33], [34]. 
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Figure 2.3 shows the boxplots of the variability values (Cluster_SD and 

Modal_SD) computed before and after the clustering procedure. The mean value 

and standard deviation of the variability values obtained in the two cases, are equal 

to 2.0 ± 0.6 (with clustering) and 8.1 ± 1.8 (without clustering). A paired Wilcoxon 

test (α=0.05) was then applied, and it proved that the variability is significantly 

reduced after clustering (p < 0.001). 

These results proved that the CIMAP method could be a promising tool for 

helping in the interpretation of EMG data in gait analysis, by grouping strides with 

similar activation patterns. 

 

 

 

 

 

 
 

Figure 2.2. Example of clustering result. 

Example of clusters obtained from a healthy adult using the CIMAP algorithm. Muscles: Tibialis Ante-

rior (both sides). In each row, the blue bar represents the EMG activation intervals within a gait cycle (BLUE 

= muscle active, WHITE = muscle inactive). The number of strides of each cluster is reported above the 

corresponding plot area. Below each cluster, the cluster centroid is represented in orange. 
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2.4 Validation 

To validate the CIMAP algorithm, the study was extended to the analysis of patients 

suffering from different locomotion pathologies (both orthopedic and neurologi-

cal). The aim of this phase was to test CIMAP performances in critical conditions, 

since, in these patients, was expected a higher EMG intra-subject variability with 

respect to healthy subject. 

 

 Gait data of 20 patients aged from 16 to 85 years (10 males/ 10 females, height: 

168.0 ± 10.7 cm; weight: 73.5 ± 13.9 kg) suffering from four different locomotion 

alterations were analyzed. In particular, the Validation Set consisted of: 

- 5 patients after total knee replacement (TKR); 

- 5 patients with megaprosthesis of the knee after bone tumor resection (Mega 

TKR); 

- 5 patients with total hip arthroplasty (THA); 

- 5 patients affected by normal pressure hydrocephalus (iNPH). 

 

 
Figure 2.3. Mean cluster SD. 

Comparison of the variability in the activation onset/offset among strides grouped in (a) activation mo-

dalities (before clustering) or (b) clusters (after clustering), for Tibialis Anterior (TA) muscle. Each boxplot 

represents the value distribution across the sample of 20 healthy subjects.  
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TKR, Mega TKR and THA are the consequence of orthopedic diseases, while 

iNPH is a neurological disease. 

All subjects walked barefoot, at self-selected speed, consecutively for 2-3 

minutes. The wearable system STEP32 was used to acquire gait data, with the same 

acquisition protocol previously detailed.   

The variability with and without clustering among the new dataset was assessed 

using Cluster_SD and Modal_SD. Figure 2.4 shows the boxplot of the variability 

before and after clustering. The mean value and standard deviation of the variability 

values are equal to 3.1 ± 2.1 (without clustering) and 9.3 ± 4.6 (with clustering).  

The paired Wilkoxon test (α=0.05) was applied, and the variability resulted sig-

nificantly reduced after clustering (p < 0.001).  However, it is evident a less marked 

difference between the two distributions, with respect to the results obtained on 

healthy subjects. 

 
 

Figure 2.4. Mean cluster SD. 

Comparison of the variability in the activation onset/offset among strides grouped in (a) activation mo-

dalities (before clustering) or (b) clusters (after clustering), for Tibialis Anterior (TA) muscle. Each boxplot 

represents the value distribution across the sample of 20 patients. 
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Figure 2.5 shows the result of the application of the CIMAP algorithm to an 

iNPH patient. As it emerges from the figure, the CIMAP algorithm allows for ex-

tracting different activation patterns as well as previously reported, but a great intra-

cluster variability is present in this condition. 

 

The results obtained on the Validation Set highlighted some issue to be solved 

in the CIMAP algorithm, probably due to a choice of dendrogram parameter suita-

ble in case of low EMG variability (associated to healthy subjects), but not optimal 

in case of higher EMG variability (associated to patient with locomotion altera-

tions). 

 
 

Figure 2.5. Example of clustering result. 

Example of clusters obtained from an iNPH patient. Muscles: Tibialis Anterior (both sides). In each row, 

the blue bar represents the EMG activation intervals within a gait cycle (BLUE = muscle active, WHITE = 

muscle inactive). The number of strides of each cluster is reported above the corresponding plot area. Below 

each cluster, the cluster prototype is represented in orange. 
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Chapter 3 

Optimization of the CIMAP algo-

rithm 

3.1 Introduction 

In the previous chapter, the CIMAP algorithm was introduced to overcome the 

limitation of gait data interpretation due to the high variability of the EMG activa-

tion patterns. The proposed algorithm was developed and tested on a set of EMG 

data acquired from healthy subjects. The results obtained on these subjects showed 

that the CIMAP was able to reduce the cycle-to-cycle variability, providing more 

representative EMG patterns. 

However, it was observed that the algorithm performances decreased when it 

was applied to gait data acquired from pathological subjects (Validation Set), pro-

ducing clusters with high intra-cluster variability. 

In this chapter, the optimization of the CIMAP algorithm is presented, in order 

to obtain clusters consisting of gait cycles with similar activation patterns, both in 

healthy and pathological subjects [35]. 

 

3.2 Tuning of the dendrogram parameters 

In order to identify the best configuration for the CIMAP algorithm implemen-

tation (in terms of centroid definition, linkage method and selection of the cutoff 
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point), several dendrogram settings were tested and their influence on the final al-

gorithm performance were evaluated.  

3.2.1 Centroid definition 

The Centroid is defined as the element that characterizes each cluster. In the 

CIMAP method, the centroid was defined as a 2m-dimensional vector containing 

the “representative” ON and OFF timings (where m represents the modality). 

In order to optimize the method, two different centroid definitions were tested: 

the mean value (CLCmean) and the median value (CLCmedian) of the elements belong-

ing to the cluster. 

3.2.2 Linkage method 

The Linkage Method is the procedure for the selection of the clusters to join at 

each iteration. Two different linkage methods were tested: the centroid linkage 

(Centr_Link) and the complete linkage (Comp_Link). 

The centroid linkage merges two clusters by evaluating the distance between 

their centroids: at each iteration, the distance between every couple of centroids is 

computed and the two closest clusters are merged together (Figure 3.1a). 

The complete linkage merges two clusters by evaluating the distance between 

every couple of elements in the two considered clusters [36]: the distance between 

every pair of elements in the clusters is calculated and the largest one is considered 

as the distance between the two clusters. Then, the two clusters with the smallest 

distance are joined (Figure 3.1b).  

 

 
Figure 3.1. Linkage Methods. 

Example of Centroid Linkage (a) and Complete Linkage (b) between two clusters (i and j). 
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3.2.3 Distance metric 

The Distance Metric is used for assessing the element similarity during the 

linkage process. A preliminary analysis was performed in order to identify the most 

promising metrics. After empirical proofs (Appendix B) two metrics were selected: 

the Manhattan (or Cityblock) distance (Dman) and the Chebyshev distance (Dcheb). 

3.2.4 Selection of the cutoff point 

Several tests (Appendix C) were performed to assess the validity of the cutoff 

rule defined in Chapter 2 for cutting the tree. These tests point out some issues in 

the cutoff rule that turned out to be not suitable for all the situations. Therefore, it 

was necessary to introduce a new cutting rule, which would be more suitable to 

manage the different situations that may arise during the clustering procedure. 

In [37], Demirmen proposed some general criteria for the selection of groups 

in clustering problems: 

1. Any chosen group must stand out from neighboring classes: distance be-

tween groups should be maximized. 

2. Whereas an individual group should not contain a large proportion of the 

available samples, it is possible to produce a number of groups containing 

only a small number of samples. 

3. The number of groups evolved must be of practical use. 

Starting from these considerations, a new cutoff point based on a rule that con-

sists of three criteria is defined. Particularly, the criteria are based on the distance 

between the merged clusters (Diff): considering the series of differences (Diff) be-

tween consecutive iteration, the three cutoff points were defined as follows: 

- CutA: first iteration in which the difference Diff is higher than the average 

difference μ_Diff (Fig. 3.2a). 

- CutB: first iteration in which the difference Diff is higher than μ_Diff+σ_Diff, 

where σ_Diff is the standard deviation of Diff (Fig. 3.2b). 
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- CutC: a moving average (window: 5 points) is applied to the Diff series. Start-

ing from the last value and stepping backwards, the cutoff is identified as the point 

in which the series stop decreasing monotonically (Fig. 3.2c). 

As it emerges from Figure 3.3, the three cutoff criteria may result in a different 

number of clusters. The best cutoff was identified as the one that is a good compro-

mise between low intra-cluster variability and a high number of cycles included in 

significant clusters (clusters containing at least 10% of the total number of cycles). 

To automatically select the best cutoff, the following index was defined: 

 

𝐶𝑈𝑇_𝐼𝑁𝐷 =
∑ 𝐼𝑁𝑇𝑅𝐴_𝑉𝐴𝑅𝑖

𝑛
𝑖=1

𝑛⁄

∑ |𝐶𝑖|𝑛
𝑖=1

                               (3.1) 

 

where n is the number of significant clusters, |Ci| represents the number of cycles 

included in cluster Ci, and INTRA_VARi is the intra-cluster variability of the i-th 

cluster calculated as:  

 

𝐼𝑁𝑇𝑅𝐴_𝑉𝐴𝑅𝑖 = 𝑑𝑖𝑠𝑡(𝑐𝑦𝑐𝑙𝑒𝑗, 𝑐𝑦𝑐𝑙𝑒𝑘)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, ∀𝑗, 𝑘 ∈ 𝐶𝑖                (3.2) 

 

where dist is the Cityblock distance. 

 
 

Figure 3.2. Cutoff points. 

Representation of the three cutting criteria based on the Diff series. 
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In case of small intra-cluster variability and high number of cycles included in 

the significant clusters, the index assumes low values. Therefore, for each dendro-

gram the three cutoff points are applied and the one that returned the lowest value 

of the CUT_IND index is selected. 

 
 

Figure 3.3. Comparison of three cut-off criteria. 

Two examples of the clusters resulting applying the three cut-off criteria defined. Significant clusters 

are represented in blue; not-significant clusters are represented in grey. In case (a) the criteria provide three 

different clustering results, while in case (b) CutB and CutC provide the same clustering result. 
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3.3 Clustering evaluation 

Eight combinations (3 parameters with 2 possible settings each) were tested. 

For each combination the CIMAP method was applied and, once the dendrogram 

was cut, the resulting clusters were split into left and right clusters. 

The clustering results of each combination were evaluated both for left and right 

side, considering only the representative clusters (those clusters containing at least 

the 5% of the total number of strides of the side under consideration). The evalua-

tion was performed by means of a numerical index (CLUSTER_VAR index) that 

evaluate two aspects: the similarity of the strides grouped in the same cluster and 

the number of strides included in representative clusters. More specifically, for a 

specific cluster i, the CLUSTER_VAR index is calculated by using (3.3): 

 

𝐶𝐿𝑈𝑆𝑇𝐸𝑅_𝑉𝐴𝑅𝑖 =
∑ 𝑑𝑖𝑠𝑡(𝑠𝑡𝑟𝑖𝑑𝑒𝑗, 𝐶𝐿𝐶𝑖)

𝑝
𝑗=1

𝑝
⁄ , ∀𝑗 ∈ 𝐶𝑖                (3.3) 

 

 

where p is the number of strides included in the representative cluster Ci, CLCi 

is the cluster centroid and dist is the Cityblock distance. The final value of CLUS-

TER_VAR is obtained by averaging the values of all the clusters. 

 

3.4 Testing 

The dataset (Dataset_opt) consisting of the healthy and pathological subjects 

used in previous chapter (Test Set and Validation Set) was used to evaluate CIMAP 

results using the 8 combinations of parameters, in order to find the best set of pa-

rameters. The analysis was extended to all the modalities of each subjects, to in-

crease the number of available datasets. 

For each subject, the strides were separated according to their number of acti-

vation intervals, obtaining several datasets for each subject (one dataset per modal-

ity with more than 2 strides). 

Each dataset was used as input for the CIMAP algorithm, using the 8 combina-

tions of parameters. Among all the datasets, only those producing at least one sig-

nificant cluster for all the combinations were selected: a total of 551 valid datasets 

were then obtained. For each combination, the number of occurrences (#OCC) in 

which that specific combination outperforms the others was computed, i.e. the final 

clustering result shows the lowest CLUST_VAR values. 
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In Table 3.1 the number of occurrences (#OCC) of each combination is re-

ported; the sum across all the configurations (657) is higher than the total number 

of analyzed datasets (551) because in several situation two configurations of pa-

rameters returned exactly the same results and so both of them were assigned as 

having the lowest value of CLUST_VAR. 

 

Table 3.1. #OCC results (8 combination of parameters) 

Centroid CLCmean CLCmedian 

Linkage method Compl_Link Centr_Link Compl_Link Centr_Link 

Distance metric Dman Dcheb Dman Dcheb Dman Dcheb Dman Dcheb 

#OCC 6 5 39 46 177 181 103 100 

 

At first, the centroid type was analyzed: comparing the sum of #OCC obtained 

by the 4 combinations that use the mean value as centroid (#OCC equal to 96), to 

those obtained by the 4 combinations that use the median value (#OCC equal to 

561), it is evident that CLCmedian outperform the other centroid type. 

Then, considering only the combination that used CLCmedian, a preponderance 

of Comp_Link was observed, which obtains about the double of #OCC than 

Centr_Link. This preponderance is also evident when the #OCC are re-computed 

considering only the four combination that use CLCmedian (Table 3.2). 

 

Table 3.2. #OCC results (4 combination of parameters) 
 

Centroid CLCmedian 

Linkage method Compl_Link Centr_Link 

Distance metric Dman Dcheb Dman Dcheb 

#OCC 202 208 116 115 

 

Finally, it was observed that the effect of the two distance metrics does not 

produce any relevant difference in #OCC. 

For these reasons, the better configuration of parameters resulted to be the com-

bination of CLCmedian and Comp_Link. On the other hand, since no relevant differ-
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ence was observed in clustering results using the Manhattan or Chebychev dis-

tances, the dendrograms using both these metrics are constructed and the clusters 

with the lowest CLUST_VAR are considered as definitive result. 

 

The two version of the CIMAP (old and optimized one) were compared using 

the average Cluster_SD calculated across all the resulting clusters for each dataset. 

The Cluster_SD values and the number of cycles not included in the significant 

clusters (CYC_NSC) for the two versions are shown in Tables 3.3 (mean ± standard 

deviation). A paired Student t-test (α=0.05) was performed on each group and the 

test results proved that the new CIMAP version allows for obtaining cluster with a 

lower variability with respect to the clusters obtained using the original version 

(p<0.001), for all the groups. Moreover, significant differences (p<0.001) were ob-

tained comparing the CYC_NSC values between the two versions. The new version 

of the algorithm produces a reduction in the cluster variability, but a slightly higher 

number of cycles is discarded (on average, not more than 5 cycles). 

 

Table 3.3. Comparison of Original and new CIMAP 
 

 

Cluster_SD (% of g.c.) CYC_NSC (# cycles) 

Original 

CIMAP 

New 

CIMAP 

Original 

CIMAP 

New 

CIMAP 

Healthy subject 1.9 ± 1.3* 1.4 ± 0.7* 8 ± 8* 12 ± 7* 

THA patient 2.6 ± 1.6* 1.5 ± 0.7* 3 ± 3* 6 ± 4* 

TKR patient 2.1 ± 1.6* 1.6 ± 0.7* 5 ± 5* 8 ± 5* 

Mega TKR patient 2.1 ± 1.5* 1.5 ± 0.8* 4 ± 4* 7 ± 5* 

iNPH patient 3.2 ± 1.9* 2.3 ± 1.1* 4 ± 3* 8 ± 5* 

Total 2.1 ± 1.5*  1.6 ± 0.8* 6 ± 6*  5 ± 5* 
 

* p < 0.001 

 

Figure 3.3 shows an example of the clusters obtained with the two versions of 

CIMAP algorithm, considering the Rectus Femoris muscle of a THA patient. The 

new CIMAP version allows for obtaining 4 and 5 clusters for left and right side 

respectively, instead of only one cluster per side obtained with the original version. 

Observing the result of the new CIMAP version is possible to notice that different 

activation patterns are present: this information was not highlighted by using the 

original version of the algorithm. Moreover, the clusters resulting by using the new 

CIMAP present lower values of Cluster_SD with respect to the clusters resulting 
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by using the original CIMAP. Finally, the CYC_NSC values are similar for both 

sides, so no relevant information was lost by using the new version of the algorithm. 

 
 

Figure 3.4. Comparison between CIMAP results (original and optimized version). 

Example of the clusters obtained with the two versions of CIMAP algorithm for the Rectus Femoris 

muscle of a THA patient. The CLUST_SD values obtained using the new CIMAP version (b) are always lower 

than those obtained using the original version of the algorithm (a). The CYC_NSC values are similar. 
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3.5 Validation 

To validate the new version of the CIMAP algorithm, a new dataset (Valida-

tion_opt) consisting of both healthy and pathological subject was created. Particu-

larly, gait data of 30 patients aged from 20 to 81 years (15 males/ 15 females, height: 

167.5 ± 9.6 cm; weight: 72.0 ± 16.3 kg) were collected: 

- 5 healthy young subjects; 

- 5 healthy elderly subjects; 

- 5 patients after total knee replacement (TKR); 

- 5 patients with megaprosthesis of the knee (Mega TKR); 

- 5 patients with total hip arthroplasty (THA); 

- 5 patients affected by normal pressure hydrocephalus (iNPH). 

 

For each subject, the strides were separated according to their number of acti-

vation intervals, obtaining a total of 1070 valid datasets. 

The original and the new version of the CIMAP were compared using the av-

erage Cluster_SD calculated across all the resulting clusters for each dataset. The 

Cluster_SD values and the CYC_NSC values for the two versions are shown in Ta-

bles 3.4 (mean ± standard deviation). A paired Student t-test (α=0.05) was also per-

formed on each group. 

The results obtained on the Validation_opt dataset were consistent with the pre-

vious founding: the new CIMAP version allows for obtaining a lower intra-cluster 

variability with respect to the original version, and a significant slightly higher num-

ber of cycles is discarded (on average, not more than 4 cycles). 

 

Table 3.4. Comparison of Original and new CIMAP (Validation) 
 

 

Cluster_SD (% of g.c.) CYC_NSC (# cycles) 

Original 

CIMAP 

New 

CIMAP 

Original 

CIMAP 

New 

CIMAP 

Healhty Elderly 2.8 ± 1.8* 1.7 ± 0.7* 4 ± 5* 8 ± 5* 

Healthy Young 1.9 ± 1.6* 1.2 ± 0.6* 6 ± 6* 12 ± 7* 

THA 1.9 ± 1.2* 1.4 ± 0.7* 3 ± 4* 7 ± 6* 

TKR 2.5 ± 1.2* 1.9 ± 1.0* 4 ± 4* 9 ± 7* 

Mega TKR 2.8 ± 1.8* 2.0 ± 1.3* 3 ± 3* 7 ± 5* 

iNPH 2.6 ± 1.6* 2.0 ± 1.3* 2 ± 2* 5 ± 4* 

Total 2.4 ± 1.6* 1.7 ± 1.0* 4 ± 4* 8 ± 6* 
 

*p < 0.001 
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In this chapter the optimized version of the CIMAP algorithm was presented and 

validated. The results showed that this new version allows for obtaining clusters 

with lower variability with respect to the original version both analyzing healthy 

and pathological subjects.  
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Chapter 4 

Principal activation extraction and 

analysis 

4.1 Introduction 

In the previous chapters, the CIMAP algorithm was presented and this method 

is a powerful tool for grouping strides showing similar EMG activation patterns. 

The results obtained have proved that this method definitively improves the correct 

interpretation of the acquired signals, providing an organized representation of the 

most common type of muscle activation patterns of the individual, that may be use-

ful to clinicians to simply identify possible criticism in subject walking. 

Moreover, as a result of the clustering procedure, the cluster centroids, both left 

and right side, are obtained: they summarize the typical activation pattern charac-

teristics of each muscle. 

Observing the cluster centroids obtained on healthy subjects during gait, it 

emerged that, for each specific muscle, some activations are present in almost all 

the gait cycles and do not belong uniquely to a specific centroid, while other acti-

vations are centroid-specific (Figure 4.1a). 

It is reasonable to assess that muscle activations that are not centroid-specific 

are strictly necessary for achieving the specific motor task, and hence they can be 

defined as principal activations (PAs). The concept of principal activations is com-

plementary to the concept of secondary activations, which are activations present 

only in some strides and have an auxiliary function in motor control (e.g. to provide 
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a slight correction to muscle activations due to temporary subject distractions or 

extemporaneous external disturbances) [30]. 

The concept of principal and secondary activations applied to the analysis of 

EMG signals may significantly simplify the understanding of muscle contributions 

to the biomechanics of movement. Principal activations describe the essential con-

tributions of a specific muscle and should be relatively repeatable among similar 

subjects, while secondary activations are expected to be more variable and possibly 

related to abnormalities or peculiarities of specific subjects. 

 

In practice, to extract principal activations starting from CIMAP results, at first 

the prototype of each cluster has to be defined (Figure 4.1a) by coding the cluster 

centroid as a binary string of 1000 elements: each bit corresponds to 0.1% of gait 

cycle. A bit equal to 0 means that no muscle activation is observed in the corre-

sponding percentage of gait cycle, while a bit equal to 1 means that muscle activa-

tion is observed in the corresponding percentage of gait cycle. Then, the PA of each 

muscle is obtained as the intersection of the corresponding cluster prototypes (Fig. 

4.1b). More specifically, PAs are defined as binary strings of 1000 bits (0 means 

 

 
Figure 4.1. Example of principal activation extraction. 

Example of PA extraction (healthy adult, Tibialis Anterior muscle). In panel (a) the representative clus-

ters are represented: the cluster elements are represented in blue and the cluster prototypes in orange. In panel 

(b) the principal activations (green) obtained as the intersection of the cluster prototypes are reported. 
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that at least one prototype has no activation in the specific bit; 1 means that all the 

prototypes have activation in the specific bit). 

Finally, activation intervals lasting less than 3% of the gait cycle are removed, 

while activation intervals separated by less than 3% of the gait cycle are joined 

together [38]. 

 

4.2 Population characterization using PAs 

The extraction of muscle PAs is a new approach to summarize the gait charac-

teristics of a subject, through a single pattern of muscular activation, representative 

of the activation necessary to correctly perform the gait task. 

In this section, the results obtained processing several STEP32 datasets restring 

the analysis to PAs only, are reported. Particularly, three studies that analyzed group 

of subjects with homogenous characteristic are performed. 

In the first study, a population of healthy school-age children was analyzed 

through PAs, obtaining normative EMG activation patterns of four lower limb mus-

cles. The results allowed for obtaining a compact information useful to understand 

the biomechanical contribution of the observed muscles. 

In the second study, the PAs analysis was extended to investigate the differ-

ences in muscle activation patterns of a healthy population and a group of patients 

affected by normal pressure hydrocephalus (iNPH). Four lower limb muscles were 

analyzed and the results showed that focusing the analysis on PAs only, it was pos-

sible to clearly identify the main differences in muscle activations between the two 

groups. 

Finally, in the third study, PA analysis was applied to a longitudinal study of 

patients that underwent total hip arthroplasty surgery (THA). Particularly, muscle 

activation characteristics were assessed at 3, 6 and 12 months after surgery, and, at 

each time points, the results on THA patients were compared with the results ob-

tained analyzing a healthy group of control subjects. 

 

In all the studies gait analysis was performed using the STEP32 multichannel 

recording system. In these studies, all the subjects were equipped bilaterally with 

(Figure 4.2): 

• three foot-switches (size: 10 mm × 10 mm × 0.5 mm; activation force: 3 N) 

attached beneath the heel, the first and the fifth metatarsal heads of each foot 

for analyzing the foot-floor contact of both feet; 
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• one electrogoniometer (with an accuracy higher than 0.5 degrees) attached 

to the lateral side of the knee joint to record the joint angle during gait; 

• several EMG probes attached to the skin over the muscles of interest. The 

probes used were both fixed and variable geometry probes, depending on 

the muscle characteristics. The detection modality was single differential 

and each signal was amplified to best fit the input dynamics of the A/D con-

verter avoiding saturation. Typical gain values ranged from 1000 to 50000. 

Signals were highpass filtered (10 Hz, two poles), lowpass filtered (450 Hz, 

six poles) and discretized with a 12 bit A/D converter. The sampling fre-

quency was equal to 2k Samples/sec. The input referred noise was below 

1μVrms. 

After sensors positioning, subjects walked barefoot for at least 2 minutes, at 

self-selected speed, back and forth over a straight path ranged from 9 to 15 meters 

(depending on the study protocol). 

All the experimental protocols were conformed to the Helsinki declaration on 

medical research involving human subjects. 

 

 
 

Figure 4.2. Example of sensors positioning. 

Example of subject preparation. The subject is equipped bilaterally with three basographic sensors under 

the foot, one electrogoniometer attached to the lateral side of the knee joint, two fixed geometry probes over 

Tibialis Anterior and Gastrocnemius Lateralis muscles and two variable geometry probes over Rectus Femoris 

and Lateral Hamstring muscles. 
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4.3 Characterization of school-age children population 

A dataset consisting of 100 school-age children was retrospectively analyzed, 

restricting the study to PAs only. In 2010 a contribution [14] describing the role of 

five limb muscles during walking over the same population was published. For each 

of the observed muscles - Rectus Femoris (RF), Vastus Medialis (VM), Lateral 

Hamstrings (LH), Tibialis Anterior (TA) and Gastrocnemius Lateralis (LGS) - five 

different activation modalities were described. 

Restricting the study to PAs only it was expected to obtain a remarkable sim-

plification of the results obtained in the previous study, providing in a novel set of 

normative EMG activation patterns of simpler interpretation and of higher interest 

for clinicians [39]. Particularly, at first the global behavior of the population was 

analyzed and then a more in-depth analysis was performed, analyzing the differ-

ences in the EMG activation patterns by dividing children into three groups, ac-

cording to their age. 

4.3.1 Population and gait data acquisition 

A population consisting of 100 children (ranged from 6 to 11 years, 51 males 

and 49 females) was analyzed. Population details are reported in Table 4.1.  

 

Table 4.1. Population details. Details of the 100 children involved in the study 

(age, height and weight for each group are reported as mean ± standard deviation). 
 

 

Groups (Age range) 

6.5-8.5 

years old 

8.5-10 

years old 

10-11.5 

years old 

6.5-11.5 

years old 

Number of children 37 35 28 100 

Age (months) 90.4±7.5 111.5±5.8 127.6±4.6 108.2±16.3 

Sex 15M/17F 20M/15F 16M/12F 51M/49F 

Height (cm) 125.4±6.7 136.3±7.5 140.7±5.8 133.4±9.3 

Weight (kg) 26.1±5.1 32.9±6.8 33.9±4.9 30.6±6.7 

Number of analyzed 

strides per child 
146 ± 26 136 ± 28 115 ± 34 134 ± 32 
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Children with orthopedic or neurological disorders were not included in the 

study. Subjects walked at self-selected speed for 2.5-minute walk. Parental consent 

and child assent were obtained prior to the participation in the study. 

The muscle activity of Rectus Femoris (RF), Vastus Medialis (VM), Lateral 

Hamstring (LH), Tibialis Anterior (TA) and Gastrocnemius Lateralis (LGS) of both 

lower limbs was analyzed (Figure 4.3). 

 

4.3.2 Data analysis and statistical analysis 

After signal segmentation and normalization, gait data were processed using 

CIMAP algorithm and then muscle PAs were extracted from each subject and coded 

as strings of 1000 binary bits. 

Behavior of the entire pediatric population 

To summarize the behavior of the analyzed population the PAs of all the sub-

jects were averaged. More specifically, since PAs were represented as strings of 

1000 binary bits, summing the strings point to point across all children, a final string 

is obtained. Every point of the string has a value from 0 to 100, where 0 means that 

no child has a PA associated to a certain percent of gait cycle, while 100 means that 

all children have activation.  

 
 

Figure 4.3. Probes positioning. 

Representation of the probe positioning on the analyzed muscles: Rectus Femoris (RF), Vastus Medialis 

(VM), Lateral Hamstring (LH), Tibialis Anterior (TA) and Gastrocnemius Lateralis (LGS). 
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 Differences among age groups 

To analyze possible modifications in walking characteristics due to children 

development, the population was separated into three age groups: from 6.5 to 8.5 

years, from 8.5 to 10.5 years, and from 10.5 to 11.5 years (see Table 4.1). The PAs 

of each group were represented using the same representation used for representing 

the PAs of the entire population. 

Then left and right data of each group were averaged and the Hotelling’s T-

square test for two independent samples (significance level:  = 0.05) was then 

applied among the three age groups. More specifically, based on the analysis of the 

results, the comparison among age groups were performed between 0% and 100% 

of the gait cycle for VM, LH and TA muscles, while the comparison was limited in 

the range between 40% and 80% of gait cycle for RF muscle, and between 90% and 

100% of gait cycle for LGS muscle. 

 Ankle control 

Several studies in literature have pointed out the importance of the study of the 

ankle-joint control both in healthy [40] and pathological populations (especially in 

hemiplegic children [41]-[44]). For this reason, a “more in deep” analysis of the 

principal activations of ankle plantar- (LGS) and dorsi- (TA) flexors was per-

formed. Particularly the focus of the analysis was on the simultaneous activation of 

the antagonist muscles (co-contraction [40]) TA and LGS. 

4.3.3 Results 

Behavior of the entire pediatric population 

Figure 4.4 shows the percentage of activation over the entire population of 100 

children for the five muscles, observed bilaterally. In order to provide an easier 

interpretation of those results, the information is reported in two different modali-

ties, for each muscle: 

• a grey-coded horizontal bar (frame top): the bar is white when no sub-

ject activates the muscle, becomes darker as the number of subjects 

showing activation at the considered percent of stride increases, and is 

black when the entire population shows activation of the observed mus-

cle; 

• a bar diagram (frame bottom): the diagram shows the same information 

as the grey-coded horizontal bar, in a different and more quantitative 
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way. More specifically, each bar corresponds to a specific percent of 

the gait cycle and its height is proportional to the percent of subjects 

showing muscle activation. 

The horizontal axis reports the percentage of the gait cycle and refers to all the 

graphs. 

Differences among age groups 

Figure 4.5 shows the percentage of activation over three sub-populations (dif-

ferent for subject age) for the five analyzed muscles, bilaterally. In this case, to 

facilitate comparison among sub-populations, results are reported using the bar di-

agrams only. Each bar corresponds to a specific percent of the gait cycle stride and 

its height is proportional to the percentage of children, in the specific sub-popula-

tion, showing muscle activation.  

Comparing the principal activations among age groups and the Hotelling’s T-

square test result (Table 4.2), several observations can be made:  

 

 
 

Figure 4.4. Activation representation of 100 school-aged children. 

Gray-coded bar (frame top) and bar diagram (frame bottom) representing, for each percent of the stride, 

the percentage of children in which a PA is observed. Results are reported for RF, VM, LH, TA and LGS 

muscles, left and right leg separately. 
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a) For RF muscle, between 40% and 80% of gait cycle, principal activations 

are significantly different among all age groups.  

b) For VM muscle, between 0% and 100% of gait cycle, principal activations 

are significantly different only between Group 1 and 3. 

c) For LH muscle, between 0% and 100% of gait cycle, principal activations 

are significantly different between Group 1 and 3, and between Group 2 and 

3. 

d) For TA muscle, between 0% and 100% of gait cycle, principal activations 

are not significantly different among age groups. 

e) For LGS muscle, between 90% and 100% of gait cycle, principal activations 

are significantly different between Group 1 and 2.  

 

 

 
 

  

 

 
 

Figure 4.5. Activation representation of three sub-population of the 100 school-aged children. 

Bar diagrams representing, for each percent of gait cycle, the percentage of children in which a principal 

activation is observed in each sub-population. Results are reported for RF, VM, LH, TA and LGS muscles, 

left and right leg separately. 
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Table 4.2. Comparison among age groups: results of the Hotelling’s T-square test 

(p-values). 
 

 
Muscles 

RF VM LH TA LGS 

Group 1 vs. Group 2 0.0023 0.17 0.99 0.68 <0.0001 

Group 1 vs. Group 3 <0.0001 0.0074 <0.0001 0.94 <0.0001 

Group 2 vs. Group 3 <0.0001 0.19 <0.0001 0.73 0.38 
 

*Group 1: from 6.5 to 8.5 years, Group 2: from 8.5 to 10 years, Group 3: from 10 to 11.5 years. p-

values < 0.05 are highlighted in bold. 

 

Ankle control 

By analyzing the PA of ankle plantar- (LGS) and dorsi- (TA) flexors it emerges 

that approximately 25% of the population activates LGS following the initial con-

tact (0-10% of gait cycle) where TA muscle is active in approximately 60% (left 

leg) and 75% (right leg) of the population. 18 subjects show co-contraction of TA 

and LGS on the left limb and 15 subjects on the right limb. Before the initial contact 

(90-100% of GC), approximately 18% of the population shows an anticipate acti-

vation of plantar flexors and consequently a co-contraction of LGS and TA. More-

over, Figure 4.5 shows that the anticipated activation of LGS is progressively less 

evident with increasing age. 

4.3.4 Discussion 

Among all, comparing the results provided in the study published in 2010 [14] 

(Figure 4.6) with the results obtained analyzing PAs (Figure 4.4) it is evident that a 

this new approach should simplify the analysis. In [14] the presence of multiple 

activation modalities for each muscle, determined a complex picture for the overall 
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motor patterns of children during gait and their interpretation. On the contrary, con-

sidering principal activations only, allows for simplifying the analysis and provid-

ing data simpler to be interpreted that may be more useful in clinical practice. 

Behavior of the entire pediatric population 

In terms of hip and knee control, in [14] results showed that the RF muscle in 

the 90% of analyzed strides showed 2, 3 or 4 activation modalities (Figure 4.5e). 

Restricting the analysis to PAs, it emerged that approximately 35% of the children 

present a 3-activation modality and approximately 60% relies on two activations 

(Figure 4.3). Particularly, in case of 2 activation modality, the muscle is activated 

around the initial contact, to avoid excessive knee flexion during the weight ac-

ceptance phase. The third activation, when present, extends from 45% to 70% of 

the gait cycle and it is aimed at stabilizing the trunk before toe-off. 

 
Figure 4.6. Results found in [14] 

“Horizontal bars are grey-level coded; black: condition observed for all children, white:  condition never 

met. a) Foot contact timing over the population (4-level signal): H = heel contact; F = Flat foot contact; P = 

Push off; S = Swing. Muscle activation onset and offset instants over the population for b) TA, c) GL, d) VM, 

e) RF and f) LH, as % of gait cycle, for five different modalities with 1, 2, 3, 4 and 5 activations, respectively. 

On the right-hand side of each plot: percentage frequency of each modality. The H, F, P, S phases are shown 

superimposed, delimited by dashed vertical lines.” 
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Considering the VM muscle, in [14] results showed that the 57% of the gait 

cycle presented 2 activations intervals, while 30% and 8% of gait cycle presented 3 

and 4 activation intervals, respectively (Figure 4.5d). Analyzing only PAs it 

emerged that over the 90% of children used a 2-activation modality (Figure 5.3), 

activating the muscle around the initial contact, mainly for stabilizing patella in 

preparation and during the weight acceptance phase.  

Similarly, in [14] the LH muscle showed 2-, 3- or 4-activation modalities re-

spectively in 47%, 36% and 10% of strides, while restricting the study to PAs a 

large percentage of the population uses a 2-activation modality (Figure 4.3). More 

specifically over 90% of the children show activation from 85% to 95% of the gait 

cycle. Since in this interval the knee is at the end of its extension phase, this is an 

eccentric contraction aimed at slowing down the joint extension in preparation to 

the initial contact. Notice that approximately 75% of the population shows a simul-

taneous activation of RF and LH around the initial contact, aimed to the stabiliza-

tion of knee and hip joints in preparation to the weight acceptance phase. Only 25% 

- 30% of the population shows LH activity from 10% to 30% of the gait cycle, 

where RF is not active, probably to extend the hip during mid stance.  

Considering ankle control, the results reported in [14] were consistent with 

those reported in this study. In [14] the TA muscle showed 2-, 3- or 4-activation 

modalities respectively in 23%, 48%, and 18% of strides. Considering PAs only, 

the TA muscle shows a 3-activation modality in approximately 85% of the popula-

tion and a 2-activation modality in slightly less than 15% of the population. The 

activation of the TA begins approximately at 55% - 60% of the GC, just before toe-

off. During the swing phase approximately 85% of the population deactivates the 

muscle around 82% of the GC. Almost the entire population shows activity just 

before initial contact and 75% of subjects keep the muscle active up to 6% of the 

gait cycle to control the first heel rocker. After 15% of GC no subject shows TA 

activity until toe-off. 

Differences among age groups  

Observing Figure 4.5, that reports the results related to the observed muscles 

divided into three age groups, two significant observation emerged: first, with in-

creasing age, it is observed that the activity of the RF tends to disappear during 

push-off; secondly, also the activation of the LGS muscle preceding the initial con-

tact (90% - 100% of GC) tends to be less frequent in older children. 

During push-off the RF muscle is activated during knee flexion, thus acting like 

a hip flexor. The goal of hip flexion during push-off is to control the position of the 

trunk to move the center of gravity forward. However, with increasing age, it is 
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observed that the LGS muscle is activated more frequently between 35% and 45% 

of GC, thus improving its propulsive effect. Consequently, it may be concluded that 

with increasing age the advancement of the body tends to rely more on the propul-

sive effect of the plantar flexors and therefore the need to move forward the center 

of gravity decreases, thus making the body more stable during the progress. This 

may be interpreted as a sign of gait maturation. 

Observing the activity of the TA muscle, it emerges that from 90% to 100% of 

the GC the muscle is always active: this activity is aimed at obtaining plantar ex-

tension and preparing the forefoot for contact between the ground and the foot. The 

simultaneous activation of the LGS muscle in this phase of GC aims at stiffening 

the ankle joint to obtain a better control of the heel contact phase. Figure 4.5 shows 

that the LGS activation just before heel contact is present in approximately 30% of 

children belonging to the younger group and becomes less frequent in older chil-

dren. A possible interpretation of this finding is that the need for stiffening the ankle 

joint just before heel contact decreases with increasing age, thus demonstrating 

more natural ankle control in older children 

Ankle control 

Even if it is generally accepted [1] that around the heel contact plantar flexors 

and extensors should not be co-activated, the results obtained in this study shows 

that approximately 16%-18% of children presents a co-activation of LGS and TA 

muscles around the initial contact, confirming the founding of a previous study [45]. 

Around the heel contact, among the observed muscles, only the TA muscle is ex-

pected to be active, but this is not true for approximately 22% of the analyzed pop-

ulation. More specifically, before heel contact, approximately 18% of the popula-

tion activates the LGS muscle in co-activation with the TA muscle; after heel con-

tact the percentage of children that activates the LGS muscle is slightly higher (ap-

proximately 25%), but approximately 8% of the population does not activate TA 

and LGS contemporarily. It may be concluded that, in general, the co-contraction 

of plantar flexors and extensors around the initial contact is not so uncommon as 

usually assumed. With the increasing of the age, the percentage of children present-

ing co-activation of TA and LGS before the initial contact decreases considerably, 

while the frequency of co-contraction of plantar flexors and extensors following the 

initial contact (0% - 10% of GC) does not depend on age.  
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4.3.5 Conclusions 

In conclusion, analyzing the muscle activation intervals during gait considering 

PAs only, makes it easier to understand the biomechanical contribution of the ob-

served muscles and it allows describing muscle activity in an easier form that may 

be more useful for clinical practice. Particularly, in this study, it was possible to 

identify and describe phenomena related to gait maturation that were less evident 

when all the muscle activations were considered.  

  

4.4 Assessment of muscle activation differences between 

idiopathic normal pressure hydrocephalus patients 

and healthy controls 

In the previous section, PA analysis was applied for describing the global be-

haviour of a population of 100-school age children. The results obtained restricting 

the study to PAs only provided both qualitative and quantitative information about 

the population. However, in a typical clinical scenario, it is often required not to 

analyse a single dataset, but to compare datasets from:  

a) a single patient or a patient cohort with respect to a control group [46]; 

b) single patient or a patient cohort before and after a medical treatment [47]; 

c) repeated observations of a single patient or a patient cohort over long periods 

of time (follow-up or longitudinal study) [48]. 

However, the problem of dataset comparison is very challenging due to the 

EMG stride-to-stride variability already documented. To cope with this problem, 

the application of the CIMAP algorithm and the PA extraction may be a powerful 

tool for the aggregation of EMG results of huge dataset, and it may allow an easy 

comparison between different datasets. 

 

This section deal with the problem of comparing datasets from a patient cohort 

with respect to a control group. Particularly, the patient cohort is composed of sub-

ject affected by idiopathic normal pressure hydorcephalus (iNPH). 

 

Normal pressure hydrocephalus (NPH) is an abnormal buildup of cerebrospinal 

fluid (CSF) in the brain's ventricles, or cavities. This neurological disorder is char-

acterized by gait disturbance, dementia and urinary incontinence [49]. Particularly, 

gait alteration is usually the first sign to appear and is considered  the  most  im-

portant  symptom [50], [51], [52]. 
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EMG gait data of 30 patients affected by normal pressure hydrocephalus and 

30 healthy controls were extracted from STEP32 database and analyzed. 

Aim to this study is to analyze PAs of both patients and controls to investigate 

the differences in muscle activation patterns of the two population. 

4.4.1 Population and gait data acquisition 

Gait data acquired from 30 iNPH patients (ranged from 50 to 86 years, 25 males 

and 5 females) and 30 matched controls (ranged from 40 to 75 years, 15 males and 

15 females) were extracted from STEP32 database and retrospectively analyzed. 

Population details are reported in Table 4.3.  

 

Table 4.3. Population details. Anthropometric characteristics of the Sample Pop-

ulations (iNPH and Controls). Age, height and weight for each group are reported 

as mean ± standard deviation. 
 

Anthropometric 

Characteristics 

iNPH Patients 

(N = 30) 

Controls 

(N = 30) 

Age (years) 73.8 ± 8.6 61.9 ± 9.5 

Height (cm) 167.6 ± 7.6 170.7 ± 9.1 

Weight (kg) 72.0 ± 11.0 69.4 ± 11.4 

 

All patients showed a short-stepped “magnetic” gait, cognitive disturbances 

and, in many cases, urinary incontinence [5]. 

The muscle activity of Lateral Hamstrings (LH), Rectus Femoris (RF), Gas-

trocnemius Lateralis (LGS) and Tibialis Anterior (TA) of both lower limbs was 

analyzed (Figure 4.7). 

4.4.2 Data analysis and statistical analysis 

The H, F, P and S gait phases of each subject enrolled in the study were ex-

tracted using the routines for gait analysis included in the STEP32 software. The 

strides were segmented in separate gait cycles and only HFPS were extracted and 

normalized to time duration [21]. The onset-offset timings of each EMG activation 

were detected using a double-threshold statistical detector [22]. 

The CIMAP algorithm was applied to the entire dataset and muscle PAs were 

obtained and coded as binary strings of 1000 bits. 
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The Lilleforst test was applied to assess the normality of the distribution con-

sisting of the values of H, F, P and S phases, for both the groups. The differences 

in gait phase duration between patients and controls were then assessed using Stu-

dent’s t-tests (α=0.05) when the distribution resulted normal, and using Wilkoxon 

non parametric tests (α=0.05) when at least one of the two tested distribution re-

sulted not-normal. 

Since, as already documented in literature [5],  significant differences were ob-

served between the phase durations of iNPH patients and controls, H, F, P and S 

phases of iNPH patients were time-normalized with respect to the phase durations 

of controls.  

4.4.3 Results 

For each lower limb, an average of 68 ± 19 HFPS gait cycles were collected for 

iNPH patients and 77 ± 12 for controls. The values of gait phases time duration for 

left and right side are reported in Table 4.4, separately on the two groups. 

In Table 4.5 are reported the results of the Lilleforst test, for the H, F, P and S 

phases separately, both groups. As it emerges from the table, the distribution of 

values related to the time duration of H phase (left side) of both groups, resulted 

not-normal, as well as on the right side for iNPH patients. Moreover, on the control 

group, the distribution of values related to the time duration of P phase (right side) 

resulted not-normal. 

 

 
Figure 4.7. Probes positioning. 

Representation of the probe positioning on the analyzed muscles: Lateral Hamstrings (LH), Rectus Fem-

oris (RF), Gastrocnemius Lateralis (LGS) and Tibialis Anterior (TA). 
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Table 4.4. Gait phase time duration. Values are reported as mean ± standard de-

viation. 
 

 
Left side Right side 

Controls iNPH patiens Controls iNPH patients 

H 5.6 ± 2.2 6.4 ± 3.9 5.1 ± 1.5 6.2 ± 4.5 

F 32.8 ± 4.1 43.8 ± 7.0 32.8 ± 5.0 42.9 ± 7.0 

P 20.3 ± 4.6 15.5 ± 5.1 20.4 ± 5.3 16.0 ± 4.7 

S 4.4 ± 3.1 34.4 ± 3.5 41.6 ± 2.1 34.9 ± 4.8 

 

 

Table 4.5. Lilliefors test results. Not-normal distribution are identified by p-values 

< 0.05. 

 

p-values 

Left side Right side 

Controls iNPH patiens Controls iNPH patients 

H 0.04 0.007 0.05 0.004 

F 0.5 0.3 0.3 0.3 

P 0.08 0.3 0.04 0.3 

S 0.22 0.2 0.09 0.5 
 

*p-values < 0.05 are highlighted in bold. 

 

The results of Student t-tests and Wilkoxon tests reported in Table 4.6 highlight 

significant differences in phase durations between controls and iNPH patients for 

F, P, and S phases, both sides. 

 

 

Table 4.6. Student t-test and Wilkoxon test results. 
 

 
p-values 

Left side Right side 

H 0.4 0.5 

F <0.001 <0.001 

P <0.001 0.001 

S <0.001 <0.001 
 

*p-values < 0.05 are highlighted in bold. 
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In Figure 4.8 the percentage of subjects having PA at each percent of gait cycle 

is shown separately for the four analysed muscles (TA, LGS, RF and LH). 

For each muscle, the results obtained with (panel a, c, e and g) and without 

(panel b, d, f and h) gait phase normalization are reported. 

4.4.4 Discussion 

Observing Figure 4.8 it can be noticed that, overall, qualitatively the same be-

haviour is exposed on left and right side, for both the groups. Hence, in the follow-

ing, the results obtained will be discussed separately for each muscle, but all the 

observation will be referring to both sides.  

 

 
Figure 4.8. Activation representation of iNPH patients and controls. 

Barplots representing, at each percent of gait cycle, the percentage of subjects showing a principal acti-

vation, for both iNPH patients and controls. For each muscle, the results obtained with (panel a, c, e and g) 

and without (panel b, d, f and h) gait phase normalization are reported. Muscles: Tibialis Anterior (TA), Gas-

trocnemius Lateralis (LGS), Rectus Femoris (RF) and Lateral Hamstring (LH). 
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Tibialis Anterior 

From both panel a and b it emerges that, in the first 6-7% of the gait cycle, there 

is a difference in the number of subjects that activate the muscle, suggesting that 

around 50% of iNPH patients does not activate TA muscle at the beginning of the 

cycle. Observing panel b, no other significant differences emerged. On the contrary, 

the results obtained after gait phase normalization (panel a), highlights a marked 

anticipation of the onset timing during P phase.  

 

Gastrocnemius Lateralis 

The behaviour of iNPH patients and controls results qualitatively different dur-

ing H and F phases (panel c and d): only a small percentage of controls activate the 

LGS muscle at the beginning of the gait cycle, while the great majority of subjects 

present an onset timing starting from the middle of P phase. Instead iNPH patients 

expose a more variable behaviour in the onset timing of the muscle. Moreover, ob-

serving panel d of Figure 4.8 it emerges a slightly delay in the offset timing of the 

muscle activation during F phase. On the contrary, the result reported in panel c 

highlights an anticipation of offset timing for the majority of iNPH patient with 

respect to controls.  

 

Rectus Femoris 

Small differences can be observed between patients and controls for RF muscle. 

Particularly, a delay in offset timing during the final part of F phase and the begin-

ning of P phase can be observed from panel f. This difference is not highlighted 

when activations are normalized to control gait phase duration (panel e), but in this 

case a slightly anticipation of the onset timings at the end of gait cycle is observed 

for iNPH patients with respect to controls. 

 

Lateral Hamstring 

Qualitatively, the behavior of iNPH patients results quite similar both with and 

without gait phase normalization (panel g and h). Particularly it emerges a pro-

longed muscle activity during F and P phases with respect to control group. 

 

For all the muscle, except for LH, the gait phase normalization allowed for ob-

taining a different kind of information with respect to the standard approach. Ana-

lyzing both results it was possible to extract two kind of information. At first, when 

activations are not normalized the results referred to the whole gait cycle and they 

underlined global difference between patients and controls. At second, applying the 

gait phase normalization, it was possible to underline difference between the two 
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groups referring to the specific gait phase, bringing out different kind of muscle 

activation strategies to perform the walking task.  

4.4.5 Conclusion 

In this section, the PA analysis was applied to both healthy subjects and iNPH 

patients and it has proved to be a powerful tool to compare muscle activation pat-

terns of the two groups. Moreover, the concept of gait phase time normalization 

was introduced, and it has revealed to be a useful approach to extract information, 

especially when significant differences are present in gait phase duration of the 

groups of interest. 

The presented approach can be easily extended for the analysis of other pathol-

ogies, becoming a promising tool for clinicians to identify the main differences be-

tween healthy and pathological subject and to implement effective rehabilitation 

protocol. 

 

4.5 Longitudinal assessment of muscle function in pa-

tients with Total Hip Arthroplasty 

In this section, gait data acquired from 20 patients with Total Hip Arthroplasty 

(THA) at 3, 6 and 12 months after surgery and 20 matched control subjects are 

analysed, in order assess the efficacy of PA analysis in a longitudinal study. In 2014 

a contribution [4] describing the role of five limb muscles during walking over the 

same population was published. Restricting the study to PAs only, it was expected 

to compare in a more compact way the datasets, providing a robust, synthetic and 

clear representation of EMG gait data that might be highly appreciated by clinicians 

[53]. 

 

Total Hip Arthroplasty is the orthopedic surgical replacement of the hip joint 

with an artificial prosthesis and it is usually proposed to patients that previously 

underwent other treatment options that have failed or did not provide adequate pain 

relief. The procedure consists in the removal of damaged bone and cartilage, 

through an anterior or posterior approach, and in their replacement with prosthetic 

components [54]. After the surgery procedure, alterations in locomotor activity may 

persist and often a follow-up that involves specialized physiotherapists may be re-

quired [55]. 
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4.5.1 Population and gait data acquisition 

A population consisting of 20 THA patients (ranged from 49 to 79 years, 9 

males and 11 females) and 20 matched controls (ranged from 57 to 74 years, 11 

males and 9 females) was analyzed. Population details are reported in Table 4.7.  

 

Table 4.7. Population details. Anthropometric characteristics of the sample popu-

lations (THA and Controls). Age, height and weight for each group are reported as 

mean ± standard deviation. 
 

Anthropometric 

Characteristics 

Hip Prosthesis Patients 

(N = 20) 

Controls 

(N = 20) 

Age (years) 66.1 ± 7.2 65.4 ± 5.1 

Height (cm) 168.7 ± 10.5 169.8 ± 9.4 

Weight (kg) 77.0 ± 13.3 69.0 ± 12.2 

 

All patients originally suffered from hip osteoarthrosis and, after surgery, they 

received the same 2 months rehabilitation protocol [4]. The patients' outcome was 

assessed at 3, 6, and 12 months after surgery. The muscle activity of Gluteus Medius 

(GMD), Lateral Hamstring (LH), Rectus Femoris (RF), Gastrocnemius Lateralis 

(LGS) and Tibialis Anterior (TA) of both lower limbs was analyzed (Figure 4.9). 

4.5.2 Data analysis 

Using the dedicated routines included in the STEP32 software, the H, F, P and 

S gait phases were obtained, for each lower limb. The signal was then segmented 

in separate gait cycles and only cycles showing the normal sequence of gait phases 

(HFPS) were extracted and normalized to time duration [13]. The onset-offset tim-

ing of each EMG activation was detected using a double-threshold statistical detec-

tor [56]. 

The CIMAP algorithm was applied to the entire dataset; then, for THA patients, 

each resulting cluster was separated into strides belonging to prosthetic and sound 

side; for healthy controls, clusters were separated into left and right side. For all 

subjects, muscle PAs were obtained and coded as binary strings of 1000 bits. 
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Muscle PAs of each analyzed groups (THA patients at 3 time points and con-

trols) were averaged across all subjects belonging to the same group. 

For THA group, a string with values that lies between 0 and 100% was ob-

tained, at each time point, both on prosthetic and sound side. For control group, PAs 

of both left and right side were averaged to obtain a unique reference to compare 

both prosthetic and sound side of THA patients. 

 

As mentioned before, the gait cycles were time normalized with respect to the 

gait cycle duration and expressed as a percentage of the gait cycle (% G.C.). How-

ever, since significant differences were observed between gait phase durations of 

THA patients and controls [4], H, F, P and S phases of THA patients were time-

normalized with respect to that of controls (averaging left and right side). 

4.5.3 Results 

Analyzing the entire dataset, an average of 72 ± 15 and 76 ± 13 HFPS gait 

cycles were collected for THA and control group, respectively. In Figure 4.10 the 

percentage of subjects showing PA at each percent of gait cycle is shown. THA gait 

phases were normalized with respect to the mean phase duration of controls (H: 5.0 

 
Figure 4.9. Probes positioning. 

Representation of the probe positioning on the analyzed muscles: Gluteus Medius (GMD), Lateral Ham-

string (LH), Rectus Femoris (RF), Gastrocnemius Lateralis (LGS) and Tibialis Anterior (TA). 
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± 1.1 %GC, F: 34.3 ± 3.4 %GC, P: 19.4 ± 2.8 %GC, S: 41.3 ± 2.1 %GC). The 

information is reported as barplot, separately for the five analysed muscles. 

 

4.5.4 Discussion 

Considering the TA muscle, it can be noticed that the large majority of THA 

patients show an anticipation of offset timing during H phase with respect to control 

group. This behaviour is present both on prosthetic and sound side and it doesn’t 

change significantly during the follow-up. Furthermore, observing the final part of 

 
Figure 4.10. Activation representation of THA patients at 3, 6 and 12 months after surgery, and 

controls. 

“Barplots representing, at each percent of gait cycle, the percentage of subjects showing a principal 

activation. For each muscle, the barplots of THA group at 3, 6 and 12 months after surgery (both prosthetic 

and sound side) and control group are represented. TA: Tibialis Anterior, LGS: Gastrocnemius Lateralis, RF: 

Rectus Femoris, LH: Lateral Hamstring and GMD: Gluteus Medius.” [53] 
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the P phase, it can be observed that THA patients already show muscle activity 

while in controls group this activity appears later, during the S phase. This behav-

iour was observed clearly on prosthetic side and, to a minor extent, also in the sound 

side. 

 

Observing the LGS muscle, the only remarkable difference between THA pa-

tients and controls is that a larger percentage of THA patients activate the muscle 

in the first part of F phase, on both sides. 

The LH muscle is the only muscle that presents relevant differences in the be-

haviour of prosthetic and sound side in THA patients. More specifically, for the 

prosthetic side, the main difference is evident during P phase, where a greater per-

centage of THA patients show PA with respect to controls. For the sound side, the 

main difference is evident during the H phase, where a smaller percentage of THA 

patients show PA with respect to controls. 

Finally, for what concern the GMD and RF muscles, no relevant differences 

can be appreciated between THA and control groups.  
 

4.5.5 Conclusion 

In this section, the problem of comparing EMG gait data among populations 

(and among different time points) was addressed using PAs extracted through the 

CIMAP algorithm. The information that was obtained is complementary to that of 

a previous works in many aspects [4] and provides a compact description of the 

muscle activation patters in the analysed populations. 

In conclusion, the proposed methodology based on muscle Pas, allowed for 

comparing, in a compact way, the results from a longitudinal study conducted on 

patients after hip replacement surgery. This methodology can be easily extended to 

the analysis of other longitudinal studies or can be applied to compare datasets re-

lated to different population showing homogenous characteristics.  
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Chapter 5 

EMG-based indices for gait data in-

terpretation 

 

 

5.1 Introduction 

In the first chapters, the CIMAP method was presented. This method has shown 

to be able to group strides with similar EMG-activation patterns, and to highlight 

the subject’s most representative activation patterns exposed during a walking ses-

sion. 

Then, the concepts of principal and secondary activations have been introduced 

to distinguish those activations necessary to correctly perform the gait task (princi-

pal), to those activations present only in some strides (secondary), aimed at the bio-

mechanical stabilization of the body under particular environmental conditions. 

Some examples have been presented to show how the analysis of the principal ac-

tivations is useful for the synthetic characterization of a population and how this 

analysis can be extended to the study and comparison of different populations (i.e. 

iNPH vs Controls) or to analyze the follow-up of patients that underwent a surgical 

procedure (follow-up of THA at 3, 6 and 12 months after surgery). 

In this chapter, some tools aimed to the interpretation extracted from principal 

activations will be presented. Particularly, two indexes based on muscle principal 
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activations will be introduced: the first one aims to quantify the asymmetry in mus-

cle activations during walking and the second one aims to quantify the differences 

in muscle activation patterns of a specific subjects with respect to a population of 

reference. 

 

5.2 EMG Asymmetry Index 

Gait asymmetry is generally defined as the different behavior of the lower 

limbs during locomotion. A quantitative an objective measurement of the asym-

metry level in lower limb during walking can provide significant insight about the 

control of walking [57]. 

Particularly, in clinical scenario, the automatic identification and quantification 

of gait asymmetry is very important. At first, gait asymmetry may be associated 

with a number of negative consequences, such as difficulty in balance control, in-

efficiency, risk of musculoskeletal injury to the non-paretic lower limb and loss of 

bone mass density in the paretic lower limb [58], [59]. Moreover, pronounced 

asymmetry levels have been associated with pathological conditions such as cere-

bral palsy, stroke, osteoarthritis, and knee and hip arthroplasties. For these reasons 

the quantification of gait asymmetry may have an important role in guiding the cli-

nician’s treatment decisions. 

Despite the potential importance that the definition of unique standards to 

quantify the asymmetry may have, currently there are no commonly accepted stand-

ard for either the method used to calculate gait symmetry or the gait parameter to 

assess [57]. In [60] authors present a kind review of the existing quantitative sym-

metry assessment methods for gait that has been summarized in Figure 5.1. 

 
 

Figure 5.1. Overview of classification of symmetry assessment approaches [60]. 
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As it emerges from [60] and from other studies found in literature, several dif-

ferent gait asymmetry indices can be found [61]-[64]. Most of the proposed indices 

based the asymmetry quantification on spatio-temporal [58], [65] or joint kinemat-

ics parameters  [66], [67] and only a few studies addressed the problem of defining 

an asymmetry index based on sEMG signals [68], [69]. 

 

The purpose of this section is then to propose a robust sEMG asymmetry index, 

based on muscle PAs, for assessing muscle-activation asymmetry in cyclic move-

ments [70]. At first the definition of the proposed index is provided; then the index 

is used to assess the asymmetry level of four muscles in healthy controls, and in 

neurological and orthopedic patients. Finally, a critical comparison is also provided 

with other EMG asymmetry indices found in literature [68], [69]. 

5.2.1 Population and gait data acquisition 

A population consisting of both healthy and pathological subject was analyzed. 

Gait data of 114 subjects were extracted from STEP32 database: 

• 30 healthy subjects (controls): 10 elderly, 10 adults and 10 children. 

• 49 orthopedic patients, including 19 adults with megaprosthesis of the knee 

after bone tumor resection (Mega TKR), 10 elderly subjects with Total Knee 

Replacement (TKR) and 20 elderly subjects with Total Hip Arthroplasty 

(THA) evaluated at 3, 6 and 12 months after surgery. 

• 35 neurological patients, including 25 children with Winters’ type I and II 

hemiplegia (Hemiplegic Children) after cerebral palsy, and 10 elderly sub-

jects with idiopathic Normal Pressure Hydrocephalus (iNPH).  

Population details are reported in Table 5.1. 

 

The muscle activity of Tibialis Anterior (TA), Gastrocnemius Lateralis (LGS), 

Rectus Femoris (RF) and Lateral Hamstrings (LH) of both lower limbs was rec-

orded and analyzed (Figure 5.2). 

Subjects walked barefoot, at self-select speed, back and forth over a straight 

path (walkway length: from 7 to 15 m, depending on the study protocol from which 

they were extracted), for at least 150s. 

 



 

63 

 

 

5.2.2 Definition of the sEMG asymmetry index 

For each subject, the CIMAP algorithm was applied and then left and right 

muscle PAs were extracted. Finally, an index based on PAs (EMG_ASYM_INDEX) 

was defined to quantify the muscle-activation asymmetry. For each muscle, the 

EMG_ASYM_INDEX was calculated according to (5.1): 

 

    𝐸𝑀𝐺_𝐴𝑆𝑌𝑀_𝐼𝑁𝐷𝐸𝑋 = ∑ |
𝑅𝑖−𝐿𝑖

𝑁
|𝑁

𝑖=1 × 100%                         (5.1) 

 

where R and L identify the binary strings corresponding to the PAs of right and 

left sides respectively and N is the number of elements used for representing the 

principal activations (N=1000). 

Notice that the index values range from 0% to 100%. 0% means that the mus-

cles of both lower limbs are active at the same percent of the gait cycle (“perfect 

symmetry”). On the contrary 100% identify a condition of “complete asymmetry”: 

with reference to the same percent of the gait cycle, the muscle of one lower limb 

is active while the other one is not. 

 

  

 

 
Figure 5.2. Probes positioning. 

Representation of the probe positioning on the analyzed muscles: Tibialis Anterior (TA), Gastrocnemius 

Lateralis (LGS), Rectus Femoris (RF) and Lateral Hamstrings (LH). 
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Table 5.1. Population details. Age, height, weight and the number of analyzed 

strides for each group are reported as mean ± standard deviation. 
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5.2.3 Other EMG indices defined in literature 

The EMG_ASYM_INDEX was then compared with two indices, based on 

sEMG, that were found in literature. Particularly, the asymmetry index (ASI) pro-

posed by Schmidt et al. [68] and the symmetry index (SI) proposed by Burnett et 

al. [69] were computed on the dataset used in this study. 

To calculate the ASI, the EMG signals, of both lower limbs, acquired during 

gait were time-normalized to 100% of gait cycle. EMG data were then analysed 

using the mean muscle activity during the complete gait cycle. The ASI is defined 

as follows (5.2):  

 

    𝐴𝑆𝐼(%) = |
2×(𝑀𝐴𝐿−𝑀𝐴𝑅)

𝑀𝐴𝐿+𝑀𝐴𝑅
| × 100%                         (5.2) 

 

where MAL and MAR represent the mean muscle activities of the left and right 

limb, respectively. 

To calculate the SI, the RMS values of EMG signals of both lower limbs were 

computed, and the index values were then obtained by using (5.3):  

 

    𝑆𝐼 = |
𝑅𝑀𝑆𝑁𝐷,𝑠𝑡𝑎𝑛𝑐𝑒

𝑅𝑀𝑆𝐷,𝑠𝑡𝑎𝑛𝑐𝑒
|                                            (5.3) 

 

In [69] 𝑅𝑀𝑆𝑁𝐷,𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑅𝑀𝑆𝐷,𝑠𝑡𝑎𝑛𝑐𝑒 were the root mean square amplitude dur-

ing the stance phase for the non-dominant (ND) and dominant (D) limb, respec-

tively. In the dataset used in this study, however, no information was available 

about the dominant side of subjects. Consequently, for controls and iNPH patients, 

the right side was considered as the dominant, while for the remaining groups the 

sound side was considered as dominant. 

5.2.4 Statistical analysis 

The mean values and the standard errors of the EMG_ASYM_INDEX, ASI and 

SI were computed for each group of subjects detailed in Table I and each muscle. 

Each group of patients was then matched with one of the three healthy groups 

(age-based matching), in order to explore the differences between patients and 

healthy controls. For example, the results obtained for the hemiplegic children were 

compared with the results obtain on the control group of healthy children. 

Then, the Lilliefors test was performed on each group to assess the normality 

of the distributions obtained applying the three indices to our dataset. Since the 

Lilliefors test revealed that some of the distributions were not normal, the Wilcoxon 
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non-parametric test was chosen to compare groups (α = 0.05), considering each 

muscle separately. More specifically, 1-tailed tests were used for comparing 

EMG_ASYM_INDEX and ASI values of patients and controls: in fact, the mean 

value of these indices for patients were expected to be higher than (or equal to) that 

of controls. Under the same assumption, 1-tailed tests were also applied to investi-

gate the differences in THA patients during the follow-up (between 3 and 6 months, 

between 6 and 12 months and between 3 and 12 months). On the other hand, 2-

tailed tests were using for comparing the SI values of patients and controls. In this 

case, it was not possible to hypothesize a-priori an effect in one direction, due to 

definition of the index itself: in patients, SI may assume values higher or smaller 

than that of controls, depending on the pathology and the muscle considered. 

5.2.5 Results and discussion 

Figure 5.3 shows the mean values and the standard errors of the three indices. 

Observing Figure 5.3a it can be noticed that, as it was expected, the lowest values 

of the EMG_ASYM_INDEX are found in the control groups. Moreover, patients 

show different behaviors depending on the muscle and the type of pathology they 

were affected (orthopedic and neurological). 

Table 5.2 reports the Wilkoxon test results performed to assess the inter-group 

differences. 

In the following, the results reported in Figure 5.3 and in Table 5.2 will be 

discuss, particularly comparing each group of patients with the corresponding age-

matched control group. However, some considerations can be made a priori, based 

on the previous knowledge of the different pathologies and treatments which pa-

tients underwent. In fact, both orthopedic and neurologic populations were ana-

lysed, in which different levels of asymmetry were expected. More specifically: 

(1) Given that the procedure for the implantation of a megaprosthesis implies 

a higher degree of bone and muscle sacrifice with respect to that of a conven-

tional one, higher differences between Mega TKR patients and controls with 

respect to those between TKR patients and controls were expected.  
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Figure 5.3. Mean values and standard errors of asymmetry indices [70]. 

“Mean values and standard errors of (a) EMG_AYM_INDEX, (b) ASI and (c) SI on the analyzed groups. Muscle: 

Tibialis Anterior (TA), Gastrocnemius Lateralis (LGS), Rectus Femoris (RF) and Lateral hamstring (LH). Sig-

nificant differences between patients and age-matched controls are marked with a black asterisk. Significant 

difference between THA patients at 3 and 12 months after surgery is marked with a blue asterisk.” [70] 
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Table 5.2. Comparison between pathological groups and age-matched con-

trols. Wilkoxon-test results. 
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*Statistically significant differences (p<0.05) are highlighted in bold font. 
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(2) The analysis of activation patterns of THA patients reported in the previous 

chapter (Figure 4.7) did not evidence substantial qualitative differences be-

tween prosthetic and sound sides, except for the LH muscle. Hence, for these 

patients, a limited asymmetry level was expected to be for TA, LGS and RF 

muscle, while for LH muscle higher value of EMG_ASYM_INDEX may be 

found.  

(3) Regarding the two groups of neurological patients, different levels of asym-

metry were expected to be found, since hemiplegia is a condition that affects 

specifically one side of the body, whereas normal pressure hydrocephalus is 

not known to selectively affect a specific side.  

Mega TKR patients and Healthy Adults 

The subjects included in the Mega TKR group are patients affected by malig-

nant tumours of the distal part of the femur, who underwent the surgical procedure 

of modular knee prosthesis (megaprosthesis) implant for saving the lower limb [71], 

[72]. It is widely known that this kind of surgical procedure implies significant de-

grees of bone and muscle sacrifice with consequent changes in the gait characteris-

tics of the prosthetic with respect to the sound side [73]. Observing the results in 

Figure 5.3a and the p-values reported in Table 5.2, it is evident that the 

EMG_ASYM_INDEX reflects these aspects clearly: the index values are lower in 

the adult controls with respect to the Mega TKR, for all the muscles. Moreover, 

these differences resulted always statistically significant, as it emerged from the 

Wilkoxon test results. 

TKR patients and Healthy Elderly 

The Total Knee Replacement is a more conservative procedure than the meg-

aprosthesis implant and in this case, the EMG_ASYM_INDEX reflects this aspect. 

Overall, the index values are lower in the elderly controls with respect to the TKR 

group, for all the muscles, but the only significant difference between the two 

groups has been found for the TA muscle. These results suggest that TKR patient 

expose asymmetry levels during walking only slightly higher with respect to 

healthy subjects of the same age.  

THA patients and Healthy Elderly 

Observing Figure 5.3 some interesting consideration can be made: 
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a) TA and LGS muscles show EMG_ASYM_INDEX values similar to the ones 

of elderly controls, highlighting that the procedure of total hip replacement 

does not produce alteration (for what concerns gait symmetry) in muscles 

not involved in hip joint control.  

b) The RF muscle shows an interesting behaviour: even if the differences be-

tween patients and controls are not statistically different, a qualitative de-

creasing trend among the three time points is observed. Moreover, between 

the time points at 3 and 12 months after surgery, the EMG_ASYM_INDEX 

resulted significantly different, suggesting a progressive recovering of 

symmetrical muscle activation patterns during walking. 

c) As it was expected, LH is the muscle with the greater value of the 

EMG_ASYM_INDEX: at all the time points, statistical differences between 

patients and controls were found. 

Hemiplegic and Healthy Children 

Hemiplegia is a common consequence of cerebral palsy (CP) and causes al-

tered selective motor control, weakness and spasticity [74]. This condition causes 

alterations in motor functions of both upper and lower limbs, selectively on one side 

only. The results of EMG_ASYM_INDEX reflect clearly this aspect of the pathol-

ogy, since, for all the muscle of this group, the EMG_ASYM_INDEX values are 

significantly higher with respect to the values of healthy children. 

iNPH patients and Healthy Elderly 

iNPH is a pathology caused by an excess of cerebrospinal fluid in the cerebral 

ventricles of the brain. Unlike the hemiplegia, this pathology does not affect a spe-

cific side of the body, but the overall walking scheme results altered in iNPH pa-

tients [75]. The results obtained for iNPH patients are consistent with the previous 

consideration: no significant differences between this group and controls were 

found. 

5.2.6 Comparison with indices found in literature 

Figure 5.3b and 5.3.c show the results obtained applying the ASI and SI to the 

analysed dataset and the corresponding p-values of the Wilcoxon tests are reported 

in Table 5.2.  

The first importance consideration about these indices is that they cannot be 

directly compared to the EMG_ASYM_INDEX. In fact, both ASI and SI are related 



 

71 

 

to the amplitude of the EMG signal during the whole gait cycle, while 

EMG_ASYM_INDEX was defined using principal activations and so it is based on 

EMG onset-offset timings at each percent of the gait cycle. Hence, the information 

provided by EMG_ASYM_INDEX concerns the differences in the timing of activa-

tion patterns of left and right limbs, rather than the differences in the EMG ampli-

tudes. 

Therefore, the information obtained using the EMG_ASYM_INDEX may pro-

vide useful information in addition to those provided using ASI and SI. 

As an example, considering hemiplegic children, ASI or SI point out significant 

differences only for the TA muscle, while using EMG_ASYM_INDEX significant 

differences between hemiplegic and healthy children were found for every muscle. 

This is reasonable since hemiplegic children are expected to show asymmetric tim-

ing patterns in every muscle [3] considering also compensation mechanisms. This 

suggest that, in this case, EMG_ASYM_INDEX is more sensitive in identifying 

walking asymmetry than the other two indices.  

5.2.7 Conclusion 

A novel EMG asymmetry index based on PAs was presented in this study and 

applied to a dataset consisting of healthy subjects and both neurological and ortho-

paedic patients. Different asymmetry levels were expected to be found on each 

group, considering the different disorders and treatments which patients underwent. 

The results confirmed this expectation: the value obtained for the asymmetry index 

was consistent with the expected asymmetry level of each specific population of 

patients. This suggests that the EMG_ASYM_INDEX can be successfully used in 

clinics for an objective assessment of the asymmetry of muscle activation patterns 

during locomotion. 

 

5.3 Muscle Functional Indices 

In recent years, the objective assessment of pathologies based on gait data has 

become a research field of great interest. In literature, several works took advantage 

of gait parameters to improve the diagnostic process of different pathologies such 

as Parkinson disease [76]-[78] and cerebral palsy, [79], [80], but only a few works 

used the information extracted from sEMG signals to this purpose [81], [82].  

In this context, the definition of a quantitative and reliable index for measuring 

the distance of the dynamic muscle function of a pathological subject from that of 
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a reference healthy population can be extremely useful for diagnosis, assessment of 

the disease progression, and evaluation of treatment outcomes.  

The aim of this section is twofold. First, to present a muscle-specific functional 

index that quantifies the similarity of the activation pattern of a specific muscle of 

a subject with that of the corresponding muscle of a healthy population. Secondly, 

to present a global index to quantify the distance between the functionality of a pool 

of muscles of a specific subject and the functionality of the same muscles of a ref-

erence population.  

At first the definition of the proposed indices is provided; then, the effective-

ness of the muscle-specific and global indices is assessed by applying these indices 

to a group of 25 healthy children and to a group of 25 hemiplegic children. The 

purpose was measuring the distance of specific subjects (both at a muscle-specific 

and global level) as well as of the entire population from a reference population of 

55 healthy children.  

5.3.1 Definition of the muscle functionality indices 

The definition of the muscle functional indices (muscle-specific and global) 

requires two phases: the representation of the muscle function of the reference pop-

ulation and the calculation of the indices. Each phase is composed of various steps 

that are described below (Figure 5.4). 

 

 

 

Figure 5.4. Pipeline for the definition of the muscle functional indices. 
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Representation of the Muscle Function of the Reference Population  

At first, the left and right PAs of each muscle are extracted for all the subjects 

belonging to the reference population using the CIMAP algorithm. Then, the pro-

cessing for the representation of the muscle function of the reference population 

consists of 2 steps: a) checking for possible outliers; b) construction of the reference 

vector representing the population behavior. The two steps are detailed below.  

 

a) Checking for possible outliers 

To avoid errors in the representation of the muscle function of the reference 

population, due to anomalous muscle activations, possible outliers are identified 

and excluded. The procedure consists in the following steps: 

 

1. Left and right PAs of a specific muscle are grouped together. 

2. PAs with the same modality are grouped together. 

3. Agglomerative hierarchical clustering is applied to each group (resulting af-

ter step 1 and 2), separately. The hierarchical clustering procedure begins 

with all the PAs considered as single clusters and iteratively merges the two 

clusters with the lowest distance, until a unique cluster containing all the 

PAs is obtained. In this specific case, to select the two clusters to be merged 

at each iteration, the complete linkage is used as linkage method: first, the 

two farther elements in two clusters are identified, and then the clusters with 

the lowest distance are merged. The distance between PAs x and y is com-

puted as: 

𝐷(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|

1000

𝑖=1

+ 𝑃 (5.4) 

 

where xi and yi are the values of the i-th bit in x and y respectively and P is 

a penalty term that is set equal to 1000 (that is the maximum difference 

achievable comparing the two strings) if there is no intersection between 

corresponding activation intervals (Figure 5.5a) or if the two PAs differ by 

more than 15% of the gait cycle (Figure 5.5b). The final clusters are obtained 

by cutting the dendrogram at a specific level: the first iteration (k) in which 

two penalized clusters are merged together (D > 1000) is identified and the 

dendrogram is cut just before it, considering the clusters obtained at iteration 

k-1. 

4. To compensate the unnecessary divisions due to complete linkage, which 

privileges the minimization of intra-cluster variability [36], a further step is 
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applied to merge clusters with similar PAs. The centroid of each cluster is 

defined as the median of the onset-offset timing of PAs belonging to the 

cluster. Then, the distance D(x,y) in eq. (5.4) between each pair of centroids 

is iteratively computed and the two clusters having the closest centroids are 

merged iteratively, until all the distances become greater than 1000. 

5. If there are clusters with less than 5% of total number of PAs, they are con-

sidered as outliers and hence they are not used for constructing the reference 

vector. 

 

Figure 5.6 shows an example of the pipeline for outlier checking, in which 

outliers are found (Tibialis Anterior muscle, right side). 

 

 

 

Figure 5.5. Examples of penalty term application. 

The penalty term P is equal to 1000 in both the represented situation. In Fig. 5.5a there is no intersection 

between corresponding activation intervals (see red circle) and in Fig. 5.5b the two PAs differ by 22% of gait 

cycle (>15%). 
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b) Construction of the reference vector representing the population 

behavior 

This step allows describing the behavior of the reference population by aggre-

gating the information contained in the PAs. In particular, since each PA is coded 

in a binary vector of 1000 binary units, all PAs (both right and left) of a given 

muscle are pooled together and their bit-by-bit average is computed. In this way, a 

reference vector (R) of 1000 points in the range [0, 1] is obtained, representing the 

global behavior of the reference population for a specific muscle (Figure 5.7). 

 

 
Figure 5.6. Example of the outlier removal pipeline (Tibialis Anterior muscle, right side). 

a) Step 1: PAs resulting from CIMAP application; b) Step 2: PAs are grouped into datasets with the same 

modality; c) Step 3: clusters obtained by dendrogram construction; d) Step 4: clusters resulting by merging 

similar clusters: e) Step 5: final representative clusters are highlighted in green (3 activations) and red (2 

activations); PAs belonging to non-significant clusters (outliers) are represented in grey. 



 

76 

 

Calculation of the Muscle Functional Indices 

The calculation of the muscle functional indices consists of two steps, as de-

tailed below. Both steps are based on the measure of the agreement between a spe-

cific muscle PA (A) and the reference vector R, evaluated using the Jaccard index 

(J) [83]: 

𝐽 =
𝑅 ∩ 𝐴

𝑅 ∪ 𝐴
 (5.5) 

 

  

 
Figure 5.7. Example of the construction and representation of the reference vector R (muscle: 

Tibialis Anterior). 

The reference vector R is obtained by averaging the activation intervals bit by bit across all the principal 

activations. 
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a) Calculation of the reference threshold  

The Leave-One-Out (LOO) cross-validation approach is applied to obtain a set 

of normative J values – one for each muscle – describing the reference population.  

For each muscle, the reference vector R is computed using all the subjects but 

one (RLOOi). Then, the J value between RLOOi and the principal activation Ai of the 

excluded subject is computed using eq. (5.5). This process is carried out for all the 

subjects belonging to the reference population and a set of J values (one for each 

muscle of each specific subject) is obtained. The J values are then normalized with 

respect to the maximum J computed within the population (Jmax).  Then, the proba-

bility density function (PDF) of the J value of each muscle is estimated by fitting 

the Jnorm distribution using a normal kernel function (Figure 5.8a). Finally, the J05 

value is computed for each muscle to be used as reference threshold (Figure 5.8b). 

The J05 value is given by eq. 5.6: 

 

∫ 𝑃𝐷𝐹(𝐽)𝑑𝐽
𝐽05

0

∫ 𝑃𝐷𝐹(𝐽)𝑑𝐽
1

0

⁄ = 0.05 (5.6) 

 

It means that the 95% of J values of the reference population lies between J05 

and 1. 

b) Muscle-specific and Global Functional Indices  

The muscle-specific functional index Jm is computed according to eq. 5.7: 

𝐽𝑚 =
𝐽𝐴,𝑅

𝐽𝑚𝑎𝑥
 (5.7) 

where 𝐽𝐴,𝑅 is the Jaccard index calculated between the muscle PA (A) and the 

corresponding reference vector R, and 𝐽𝑚𝑎𝑥 is the maximum J value computed 

within the reference population.  

 To obtain the global Muscle Functional Index (MFI) the set of Jm values 

(one for each muscle) are averaged: 

𝑀𝐹𝐼 =
∑ 𝐽𝑚

𝑀
𝑚=1

𝑀
 (5.8) 

where 𝐽𝑚  is the muscle-specific functionality index and M is the number of 

muscles. 
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5.3.2 Validation 

Population and gait data acquisition  

Gait data of 105 school-age children were retrospectively analyzed: 55 typi-

cally developing children, without neurological or orthopedic disorders, were used 

as reference population; 25 healthy children and 25 hemiplegic children were used 

to evaluate the indices, separately. Table 5.3 reports the details of the populations. 

  

 
Figure 5.8. Example of probability density function estimated and J05 value computing. 

a) Example of probability density function (PDF) of the Jnorm distribution (muscle: Tibialis Anterior). b) 

Example of J05 value estimation. 
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Table 5.3. Population details. Anthropometric characteristics of the sample popu-

lations (Healthy and Hemiplegic children). Age, height and weight for each group 

are reported as mean ± standard deviation. 
 

 
Healthy Children 

(Reference pop.) 

Healthy Children 

(Test Set) 

Hemiplegic Children 

(Test Set) 

Number of 

subjects 
55 25 25 

Age (years) 8.9 ± 1.4 9.0 ± 1.3 8.7 ± 3.2 

Sex 28M/27F 11M/14F 15M/10F 

Height (cm) 133.5 ± 9.8 132.9 ± 8.7 129.7 ± 18.8 

Weight (kg) 30.3 ± 6.2 31.0 ± 7.4 30.2 ± 11.7 

 

The muscle activity of Tibialis Anterior (TA), Gastrocnemius Lateralis (LGS), 

Vastus Medialis (VM), Rectus Femoris (RF) and Lateral Hamstrings (LH) of both 

lower limbs was analyzed (Figure 5.9). 

Subjects walked barefoot at self-selected speed over a 10-m walkway, back and 

forth for 2.5 minutes. 

 

 
Figure 5.9. Probes positioning. 

Representation of the probe positioning on the analyzed muscles: Tibialis Anterior (TA), Gastrocnemius 

Lateralis (LGS), Vastus Medialis (VM), Rectus Femoris (RF) and Lateral Hamstrings (LH). 
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Signal pre-processing  

Using the routines included in the STEP32 software, the H, F, P and S phases, 

of both lower limbs, were obtained. The signal was then segmented in separate gait 

cycles and time-normalized to the stride duration [13]. For healthy children only 

the strides showing the normal sequence of gait phases (H, F, P, S) were considered. 

For hemiplegic children, since a very small number of HFPS strides was available, 

the strides of the most represented sequence of gait phases of each subject were 

analyzed [3]. A multivariate statistical filter was used to discard strides related to 

deceleration, acceleration, and changes of direction [4]. 

Representation of the Muscle Function of the Reference Population 

The three steps described in the previous section were applied to the data of the 

55 healthy children to compute the reference vector for each muscle. 

Calculation of the Muscle Functional Indices 

Equations 5.7 and 5.8 were applied to the data of the 25 healthy children and 

25 hemiplegic children to compute the muscle functional indices, both muscle-spe-

cific (𝐽𝑚) and global (MFI). For each muscle, the 𝐽𝑚 values are compared with the 

corresponding reference threshold J05 to understand their distance from the refer-

ence population.  

Statistical Analysis 

The Lilliefors test was applied to assess the normality of the MFI distributions 

of hemiplegic children, both for hemiplegic and sound side, and healthy children, 

both left and right side. Since the distributions resulted normal, the paired Student 

t-test (α = 0.05) was used to compare: (a) hemiplegic and sound side of hemiplegic 

children, (b) left and right side of healthy children. The comparisons between 

healthy and hemiplegic children were performed using the unpaired Student t-test 

(α = 0.05). 

5.3.3 Results and discussion 

An average of 168 ± 27 gait cycles was collected for each child of the reference 

population; an average of 167 ± 25 and 133 ± 37 gait cycles were collected for each 

child of the two test groups (healthy and hemiplegic children, respectively). 
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In Table 5.4 are reported the results of the Lilleforst test performed among the 

groups of healthy and hemiplegic children and in Table 5.5 are reported the results 

of the Student t-tests. 

 

 

Table 5.4. Lilliefors test results. All the distribution resulted normal distribution 

(p-values>0.05) 
 

Group p-values 

Healthy children 
Left side Right side 

0.3 0.08 

 

Hemiplegic children 
Hemiplegic side Sound side 

0.3 0.2 

 

 

Table 5.5. Student t-test results. 
 

Comparison p-values 

Healthy R – Healthy L 0.1 

Hemiplegic S – Hemiplegic H <0.001 

Healhty R – Hemiplegic S <0.001 

Healhty L – Hemiplegic S <0.001 

Healhty R – Hemiplegic H <0.001 

Healhty L – Hemiplegic H <0.001 
 

 

*p-values < 0.05 are highlighted in bold. 

Figure 5.10 reports the reference vector R obtained for each muscle, as well as 

the representation of gait phases, i.e. stance (comprising H, F and P) and swing (S 

phase). 

For TA muscle,  the reference vector R highlights the typical activation pattern 

after the 50% of gait cycle (just before toe off and during swing phase) continuing 

up to the 5% of gait cycle (initial stance), in accordance with [14] and [84]. More-

over, it is evident that the activity during the swing phase is split into two activation 

intervals for over 80% of the reference population. 
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For LGS muscle, our results show that most children activate the muscle with 

a single activation interval that terminates approximately at 50% of the gait cycle. 

The increasing value of the reference curve between 10% and 35% of gait cycle 

 
 

Figure 5.10. Reference vector representation. 

Representation of reference vectors R (values expressed as percentage from 0 to 1), for muscles Tibialis 

Anterior (TA), Gastrocnemius Lateralis (LGS), Vastus Medialis (VM), Rectus Femoris (RF) and Lateral Ham-

string (LH). In the bottom plot, a schematic representation of the gait cycle is reported.  
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points out the difference in the onset of the activation among the subjects belonging 

to the population. 

VM is active from midswing to midstance, as confirmed by [85], who describes 

a single VM activation pattern. Other studies revealed also an activation in terminal 

stance (around 50-60% of gait cycle) [14], [86], that is not evident when analyzing 

PAs. This activation in terminal stance could be aimed at patella stabilization before 

entering pre-swing phase, but, as mentioned above, this activation is not present in 

all the strides. 

Similarly, the activity of RF extends from midswing to the successive stance 

phase. However, the RF reference vector highlights a further activation interval, 

evident in about 40% of the population, before the stance-to-swing transition (45-

60% of gait cycle). These results are in agreement with other works found in liter-

ature [14], [84]. 

Finally, the LH reference curve shows a great variability in the activation pat-

tern among the population. Generally, the muscle shows a single activation, lasting 

from midswing (about 80% of gait cycle) to midstance [14]. However, especially 

in the midstance phase (between 0 and 30% of gait cycle) it is evident that different 

types of behavior are present in the population, in terms of duration of the midstance 

activation. 

Figure 5.11 shows the Jm value for each muscle (muscle-specific index) and the 

final MFI (global index) for two representative subjects (panel a: hemiplegic child; 

panel b: typically developing child). 

The dotted line indicates the reference value J05 for each muscle. 𝐽𝑚 values 

above the reference are represented in green, while values below the reference are 

represented in red. This representation allows highlighting muscles with an abnor-

mal behavior and significantly simplifies the interpretation of the MFI values. Fig. 

5.11a shows that, for the hemiplegic child, only the Vastus Medialis of the sound 

side and the Lateral Hamstring of the hemiplegic side have a 𝐽𝑚 value above the 

reference, meaning that their behavior is similar to that of 95% of the reference 

healthy population. This situation produces MFI values of 0.40 and 0.38 for the 

sound and hemiplegic side, respectively. Differently, for the healthy child reported 

in Fig. 5.11b all the muscles (both sides) present a 𝐽𝑚 value above the reference and 

the final MFI values are equal to 0.90 and 0.85 for left and right side, respectively. 
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Figure 5.12 reports the MFI values (mean value and standard deviation) over 

the populations of hemiplegic and healthy children (left and right side separately). 

In particular, the values of the index are not statistically different between the left 

and right side of healthy subjects (p = 0.1), while it is statistically significantly dif-

ferent between each lower limb of healthy children and both the hemiplegic and 

sound side of hemiplegic children (p < 0.001). Finally, also between the hemiplegic 

and sound sides of hemiplegic children we found a statistically significant differ-

ence of the MFI (p < 0.001). 

 

 
 

Figure 5.11. Examples of Jm value representation. 

Bar diagram representation of the Jm values for (a) a hemiplegic child and (b) a healthy child, both sides. 

The dotted lines indicate the reference value J05 for each muscle. Values lower than J05 are represented in red, 

values higher than J05 are highlighted in green and the MFI value is represented in blue. Muscles: Tibialis 

Anterior (TA), Gastrocnemius Lateralis (LGS), Vastus Medialis (VM), Rectus Femoris (RF) and Lateral ham-

string (LH).  
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5.3.4 Conclusion 

In this study two muscle functionality indices based on principal activations 

were introduced. These indices quantify the distance of the functionality of muscles 

belonging to a specific subject from the average muscle functionality obtained over 

a reference population. In this way, the overall muscle performance of a specific 

subject may be quantitatively evaluated for a single muscle (muscle-specific index) 

and for a specific muscle pool (global index). 

When single muscles are considered, the muscle-specific index Jm allows for 

outlining which muscles of an individual subject show a behavior different from 

that of the reference population. This information should be important in clinics to 

allow physicians focusing their attention on those muscles with an abnormal func-

tion, also allowing for a quantitative and objective evaluation of abnormality. 

MFI and Jm values may be useful in clinics for providing an overall evaluation 

of muscle functionality during both the first instrumental examination of a subject 

and when a subject is evaluated successively, along a rehabilitation program.  

 

 

Figure 5.12. MFI values (mean value and standard deviation) over the populations of hemiplegic and 

healthy children. 

Mean values (bars) and standard deviation (whiskers) of the MFI of healthy and hemiplegic children. 

Asterisks (*) highlight significant differences between groups (p<0.001). 
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Chapter 6 

Principal and secondary activation 

extraction applied to muscle syn-

ergy analysis  

 

 

6.1 Introduction 

Human locomotion is a complex motor task, due to the multiple degrees of 

freedom of the skeletal muscle system. Several works in literatures suggested that 

the central nervous system (CNS) controls a small number of muscle synergies, 

each one associated to a specific biomechanical function, rather than trying to co-

ordinate the single muscles involved in a motor task [87], [88]. 

To obtained muscle synergies, the EMG signals of at least 3-15 gait cycles are 

usually averaged or concatenated [89], [90] and then data reduction techniques, 

such as Non-negative Matrix Factorization (NMF), are applied to the matrix of 

EMG signals [91], [92]. 

As already documented in literature, the extraction of muscle synergies in hu-

man locomotion may be influenced by the pre-processing applied to EMG data [92]. 

The aim of this chapter is to evaluate how the extraction of muscle principal 

activation may influence the muscle synergy analysis [93]. Then, a pilot study is 
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reported, evaluating the result obtained extracting muscle synergies using muscle 

secondary activations [94]. 

6.2 Gait data acquisition 

Gait data acquired from a sample population of 22 healthy subjects (age: 39.2 

years ± 17.0 years, gender: 18 females and 4 males, height: 165.2 cm ± 8.2 cm, 

weight: 60.9 kg ± 17.5 kg) was analyzed. Twelve EMG probes were placed on sub-

ject dominant lower limb (twenty subjects out of 22 were right-limb dominant, 

while two were left-limb dominant) and trunk (Figure 6.1). The probes were posi-

tioned over the muscle’s belly of: right Longissimus Dorsii (LDR), left Longissi-

mus Dorsii (LDL), Tensor Fasciae Latae (TFL), Gluteus Medius (GMD), Rectus 

Femoris (RF), Lateral Hamstring (LH), Medial Hamstring (MH), Vastus Medialis 

(VM), Lateral Gastrocnemius (LGS), Peroneus Longus (PL), Soleus (SOL) and 

Tibialis Anterior (TA). Foot-switches were used for timing the gait cycle.  

All the subjects walked barefoot for 5 minutes at self-selected speed, back and 

forth on a 10-m straight walkway. 

 
 

 
Figure 6.1. Probes positioning. 

Representation of the probe positioning on the analyzed muscles: right Longissimus Dorsii (LDR), left 

Longissimus Dorsii (LDL), Tensor Fasciae Latae (TFL), Gluteus Medius (GMD), Rectus Femoris (RF), Lat-

eral Hamstring (LH), Medial Hamstring (MH), Vastus Medialis (VM), Lateral Gastrocnemius (LGS), Pe-

roneus Longus (PL), Soleus (SOL) and Tibialis Anterior (TA). 
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6.3 Influence of PA extraction on muscle synergy analysis 

Two pre-processing procedures were applied to sEMG data, before muscle 

synergy extraction: a) the standard approach, in which all the time samples of the 

sEMG signal were considered and b) a new approach in which only the time sam-

ples of the sEMG signal corresponding to principal activations were considered. 

6.3.1 Standard pre-processing  

In the standard approach, the sEMG signal of each muscle is processed as fol-

lows: 

1) The EMG signal is segmented into separate stride and each stride is time-nor-

malized with respect to gait cycle duration (resampled to 1000 points) [13]. 

2) The signal corresponding to each gait cycle is low-pass filtered at 35 Hz, de-

meaned, full-cycle rectified and, finally, low-pass filtered at 12 Hz by 5th -

order Butterworth filter to obtain the sEMG envelope. 

3) The signals of the various gait cycles are concatenated into a single vector. 

4) The vector is normalized in amplitude, with respect to the maximum activation 

5) The vector is divided into N epochs of 10 concatenated gait cycles (epoch 1: 

gait cycles from 1 to 10, epoch 2: gait cycles from 11 to 20, and so on). The 

last epoch is discarded if it contains less than 10 gait cycles. 

6.3.2 Pre-processing using principal activations 

In this kind of pre-processing, the steps are the same as those of the standard 

one, except that, after the second step, the muscle PAs are extracted using the CI-

MAP algorithm. The time-normalized EMG signal of each gait cycle are then win-

dowed using a binary mask that is set to 1 in correspondence of muscle principal 

activation and to 0 if no muscle principal activations is present. 

The remaining standard pre-processing steps (step 3, 4 and 5) are applied to the 

resultant EMG signal. 

6.3.3 Muscle synergy extraction 

At each subgroup of 10 concatenated gait cycles, the Non-Negative Matrix Fac-

torization (NNMF) algorithm was applied to extract muscle synergies from the fil-

tered sEMG. This algorithm models the original sEMG signals (M) as the linear 

combination of the time-independent muscle synergy weights (W) and the time de-

pendent activation coefficients (C) [95] as described in eq. 6.1.  
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𝑀(𝑡) = ∑ 𝐶(𝑡)𝑘 ∙ 𝑊𝑘

𝑁

𝑘=1

+ 𝑒 (6.1) 

 

In eq. 6.1: 

• N is optimal number of muscle synergies necessary for describing the 

motor task; 

• Wk is the weight vector and it describes the contribution of each ob-

served muscle to the k-synergy; 

• C(t)k id the activation coefficient vector and it represents the time-de-

pendent modulation of the muscles recruited in the k-synergy; 

• 𝑒 is the prediction error of the factorization algorithm. 

 

More details of the implemented algorithm can be found in [94]. 

The optimal number of muscle synergies (N90) was then chosen using the total 

Variance Accounted For (𝑡𝑉𝐴𝐹) indicator [94]. 

Finally, the weight vectors Wk were normalized in amplitude with respect to 

their global maximum, and the activation coefficient vectors C(t)k were multiplied 

by the correspondent normalized values. 

6.3.4 Muscle synergy analysis 

The muscle synergies extracted using the two approach (standard and PAs 

based), were compared evaluating the number of muscle synergies and the inter-

pretability of the results [96]. 

The number of muscle synergies was expressed using the N90 value, described 

before, while muscle synergy interpretability (𝐼) was evaluated considering the av-

erage of the muscle synergy weights that are not directly involved in the biome-

chanical function described by the k-synergy. In fact, a muscle synergy can be con-

sidered more easily interpretable when the values of the weights of the muscles not 

directly involved in the specific biomechanical function are close to zero, while it 

can be considered less interpretable when they have values comparable with the 

weights of the muscles directly involved in the biomechanical function. The 𝐼 val-

ues are expressed in percentage, and range between 0% (low interpretability) and 

100% (high interpretability). 
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6.3.5 Results and discussion 

On the average, a dataset of 156 ± 25 HFPS gait cycles was analyzed for each 

subject. In the following, the results obtained with the standard and the novel pre-

processing approach will be discussed. 

The same number of muscle synergies (N90=5 for all the 22 subjects) was 

needed to properly reconstruct the original sEMG signals for both the approaches. 

Figure 6.2 reports an example of the muscle synergies extracted from a representa-

tive subject of the sample population using the two pre-processing techniques [96]. 

 

 
Figure 6.2. Activation coefficients Ck and weight vectors Wk obtained with two different pro-

cessing techniques. [96] 

a) Standard approach, and b) novel approach with extraction of principal activations (PAs). Each colored 

line (or colored vertical bar) represents Ck (or Wk) extracted from a single subgroup of 10 gait cycles. Black 

lines (or top of black rectangles) represent the average Ck (or Wk) across subgroups. The dotted lines, in the 

Ck-plots, represent the mean footswitch signal with the indication of the 4 gait phases: Heel contact (H), Flat 

foot contact (F), Push off (P) and Swing (S). 

 

 



 

91 

 

On the other hand, the computed I-value was equal to 90.45% ± 0.52%, for the 

standard approach, and 92.72% ± 0.62%, for the novel approach. Moreover, results 

revealed a statistically significant increase in the interpretability of the muscle syn-

ergies extracted from the sEMG signals processed by means of the novel approach 

with respect to those extracted by applying the standard approach (Student t-test 

result: p = 0.0007).  

 

The muscle synergy analysis is a topic of great relevance and several studies 

supporting the importance of this theory have been published in the last years [97], 

[98], [99]. The standard approaches used to extract the muscle synergies generally 

consider the whole sEMG signals as input of the factorization algorithm [90], [92], 

[100]. However, the great intra-subject variability of the sEMG activation patterns 

my significantly influences the results obtained using these approaches [101]. 

The introduction of muscle PA extraction in the pre-processing pipeline of 

muscle synergy analysis may results useful to overcome the drawback of the stand-

ard techniques. According to this novel approach, only the sEMG time-samples in 

correspondence of PAs are considered as inputs of the factorization algorithm for 

the extraction of the muscle synergies while the remaining time-samples are set to 

zero. 

The results obtained comparing the standard and new approach at first reveal 

that both the approaches needed five muscle synergies to accurately reconstruct the 

original sEMG signals. Moreover, the extracted muscle synergies resulted very sim-

ilar both in their composition (profile of the activation coefficients and weighted 

contribution of the muscles) and in the biomechanical functions produced by each 

of them. This suggested that no information was lost due to the extraction of the 

PAs, with respect to the standard approach. 

On the other hand, in terms of interpretability of the muscle synergies, the novel 

approach outperforms the standard one, suggesting that the extraction of the PAs 

allows for obtaining a better interpretability of the muscle synergies with respect to 

the standard approach. 

The approach based on PAs extraction was validated considering a population 

of healthy subjects, but the use of PAs for extracting muscle synergies may be a 

promising technique for analyzing subjects affected by neurological disorders, for 

whom the assessment of motor control through muscle synergies may be of the 

uttermost importance [102], [103]. 
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6.4 Influence of SA extraction on muscle synergy analysis 

In Chapters 4 and 5 the concept of principal activation was introduced and 

widely discussed, and it was anticipated that this concept is complementary to the 

concept of secondary activation (SA). Particularly, secondary activations were de-

fined as those activations present only in some strides: they have an auxiliary func-

tion in motor control and are expected to be possibly related to abnormalities or 

peculiarities of specific subjects. 

In practice, starting from the CIMAP clustering results of a specific muscle 

(Figure 6.3a), each significant prototype may produce secondary activations: they 

are the obtained as the difference between the binary string coding the prototype 

and the binary string coding the principal activation (Figure 6.3b). 

 
Figure 6.3. Example of secondary activation extraction. 

(a) Blue intervals represent the cluster elements (sEMG activation intervals) normalized with respect to 

the gait cycle duration for PL (left) and GMD (right) muscles, while orange intervals represent the cluster 

prototypes. (b) Principal activations (PA) are highlighted in green and are defined as the intersection of all the 

clusters’ prototypes extracted through CIMAP. The secondary activations resulting from each prototype are 

highlighted using a dotted line. 
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In this pilot study, the sEMG signals acquired from one healthy female volun-

teer (age: 25 years, height: 160 cm and weight: 61 kg) were analyzed. 

6.4.1 Pre-processing using secondary activations 

At first, the secondary activations defined as completely auxiliary are identify: 

they are defined as those SAs that are not an extension of a PA interval. Then a 

binary mask (1000 bit) obtained as the union of all the completely auxiliary SAs is 

defined (Figure 6.4). The binary mask is set equal to 1 in correspondence of at least 

one muscle completely auxiliary SA and to 0 if no muscle completely auxiliary SA 

is present. The time-normalized EMG signal of each gait cycle are then windowed 

using the binary mask of completely auxiliary SAs.  

6.4.2 Results and discussion 

Figure 6.5 reports the muscle synergies extracted from the analyzed subject 

using the standard pre-processing approach (figure 6.5a), the pre-processing apply-

ing PA extraction (Figure 6.5b) and the pre-processing applying SA extraction (Fig-

ure 6.5c) [94]. 

It can be noticed that the Ck and Wk computed using the secondary activation 

intervals are significantly different with respect to the ones represented in Figure 

6.5a and 6.5b in terms of number of synergies, shapes and biomechanical function. 

The activation coefficients represented in Figure 6.5c result characterized by a 

lower amplitude and a significantly higher dispersion of the neural commands 

among the subgroups with respect to the activation coefficients computed using the 

first two pre-processing procedures. Furthermore, it can be noted that these syner-

gies are actually associated to single-muscle contributions, so rather than highlight 

muscle synergies obtained processing only the sEMG signal corresponding to sec-

ondary activations, this type of analysis allows to highlight when and which muscle 

contribute in those slight corrections to which secondary activations are attributed. 

 
Figure 6.4. Example of completely auxiliary secondary activation extraction. 

Orange intervals represent the cluster prototypes. The secondary activations resulting from each proto-

type are highlighted using a dotted line. Red intervals represent the completely auxiliary secondary activation. 
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In fact, it can be observed that the muscular contribution in this case appears at 0, 

50 and 100% of gait cycle. In this timing there is the load passage from one lower 

limb to the other and therefore some small corrections in muscle activation may 

take place to maintain balance and properly control the trunk and joints of the hip, 

ankle and knee. 

 

6.4.3 Conclusion  

In the presented study, the impact of the selection of principal and secondary 

muscle activation intervals from sEMG signals on the muscle synergies extracted 

during a walking task in healthy subjects was analyzed. 

The results obtained using PAs suggested that this kind of pre-processing pro-

vide more consistent and more stable activation coefficients and weights vectors, 

 

 
Figure 6.5 Activation coefficients Ck and weight vectors Wk obtained with three different pro-

cessing techniques. [94] 

a) Standard approach, b) approach with extraction of principal activations (PAs) and c) approach with 

extraction of secondary activations (SAs). Each colored line (or colored vertical bar) represents Ck (or Wk) 

extracted from a single subgroup of 10 gait cycles. Black lines (or top of black rectangles) represent the aver-

age Ck (or Wk) across subgroups. The dotted lines, in the Ck-plots, represent the mean footswitch signal with 

the indication of the 4 gait phases: Heel contact (H), Flat foot contact (F), Push off (P) and Swing (S). 
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providing a more interpretable assessment of the modular organization of the CNS 

during a walking task without any loss of information. 

Moreover, the extraction of secondary activation has proved to be an interest-

ing pre-processing step to integrate the information obtained using PAs, in a clear 

and compact way. 

Further step would be the application of this novel approach on sEMG signals 

acquired from subjects with musculoskeletal or neurological disorders (e.g. Parkin-

son’s disease) during gait to assess its applicability also in pathological conditions. 

re consistent and more stable activation coefficients and weights vectors.   

 

 



 

96 

 

Chapter 7 

Conclusions 

The purpose of this thesis was to present new tools and methodologies for an-

alysing muscle activation characteristics during gait.  

First of all, a new method (CIMAP – Clustering for Identification of Muscle 

Activation Patterns) was developed to cope with the problem of the large intra-

subject variability in muscle activation onsets and offsets during gait. The CIMAP 

method is based on agglomerative hierarchical clustering and it allows for grouping 

strides in clusters presenting similar sEMG activation patterns. In the first part of 

the thesis the method was presented and tested on healthy subjects. Then, some 

issues emerged when its application was extended to pathological subjects; an in-

depth analysis of the method was performed, and it was optimized to obtain a 

method usable both in healthy and pathological conditions. The results obtained 

applying the CIMAP method to groups of healthy subjects and orthopaedic and 

neurological patients have proved that this method definitively improves the correct 

interpretation of the EMG signals. At first the method provides an organized repre-

sentation of the most common type of muscle activation patterns of the individual, 

that may be useful to clinicians to simply identify possible criticism in subject walk-

ing. Moreover, as a result of the CIMAP, cluster centroids are obtained: they are 

elements that characterize all the strides grouped in a specific cluster. In this way, 

the stride variability can be represented using only a few elements, representing the 

main activation patterns exposed during gait by the analysed subject. 

Then, the concept of principal activation was introduced. From the biomechan-

ical point of view, the principal activations are those activation necessary for ac-
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complishing a specific motor task (in this case, walking) and they describe the es-

sential contributions of a specific muscle to the movement. In practice, the principal 

activations of each muscle were obtained as the intersection of the corresponding 

cluster centroids, obtained using CIMAP. The concept of principal activations is 

complementary to the concept of secondary activations, which are activations pre-

sent only in some strides and have an auxiliary function in motor control (e.g. to 

provide a slight correction to muscle activations due to temporary subject distrac-

tions or extemporaneous external disturbances). 

Thus, as the cluster centroids allowed to represent in a compact way the subject 

stride-to-stride variability, similarly the principal activations allowed to character-

ize the subject through a single activation pattern for each analysed muscle. These 

patterns are able to provide a synthetic representation of those muscular activations 

strictly necessary to perform the gait task. 

The aggregation of the results obtained applying the CIMAP method and ex-

tracting the principal activations, allowed for performing complex analysis of entire 

group of subjects, sharing homogeneous characteristics. More specifically, three 

studies that used principal activations to characterize groups of subjects were re-

ported. 

In the first study, a population of 100 children school-age children was charac-

terized using principal activations only. The results of this study showed that, con-

sidering principal activations only, it was possible to obtain an easy representation 

of the biomechanical contribution of the observed muscles, very useful for the cli-

nicians. Moreover, it was possible to identify and describe phenomena related to 

gait maturation that were less evident when all the muscle activations were consid-

ered. 

The second study dealt with the problem of comparing datasets from a patient 

cohort with respect to a control group. Particularly, the patient cohort consisted of 

subjects affected by idiopathic normal pressure hydorcephalus (iNPH) and the con-

trol group was a group of age-matched healthy subjects. The analysis of muscle 

principal activations was applied to both the datasets and it has proved to be a pow-

erful tool to compare muscle activation patterns of the two different groups. More-

over, the concept of gait phase time normalization was introduced in this study and 

it has revealed to be a valid approach to extract information, especially when sig-

nificant differences are present in gait phase duration of the group of interest. This 

study was only an example of the application of principal activation analysis aimed 

to the comparison of two datasets: this approach can be easily extended for the 

analysis of other pathologies, becoming a promising tool for clinicians to identify 

the main differences between healthy and pathological. 
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Finally, the third study was a longitudinal assessment of muscle function in 

patients that underwent a total hip arthroplasty surgery. Gait data acquired from 20 

patients at 3, 6 and 12 months after surgery and 20 age-matched controls were an-

alysed, in order assess the efficacy of principal activation analysis in a longitudinal 

study. The analysis of principal activations allowed for comparing, in a compact 

way, the results from a longitudinal study conducted on patients after hip replace-

ment surgery and, as in the previous study, the methodology can be easily extended 

to the analysis of other longitudinal studies. 

In the second part of the thesis, two studies were presented aimed to introduce 

instruments, based on muscle principal activations, for the quantification and inter-

pretation of specific aspects of the gait. 

In the first study, the EMG_ASYM_INDEX was introduced. This index can as-

sess in an objective and repeatable way the muscle-activation asymmetry in cyclic 

movements. The index definition was based on muscle principal activations and it 

was applied to a dataset consisting of healthy subject, neurological patients and or-

thopaedic patients. Based on the knowledge of the different disorders and treat-

ments which patients underwent, different asymmetry levels on each population 

were expected to be found. The EMG_ASYM_INDEX values obtained on the dif-

ferent groups were consistent with the expected asymmetry level of each specific 

population of patients. This suggests that the EMG_ASYM_INDEX can be success-

fully used in clinics for an objective assessment of the asymmetry of muscle acti-

vation patterns during locomotion. 

In the second study, two other indices are presented. The first one (Jm) is a 

muscle-specific functionality index that quantifies the similarity of the activation 

pattern of a specific muscle of a subject with that of the corresponding muscle of a 

healthy population. The second one is a global index (MFI) to quantify the distance 

between the functionality of a pool of muscles of a specific subject and that of a 

reference population. Using both these indices, the overall muscle performance of 

a specific subject may be quantitatively evaluated for a single muscle (Jm) and for 

a specific muscle pool (MFI). MFI and Jm indices revealed to be promising useful 

instruments in clinics for providing an overall evaluation of muscle functionality 

during both the first instrumental examination of a subject and when a subject is 

evaluated successively, along a rehabilitation program.   

Finally, a brief introduction to the application of principal and secondary acti-

vation extraction to muscle synergy analysis was provided. The presented study 

showed the impact of the selection of principal and secondary muscle activation 

intervals from sEMG signals on the robustness of the muscle synergies extracted 
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during a walking task in healthy subjects. The results obtained using principal acti-

vation suggested that this kind of processing provide a more interpretable assess-

ment of the modular organization of the central nervous system during a walking 

task without any loss of information. Moreover, the extraction of secondary activa-

tion has proved to be an interesting pre-processing step to integrate the information 

obtained using principal activations, in a clear and compact way. The further step 

of this application would be the analysis of patients with musculoskeletal or neuro-

logical disorders (e.g. Parkinson’s disease), to assess its applicability also in patho-

logical conditions.  

In conclusion, in this thesis, several instruments have been developed and val-

idated to analyze the muscle activation characteristics during gait. These tools have 

revealed to be powerful tools for the simplification of gait data interpretation and 

for the quantification of gait characteristics.  

These tools are not used for diagnostic purposes, but their aim is to support 

research and care delivery in patients with pathologies that affect locomotion. For 

research, they can be used to characterize abnormalities of muscle activation pat-

terns in a group of subjects or to enhance the results of other algorithms. For patient 

care delivery they can be used to decide about physical therapy, to assess the results 

of a rehabilitation protocol or a surgical intervention.  
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Appendix A: Dataset description 

In this section, a complete description of the datasets used in the thesis is pro-

vided. All the data were previously collected for several studies and, in this thesis, 

data were extracted from existing datasets and retrospectively analyzed. The da-

tasets can be divided into two macro-categories: healthy subjects and pathological 

subjects. Dataset details are reported in Table A.1. 

 

Healthy subjects 

 

• School-age children 

This dataset consists of gait data of 100 healthy school-age children (51 males 

/ 49 females) [14] collected at ASL TO4 (Moncalieri, TO).  

The entire dataset was used for the study Characterization of school-age chil-

dren population (Chapter 4.3). Moreover, a subset of 10 children was extracted for 

the study related to the EMG Asymmetry Index (Chapter 5.2).  Finally, a subset 

consisting of 80 children was extracted and used as Validation Set in the Muscle 

Functionality Index study (Chapter 5.3.2). 

• Adult and elderly controls 

In previous studies, three main datasets were collected consisting of gait data 

of healthy adult and elderly. 
 

The first dataset refers to the study presented in [15] and consists of 18 healthy 

subjects (8 males / 10 females). Gait data were collected at BIOLAB laboratory 

(Politecnico di Torino). 

The entire dataset was used as part of the Test Set for testing the CIMAP algo-

rithm (Chapter 2.3). Moreover, a subset of 6 subjects was extracted for the study 

related to the EMG Asymmetry Index and used in the Adult control group (Chapter 

5.2). 
 

The second dataset refers to the study presented in [53] and consists of 20 

healthy subjects (11 males / 9 females). Gait data were collected at Rehabilitation 

and Functional Recovery Unit at the Ivrea Hospital, Torino (Italy). 

The entire dataset was used for the study Assessment of muscle activation dif-

ferences between idiopathic normal pressure hydrocephalus patients and healthy 

controls (Chapter 4.4) and for the study Longitudinal assessment of muscle function 

in patients with Total Hip Arthroplasty (Chapter 4.5). Moreover, a subset of 5 sub-

jects was extracted and used as part of the Validation_opt dataset for validating the 
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optimized version of the CIMAP algorithm (Chapter 3.5). Finally, a subset of 4 

subjects was extracted for the study related to the EMG Asymmetry Index and used 

in the Adult control group (Chapter 5.2). 
 

Finally, the third dataset consists of 80 healthy subjects which were enrolled in 

several pilot study during the years. 

Gait data of 17 subjects were extracted from this dataset and used in this thesis. 

Two subjects were used as part of the Test Set for testing the CIMAP algorithm 

(Chapter 2.3), 5 subjects was extracted and used as part of the Validation_opt da-

taset for validating the optimized version of the CIMAP algorithm (Chapter 3.5) 

and 10 subjects were used for the study Assessment of muscle activation differences 

between idiopathic normal pressure hydrocephalus patients and healthy controls 

(Chapter 4.4) 

 

 

Pathological subjects 

 

• Hemiplegic children 

This dataset consists of 25 children (15 males / 10 females) with Winters’ type 

I and II hemiplegia after cerebral palsy. Gait data were collected at ASL TO4 (Mon-

calieri, TO).   

The entire dataset was used for the study related to the EMG Asymmetry Index 

(Chapter 5.2) and for Muscle Functionality Index study (Chapter 5.3.2).  

• THA patients 

This dataset refers to the study presented in [53] and consists of 20 patients (9 

males / 11 females) that underwent a Total Hip Arthroplasty (THA) procedure. 

They were recruited from the Rehabilitation and Functional Recovery Unit at the 

Ivrea Hospital, Torino. 

The entire dataset was used for the study Longitudinal assessment of muscle 

function in patients with Total Hip Arthroplasty (Chapter 4.5) and for the study 

related to the EMG Asymmetry Index (Chapter 5.2). 

Moreover, a subset of 5 subjects was extracted and used as part of the Valida-

tion Set for validating the first version of CIMAP algorithm (Chapter 2.4) and 5 

subjects were extracted and used as part of the Validation_opt dataset for validating 

the optimized version of the CIMAP algorithm (Chapter 3.5).  

 

• TKR patients 

This dataset consists of 10 patients (5 males / 5 females) that underwent a Total 

Knee Replacement (TKR) procedure. Gait data were collected at “Città della Salute 

e della Scienza” (Molinette Hospital, Torino). 

The entire dataset was used for the study related to the EMG Asymmetry Index 

(Chapter 5.2). Moreover, a subset of 5 subjects was extracted and used as part of 
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the Validation Set for validating the first version of CIMAP algorithm (Chapter 2.4) 

and 5 subjects were extracted and used as part of the Validation_opt dataset for 

validating the optimized version of the CIMAP algorithm (Chapter 3.5). 

• Mega TKR patients 

The subjects included in the Mega TKR dataset are patients affected by malig-

nant tumours of the distal part of the femur, who underwent the surgical procedure 

of modular knee prosthesis (megaprosthesis) implant for saving the lower limb. 

This dataset consists of 19 patients (10 males / 9 females). Gait data were collected 

at “Città della Salute e della Scienza” (Molinette Hospital, Torino). 

The entire dataset was used for the study related to the EMG Asymmetry Index 

(Chapter 5.2). Moreover, a subset of 5 subjects was extracted and used as part of 

the Validation Set for validating the first version of CIMAP algorithm (Chapter 2.4) 

and 5 subjects were extracted and used as part of the Validation_opt dataset for 

validating the optimized version of the CIMAP algorithm (Chapter 3.5).  

 

• iNPH patients 

This dataset consists of 30 patients (25 males / 5 females) affected by idiopathic 

Normal Pressure Hydrocephalus (iNPH). Gait data were collected at “Città della 

Salute e della Scienza” (Molinette Hospital, Torino). 

The entire dataset was used for the study Assessment of muscle activation dif-

ferences between idiopathic normal pressure hydrocephalus patients and healthy 

controls (Chapter 4.4) and a subset of 10 patients was extracted for the study related 

to the EMG Asymmetry Index (Chapter 5.2). Moreover, a subset of 5 subjects was 

extracted and used as part of the Validation Set for validating the first version of 

CIMAP algorithm (Chapter 2.4) and 5 subjects were extracted and used as part of 

the Validation_opt dataset for validating the optimized version of the CIMAP algo-

rithm (Chapter 3.5).  
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Table A.1. Dataset details. Age, height and weight are reported as mean ± standard 

deviation. 

Dataset 
Anthropometric characteristics 

Age [years] Height [cm] Weight [kg] 

School-age children 9.0 ± 1.4 133.40 ± 9.3 30.6 ± 6.7 

Adult and elderly controls 

(First dataset)  
24.0 ± 2.7 169.5 ± 8.4 63.3 ± 10 

Adult and elderly controls 

(Second dataset) 
65.4 ± 5.1 169.8 ± 9.4 69.0 ± 12.2 

Adult and elderly controls 

(Third dataset) 
40.9 ± 18.1 171.1 ± 8.0 65.9 ± 10.8 

Hemiplegic children 8.7 ± 3.2 129.7 ± 18.8 30.2 ± 11.7 

THA patients 66.1 ± 7.2 168.7 ± 10.5 77.0 ± 13.3 

TKR patients 71.2 ± 8.8 168.2 ± 9.1 86.8 ± 21.0 

Mega TKR patients 37.8 ± 17.8 170.4 ± 10.5 68.9 ± 11.4 

iNPH 73.8 ± 8.6 167.6 ± 7.6 72.0 ± 11.0 
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Appendix B: Distance metric tests 

In this section, some example of clustering results obtained using three differ-

ent distance metrics are reported (euclidean, chebyshev and cityblock). Both healthy 

and pathological subject were used for assessing the effect of the distance metric 

on the clustering result. The tests were performed on the Tibialis Anterior muscle. 

Overall, the chebyshev and cityblock distances have shown to be the most 

promising distance metric, while the euclidean distance were discarded at the end 

of the empirical tests. 
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Figure B.1. Clustering results (Healthy male, 25 years old) 

Using Euclidean norm, on the left side only one activation pattern is identified and on the right side two 

clusters are identified with similar activation patterns. Overall, the best result is obtained using Chebyshev 

distance: the main activation patterns are identified, with a smaller number of excluded strides with respect to 

the Cityblock norm. Blue lines represent strides belonging to significant clusters, orange lines represent the 

centroids of each cluster and grey lines represents strides excluded from significant clusters. 
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Figure B.2. Clustering results (Healthy male, 30 years old) 

Using Euclidean norm, on the right side only one activation pattern is identified. Overall, the best result 

is obtained using Cityblock distance: the main activation patterns are identified, with a smaller number of 

excluded strides with respect to the Chebyshev norm. Blue lines represent strides belonging to significant 

clusters, orange lines represent the centroids of each cluster and grey lines represent strides excluded from 

significant clusters. 
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Figure B.3. Clustering results (Healthy female, 28 years old) 

Using Euclidean norm, on the right side, two clusters with similar activation patterns are identified (clus-

ter 1 and cluster 3). Overall, the best result is obtained using Cityblock distance: the main activation patterns 

are identified, with a smaller number of excluded strides with respect to the Chebyshev norm. Blue lines 

represent strides belonging to significant clusters, orange lines represent the centroids of each cluster and grey 

lines represents strides excluded from significant clusters. 
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Figure B.4. Clustering results (Healthy male, 26 years old) 

Using Euclidean norm, on both sides, clusters with similar activation patterns are identified (cluster 2 

and 3 for the left side, cluster 1 and 2 for the right side). Overall, the best result is obtained using Chebyshev 

distance: the main activation patterns are identified, with the smaller number of excluded strides with respect 

to the other norms. Blue lines represent strides belonging to significant clusters, orange lines represent the 

centroids of each cluster and grey lines represents strides excluded from significant clusters. 
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Figure B.5. Clustering results (THA patient, female, 70 years old) 

Using Chebyshev norm, both on left and right side the clusterization results not satisfying. The Cityblock 

and the Euclidean norms instead, allow to identify several different activation patterns. However, the best 

result is obtained using Cityblock distance: on the right side it allows to identify one more significant cluster 

with respect to the Euclidean distance. Blue lines represent strides belonging to significant clusters, orange 

lines represent the centroids of each cluster and grey lines represent strides excluded from significant clusters. 
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Figure B.6. Clustering results (THA patient, female, 61 years old) 

Using Euclidean norm, particularly on the left, the clusterization results not satisfying. The Cityblock 

and the Chebyshev norms instead, allow to identify several different activation patterns. Overall, the best 

result is obtained using Chebyshev distance: it allows to identify the main significant clusters on both sides. 

Blue lines represent strides belonging to significant clusters, orange lines represent the centroids of each clus-

ter and grey lines represents strides excluded from significant clusters. 
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Figure B.7. Clustering results (Mega TKR patient, male, 20 years old) 

On the left side, the same result is obtained using the three norms. On the right side, the best results are 

obtained using the Chebyshev distance: it allows to identify the different activation patterns. Blue lines repre-

sent strides belonging to significant clusters, orange lines represent the centroids of each cluster and grey lines 

represents strides excluded from significant clusters. 
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Figure B.8. Clustering results (Mega TKR patient, male, 39 years old) 

On both sides, almost the same results are obtained using the Cityblock and the Euclidean norms. The 

best results are obtained using the Chebyshev distance: it allows to identify the main activation patterns on 

both sides, with the smallest number of excluded strides. Blue lines represent strides belonging to significant 

clusters, orange lines represent the centroids of each cluster and grey lines represent strides excluded from 

significant clusters. 
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Figure B.9. Clustering results (TKR patient, female, 77 years old) 

Using the Euclidean and the Chebyshev norms, on both sides, some activation patterns are not identified 

as significant. The best result is obtained using the Cityblock distance: it allows to identify the main activation 

patterns on both sides, with only one excluded stride on the left side. Blue lines represent strides belonging to 

significant clusters, orange lines represent the centroids of each cluster and grey lines represent strides ex-

cluded from significant clusters. 
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Figure B.10. Clustering results (TKR patient, female, 59 years old) 

Using the Euclidean and the Chebyshev norms, similar results are obtained on both sides. However, the 

best result is obtained using the Chebyshev distance: on the right side, it allows to identify all the main acti-

vation patterns. Blue lines represent strides belonging to significant clusters, orange lines represent the cen-

troids of each cluster and grey lines represents strides excluded from significant clusters. 
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Appendix C: Cutoff point tests 

 

In this section, some example of clustering results obtained cutting the dendro-

gram tree at iteration k, (see eq. 2.4) are presented. For each example, the result 

obtained cutting the tree at a different iteration (k-1, k-2, k+1 or k+2) are reported. 

Both healthy and pathological subject were used for assessing the efficacy of the 

cutting rule based on Rk index. The tests were performed on the Tibialis Anterior 

muscle. 

Overall, it emerges that the cutting rule defined considering the Rk indicator 

does not allow for obtaining the optimal number of clusters in several situations. 
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Figure C.1. Clustering results (iNPH patient, female, 85 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-1. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-1 are represented: in this case, both on the left and right side, 

two different activation patterns can be recognized, while in panel (a) only one cluster per side is identified. 
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Figure C.2. Clustering results (THA patient, female, 70 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-2. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-2 are represented: in this case, both on the left and right side, 

two different activation patterns can be recognized, while in panel (a) only one cluster per side is identified. 
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Figure C.3. Clustering results (THA patient, male, 65 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-1. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-1 are represented: in this case, on the left side, is it possible to 

identified four different activation patterns, while in panel (a) only three clusters are identified. 
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Figure C.4. Clustering results (THA patient, female, 75 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-1. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-1 are represented: in this case, both on the left side, four different 

activation patterns can be recognized, while in panel (a) only three clusters are identified on the left side. 
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Figure C.5. Clustering results (Healthy male, 51 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k+2. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k+2 are represented: in this case, both on the left and right side, 

two different activation patterns can be recognized, while in panel (a) only one cluster per side is identified. 
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Figure C.6. Clustering results (Healthy male, 24 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k+2. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k+2 are represented: in this case, on the left side, is it possible to 

identified two different activation patterns, while in panel (a) only one cluster is identified. 
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Figure C.7. Clustering results (Healthy female, 28 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-1. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-1 are represented: in this case, on the left side, is it possible to 

identified three different activation patterns, while in panel (a) only two clusters are identified. 
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Figure C.8. Clustering results (Healthy male, 30 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-1. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-1 are represented: in this case, on the left side, is it possible to 

identified two different activation patterns, while in panel (a) only one cluster is identified. 
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Figure C.9. Clustering results (Healthy female, 25 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-1. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-1 are represented: in this case, on the left side, is it possible to 

identified four different activation patterns, while in panel (a) only three left clusters are identified. 
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Figure C.10. Clustering results (iNPH patient female, 85 years old) 

Clustering results obtained cutting the dendrogram at (a) iteration k and (b) k-1. As it can be observed 

from panel (a), the clusters obtained cutting the tree at the iteration k are not an optimal result. In panel (b) the 

clusters obtained cutting the tree at iteration k-1 are represented: in this case, both on the left and right side, 

two different activation patterns can be recognized, while in panel (a) only one cluster per side is identified. 

 

 

 


