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Summary I 

 

Summary   

The magnetotelluric method (MT) is one of the most effective geophysical 

techniques for the investigation of deep geothermal systems because it can 

recover the electrical-resistivity distribution of the Earth from a few meters to 

hundreds of kilometers of depth. 

 The MT inverse problem is ill-posed in nature with nonlinear and equivalent 

solutions. The standard approach to solve the inverse problem is the iterated and 

linearized inversion. However, it is also possible to adopt the global search 

approach, which performs stochastic inverse modeling by adopting the Monte-

Carlo or metaheuristic methods. Global search methods have become of major 

interest in geophysics because they are theoretically able to find the global 

minimum of a function as the final solution without being trapped in one of the 

several local minima. The potential advantages of metaheuristics are also to 

provide complete sampling of the search space of solutions and independence 

from the starting model. 

The development of a metaheuristic method to solve the 2D MT inverse 

problem represents a novelty in the framework of the existing MT inversion 

techniques. Moreover, deploying 2D stochastic inverse modeling to interpret MT 

data from geothermal areas has a great potential, mostly in those cases where the 

geological complexity and the difficulty in retrieving reliable external constraints 

can negatively affect the solution of the inverse problem. One of the most 

extraordinary geothermal resources in the world is the Larderello-Travale 

geothermal area (LTGA), located in south Tuscany, Italy. The area has been the 

object of vast industrial and scientific research over the past century. Nonetheless, 

some geological, physical and chemical aspects are still a matter of research.  

This thesis investigates a new method, based on particle swarm optimization 

(PSO), to perform stochastic inverse modeling of 2D MT data. The PSO input 

parameters were accurately calibrated by means of a sensitivity analysis in order 

to enhance the stability and convergence of the solution. The computationally 

demanding nature of the algorithm was overcome by parallelizing the code to be 
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run on a High Performance Computing (HPC) cluster. PSO was applied to two 

examples of MT synthetic data of different complexity. The PSO was initialized 

both by giving a priori information and by using a random initialization. The a 

priori information was given to a small number of particles, i.e., selected models, 

as the initial position, so that the swarming behavior was only slightly influenced. 

We demonstrated that there is no need for the a priori initialization to obtain 

robust 2D models because the results were largely comparable with the results 

from randomly initialized PSO. After this validation, the method was applied to 

the MT benchmark for real-field data, the COPROD2 data set (Canada). PSO of 

COPROD2 data provided a resistivity model of the earth in line with results from 

previous interpretations. The stochastic nature of PSO and the combination of 

exploration and exploitation behaviors played a key role in finding the global 

minimum of the search space as final solution.  

The PSO algorithm was also applied to two MT profiles located in the LTGA. 

For the first time, MT data from this geothermal area have been 2D interpreted 

using a metaheuristic method. The final models succeeded in imaging very 

complex resistivity structures similar to those presented in previous research, but 

with the following advantages: (i) the final models have not been initially biased 

by an external starting model derived from geology and (ii) the RMSEs associated 

to the final PSO models were lower than those associated to the models obtained 

by different inversion techniques. 

Furthermore, 3D MT inversion is currently an area of very intensive research 

and no work to date has focused on 3D inversion of MT data from the Travale 

geothermal area. The MT data that have been acquired in Travale during the past 

decades were recovered and accurately analyzed to determine the geoelectrical 

dimensionality and directionality, strike direction and phase tensor properties. 

Static shift was corrected through new time-domain electromagnetic (TDEM) 

measurements. A number of 3D MT inversion tests were performed by changing 

the grid rotation, error floor and starting model in order to assess the connection 

between the inversion response and geology. The final 3D model was compared 

with other subsurface data and models. To the best of the authors’ knowledge, this 

is the first 3D resistivity model of the Travale geothermal system derived from 

complete MT inversion. The outcome of this study provides new insight into the 

interpretation of the complex geothermal system of Travale. 

 

 



Acknowledgment III 

 

Acknowledgment  

Coming to the end of this doctoral experience, I wish to sincerely thank to: 

My supervisor professor Godio, for his valuable support during the last three 

years. He has allowed my research to be enriched by attending international 

conferences, working at University of Barcelona in the frame of the Erasmus+ 

Tranineeship and carrying out the field campaigns. He also founded the extension 

of my scholarship in order to cover the final steps of the thesis writing. 

Alessandro, who has encouraged me in exploring the attractiveness of 

Magnetotellurics and geothermics. He has always demonstrated full patience and 

collaborative approach to clarify my issues, correct my mistakes and improve my 

work with interesting comments. I am very proud of the work we have performed 

together as colleagues.  

Anna, Pilar, Alex, Juanjo, Perla and the other members of the 

electromagnetic-geophysics group at University of Barcelona. I spent there a 

fantastic period, which was plenty of progress in my research work and invaluable 

for their warm hospitality.  

Adele Manzella and IGG-CNR di Pisa, that shared the magnetotelluric data 

set from the geothermal area of Larderello-Travale and gave me scientific support 

to study this fascinating subject. 

Naser Meqbel (Consulting-GEO), who kindly provided the inversion code 

ModEM and the software 3D-GRID Academic.  

Chiara, who kindly hosted me in her quiet office during the last month of 

thesis writing. It has been an ideal workplace for full concentration and thinking.  

Diego, who always solved the every-day or last-minute problems with the 

maximum availability and efficiency.  

The PhD candidates of the geophysics group, Farbod, Myrto, Andrea, Bin Bin 

and Shufan, for the amusing moments spent together.   

My friends from “Tazzetti”, the master of science degree and the group 

“Piemontesi per caso”, that filled my spare time with fun moments and 

memorable travels.  



IV Acknowledgment 

 

Giovanni, who strongly encouraged me during the most stressful moments of 

the doctorate. His advice was precious to get out of anxiety, build my personal 

path and pursue my objectives.  

My parents and my sister, and their ability to make me feeling home despite 

the distance. Without knowing the details of my day-work or deadlines, they 

always trusted me and made me feeling a stronger person.  

 

*** 

 

Al termine di questa esperienza di dottorato, vorrei ringraziare 

profondamente: 

il prof. Godio, che con la sua disponibilità e comprensione mi ha sostenuta 

nell’attività di ricerca di questi 3 anni, permettendomi di arricchirla attraverso la 

partecipazione a conferenze internazionali, l’esperienza presso l’Università di 

Barcellona e le campagne di misura sul campo. Devo anche ringraziare per 

l’estensione della borsa di ricerca per poter serenamente scrivere, consegnare e 

revisionare la tesi.  

Alessandro, che sin dai primi giorni dell’esperienza di dottorato mi ha non 

solo trasmesso le sue conoscenze ma anche infuso l’interesse per la 

Magnetotellurica, essendo entrambi accomunati dalla passione per la geotermia. 

In questi 3 anni grazie alla sua immancabile disponibilità e all’ottimo lavoro di 

squadra credo che abbiamo ottenuto quelli che, almeno per me, considero dei 

successi. 

Anna, Pilar, Alex, Juanjo, Perla e tutto il gruppo di geofisica elettromagnetica 

dell’Università di Barcellona. Grazie a loro ho trascorso un favoloso periodo 

all’estero, fruttuoso dal punto di vista della mia ricerca, per merito della loro 

massima condivisione della conoscenza scientifica, e ricchissimo e 

indimenticabile dal punto di vista umano. 

Adele Manzella e l’IGG-CNR di Pisa, che mi hanno concesso di poter 

lavorare sui dati magnetotellurici dell’area geotermica di Larderello-Travale.  

Naser Meqbel (Consulting-GEO), che ha gentilmente concesso l’utilizzo di 

ModEM per l’inversione 3D dei dati magnetotellurici e di 3D-GRID Academic 

per la visualizzazione dei risultati. 

Chiara, che negli ultimi mesi di dottorato mi ha accolta nel suo ufficio 

garantendomi la tranquillità e la concentrazione di un ambiente lavorativo ideale.  

Diego e alla sua massima disponibilità nel risolvere i piccoli problemi 

quotidiani di lavoro ma anche nell’accettare la campagna di misure TDEM che a 

febbraio 2019 è stata organizzata all’ultimo momento.   

Per i piacevoli momenti trascorsi insieme, i dottorandi geofisici Farbod, 

Myrto, Andrea, Bin Bin e Shufan. 



Acknowledgment V 

 

I miei amici del “Tazzetti”, i “Piemontesi per caso” e i colleghi della 

magistrale, che hanno riempito i weekend di svago, divertimento e viaggi 

indimenticabili.  

Giovanni, che in questi tre anni, e non solo, mi ha sostenuta e incoraggiata nel 

superare le difficoltà e le ansie del dottorato. Attraverso le nostre camminate in 

montagna ho imparato a non lavorare nel weekend e ad avere più chiari i miei 

obiettivi.  

I miei genitori e mia sorella che, nonostante la lontananza, mi hanno fatto 

sentire sempre il loro calore e comprensione familiare. Pur non sapendo i dettagli 

del mio lavoro, mi hanno sempre supportata in ogni scelta, confidando nella mia 

bravura e capacità. 

 





 VII 

 

 

  

 

 

 

 

 

 

 

 

Ai miei genitori 

 

 

 

 

 
 

 

 





 Contents IX 

 

Contents 

 Introduction ................................................................................................ 1 

1.1 Motivation and background ................................................................. 1 

1.2 Thesis objectives .................................................................................. 3 

1.3 Thesis outline ....................................................................................... 4 

 The magnetotelluric method ..................................................................... 7 

2.1. Introduction ......................................................................................... 7 

2.2. Fundamentals of the MT method ......................................................... 8 

2.3. MT transfer functions ......................................................................... 10 

2.3.1 The impedance and MT tensor .................................................. 11 

2.3.2 The geomagnetic transfer function ............................................ 12 

2.4. The MT dimensionality ...................................................................... 12 

2.4.1 Dimensionality analysis ............................................................. 12 

2.4.2 Galvanic distortion ..................................................................... 15 

2.4.3 Phase tensor analysis ................................................................. 17 

2.5. Static shift correction using TDEM ................................................... 20 

2.5.1 The TDEM method .................................................................... 20 

2.5.2 TDEM data for the correction of MT static shift ....................... 21 

2.6. MT modeling and inversion ............................................................... 22 

2.6.1 Derivative-based MT inversion ................................................. 23 

2.6.2 The global search methods ........................................................ 24 

 Population-based metaheuristics: the particle swarm optimization 

algorithm ............................................................................................................... 27 

3.1. Computational swarm intelligence .................................................... 27 

3.2. Particle swarm optimization (PSO) ................................................... 30 

3.3. PSO applied to Magnetotellurics ....................................................... 33 



X Contents 

 

3.3.1 1D MT optimization .................................................................. 34 

3.3.2 Static-shift correction by means of PSO .................................... 36 

3.4. Multi-Objective PSO .......................................................................... 37 

3.4.1 The method: objective-function and the Pareto optimality ....... 39 

3.4.2 The MO algorithms: MOPSO and NSGA-III ............................ 40 

3.4.3 Calibration on real data .............................................................. 43 

3.4.4 Discussion .................................................................................. 48 

3.5. Final remarks ..................................................................................... 50 

 Particle swarm optimization of 2D MT data ......................................... 53 

4.1. Introduction ....................................................................................... 53 

4.2. PSO application to 2D MT inverse problem ..................................... 55 

4.2.1 The choice of the variant of the PSO algorithm ........................ 55 

4.2.2 The objective function ............................................................... 56 

4.2.3 PSO input arguments ................................................................. 57 

4.3. 2D optimization of MT synthetic data ................................................ 59 

4.3.1 Calibration of the PSO input arguments .................................... 61 

4.3.2 Results from two synthetic examples ........................................ 65 

4.4. 2D optimization of MT field data ....................................................... 73 

4.4.1 The COPROD2 data set ............................................................. 73 

4.4.2 Results and discussion ............................................................... 75 

4.5. Computational aspects ....................................................................... 78 

4.6. Discussion .......................................................................................... 80 

4.7. Final remarks ..................................................................................... 83 

 The MT data set of the Travale geothermal field (Italy) ...................... 85 

5.1. Introduction ....................................................................................... 85 

5.1.1 General overview of the study area ........................................... 85 

5.1.2 Geothermal background of the Larderello-Travale geothermal 

system 87 

5.1.3 The Travale geothermal area ..................................................... 90 

5.2. Geological framework of the Travale geothermal system ................. 91 

5.3. Geophysical knowledge of the Travale geothermal system ............... 92 

5.3.1 Previous MT studies .................................................................. 92 

5.3.2 Seismic methods ........................................................................ 95 

5.3.3 Other studies .............................................................................. 98 

5.4. Analysis of the MT data set ................................................................ 99 

5.4.1 The MT data set ......................................................................... 99 



 Contents XI 

 

5.4.2 Dimensionality analysis ........................................................... 101 

5.4.3 Phase tensor analysis ............................................................... 102 

5.4.4 Strike analysis .......................................................................... 104 

5.5. The new TDEM soundings for static shift correction ...................... 105 

5.6. Final considerations ........................................................................ 108 

 Stochastic inverse modeling of MT data from the Larderello-Travale 

geothermal area .................................................................................................. 109 

6.1. The MT profiles ................................................................................ 110 

6.1.1 The “LS” profile ...................................................................... 110 

6.1.2 The “Travale” profile ............................................................... 111 

6.2. Result from 2D PSO ......................................................................... 113 

6.2.1 The model from the “LS” profile ............................................. 113 

6.2.2 The model from the “Travale” profile ..................................... 116 

6.3. Final considerations ........................................................................ 118 

 3D MT inversion of the Travale data set ............................................. 119 

7.1. Preliminary considerations .............................................................. 119 

7.2. 3D MT modeling and inversion ....................................................... 121 

7.3. Inversion result ................................................................................ 123 

7.3.1 Inversion of full Z and T with north-oriented grid (test A) ..... 124 

7.3.2 Inversion of full Z and T with strike-aligned mesh (test D) .... 128 

7.4. Discussion ........................................................................................ 132 

7.5. Conclusion ....................................................................................... 137 

 Conclusions ............................................................................................. 139 

References .................................................................................................... 143 

Appendix A .................................................................................................. 155 

 Joint optimization of geophysical data using multi-objective swarm 

intelligence .......................................................................................................... 155 

A.1 Solution evaluation ......................................................................... 155 

A.2 Validation on synthetic data ........................................................... 156 

A.3 Test on the Villafranca data set (Italy) ........................................... 157 

A.4 Results from the single-objective separate optimizations .............. 163 

Appendix B .................................................................................................. 169 

 The MT sites of the Larderello-Travale data set ................................ 169 

Appendix C .................................................................................................. 173 

 Static shift correction for the MT sites of the Travale data set ......... 173 



XII Contents 

 

C.1 The new time-domain electromagnetic (TDEM) survey ................ 173 

C.2 The static-shift corrected curves ..................................................... 173 

Appendix D .................................................................................................. 181 

 Supplementary material of 3D MT inversion: data fitting of inversion 

test A 181 

Appendix E .................................................................................................. 195 

 3D MT inversion tests ............................................................................ 195 

E.1 Inversion of full Z and T with strike-aligned grid (test B) ............. 195 

E.2 Inversion of full Z and T with strike-aligned grid and a priori (test C)

 ..................................................................................................................... 196 

E.3 Inversion of full Z with strike-aligned grid (test E) ........................ 199 

E.4 Inversion of T with strike-aligned grid (test F)............................... 200 

E.5 Sensitivity test for the inversion model from test D ....................... 202 

Stochastic music........................................................................................... 205 

 

 

 



List of Tables XIII 

 

List of Tables 

Table 2.1 The magnetotelluric tensor M(ω) assumes different configurations 

according to the resistivity distribution in the subsurface (1D, 2D, 3D). M ∥and 

M ∥ refers to the components parallel and perpendicular to the strike direction, 

respectively. ........................................................................................................... 13 

Table 2.2 The phase tensor assumes different configurations depending on the 

geoelectrical dimensionality. The SVD parameters are the tensor direction α and 

three coordinate invariants: Φmin and Φmax, representing the principal axes of the 

tensor, and the skew angle β, representing the tensor’s symmetry. ....................... 18 

Table 3.1 Analysis of the performance of MOPSO and NSGA-III on the data 

set from Stupinigi. The rows report: the number of iterations run, repository index 

(RI), spacing (SP), deviation angle (α) between the ideal and Theil-Sen regression 

line, total runtime in hours, normalized root-mean square error (NRMSE) for 

TDEM and VES. .................................................................................................... 47 

Table 4.1 Synthetic data from example 1 were adopted to perform the 

calibration of the cognitive acceleration α1 and social acceleration α2 starting from 

different values at the first iteration (k =1). The final values of the RMSE and 

objective function F(m) are listed for each test. .................................................... 65 

Table 4.2 Sensitivity analysis on the population size as PSO input argument. 

The number of particles was 6, 8, 9, 10, and 12 times the number of unknowns of 

the problem (957 grid cells). Results are analyzed in terms of: RMSE, total 

runtime in hours and the maximum number of iterations reached. ....................... 65 

Table 4.3 Results of PSO applied to the two synthetic models (with and 

without a priori initialization) and to the COPROD2 data set (without a priori 

initialization). Results are presented in terms of: RMSE, runtime, and number of 

iterations performed before the optimization stop. The runtime is in hours and 

refers approximately to one single trial. ................................................................ 73 

Table 7.1 The inversion tests performed on the MT data set of Travale. 

Inversion A had the coordinate system aligned with the geographic north (N0°). 

Inversions B-F had the strike-aligned mesh (N130°E). Inversion C was initialized 



XIV List of Tables 

 

with a priori starting model derived from the 2D model of Manzella et al. (2006). 

Inversions E and F separately inverted the impedance (Z) and Tipper (T) tensor, 

respectively. ......................................................................................................... 124 

Table A.1 Analysis of the performance of MOPSO on the synthetic example. 

The rows report: the number of iterations run, repository index (RI), spacing (SP), 

deviation angle (α) between the ideal and Theil-Sen regression line, total runtime 

in hours, data misfit (NRMSE) for TDEM and VES and model misfit (NRMSE).

 ............................................................................................................................. 157 

Table A.2 Analysis of the performance of MOPSO and NSGA-III on the data 

set from Villafranca. The rows report: the number of iterations run, repository 

index (RI), spacing (SP), deviation angle (α) between the ideal and Theil-Sen 

regression line, total runtime in hours, normalized root-mean square error 

(NRMSE) for TDEM and VES. ........................................................................... 161 

Table A.3 Analysis of the performance of single-objective PSO on the 

synthetic, Stupinigi and Villafranca data sets. The columns report: the method, the 

number of iterations run, the normalized root-mean square error (NRMSE) and 

the runtime of a single trial (in minutes’). ........................................................... 167 

 

 

 



List of Figures XV 

 

List of Figures 

Figure 1.1 Schematic view of the thesis plan. ................................................... 5 

Figure 2.1 Natural sources of EM fields recorded in MT; a) The interaction 

between the solar wind and Earth’s magnetic field creates the magnetosphere, 

which acts as source of fields between 1 and 105 s (i.e., below 1 Hz) (modified 

from em.geosci.xyz); b) the EM fields at periods below 1 s are generated by 

lighting activity and are plane waves bouncing between the Earth’s surface and 

the ionosphere. ......................................................................................................... 8 

Figure 2.2 Electrical resistivity (Ωm) of the Earth’s materials 

(source:https://em.geosci.xyz/content/physical_properties/electrical_conductivity/

electrical_conductivity_values.html) ..................................................................... 10 

Figure 2.3 Typical setup for MT data acquisition (modified from 

https://www.gfz-potsdam.de). Three induction coils or magnetometers measure 

the orthogonal components of the magnetic field (Bx, By and Bz). Two pairs of 

electrodes measure the orthogonal components of the electric field (Ex and Ey).  

The reference frame is usually oriented to the geographic north. ......................... 11 

Figure 2.4 1D, 2D and 3D resistivity models as conceived in MT to infer the 

geoelectric dimensionality. The different colors of the blocks stand for different 

resistivity values. The 2D case shows the vertical contact striking in the x-

direction and determining the two-mode polarizations of the electromagnetic 

fields (TE and TM). ............................................................................................... 13 

Figure 2.5 Graphical representation of the phase tensor in 1D, 2D and 3D. 

The lengths of the ellipse axes Φmin and Φmax represent the principal axes of the 

phase tensor. They are coincident only in 1D. The representation in 2D assumes 

that the coordinates coincide with the observation frame of reference. The angle β 

characterizes the deviation of the ellipse’s major axis from the symmetry axis. β is 

non-zero only in 3D. .............................................................................................. 19 

Figure 2.6 Static-shift correction of MT data using TDEM data as  reference. 

On the left, the distorted MT data (crosses) are shifted to higher ρa values 

(ellipses) using TDEM data (black squares) at periods below 0.1 s. On the right, 

the resistivity profile derived from well-log data (continuous line), inversion of 

MT distorted data (long-dashed line), of TDEM data (dotted line) and of MT 



XVI List of Figures 

 

corrected data (short-dashed line) (modified from Berdichevsky and Dmitriev 

2008). ..................................................................................................................... 22 

Figure 3.1 Global minimum and local minima in the search space of an 

optimization (minimization) constrained problem (modified from Engelbrecht 

2007). ..................................................................................................................... 29 

Figure 3.2 Graphical representation of the ruling equations of the PSO 

algorithm (adapted from Ebbesen et al. 2012). ...................................................... 32 

Figure 3.3 a) on the right, observed data from COPROD data set (red crosses) 

and predicted responses from 1D PSO (blue and green dots) for apparent 

resistivity and phase; on the left, the resistivity distribution with depth. The red 

lines represent the models resulting from the 25 PSO trials. The green line is the 

model calculated from the median resistivity at each layer of the 25 models. b) the 

PSO median model (green line) is compared with the benchmark solutions of 

Jones and Hutton (1979) and Constable et al (1987) plotted in black and blue line, 

respectively (modified from Godio and Santilano (2018)). ................................... 35 

Figure 3.4 Static shift correction for site a1 (xy-mode) using PSO; a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.005 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1-D resistivity model. . 37 

Figure 3.5 The result of TV-MOPSO applied to the Stupinigi data set: 

observed data (red dots with error bars) and predicted apparent resistivity (blue-

line-ρapp) for TDEM (a) and VES (b) data; c) the final resistivity models derived 

from the PF (green lines) and the best solution highlighted in blue. ..................... 45 

Figure 3.6 TV-MOPSO applied to the Stupinigi data set: the evolution of the 

TDEM (a) and VES (b) components of the objective function from the first to the 

last iteration for the best particle (red stars) and the remaining ones (black circles); 

c) the 2D space of the objective function (TDEM and VES components) at the last 

iteration: the red symbols identify the PF and the black circles the objective-

function values assumed by the other solutions; d) the intersection between the 

ideal line (grey dashed) and the Theil-Sen regression line (blue) or the least-

square regression line (black) identifies the deviation angle α. ............................. 46 

Figure 3.7 The result of NSGA-III applied to the Stupinigi data set: observed 

data (red dots with error bars) and predicted apparent resistivity (ρapp) for TDEM 

(a) and VES (b) data; c) the final resistivity models derived from the PF (green 

lines) and the best solution highlighted in blue. .................................................... 47 

Figure 3.8 NSGA-III applied to the Stupinigi data set: the evolution of the 

TDEM (a) and VES (b) components of the objective function from the first to the 

last iteration for the best individuals (red stars) and the remaining ones (black 

circles); c) the 2D space of the objective function (TDEM and VES components) 

at the last iteration: the red symbols identify the PF, while the black circles the 

objective-function values assumed by the other solutions; d) the intersection 



List of Figures XVII 

 

between the ideal line (grey dashed) and the Theil-Sen regression line (blue) or 

the least-square regression line (black) identifies the deviation angle α. .............. 48 

Figure 3.9 Comparison of the different interpretations of the Stupinigi data set 

using MOPSO (dashed line), NSGA-III (solid line) and Monte Carlo (dotted line) 

from Piatti et al. (2010). On the right, the stratigraphy from a borehole located 

very close to the sounding. .................................................................................... 50 

Figure 4.1 The PSO algorithm flowchart. P is the local best solution and G is 

the global best solution. ......................................................................................... 59 

Figure 4.2 Synthetic model 1: a) the 2D mesh is discretized into 33 layers and 

a total of 957 grid cells. The labels S1, …, S15 indicate the location of the 15 MT 

stations. The dashed area is shown in b) a 10 Ωm conductive body is hosted in a 

100 Ωm medium. ................................................................................................... 60 

Figure 4.3 Synthetic model 2: two 10  Ωm deep anomalies and one superficial 

50  Ωm body are embedded in a 100  Ωm host medium. The labels S1, S2, …, 

S15 indicate the 15 MT stations. The zoomed-in box on the top shows the 50- Ωm 

body below S2-S5. ................................................................................................. 61 

Figure 4.4 L-curve response for synthetic model 1 along the horizontal (black 

diamonds) and vertical (red circles) directions. The tradeoff between data misfit 

and model norm indicates the best Lagrange multiplier λ equal to 0.1. ................ 62 

Figure 4.5 Objective function F(m) and particle positions at the end of the 

optimization: a) objective-function value, iteration after iteration, for the best 

particle (red dots) and the rest of the swarm (black dots); b) the objective-function 

value as a function of the particle positions in the resistivity (ρ) search space, at 

the first (grey dots) and final (blue dots) iterations; c) plain view of b); d) final 

distribution of the objective-function values among all the particles. ................... 63 

Figure 4.6 Objective function F(m) and particle positions at the end of the 

optimization: a) objective -function value, iteration after iteration, for the best 

particle (red dots) and the rest of the swarm (black dots); b) the objective-function 

value as a function of the particle positions in the resistivity (ρ) search space, at 

the first (grey dots) and final (blue dot) iterations; c) plain view of b) with all 

particles converged to the last position (red circled blue dot); d) final distribution 

of the objective-function values among all the particles. ...................................... 64 

Figure 4.7 PSO solution for synthetic model 1, after about 150 iterations 

without a priori initialization for the 8600 particles of the swarm. Lagrange 

multiplier λ = 0.1. ................................................................................................... 66 

Figure 4.8 Fitting curves between data of synthetic model 1 and calculated 

data for apparent resistivity (ρapp) and impedance phase for both TE and TM 

polarizations. The selected MT stations are S1, S4, S7, and S11. The synthetic 

data are marked as dots for TE, and diamonds for TM, while the PSO-predicted 

data are plotted as solid lines for TE, and dashed lines for TM. The optimization 

was randomly initialized. ....................................................................................... 67 



XVIII List of Figures 

 

Figure 4.9 PSO solution for synthetic model 1 using a swarm size of only 

5700 particles (6 times the unknowns), after about 160 iterations, without a priori 

initialization, and Lagrange multiplier λ = 0.1. ...................................................... 68 

Figure 4.10 PSO solution for synthetic model 1, after about 250 iterations and 

with a priori information given to 5% of the particles. Lagrange multiplier λ = 0.1.

 ............................................................................................................................... 69 

Figure 4.11 Fitting curves between data of synthetic model 1 and calculated 

data for apparent resistivity (ρapp) and impedance phase for both TE and TM 

polarizations. The selected MT stations are S1, S4, S7, and S11. The synthetic 

data are marked as dots for TE, and diamonds for TM, while the PSO-predicted 

data are plotted as solid lines for TE, and dashed lines for TM.  The optimization 

was initialized with a priori information. ............................................................... 69 

Figure 4.12 L-curve response for synthetic model 2 along horizontal (black 

diamonds) and vertical (red circles) directions. The tradeoff between data misfit 

and model norm indicates the best Lagrange multiplier λ equal to 0.1. ................ 70 

Figure 4.13 PSO solution for synthetic model 2, after 1674 iterations and 

without a priori initialization. Lagrange multiplier λ = 0.1. .................................. 71 

Figure 4.14 Fitting curves between data of synthetic model 2 and calculated 

data for apparent resistivity (ρapp) and impedance phase for both TE and TM 

polarizations. The selected MT stations are S1, S5, S9, and S12. The synthetic 

data are marked as dots for TE, and diamonds for TM, while the PSO-predicted 

data are plotted as solid lines for TE, and dashed lines for TM.  The optimization 

was randomly initialized. ....................................................................................... 71 

Figure 4.15 PSO solution for synthetic model 2, after 53 iterations and with a 

priori information given to 5% of the particles. Lagrange multiplier λ = 0.1. ....... 72 

Figure 4.16 Fitting curves between data of synthetic model 2 and calculated 

data for apparent resistivity (ρapp) and impedance phase for both TE and TM 

polarizations. The selected MT stations are S1, S5, S9, and S12. The synthetic 

data are marked as dots for TE, and diamonds for TM, while the PSO-predicted 

data are plotted as solid lines for TE, and dashed lines for TM.  The optimization 

was initialized with a priori information. ............................................................... 72 

Figure 4.17  MT responses and error bars for TE and TM modes of three 

representative stations (12, 13, and 14) of the COPROD2 data set. They show the 

high quality of the data. The ρapp stands for the apparent resistivity. .................... 74 

Figure 4.18 L-curve response for COPROD2 data along the horizontal (black 

diamonds) and vertical (red circles) directions. The tradeoff between data misfit 

and model norm indicates the best Lagrange multiplier λ equal to 0.1. ................ 75 

Figure 4.19 Resistivity model of COPROD2 data from PSO computation, 

after 6000 iterations. Lagrange multiplier λ = 0.1. ................................................ 76 

Figure 4.20 Reference models of COPROD2 data from Jones (1993b). The 20 

stations are sorted and named as in Figure 4.19. The color scale for the resistivity 

(ρ) is consistent with Figure 4.19: white (ρ < 1 Ωm), pink (ρ = 1 Ωm), red (ρ = 10 

Ωm), yellow (ρ = 100 Ωm) and green (ρ = 1000 Ωm) ........................................... 77 



List of Figures XIX 

 

Figure 4.21 Fitting curves between observed apparent resistivity (ρapp) and 

phase, and predicted responses at selected periods: 56.9 s, 85.3 s, 341.3 s. 

Observed data include error bars and are marked with dots for TE and diamonds 

for TM. Calculated responses are plotted with solid line for TE and dashed line 

for TM.  The optimization was randomly initialized. ............................................ 78 

Figure 4.22 Black curves show computation time in hours (left ordinate axis) 

as a function of the number of cores exploited for a reference PSO simulation of 

150 iterations with a 10000-particle swarm. The right ordinate axis and blue 

curves refer to the total runtime speedup with exploited cores increasing. Dotted 

lines refers to “shared” parallel environment (workers of a single node), dashed 

lines to “orte” (workers of different nodes). .......................................................... 79 

Figure 5.1 The geothermal area of Larderello-Travale is located in southern 

Tuscany, Italy (source: Manzella et al. 2018) ........................................................ 86 

Figure 5.2 left) the experiment of Prince Ginori Conti in 1913: the geothermal 

energy was converted to switch on five bulb lamps (source 

https://www.unionegeotermica.it/esperimento_ginori_conti.asp); right) the first 

electric power plant “Larderello 1” started operating in 1913 (courtesy of 

Alessandro Lenzi. Presented during the GEO200 conference in Pisa, May 2018)86 

Figure 5.3 Pictures of the Larderello-Travale geothermal area taken during the 

2019 TDEM geophysical survey. .......................................................................... 87 

Figure 5.4 Schematic conceptual model of a typical geothermal system 

(Dickson and Fanelli 2004) .................................................................................... 89 

Figure 5.5 The Travale geothermal area (red box) is located in southern 

Tuscany, central Italy. The map in the background is a digital terrain model with 

cell size of 10 meters (extracted from Geoportale Geoscopio web site). .............. 91 

Figure 5.6 left) Geological map of the area of study: 1) Quaternary deposits, 

2) Neoautochthonous terrigenous deposits, 3) Ligurian and sub-ligurian flysch 

complex, 4a) Tuscan nappe sediments, 4b) Tuscan nappe basal evaporites. The 

black dots are the 51 MT sites included in 3D inversion (Chapter 7). The thick 

black curves are the main faults and normal faults (source: Geoportale Geoscopio 

web site). The red-dashed A-A’ profile tracks the geological cross-section 

reported in the right (modified from Romagnoli et al. 2010); right): 5) phyllitic 

and quartzitic complex, 6) micaschist complex, 7) gneiss complex, 8) Pliocene 

granite (yellow) and Quaternary granite (red). The red lines in the cross-section 

are the isotherms. The K-horizon is highlighted with the dashed-yellow line. ..... 92 

Figure 5.7 Schematic sketch of the tectono-stratigraphic and hydrogeological 

complexes of Larderello-Travale geothermal area (modified from Gola et al. 

2017) ...................................................................................................................... 92 

Figure 5.8 The collection of MT data sets in the Larderello-Travale area. The 

data set acquired in 1992 (LN13, …, LN18; LS3, …, LS16) is marked with black-

labeled squares. The data set acquired in 2004 (55 sites) is marked with blue-

labeled circles. The data set acquired in 2006-07 (19 sites) is marked with red-

labeled triangles. The main towns of Larderello, Lago Boracifero and Travale are 



XX List of Figures 

 

marked with white circles. The geothermal wells “MN1” and “Radicondoli7bis” 

are marked with yellow stars. This map was created by reading a georeferenced 

image within Matlab Mapping Toolbox by Mathworks. ....................................... 93 

Figure 5.9 The 2D resistivity model of Travale after 2D NLCG inversion of 

the profile acquired in 2004 (from Manzella et al. 2006) ...................................... 95 

Figure 5.10 Schematic structural model of the Travale geothermal field (from 

Bertini et al. 2005). This section is directed NW-SE. ............................................ 96 

Figure 5.11 Seismic sections of two drilled wells from seismic reflection lines 

in the Travale area. The location of these wells is depicted in Figure 5.8. a) the 

productive zones of the well Radicondoli7bis (yellow ellipses) are included 

between the reflections of the H-horizon (from Casini et al. 2010); b) the well 

MN1 reaches the fractured zone of the H-horizon below 1730 m of depth b.g.l. 

(from Bertani et al. 2005). ..................................................................................... 97 

Figure 5.12 Tomographic cross-sections modified from the 3D P-wave 

velocity model of Bagagli et al. (2020). The red squares below the wells 

correspond to the encountered H-horizon. The K-horizon is plotted as grey line. 

The white circles are the hypocenters of local earthquakes; a) the W-E section 

(XX’ profile) crosses the Travale area in the eastern sector where a velocity 

anomaly below well  MN1 is surrounded by the 5.7 km/s white-dashed isoline 

(from Bagagli et al. 2020); b) map of the XX’ profile (grey-dotted line), CC’ 

profile (black-dotted line), the main towns (white circles), MT sites (black dots 

and squares), geothermal wells (red triangles); c) the SW-NE section (CC’ profile) 

shows a low-velocity body (vp around 5 km/s) bounded between the H- and K-

horizons (from Bagagli et al. 2020). ...................................................................... 98 

Figure 5.13 left) Resistivity-log of the well Radicondoli7bis. Litho-

stratigraphic units: 1) Ligurian units, 2) anhydrites of the Tuscan complex, 3) 

Phyllite member of the phyllitic quartzitic complex, 4) Carbonate-anhydritic 

member of the phyllitic quartzitic complex, 5) Micaschists and contact-

metamorphic rocks, 6) granite. The depth is in m b.g.l.; right) relative x-ray 

diffraction (XRD) intensity (from Giolito et al. 2009). ......................................... 99 

Figure 5.14 The MT data set examined in this work is composed of 55 sites. 

The 26 sites marked in red include the vertical transfer function (Tipper), while 

the remaining sites (black dots) include only the four components of the MT 

tensor. The town of Travale is located between sites k5 and k6. This map was 

created by reading a georeferenced image (coming from “openstreetmap”) within 

Matlab Mapping Toolbox (by Mathworks). ........................................................ 100 

Figure 5.15 Dimensionality analysis results of the MT data from the Travale 

geothermal area from WALDIM software (Martì et al. 2009). The output was 

classified in seven decades of periods: a)10-3-10-2 s, …, g) 103-104 s according to 

one of the following dimensionality: 1D, 2D, 3D/2D (regional 2D structure 

affected by galvanic distortion), 3D/2D1D (galvanic distortion over a 1D or 2D 

structure), 3D, undetermined (errors higher than the threshold), no data acquired 

in that period. ....................................................................................................... 102 



List of Figures XXI 

 

Figure 5.16 Phase tensor ellipses at selected periods from 10-3 s (a) to 103 s 

(f). The phase tensor skew angle β (°) is null (white) in case of 1D distribution and 

increases in magnitude (red or blue colors) in case of 3D distribution. The 

elongated ellipses indicate a 3D distribution and point toward a conductive region.

 ............................................................................................................................. 103 

Figure 5.17 Tipper arrows at selected periods from 10-3 s (a) to 103 s (f) for 

the 26 sites with measured geomagnetic transfer function. Most of the vectors 

point toward a predictable North-Eastern conductive region (Parkinson criterion) 

and are fairly orthogonal to the strike direction shown in Figure 5.18. The 

horizontal arrow on the bottom of the graph shows the Tipper vector length in 

case of magnitude 1. The color scale of the phase-tensor ellipses refers to its 

determinant. ......................................................................................................... 104 

Figure 5.18 Rose diagrams of the strike direction calculated over the whole 

period range from a) the impedance tensor Z, b) the phase tensor azimuth and c) 

the Tipper matrix. ................................................................................................ 105 

Figure 5.19 Rose diagrams of the strike direction calculated at each period 

decade from a) the impedance tensor Z and b) the phase tensor azimuth. .......... 105 

Figure 5.20 Some pictures of the TDEM survey carried out around Travale in 

February 2019 left) the instrument used for TDEM acquisition was a 

TEMFAST48; right) the most accessible sites allowed a loop-size of 100 m to be 

set up. ................................................................................................................... 106 

Figure 5.21 Static shift correction for site b6 (xy-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.005 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 107 

Figure 5.22 Static shift correction for site b6 (yx-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.005 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 107 

Figure 6.1 The “LS” profile is composed of 13 MT sites (LS3, .., LS16) and is 

located south of Lago Boracifero and south-west of Travale. This map was 

created by reading a georeferenced image (extracted from “Open Street Map”) 

within Matlab Mapping Toolbox (by Mathworks). ............................................. 110 

Figure 6.2 Phase-tensor map in a pseudo-section format for profile "LS". The 

color scale refers to the skew angle β and the arrows to the real part of the Tipper 

vector. .................................................................................................................. 111 

Figure 6.3 The “Travale” profile is directed SW-NE and is composed of 11 

MT sites (k1, .., a8) crossing the town of Travale. This map was created by 



XXII List of Figures 

 

reading a georeferenced image (extracted from “Open Street Map”) within Matlab 

Mapping Toolbox (by Mathworks). ..................................................................... 112 

Figure 6.4 Phase-tensor map in a pseudo-section format for profile "Travale". 

The color scale refers to the skew angle β and the arrows to the real part of the 

Tipper vector. ....................................................................................................... 112 

Figure 6.5 The 2D resistivity model of “LS” profile from PSO computation, 

after 1626 iterations and random initialization of the model. .............................. 114 

Figure 6.6 Data fitting for TE and TM apparent resistivity (ρapp) and phase at 

selected period 0.02 s for the 13 MT sites of "LS" profile. ................................. 115 

Figure 6.7 Data fitting for TE and TM apparent resistivity (ρapp) and phase at 

selected period 0.2 s for the 13 MT sites of "LS" profile. ................................... 115 

Figure 6.8 The 2D resistivity model of “Travale” profile from PSO 

computation, after 4000 iterations and random initialization of the model. ........ 117 

Figure 6.9 Data fitting for TE and TM apparent resistivity (ρapp) and phase at 

selected period 0.03 s for the 11 MT sites of "Travale" profile. .......................... 117 

Figure 6.10 Data fitting for TE and TM apparent resistivity (ρapp) and phase at 

selected period 11.4 s for the 11 MT sites of "Travale" profile. .......................... 118 

Figure 7.1 Geological map of the area of study: 1) Quaternary deposits, 2) 

Neoautochthonous terrigenous deposits, 3) Ligurian and sub-ligurian flysch 

complex, 4a) Tuscan nappe sediments, 4b) Tuscan nappe carbonates. The black 

dots are the 51 MT sites included in 3D inversion. The thick black curves are the 

main faults and normal faults (source: Geoportale Geoscopio web site). ........... 120 

Figure 7.2 The 3D model is 200 x 200 km large and 350 km deep. The mesh 

included the topography and bathymetry. The figure was created in 3D-GRID 

Academic. ............................................................................................................ 121 

Figure 7.3 Plain view of the 3D resistivity model of test A at different depths: 

a) 78 m a.s.l., b) 222 m, c) 522 m, d) 4.7 km b.s.l. The x-axis of the mesh is 

aligned with the geographic North (N0°). The lines in b) are the vertical cross-

sections shown in Figure 7.4. The black-dashed profile drawn in a) from site k5 to 

a8 is the cross-section reported in Figure 7.5. ..................................................... 125 

Figure 7.4 Vertical cross-sections of the model from test A: a) ZY1 section at 

X=-1.7 km; b) ZY2 section at X=1.6 km; c) ZX1 section at Y=-1.6 km; d) ZX2 

section at Y=1.3 km. ............................................................................................ 126 

Figure 7.5 Vertical cross-section of the model from test A corresponding to 

the MT profile investigated in Section 6.3. The SW-NE profile is orthogonal to 

the strike direction and crosses sites from k5 to a8 (see Figure 7.3). .................. 127 

Figure 7.6 Distribution of RMSE at each site for test A a) Total normalized 

RMSE for the impedance tensor (Z). b) Total normalized RMSE for the Tipper 

matrix (T). The black dots in b) mean no Tipper data. The errors are normalized 

for the full period range. ...................................................................................... 127 

Figure 7.7 Plain view of the 3D resistivity model of test D at different depths: 

a) 78 m a.s.l., b) 222 m, c) 522 m, d) 4.7 km b.s.l. The mesh is aligned with the 

geoelectrical strike (N130°E), that is, the North is rotated 40° clockwise and the x-



List of Figures XXIII 

 

axis is parallel to the strike. The lines in b) are the vertical cross-sections shown in 

Figure 7.8.  The black-dashed profile drawn in a) from site k5 to a8 is the cross-

section reported in Figure 7.9. ............................................................................. 129 

Figure 7.8 Vertical cross-sections of the model from test A: a) ZY1 section at 

X=-2 km; b) ZY2 section at X=1.2 km; c) ZX1 section at Y=-2 km; d) ZX2 section 

at Y=1.3 km. ........................................................................................................ 130 

Figure 7.9 Vertical cross-section of the model from test D corresponding to 

the MT profile investigated in Section 6.3. The SW-NE profile is orthogonal to 

the strike direction and crosses sites from k5 to a8 (see Figure 7.6) ................... 131 

Figure 7.10 Distribution of RMSE at each site for test D resistivity model. a) 

Total normalized RMSE for the impedance tensor Z b) Total normalized RMSE 

for the Tipper matrix (T). The black dots in b) mean no Tipper data. The errors are 

normalized for the full period .............................................................................. 131 

Figure 7.11 The 3D resistivity model of test D is compared with the pink 

surface corresponding to the base of the geological unit of Neogene (from Casini 

et al. 2010). The section goes North-South and crosses sites a4, b4, e4 and f4. . 133 

Figure 7.12 The 3D model of inversion test D displayed for selected 

resistivity values higher than 200 Ωm. The deep resistive body is imaged between 

3 and 8 km of depth and is directed about N40°E. The white circles represent the 

MT sites. .............................................................................................................. 135 

Figure 7.13 The resistive body (R2) from test-D inversion model is compared 

with the 3D velocity model from local earthquake tomography of Bagagli et al. 

(2020). The R2 body (> 200 Ωm) and the low-velocity body with vp around 5 

km/s are highly comparable and extend both between 3 and 7 km of depth. ...... 136 

Figure A.1 The result of TV-MOPSO applied to the synthetic example; a) 

TDEM theoretical signal (red dots with error bars) and predicted response in the 

range 0.9·10-5 - 2·10-3 s; b) VES data cover 1 to 1000 m of half-spacing; c) the 

true model (red-dashed line), the final resistivity models derived from the PF 

(green lines) and the best solution highlighted in blue. ....................................... 157 

Figure A.2 The result of TV-MOPSO applied to the Villafranca data set: 

observed data (red dots with error bars) and predicted apparent resistivity (ρapp) 

for TDEM (a) and VES (b) data; c) the final resistivity models belonging to the 

PF (green lines) and the best solution highlighted in blue. ................................. 159 

Figure A.3 TV-MOPSO applied to the Villafranca data set: the evolution of 

the TDEM (a) and VES (b) components of the objective function from the first to 

the last iteration for the best particle (red stars) and the remaining ones (black 

circles); c) the 2D space of the objective function (TDEM and VES components) 

at the last iteration: the red symbols identify the PF and the black circles the 

objective-function values assumed by the other solutions; d) the intersection 

between the ideal line (grey dashed) and the Theil-Sen regression line (red) or the 

least-square regression line (blue) identifies the deviation angle α. .................... 160 

Figure A.4 The result of NSGA-III applied to the Villafranca data set: 

observed data (red dots with error bars) and predicted apparent resistivity (ρapp) 



XXIV List of Figures 

 

for TDEM (a) and VES (b) data; c) the final resistivity models belonging to the 

PF (green lines) and the best solution highlighted in blue. ................................. 161 

Figure A.5 NSGA-III applied to the Villafranca data set: the evolution of the 

TDEM (a) and VES (b) components of the objective function from the first to the 

last iteration for the best individuals (red stars) and the remaining ones (black 

circles); c) the 2D space of the objective function (TDEM and VES components) 

at the last iteration: the red symbols identify the PF, while the black circles the 

objective-function values assumed by the other solutions; d) the intersection 

between the ideal line (grey dashed) and the Theil-Sen regression line (red) or the 

least-square regression line (blue) identifies the deviation angle α. .................... 162 

Figure A.6 Single PSO of TDEM synthetic data. a) fitting between observed 

signal (red dots and error bars) and predicted response (blue line); b) the red-

dashed line is the true model, the green lines correspond to the resistivity models 

from different PSO trials while the blue line is the best solution. ....................... 164 

Figure A.7 Single PSO of VES synthetic data. a) fitting between observed 

apparent resistivity ρapp (red dots and error bars) and predicted response (blue 

line); b) the red-dashed line is the true model, the green lines correspond to the 

resistivity models from different PSO trials while the blue line is the best solution.

 ............................................................................................................................. 164 

Figure A.8 Single PSO of TDEM measurements at Stupinigi site. a) fitting 

between observed apparent resistivity ρapp (red dots and error bars) and predicted 

response (blue line); b) the resistivity models in green correspond to the different 

PSO trials while the best solution is marked in blue. .......................................... 165 

Figure A.9 PSO performance at the end of the optimization: a) the decrease of 

the fitness function, iteration after iteration, for the best particle (black dots) and 

the remaining swarm (blue dots); b) the fitness-function value as a function of the 

particle positions in the resistivity (ρ) search space, at the first (grey dots) and 

final (red-circled blue dots) iterations; c) plain view of b); d) final distribution of 

the fitness-function values among all the particles. ............................................. 165 

Figure A.10 Single PSO of VES data at Stupinigi site. a) fitting between 

observed apparent resistivity ρapp (red dots and error bars) and predicted response 

(blue line); b) the resistivity models in green correspond to the different PSO trials 

while the best solution is marked in blue. ............................................................ 166 

Figure A.11 Single PSO of TDEM measurements at Villafranca site. a) fitting 

between observed signal (red dots and error bars) and predicted response (blue 

line); b) the resistivity models in green correspond to the different PSO trials 

while the best solution is marked in blue. ............................................................ 167 

Figure A.12 Single PSO of VES data at Villafranca site. a) fitting between 

observed apparent resistivity ρapp (red dots) and predicted response (blue line); b) 

the resistivity models in green correspond to the different PSO trials while the 

best solution is marked in blue. ........................................................................... 167 

Figure C.1 The MT data set investigated for 2D PSO and 3D inversion covers 

the Travale geothermal area. The 8 TDEM sites are marked with blue triangles. 



List of Figures XXV 

 

The town of Travale is located between sites k5 and k6. This map was created by 

reading a georeferenced image (coming from “openstreetmap”) within Matlab 

Mapping Toolbox (by Mathworks). ..................................................................... 173 

Figure C.2 Static shift correction for site a1 (xy-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.005 s) and of MT from 0.004 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 174 

Figure C.3 Static shift correction for site a1 (yx-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.005 s) and of MT from 0.004 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 174 

Figure C.4 Static shift correction for site b2 (xy-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.005 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 175 

Figure C.5 Static shift correction for site b2 (yx-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.03 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 175 

Figure C.6 Static shift correction for site e1 (xy-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.01 s) and of MT from 0.02 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 176 

Figure C.7 Static shift correction for site e1 (yx-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.01 s) and of MT from 0.02 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 176 

Figure C.8 Static shift correction for site g1 (xy-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.001 s) and of MT from 0.002 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 



XXVI List of Figures 

 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 177 

Figure C.9 Static shift correction for site g1 (yx-mode) using PSO. a) The red 

dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.001 s) and of MT from 0.002 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 177 

Figure C.10 Static shift correction for site k1 (xy-mode) using PSO. a) The 

red dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.007 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 178 

Figure C.11 Static shift correction for site k1 (yx-mode) using PSO. a) The 

red dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.007 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 178 

Figure C.12 Static shift correction for site k4 (xy-mode) using PSO. a) The 

red dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.006 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 179 

Figure C.13 Static shift correction for site k4 (yx-mode) using PSO. a) The 

red dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.006 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 179 

Figure C.14 Static shift correction for site k5 (xy-mode) using PSO. a) The 

red dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.006 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 180 

Figure C.15 Static shift correction for site k5 (yx-mode) using PSO. a) The 

red dots are the observed apparent resistivity (ρapp) of TDEM at low periods (up to 

0.006 s) and of MT from 0.003 s upward. The blue crosses indicate the predicted 

MT ρapp that correct the static shift according to TDEM information; b) Observed 



List of Figures XXVII 

 

(red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not 

interpreted here). .................................................................................................. 180 

Figure E.1 Plain view of the 3D resistivity model of test B (N130°E) at 

different depths: a) 78 m a.s.l., b) 222 m, c) 522 m, d) 4.7 km b.s.l.. The mesh is 

aligned with the geoelectrical strike, that is, the North is rotated 40° clockwise and 

the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site 

k5 to a8) is the cross-section reported in Figure E.2 ........................................... 195 

Figure E.2 Vertical cross-section of the model from test B corresponding to 

the MT profile investigated in Section 6.3. The profile is directed SW-NE 

orthogonally to the strike direction and crosses sites from k5 to a8 (see Figure 

E.1a) ..................................................................................................................... 196 

Figure E.3 Distribution of RMSE at each site for test B. a) Total normalized 

RMSE for the impedance tensor (Z). b) Total normalized RMSE for the Tipper 

matrix (T).  The black dots in b mean no Tipper data. The errors are normalized 

for the full period range. ...................................................................................... 196 

Figure E.4 Plain view of the 3D resistivity model of test C (N130°E) at 

different depths: a) 78 m a.s.l., b) 222 m, c) 522 m, d) 4.7 km b.s.l.. The mesh is 

aligned with the geoelectrical strike, that is, the North is rotated 40° clockwise and 

the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site 

k5 to a8) is the cross-section reported in Figure E.5 ........................................... 197 

Figure E.5 Vertical cross-section of the model from test C corresponding to 

the MT profile investigated in Section 6.3. The profile is directed SW-NE 

orthogonally to the strike direction and crosses sites from k5 to a8 (see Figure 

E.4a) ..................................................................................................................... 198 

Figure E.6 Distribution of RMSE at each site for test C. a) Total normalized 

RMSE for the impedance tensor (Z). b) Total normalized RMSE for the Tipper 

matrix (T). The black dots in b mean no Tipper data. The errors are normalized 

for the full period range. ...................................................................................... 198 

Figure E.7 Plain view of the 3D resistivity model of test E (N130°E) at 

different depths: a) 78 m a.s.l., b) 222 m, c) 522 m, d) 4.7 km b.s.l.. The mesh is 

aligned with the geoelectrical strike, that is, the North is rotated 40° clockwise and 

the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site 

k5 to a8) is the cross-section reported in Figure E.8 ........................................... 199 

Figure E.8 left) Vertical cross-section of the model from test E corresponding 

to the MT profile investigated in Section 6.3. The profile is directed SW-NE 

orthogonally to the strike direction and crosses sites from k5 to a8 (see Figure 

E.7a); right) Distribution of RMSE at each site for test E. Total normalized 

RMSE for the impedance tensor (Z). The errors are normalized for the full period 

range. .................................................................................................................... 200 

Figure E.9 Plain view of the 3D resistivity model of test F (N130°E) at 

different depths: a) 78 m a.s.l., b) 222 m, c) 522 m, d) 4.7 km b.s.l. The mesh is 

aligned with the geoelectrical strike, that is, the North is rotated 40° clockwise and 



XXVIII List of Figures 

 

the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site 

k6 to b8) is the cross-section reported in Figure E.10. ........................................ 201 

Figure E.10 left) Vertical cross-section of the model from test F 

corresponding to the MT profile investigated in Section 6.3. The profile is 

directed SW-NE orthogonally to the strike direction and crosses sites from k5 to 

a8 (see Figure E.9a); right) Distribution of RMSE at each site for test F. Total 

normalized RMSE for the Tipper matrix (T). The errors are normalized for the full 

period range. ........................................................................................................ 202 

Figure E.11 Vertical cross-section of the model from test D where the 100-

Ωm structure was tested and replaced with a 1-Ωm conductor (modified body). 

The section corresponds to the MT profile investigated in Section 6.3. The 

conductor is about 8 km large from 0.6 km to 2.5 km of depth. ......................... 203 

Figure E.12 For site c7 the fitting between measured data (colored dots) and 

predicted response (colored lines) is plotted for apparent resistivity and phase of 

the off-diagonal impedance tensor components: left) data fitting after sensitivity 

test; right) data fitting after inversion test D. ...................................................... 203 

 



List of abbreviations XXIX 

 

List of abbreviations  

Nomenclature 

Symbol 
Unit of 

measurement 
Description 

E V/m Electric field 

B T Magnetic induction 

H A/m Magnetic field 

j A/m2 Current density 

D C/m2 Electric displacement 

ηf C/m3 Electric charge density 

   

σ S/m Electric conductivity 

ρ Ωm Electric resistivity 

ε F/m Dielectric permittivity 

μ H/m Magnetic permeability 

t s time 

f Hz Frequency 

ω rad/s Angular frequency 

T s Period 

δ m Skin depth 

   

Z Ω Impedance tensor (2x2) 

M m/s Magnetotelluric tensor (2x2) 

ρa ij  Ωm Apparent resistivity 

φij ° phase 

T - Geomagnetic transfer function (Tipper vector) 

C - Galvanic distortion matrix 

g, T, S, A - 
gain, twist, shear, anisotropy (Groom and 

Bailey’s decomposition) 

θ ° Arbitrary rotation angle 

X, Y m/s 
Real and imaginary part of the 

Magnetotelluric tensor M 

Φ - Phase tensor 

Φmax, Φmin  Singular values of the phase tensor  

α ° Direction of the phase tensor 



XXX List of abbreviations 

 

β ° Skew angle of the phase tensor 

   

d m 
Diffusion depth for Time-Domain Electro-

Magnetic (TDEM) method 

L m Side length of the TDEM acquisition loop 

R m 
Equivalent radius of the TDEM square loop 

with side L 

 

 
Particle swarm optimization (PSO) nomenclature 

vi
k - Velocity of the ith-particle at the kth-iteration 

xi
k - Position of the ith-particle at the kth-iteration 

ωk - Inertia weight  

α1, α2  - Cognitive and social accelerations  

γ1,  γ2 - Uniformly distributed random numbers ∈ [0,1] 

Pi - Local best position of the ith-particle of the swarm 

G - Global best position of the swarm 

N - Swarm size or number of particles forming the swarm  

F(m) - 
Objective function to be optimized to solve the inverse 

problem 

m - model parameter, i.e., the resistivity model 

dobs - Generic observed data 

ρa,o , ρa,p Ωm Observed and predicted apparent resistivity 

φa,o , φa,p ° Observed and predicted phase  

λ, λx, λz - 
Lagrange multiplier in the general case, horizontal and 

vertical directions 

a, b - Weighting coefficients for 1D PSO 

M - Number of data in 2D MT inverse problem 

Δρa,o, Δφo % Errors in observed apparent resistivity and phase 

   

Multi-objective particle swarm optimization (MOPSO) nomenclature 

f(m)  Vector of the multi-dimensional objective function 

PF  Pareto Front 

P*  Pareto optimal set 

σϕ  Error of the generic observed data ϕ 

RI % Repository index 

SP  Spacing 

α ° 
Deviation angle between the bisector of the objective 

space (with slope 1) and the Theil-Sen regression line 

 

Acronyms 

AI Artificial intelligence 

CSI Computational swarm intelligence 

EC Evolutionary computation 

GA Genetic algorithm  

HPC High performance computing 



List of abbreviations XXXI 

 

MOEA Multi-objective evolutionary computation 

MOPSO Multi-objective particle swarm optimization 

MT Magnetotelluric  

NLCG Non-linear conjugate gradient 

NRMSE Normalized root-mean-square error 

NSGA-III  Non-dominated sorting genetic algorithm-III 

PSO Particle swarm optimization 

RMSE Root-mean-square error 

SI Swarming intelligence 

SVD Singular value decomposition 

TDEM Time-domain electro-magnetic 

TE Transversal electric 

TM Transversal magnetic 

VES Vertical electric sounding 

WAL Weaver et al. (2000) 

WALDIM Martì et al. (2009) 

 

 

 

 

 





Introduction 1 

 

Chapter 1 

Introduction 

1.1 Motivation and background 

Geothermal resources represent one of the most powerful and fascinating 

natural renewable resources because they are based on the heat stored in the 

Earth’s interior. The increasing number of applications of geothermal energy, 

from electric power generation to district heating, can play a pivotal role in 

addressing the Sustainable Development Goals (SDGs) listed by the United 

Nation General Assembly in 2015 and endorsed by the scientific community. 

Geothermal resources are encompassed in SDG number 7, which is to “ensure 

access to affordable, reliable, sustainable and modern energy for all”. The global 

agreement of the Conference of the Parties 21 held in Paris in 2015 announced the 

need for global and urgent actions for the mitigation of climate change, limitation 

of the world-temperature growth and de-carbonization. 

One of the most extraordinary geothermal resources in the world is the 

Larderello-Travale geothermal area (LTGA), located in south Tuscany, Italy. 

LTGA is traditionally said to be the place where geothermal exploration began in 

1913 and represents a milestone for the exploitation of geothermal resource for 

electric power production. The area has been the object of vast industrial and 

scientific research over the past century. Nonetheless, some geological, physical 

and chemical aspects of LTGA are still a matter of research and debate.  

One of the greatest challenges in the exploration of the deep geothermal 

reservoir is to provide novel drilling and investigation technologies to reach the 

geothermal deep fluids at supercritical conditions (high temperature and pressure) 

in the continental crust. The deep supercritical conditions are today under 

exploration in the Larderello field, in the framework of the pioneering deep-

drilling project DESCRAMBLE. The first evidence of supercritical conditions 

resulted in 2017 from the drilling test in Venelle-2 well, where 510 °C and 300 bar 

were measured at a depth of 2.9 km (DESCRAMBLE project – EU H2020; 

http://www.descramble-h2020.eu/
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Bertani et al. 2018). The intrinsic geological and hydrogeological complexity of 

the LTGA makes challenging the geoscientific characterization of the geothermal 

system. Geophysical exploration is of crucial importance to increase our 

knowledge of geothermal systems. 

Seismic, gravity and magnetic surveys can provide valuable information on 

the shape, size, depth and interfaces of the constituting structures of the 

geothermal system in terms of velocity of the elastic waves, density and magnetic 

susceptibility. However, they are not completely accurate for the individuation of 

the geothermal fluids, which are the main exploration target. Electrical and 

electromagnetic (EM) prospections are far more suitable for detecting the 

occurrence and placement of hydrothermal circulation. EM methods have been 

recognized to best characterize the geothermal features (Pellerin et al. 1996). 

Specifically, the clay-cap appears to be properly detected by controlled-source 

audio-magnetotelluric (CSAMT) and transient EM (TEM) data. The underlying 

deep reservoir is effectively imaged by deploying the magnetotelluric (MT) 

method. 

MT is one of the most effective geophysical techniques for the investigation 

of deep geothermal systems because it can recover the electrical-resistivity 

distribution of the Earth at depths ranging from a few meters to hundreds of 

kilometers (Pellerin et al. 1996; Muñoz 2014). The geothermal system is usually a 

volume of hot permeable rocks and faults and /or fractures where the conductive 

geothermal fluid circulates. The variation of the resistivity distribution of the 

subsurface can reveal the essential features of the geothermal system in order to 

identify and characterize the heat source, hot fluid circulation and the deep 

structures hosting the geothermal reservoir.  

The MT inverse problem is ill-posed in nature with nonlinear and equivalent 

solutions, meaning that many models can equally fit the data (within a certain 

tolerance threshold).  Various inversion algorithms have been proposed in the 

literature to solve the one-dimensional (1D), two-dimensional (2D) and three-

dimensional (3D) MT inverse problem (Siripunvaraporn 2012). The standard 

approach in geophysics is iterated and linearized inversion, which deploys 

derivative-based local-search algorithms. However, to solve the inverse problem, 

it is also possible to adopt the global search approach, which performs stochastic 

inverse modeling by adopting the Monte-Carlo or metaheuristic methods (Sen and 

Stoffa 2013). Global search methods have become of major interest in geophysics 

because they are theoretically able to find the global minimum of a function as the 

final solution without being trapped in one of several local minima. Moreover, the 

high computational load of global search methods, which was one of the major 

issues of the past, is gradually being overcome thanks to the striking 

improvements in computer efficiency and the increasing accessibility to clusters 

or cloud computing.  

In the MT literature so far, global search methods have received scant 

attention and have been applied to the 1D inverse problem (e.g., Santilano 2017). 
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Their application to the 2D MT problem has not yet been investigated, except for 

the single contribution of Everett and Schulz (1993). Therefore, the development 

of a metaheuristic method to solve the 2D MT inverse problem represents a 

novelty in the framework of the existing MT inversion techniques. Given the 

under-determined nature of the inverse problem and given the extreme complexity 

of the structures within the Earth’s crust, forward and inverse modeling is not an 

easy task. In the past decades, a number of algorithms have been developed with 

their underlying assumptions and limitations. Metaheuristics represents a 

completely different approach to address the problem, with the potential 

advantages of providing complete sampling of the search space of the solutions 

independence from the starting model and robustness with respect to local 

solutions. Moreover, deploying 2D stochastic inverse modeling to interpret MT 

data from geothermal areas can have great potential for the characterization of the 

geothermal system, mostly in those cases where the geological complexity and the 

difficulty in retrieving reliable external constraints (e.g., from well-log or other 

geophysical methods) can negatively affect the solution of the inverse problem.  

The last decade has seen the rapid development of 3D MT inversion codes, 

few of which have been made available to the electromagnetic academic 

community (Siripunvaraporn 2012). 3D MT inversion is nowadays of pivotal 

importance for the characterization of the geoelectrical structures from geothermal 

areas (Piña-Varas et al. 2014; Lindsey et al. 2015). The LTGA has been 

investigated by a number of geophysical surveys during the past decades, but no 

work to date has focused on the 3D inversion of MT data from the Travale 

geothermal area. 

1.2 Thesis objectives 

Considering the key role of the resistive structures inferred by MT surveys in 

geothermal areas, this doctoral thesis:  

a) Explores the application of stochastic inverse modeling to 2D MT data and 

examines its effectiveness, advantages and challenges. A new 

methodology is proposed and is based on computational swarm 

intelligence. This methodology seeks to overcome the main limitations of 

the local search approach. The main limitations are that the final solution 

can easily be trapped in one of the several local minima and can also be 

strongly biased by the initial assumption of the starting model. These two 

drawbacks can potentially become of crucial importance for the 

interpretation of MT data from geothermal areas, such as the LTGA. The 

scientific challenge addressed by the proposed method is twofold: 

overcoming the computational load and characterizing a complex 

electrical-resistivity distribution in the subsurface of the LTGA. 

b) Provides new insight into the deep structures of the Travale geothermal 

system by means of 3D MT inversion, which is the current hot topic in the 
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MT field. Introducing 3D MT inversion made it possible to recover the 

“vintage” MT data set of Travale, which so far has only been 2D 

interpreted. The 3D resistivity model of the Travale geothermal system 

offers an updated contribution to the definition of dimension and spatial 

orientation of the deep structures as well as of their role in the geothermal 

system. 

1.3 Thesis outline 

The structure of this thesis reflects the work of the three years of the doctorate 

program and takes the form of eight chapters. A schematic view of the work plan 

is drawn in Figure 1.1.  

After this opening chapter, Chapter 2 begins by laying out the theoretical 

tenets of the MT method and how the electrical resistivity distribution of the 

subsurface can be estimated from MT data. The chapter describes the MT transfer 

functions, i.e., the MT complex tensors, and how their properties change 

depending on the underlying geoelectrical structures. Close attention is paid to the 

methods that retrieve the geoelectrical dimensionality and directionality from the 

MT tensors, since dimensionality analysis is the preliminary step to correctly 

interpret the data. 

Chapter 3 first provides an overview of computational swarm intelligence 

and, more in detail, of the algorithm particle swarm optimization (PSO). As stated 

in Section 1.2, a main objective of this project is to demonstrate the advantages of 

stochastic inverse modeling in MT. Chapter 3 explains how to apply PSO to the 

one-dimensional (1D) MT inverse problem and to the correction of the static shift. 

The remaining part of the chapter presents a novel method developed for the joint 

optimization of multiple geophysical data sets by means of multi-objective 

optimization methods (MOPSO and genetic algorithm). Details of the joint-

optimization results are provided in Appendix A and are extracted from Pace et al. 

(2019b). 

The application of PSO to the 2D MT inverse problem is discussed in Chapter 

4 and is based on Pace et al. (2019a). The chapter begins by presenting the main 

aspects adopted for a correct implementation of PSO to properly address the 

complexity of the 2D MT inverse problem. Particular attention is paid to a 

detailed sensitivity analysis of the input arguments of the algorithm. The chapter 

goes on to validate the optimization method on two synthetic examples of 2D MT 

data of different complexity. The PSO is also applied to MT field data, the 

COPROD2 data set, that is the benchmark to test new 2D MT inversion methods. 

Finally, the chapter discusses the computational aspects of PSO. 

The core of the investigation of this thesis is the geothermal area of 

Larderello-Travale and is discussed in Chapter 5. The first sections of this chapter 

outline a detailed geothermal, geological and geophysical framework of the 

Travale geothermal system. Then, the MT data set acquired in the past is 
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recovered and accurately analyzed in terms of geoelectrical dimensionality, phase 

tensor properties and strike direction. A complete overview of the MT data set is 

provided in Appendix B. Chapter 5 ends with the correction of the static shift 

occurring for some MT apparent-resistivity curves by means of time-domain 

electromagnetic (TDEM) data. TDEM soundings were acquired during a field 

survey in 2019 and are entirely supplied in Appendix C. 

 

Figure 1.1 Schematic view of the thesis plan. 

Chapter 6 focuses on the 2D stochastic inverse modeling of two MT profiles 

located in the Larderello and Travale areas, respectively. The adopted method is 

PSO of 2D MT data, presented in Chapter 4.  As described in Chapter 5, the MT 

data were acquired in 1992 and 2004 as part of two different projects for 

exploration and research purposes, respectively (European INTAS project).  

The 3D MT inversion of the data set presented in Chapter 5 is analyzed in 

Chapter 7. The 3D MT inversion was computed using the ModEM software, 

which is available for the EM research community (Kelbert et al. 2014). The 

inversion scheme of ModEM is based on nonlinear conjugate gradient. Both the 

inversion settings and the result analysis were arranged in 3D-GRID Academic, a 

supporting tool kindly provided by prof. N. Meqbel for research purposes. The 

final result can be considered the first 3D resistivity model of the Travale 

geothermal system derived by complete 3D MT inversion. Details on the outcome 

are drawn in Appendices D and E.  
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Chapter 2 

The magnetotelluric method 

This chapter presents the generalities of the magnetotelluric method. Firstly, 

the theoretical tenets of the method are explained together with the ruling 

equations. Then, the chapter describes how to process and analyze the measured 

data. Close attention is paid to the dimensionality analysis, the preliminary step to 

correctly interpret the data. The final section deals with the state of the art of the 

methods used for the forward and inverse modeling. 

2.1. Introduction 

The magnetotelluric (MT) method is a passive electromagnetic (EM) 

technique that measures the electrical (E) and magnetic (B) fields naturally 

occurring on the Earth’s surface in order to determine the electrical conductivity 

of the Earth at depths ranging from some meters to hundreds of kilometers. 

Differently from active geoelectric techniques, the MT method utilizes the 

natural geomagnetic variations as a passive power source for electromagnetic 

induction in the Earth. The origin of these low-amplitude natural fluctuations is 

external and lies, for the period range 1-105 s, in the interaction between the solar 

wind and magnetosphere and, for the period range 10-3 - 1 s, in the meteorological 

activity such as lightning discharges (see Figure 2.1). A portion of this external 

energy, or electromagnetic field, reaches the Earth’s surface and penetrates it, 

being the Earth a conductor. This induces an electric field, or telluric currents, that 

produce a secondary magnetic field. The MT method simultaneously measures 

these E and B fields in orthogonal directions on the surface of the investigation 

area. The conductivity distribution of the underlying material as well as the 

periodicity of the source influence the depth of investigation.  
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Figure 2.1 Natural sources of EM fields recorded in MT; a) The interaction between the solar wind and 

Earth’s magnetic field creates the magnetosphere, which acts as source of fields between 1 and 105 s (i.e., 

below 1 Hz) (modified from em.geosci.xyz); b) the EM fields at periods below 1 s are generated by lighting 

activity and are plane waves bouncing between the Earth’s surface and the ionosphere. 

The fundamentals of magnetotellurics took place in the works of Tikhonov 

(1950, reprinted 1986) and Cagniard (1953). After decades of striking 

improvements regarding acquisition, processing and modeling techniques, an 

extensive explanation of the MT theory and practice can be found in Simpson and 

Bahr (2005), Berdichevsky and Dmitriev (2008), Zhdanov (2009) and Chave and 

Jones (2012). The last developments allowed MT to be placed alongside other 

geophysical methods such as seismology (Dupis 1997). MT has increasingly been 

adopted in geological applications, oil and gas reservoirs, geothermal resources, 

space weather as well as studies about faults, groundwater, ocean-bottom and 

metalliferous ores (Simpson and Bahr 2005). 

2.2. Fundamentals of the MT method 

The propagation of the electromagnetic field and its interaction with the 

Earth’s interior are governed by the Maxwell’s equations. For a polarizable and 

magnetisable medium, they can be expressed in differential form as:  

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
 ,                         Faraday’s law        ( 2.1 )                            

𝛻 × 𝑯 = 𝒋 +
𝜕𝑫

𝜕𝑡
 ,                      Ampere’s law        ( 2.2 )                                      

                    𝛻 ∙ 𝑫 = 𝜂𝑓 ,          Gauss’ law for electricity        ( 2.3 )                  

                      𝛻 ∙ 𝑩 = 0 ,          Gauss’ law for magnetism        ( 2.4 )                 

where bold letters are vectors and specifically: E is the electric field (in Vm-1), B 

is magnetic induction (in T), H is the magnetic field (in Am-1), D is electric 

displacement (in Cm-2), j is the electric current density (in Am-2) and ηf is the 

electric charge density owing to free charges (in Cm-3). Curl (∇ ×) and divergence 

(𝛻 ∙) are vector calculus expressions.  

For a linear and isotropic medium, the constitutive relationships say: 

𝒋 = 𝜎𝑬,                                   Ohm’s law        ( 2.5 )                                    

 𝑩 = 𝜇𝑯                                                             ( 2.6 )                                                                          



The magnetotelluric method 9 

 

 𝑫 = 휀𝑬                                                              ( 2.7 )                                                                              

where σ is the electrical conductivity of the medium (in Sm-1), μ is the magnetic 

permeability (in Hm-1) and ε is the dielectric permittivity (in Fm-1). All these 

properties are scalar. In MT, the variations of μ and ε are assumed negligible 

compared with variations of σ, which is the reciprocal of the electrical resistivity ρ 

(in Ωm). 

The other main simplifying assumptions of the MT method for 

electromagnetic induction in the Earth are  

1. The electric displacement (D) is quasi-static due to the very low 

frequencies of MT sounding acquisitions. This means that 𝜕𝑫 𝜕𝑡⁄  is 

negligible compared with j and that the EM induction in the Earth can be 

treated as a pure diffusive process.  

2. The plane-wave assumption states that the natural EM field arriving on the 

Earth’s surface can be treated as uniform and plane-polarized 

electromagnetic wave with an orthogonal incidence on the Earth’s surface 

(Vozoff 1972). The reason is that the source of the EM field is the 

ionosphere, which is far away from the point of the MT measurement. The 

consequence of the assumption of time invariance of the exciting source is 

that the relationship between E and B should be self-similar at any given 

site, independently of the day they are recorded.  

After these considerations, the Maxwell’s equations can be rewritten in the 

form:  

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
                                         ( 2.8 )                                                                          

 𝛻 × 𝑩 = 𝜇0𝜎𝑬                                        ( 2.9 )                                                                           

                  𝛻 ∙ 𝑬 =
𝜂𝑓

𝜀
                                            ( 2.10 )                                                                                  

                      𝛻 ∙ 𝑩 = 0                                             ( 2.11 )                                                                            

where the magnetic permeability is assumed in free space (μ0 = 4π·10-7 Hm-1). 

In order to estimate the distribution of conductivity in the subsurface, we can 

take the curl of equation 2.8 and 2.9, considering the harmonic form for E and B, 

and, after some algebra, derive the diffusion equations:   

∇2𝑬 = 𝑖𝜔𝜇0𝜎𝑬                                    ( 2.12 )                                                                    

∇2𝑩 = 𝑖𝜔𝜇0𝜎𝑩                                    ( 2.13 )                                                                  

where ω is the angular frequency (𝜔 = 2𝜋𝑓 = 2𝜋 𝑇⁄ , being f the frequency and T 

its reciprocal, the period). Equations 2.12 and 2.13 imply that the energy that 

diffuses through the Earth is exponentially dissipated. This decay can be 

quantified by the skin depth or penetration depth δ (in m), the depth at which the 

EM field decays to 1/e ≈ 37% (Vozoff 1991):  

𝛿(𝑇) = √
2

𝜔𝜇0𝜎
≈ 503√𝜌𝑇                              ( 2.14 )                                                                 

Data acquired at periods from 10-4 to 1 s refer to the shallow subsurface (i.e., 

up to some tens of meters of depth), while the penetration depth increases for 

periods up to 105 s. Although the longer the period of acquisition the higher the 
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depth of investigation, at longer periods the data resolution decreases. Moreover, 

the skin depth depends on the subsurface conductivity distribution. The maximum 

skin depth theoretically reaches hundreds of kilometers, but it can drop if the 

overlying sample of Earth is highly conductive. The MT method is hence highly 

competitive in imaging deep conductive bodies surrounded by more resistive 

structures.  

The electrical resistivity (ρ) of the rocks in the lithosphere and asthenosphere 

spans seven orders of magnitude between 10-2 Ωm and 105 Ωm (Figure 2.2). 

These values result from chemical and physical processes and depend on the 

temperature, pressure, mineralogy, porosity and multi-phase systems (saturation, 

salinity of the fluid phase or partial melt fraction). A thorough analysis can be 

found in Jones (1992) and Evans (2012). 

 

 

Figure 2.2 Electrical resistivity (Ωm) of the Earth’s materials 

(source:https://em.geosci.xyz/content/physical_properties/electrical_conductivity/electrical_conductivity_val

ues.html) 

2.3. MT transfer functions 

The MT method measures, at a given site, the variations with frequency of 

five components of the EM field. As can be seen from Figure 2.3, they are the 

horizontal electric components (Ex and Ey) and the horizontal (Bx, By) and vertical 

(Bz) magnetic components. The magnetotelluric transfer functions are tensor 

relationships between the electric- and magnetic-field orthogonal components as a 

https://em.geosci.xyz/content/physical_properties/electrical_conductivity/electrical_conductivity_values.html
https://em.geosci.xyz/content/physical_properties/electrical_conductivity/electrical_conductivity_values.html
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function of the frequency. The fundamental MT transfer functions are the 

following complex tensors: the impedance tensor Z(ω) (Ω), the magnetotelluric 

tensor M(ω) (m/s) and the geomagnetic transfer function T(ω) (dimensionless). 

The components of these transfer functions are complex values and allow the 

resistivity distribution of the subsurface to be estimated as a function of depth. 

 

Figure 2.3 Typical setup for MT data acquisition (modified from https://www.gfz-potsdam.de). Three 

induction coils or magnetometers measure the orthogonal components of the magnetic field (Bx, By and Bz). 

Two pairs of electrodes measure the orthogonal components of the electric field (Ex and Ey).  The reference 

frame is usually oriented to the geographic north. 

2.3.1 The impedance and MT tensor 

The impedance tensor Z(ω) is a second rank tensor (2 x 2) that links the 

horizontal components of E and H (Cantwell 1960). At a given frequency, 

considering equation 2.6: 

(
𝐸𝑥(𝜔)
𝐸𝑦(𝜔)

) = (
𝑍𝑥𝑥 𝑍𝑥𝑦

𝑍𝑦𝑥 𝑍𝑦𝑦
) ∙ (

𝐵𝑥(𝜔) 𝜇0⁄

𝐵𝑦(𝜔) 𝜇0⁄
)                    ( 2.15 )                                      

The Zij components (ij = xx, xy, yx, yy) are complex values that can be 

decomposed into two scalar magnitudes, the modulus and the phase. The modulus 

is called apparent resistivity ρa (Ωm): 

𝜌𝑎𝑖𝑗
(𝜔) =

1

𝜇0𝜔
|𝑍𝑖𝑗(𝜔)|

2
                               ( 2.16 ) 

The impedance phase φ (°) is  

𝜑𝑖𝑗(𝜔) = tan−1 (
𝐼𝑚(𝑍𝑖𝑗(𝜔))

𝑅𝑒(𝑍𝑖𝑗(𝜔))
)                        ( 2.17 )                                               

Apparent resistivity and phase are the two fundamental MT measurements for 

data interpretation. The physical meaning of the apparent resistivity is not the 

absolute resistivity of the medium but the average resistivity of the equivalent 

uniform half-space. The phase changes according to the increasing or decreasing 

resistivity with depth, thus providing additional information about the surrounding 

geoelectrical structures investigated. 

The magnetotelluric tensor M(ω) relates the electric field and the magnetic 

induction (Weaver et al. 2000):  

(
𝐸𝑥(𝜔)
𝐸𝑦(𝜔)

) = (
𝑀𝑥𝑥 𝑀𝑥𝑦

𝑀𝑦𝑥 𝑀𝑦𝑦
) ∙ (

𝐵𝑥(𝜔)
𝐵𝑦(𝜔)

)                    ( 2.18 ) 
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2.3.2 The geomagnetic transfer function 

The geomagnetic transfer function or, briefly, tipper vector T(ω) relates the 

vertical component of the magnetic field to its two horizontal components:  

𝐵𝑧(𝜔) = (𝑇𝑥(𝜔), 𝑇𝑦(𝜔)) ∙ (
𝐵𝑥(𝜔)
𝐵𝑦(𝜔)

)                    ( 2.19 )                                       

The tipper vector can be decomposed into its real and imaginary vectors, 

representing the projection of Bz into the horizontal plane x-y: 𝑻𝑟𝑒(𝜔) =

(𝑅𝑒(𝑇𝑥), 𝑅𝑒(𝑇𝑦)) and 𝑻𝑖𝑚(𝜔) = (𝐼𝑚(𝑇𝑥), 𝐼𝑚(𝑇𝑦)). These real vectors are 

graphically represented by means of the induction arrows, which are useful to 

infer the presence of lateral variations of the electrical resistivity. In the Parkinson 

convention, the arrows point toward the region of highest conductance, i.e., 

current concentrations (Parkinson 1959). Conversely, in the Weise convention, the 

arrows point away from conductive zones. 

2.4. The MT dimensionality 

The MT transfer functions can assume different shape and properties 

depending on the resistivity distribution of the subsurface. In fact, the tensors Z 

and M store information about the dimensionality and directionality of the 

underlying geoelectrical structures. The geoelectrical dimensionality can be 1D, 

2D or 3D. Moreover, the presence of local (small-scale) heterogeneities in the 

shallow Earth’s crust can generate the phenomenon of galvanic distortion, which 

can be removed using specific techniques.  

2.4.1 Dimensionality analysis 

Dimensionality analysis is fundamental to understand how to interpret the MT 

data and represents the preliminary step to correctly perform the MT modeling or 

inversion. 

The case of one-dimensional (1D) Earth occurs when the resistivity changes 

only with depth without lateral variations. Figure 2.4 shows an example of 1D 

resistivity model, i.e., a horizontally-stratified Earth. The magnetotelluric tensor 

M1D(ω) has null components in the main diagonal and, in the secondary diagonal, 

equal components in modulus but opposite in sign: Mxx=Myy=0; Mxy=-Myx. In 1D, 

the Tipper vector components are both zero because there is not a net component 

of Bz, which does not change direction with depth (see Table 2.1).  

An example of two-dimensional (2D) resistivity model is shown in Figure 

2.4. The resistivity changes both with depth and along one horizontal direction (y-

direction). The lateral discontinuity is directed along the x-direction and extends 

to infinity. The direction along with the resistivity does not change (x-direction) is 

called the geoelectrical strike. In correspondence of the vertical contact, the 

resistivity variation from ρ1 to ρ2 causes a discontinuity in Ey because of the 

principle of conservation of current (Ohm’s law of equation 2.5). The assumption 
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of 2D implies that all the variations of the fields parallel to the strike are zero and 

that the electric and magnetic fields are orthogonal, namely, polarized in parallel 

or perpendicular to the strike. For this reason, the two fields can be decoupled into 

two independent modes:  

a) The transverse-electric mode (or TE polarization) in which the electric 

field (and the current flowing) is parallel to the strike 

b) The transverse-magnetic mode (or TM polarization) in which the magnetic 

field is parallel to the strike and the electric currents cross the structures. 

 

Figure 2.4 1D, 2D and 3D resistivity models as conceived in MT to infer the geoelectric dimensionality. The 

different colors of the blocks stand for different resistivity values. The 2D case shows the vertical contact 

striking in the x-direction and determining the two-mode polarizations of the electromagnetic fields (TE and 

TM). 

If the reference frame of the MT survey coincides with the strike of the 2D 

structure, the magnetotelluric tensor is anti-diagonal (i.e., zero components in the 

main diagonal): Mxx=Myy=0; Mxy= MTE; Myx = MTM. The Tipper component 

aligned with the strike is null (Tx = 0), while the real and imaginary parts of the 

other vector component (Tx) are perpendicular to the strike (see Table 2.1) and 

parallel but oppositely-directed with each other. In some real 2D cases, the MT 

survey is not carried out following the strike direction, which can be unknown or 

ambiguous. As a consequence, the transfer function components are never zero. 

To fix that, the tensor M2D(ω) is usually rotated into a coordinate frame parallel 

and perpendicular to the strike M’2D(ω) so that the main diagonal components are 

nulled.  

In a three-dimensional (3D) resistivity model there are variations along all the 

three directions, as illustrated in Figure 2.4. All the components of M(ω) are 

independent of each other and there is no available rotation of the tensor to yield 

null components (see Table 2.1).  

Table 2.1 The magnetotelluric tensor M(ω) assumes different configurations according to the resistivity 

distribution in the subsurface (1D, 2D, 3D). 𝑴∥and 𝑴∥ refers to the components parallel and perpendicular to 

the strike direction, respectively. 

 Dimensionality 

 1D 2D 3D 
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Tensor 

components 

Mxx=Myy=0 Mxx=-Myy Mxx≠-Myy 

Mxy=-Myx Mxy≠-Myx Mxy≠Myx 

MT tensor (
0 𝑀

−𝑀 0
) (

0 𝑀∥

𝑀⊥ 0
) (

𝑀𝑥𝑥 𝑀𝑥𝑦

𝑀𝑦𝑥 𝑀𝑦𝑦
) 

Tipper 𝑇𝑥 = 𝑇𝑦 = 0 𝑇∥ = 0; 𝑇⊥ ≠ 0 𝑇𝑥 ≠ 𝑇𝑦 ≠ 0 

 

The geoelectrical dimensionality of a given MT data set can be recovered by 

means of different valid approaches. The most established methods are: 

1. The Bahr’s parametrization (Bahr 1991): it proposes some dimensionality 

parameters, such as the Swift’s skew (κ), the regional 1D indicator (μ) and 

the regional skew (η), in order to check whether the magnetotelluric tensor 

could be described by a general physical model, such as 1D model or the 

more complex superimposition model of a regional 2D model with a local 

3D structure on surface. The limitation of this method is that the threshold 

values indicated for κ, μ and η to classify the dimensionality have no 

mathematical meaning. As proved in Ledo et al. (2002b), Martì et al. 

(2005) and Simpson and Bahr (2005), Bahr’s criteria are not sufficient to 

correctly characterize the dimensionality.  

2. The WAL method (Weaver et al. 2000): it is based on the values assumed 

by seven independent plus one dependent rotational invariants, which are 

derived from the observed magnetotelluric tensor independently from the 

direction of the measuring axes. The dimensionality is inferred by the 

number of invariants that vanished. The main limitation of this method is 

that the invariants rarely vanish in case of field data, thus potentially 

yielding to incorrect dimensionality inferences. 

3. The WALDIM approach (Martì et al. 2005; Martì et al. 2009) revised the 

WAL method to overcome its limitations and make the dimensionality 

analysis consistent. This method introduces new statistically-proved 

threshold values below which the invariants are regarded as nulled. By 

redefining the conditions, the issues of misinterpretation or undetermined 

dimensionality has been solved.  

Other common methods for the dimensionality analysis are: the strike 

decomposition (McNeice and Jones 2001), the Mohr circle (Lilley and Weaver 

2010) and the phase tensor (Caldwell et al. 2004), which is analyzed in Section 

2.4.3.  

In this thesis, the dimensionality analysis of MT data was performed 

following the WALDIM method, because it represents the most recent approach 

and overcomes the limitations of the previous ones. The WALDIM software 

(written in Fortran) analyzes the observed magnetotelluric tensor with the 

associated data errors, calculates the WAL rotational invariants and, obeying the 

threshold values, estimates the complete geoelectrical dimensionality at single or 
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bands of period for each MT site (Martì et al. 2009). The output is classified into 

one of eight possible dimensionality types: 

a) 1D 

b) 2D 

c) 3D/2D twist: 2D regional structure affected by galvanic distortion only in 

the twist parameter 

d) 3D/1D2D: 1D or 2D structure affected by galvanic distortion and strike 

direction non-recoverable 

e) 3D/1D2D diag.: 1D or 2D structure affected by galvanic distortion and 

diagonal MT tensor 

f) 3D/2D: general case of galvanic distortion over a regional 2D structure 

g) 3D affected or not by galvanic distortion 

h) undetermined dimensionality.  

Chapter 5 reports the result of the dimensionality analysis of the MT data set 

of the Travale geothermal area.  

2.4.2 Galvanic distortion 

The dimensionality analysis described in the previous section can be also used 

to understand whether the data are affected or not by galvanic distortion, which 

can be appropriately retrieved and corrected (Martì et al. 2009). 

As previously mentioned, small-scale conductivity contrasts in the shallow 

subsurface can generate a distortion in the impedance tensor Z(ω). In fact, the 

heterogeneities localized in the near-surface distort the EM response produced by 

the underlying or “regional” structure under investigation. As the period of the 

MT sounding increases, and the skin depth as well, the inductive effects produced 

by the near-surface heterogeneities decrease and become negligible compared to 

the inductive response produced by the regional conductivity structure. Then, as 

the skin depth exceeds the dimension of the near-surface heterogeneities, only 

their frequency-independent galvanic (non-inductive) response remains. This 

galvanic distortion is also called static shift. It is static because it is not time-

dependent and it does not affect the phase of the transfer functions. It results 

hence in a “shift” of the apparent-resistivity curve to higher or lower values by a 

constant, real scaling factor, thus preserving the same shape of the recorded 

apparent-resistivity curve (Jones 1988; Chave and Jones 2012).  

The main reason for the correction of galvanic distortion is that the main 

target of an MT exploration survey is the (deep) regional structure. It is hence 

fundamental to manage the measured magnetotelluric tensor to remove the effects 

of distortion and recover the regional responses. A number of established 

techniques have been proposed to recover the undistorted transfer functions over 

1D or 2D structures (Zhang et al. 1987; Bahr 1988; Groom and Bailey 1989; 

Smith 1995). The decomposition technique of Groom and Bailey (1989) 

represents the benchmark for the analysis and removal of the galvanic distortion 

caused by a 2D structure on a regional scale. This decomposition separates the 
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effects of 3D current channeling occurring on the surface of shallow bodies from 

those of 2D induction.  

The galvanic distortion is treated as an anomalous electric field, which 

deviates the magnetotelluric tensor from its regional value (MR(ω)) due to local 

variations. The observed tensor (Mobs(ω)) is related to the regional one by means 

of the distortion tensor C, which is real and frequency-independent: 

𝑀𝑜𝑏𝑠(𝜔) = 𝑪 ∙ 𝑀𝑅(𝜔)                                    ( 2.20 ) 

In the general case, the reference frame of the observed tensor may not 

correspond to the reference frame of the regional or principal axes system. In the 

measurement axes system, the regional tensor (M2D(ω)) is rotated through an 

angle θ by means of the rotation matrix Rθ:  

𝑀𝑜𝑏𝑠(𝜔) = 𝑅𝜃 ∙  𝑪 ∙ 𝑀2𝐷(𝜔) ∙ 𝑅𝜃
𝑇                     ( 2.21 ) 

In a 2D problem, the measurement reference frame is rotated by θ from the 

regional strike direction.  

The Groom and Bailey’s decomposition technique factorizes the distortion 

tensor into four independent parameters (three tensors and a scalar): 

𝑪 = 𝑔 𝑻 ∙ 𝑺 ∙ 𝑨                                       ( 2.22 ) 

where: g is the site gain, T is the twist, S is the shear and A is the anisotropy. Twist 

and shear refer to the orthogonality of the electric and magnetic fields, whereas 

anisotropy and gain are related to the static shift. However, given the ill-posedness 

of the problem, the Groom and Bailey’s decomposition does not allow to uniquely 

determine the static shift. The amplitudes of the regional impedances remain 

undetermined even after the tensor decomposition. Since it is not possible to 

analytically or numerically correct the static shift by using only MT data, it is 

necessary to refer to external information.  

The correction of the static shift represents one of the major drawbacks of the 

MT data analysis, since it requires to invoke either other geophysical methods less 

affected by distortion or geological information. Various techniques have been 

investigated to correct the static shift: joint analysis of MT and time domain 

electromagnetic (TDEM) data (Sternberg et al. 1988; Meju 1996; Meju 2005), 

correction by comparison with well-log data (Jones 1988), correction by using the 

geomagnetic transfer function (Ledo et al. 2002a) and correction by considering 

the static shift as an additional parameter of the inverse problem (deGroot-Hedlin 

1991; Ogawa and Uchida 1996). A review of these methods can be found in 

Ogawa (2002) or Simpson and Bahr (2005).  

In this work, we adopted the joint analysis of TDEM and MT data. TDEM 

data were acquired in order to assess the occurrence and, if needed, correct the 

static shift. The basic principles of the TDEM method are described in Section 

2.5, while the correction of static shift of field data is provided in Section 3.3.2. 
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2.4.3 Phase tensor analysis 

The analysis of the magnetotelluric phase tensor to infer the dimensionality of 

the regional structure was introduced by Caldwell et al. (2004) and then reviewed 

by Booker (2014). The phase tensor is defined as the relationship between the real 

and imaginary parts of the MT tensor M(ω), that are not affected by galvanic 

distortion.   

Given that the observed complex tensor M(ω) can be separated into its real 

(X) and imaginary parts (Y),   

𝑀 = 𝑿 + 𝑖𝒀                                             ( 2.23 ) 

equation 2.20, can be written also as:  

𝑿 + 𝑖𝒀 = 𝑪𝑿𝑹 + 𝑪𝑖𝒀𝑹                                    ( 2.24 ) 

The phase of a complex number is the ratio of its real and imaginary parts. 

Therefore, the phase tensor is defined as:   

𝜱 = 𝑿−1𝒀 =  𝜱𝑹                                          ( 2.25 ) 

which is a 2x2 real-component tensor, independent from the distortion matrix C 

and hence from the dimensionality of the regional structure. It is worth noting that 

dealing with the phase tensor does not require any assumption about the 

geoelectrical dimensionality.  

The phase tensor is characterized by one direction α and three coordinate 

invariants: the singular values Φmin and Φmax and the skew angle β. These four 

terms are used to write the phase tensor in the form of the Singular Value 

Decomposition (SVD) of a square matrix: 

𝜱 = 𝑹𝑇 (𝛼 − 𝛽) ∙ [
𝛷𝑚𝑎𝑥 0

0 𝛷𝑚𝑖𝑛
] ∙ 𝑹 (𝛼 + 𝛽)             ( 2.26 ) 

where: R(α+ β) represents a clockwise rotation matrix, RT is its transpose and the 

angles are defined as:   

𝛼 =  
1

2
𝑡𝑎𝑛−1 (

𝛷12+𝛷21

𝛷11−𝛷22
)                                 ( 2.27 ) 

𝛽 =  
1

2
𝑡𝑎𝑛−1 (

𝛷12−𝛷21

𝛷11+𝛷22
)                                 ( 2.28 ) 

The direction α is related to the tensor’s dependence on the coordinate system 

and the skew angle β measures the tensor’s asymmetry.  

The phase tensor assumes different values depending on the dimensionality of 

the regional structure. This is concisely listed in Table 2.2. In 1D, the phase tensor 

is diagonal, the components Φmin and Φmax have the same value equal to the 

tangent of the regional impedance phase φ (see equation 2.17) and hence the skew 

is null due to the tensor’s symmetry. In 2D, the two components on the diagonal 

are not identical and corresponds to the two directions along which a linear 

polarization of the magnetic field leads to a linear polarization of the electric field. 

The principal values Φmin and Φmax correspond to the tangents of the impedance 

phases of the corresponding TM and TE polarizations. Being the tensor 

symmetric, the skew is null. In the general 3D case, the phase tensor is not 

symmetric, its components are not the same and both α and β are not null. In 
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particular, the dimensionality is considered 3D if |β| ≤ 3°. The phase tensor 

represents the relationship between the phases of the horizontal components of the 

electric and magnetic fields. 

The phase tensor can be effectively represented by means of the tensor ellipse, 

whose major and minor axes, Φmax and Φmin represent the principal axes of the 

tensor. Figure 2.5 clearly illustrates the graphical meaning of the four SVD 

parameters for different dimensionality cases. In 1D, the ellipse becomes a circle 

of unit radius (Φmin= Φmax). In 2D, β=0° is not a sufficient condition and α is null 

as long as the reference frame is strike-aligned, otherwise α is equal to the strike 

angle with respect to the observation frame of reference (x1, x2). The azimuth (α – 

β) coincides with α, which represents the strike direction or its perpendicular, 

depending on which mode (TE or TM) has the largest phase value. Therefore, α 

has a physical meaning as long as Φmin ≠ Φmax, that is, in 2D and 3D cases. In 3D 

case, the asymmetry of the regional MT response is reflected by a large skew 

angle β. The angle (α – β) represents the direction (or azimuth) of the major axis 

of the ellipse and also the relationship between the tensor and the observer’s 

reference frame (x1, x2).  

Table 2.2 The phase tensor assumes different configurations depending on the geoelectrical dimensionality. 

The SVD parameters are the tensor direction α and three coordinate invariants: Φmin and Φmax, representing the 

principal axes of the tensor, and the skew angle β, representing the tensor’s symmetry. 

 Dimensionality 

 1D 2D (strike-aligned) 3D 

Phase 

tensor 

[
−𝑌 −𝑋⁄ 0

0 𝑌 𝑋⁄
] [

𝑌21 𝑋21⁄ 0

0 𝑌12 𝑋12⁄
] [

𝛷11 𝛷12

𝛷21 𝛷22
] 

SVD 

parameters 

𝛼 = 0 0⁄ (𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑); 

 𝛽 = 0°;  

𝛷𝑚𝑎𝑥
𝑚𝑖𝑛

= tan 𝜑 

𝛼 = 0°; 

 𝛽 = 0°;  

𝛷𝑚𝑎𝑥
𝑚𝑖𝑛

= tan 𝜑12
21

 

General expression 

(equations 

2.26, 2.27, 2.28. 

 

Caldwell et al. (2004) demonstrated that the orientation of the phase-tensor 

principal axes reflects the lateral variations (gradients) of the underlying regional 

structure. This variation can be deduced from the maps of the phase-tensor 

ellipses at different frequencies. If the direction of the tensor’s axes is constant 

with period, the regional structure is 2D, whereas a rapid lateral change with 

period (of about 10°) is the evidence of 3D. Therefore, in 3D cases, both α and β 

are period-dependent.  
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Figure 2.5 Graphical representation of the phase tensor in 1D, 2D and 3D. The lengths of the ellipse axes 

Φmin and Φmax represent the principal axes of the phase tensor. They are coincident only in 1D. The 

representation in 2D assumes that the coordinates coincide with the observation frame of reference. The angle 

β characterizes the deviation of the ellipse’s major axis from the symmetry axis. β is non-zero only in 3D.  

An alternative way of visualization is to depict the phase-tensor ellipse 

concentric with the induction arrows (namely, the real part of the vertical 

magnetic transfer function) (see Section 2.3.2). According to the Parkinson 

convention, the real part of the induction arrow points toward the region of 

highest conductance and is parallel to the major axis of the phase-tensor ellipse, 

since the direction of the major axis indicates the preferred flow direction of the 

induction current. However, in presence of 3D structures and at high periods, the 

alignment between the real induction arrow and the ellipse’s major axis may not 

result always satisfactory due to the asymmetry of the phase tensor. Caldwell et 

al. (2004) provides practical examples of the simultaneous analysis of phase-

tensor ellipse and induction arrows. 

To sum up, the phase tensor analysis presents some advantages for a clear 

preview of the resistivity distribution in the subsurface because (Caldwell et al. 

2004): 

- it does not require any dimensionality assumption 

- it is unaffected by galvanic distortion 

- it reflects resistivity variations at depth with no influence from the near 

surface structures 

- the analysis focuses on the observed tensor M(ω) and preserves 

information of the regional structures 

- the graphical representation of the elliptical diagrams has become an 

established and useful tool in MT. The maps showing the SVD 

parameters for each MT site at a given frequency represent a valuable 

indicator of the lateral variations of the regional structures. In 

particular, the major axis of the phase-tensor ellipse (Φmax) indicates 

the direction of the induced current flow and it is usually parallel to the 

real part of the induction arrow. 

- the orientation of the principal axes of the phase tensor is a 

generalization of the geoelectric strike to a 3D situation. 
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Despite the relevant advantages, the phase tensor analysis entails the 

ambiguity of ±90° for the determination of the strike direction. The major axes of 

the ellipse can be hence either parallel or perpendicular to the strike with no 

possibility to solve this indetermination.  

Chapter 5 reports the result of the phase tensor analysis with induction arrows 

of the MT data set of the Travale geothermal area.  

2.5. Static shift correction using TDEM 

2.5.1 The TDEM method 

The TDEM method, also called transient EM (TEM), is a geophysical 

technique based on EM induction in the Earth. TDEM soundings have been 

widely applied to near-surface geology, mineral prospecting, hydrogeological and 

environmental investigations concerning raw materials, dump sites and waste 

deposits (Nabighian and Macnae 1991). 

The active source transmits a steady current from 1 to 20 A for some 

milliseconds through a loop of wire to allow a turn-on transient to be dissipated in 

the ground. The current has a slow rise-up to a steady value and then is interrupted 

by a rapid shut-off in the order of microseconds. The shut-off (or ramp-off) 

transient induces a secondary magnetic field, that is proportional to the decay of 

the electromagnetic eddy currents generated in the conductive Earth. The decay of 

the secondary magnetic field is measured by the receiver coil voltage and is a 

function of the electrical-conductivity distribution in the subsoil. The response at 

the receiver is usually acquired during the transmitter off-time, because the 

primary field signal is weak or absent. The response measured at the receiver is 

recorded for a number of time gates. The analysis of the transient decay of the 

secondary field with time allows the electrical resistivity to be estimated as a 

function of depth (Everett 2013; Spichak 2015). 

The volume investigated by TDEM depends on the transmitted current of the 

source and on the length of the side of the loop, which is usually between 20 and 

200 m. The transmitter and receiver can be placed on the ground according to 

different configurations. The “central-loop” configuration means that the 

transmitter and receiver loops have the same center. Alternatively, they can be 

located within a certain distance, according to offset geometries. 

The diffusion depth represents the depth at which the local electric field (or 

current) reaches its maximum value and is controlled by the transient time t. The 

relation of the diffusion depth is (Nabighian and Macnae 1991):  

𝑑(𝑡) = √
2𝑡

𝜇0𝜎
                                             ( 2.29 ) 

where t is the time of the response measurement after the shut-off. There is an 

evident similarity between the penetration depth d and the skin depth of the MT 

method (equation 2.14). An approximate estimation of the sounding depth is 

usually indicated as 3 or 4 times the side of the transmitter loop (Spichak 2015). 
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As evident in equation 2.29, TDEM method is extremely sensitive to conductive 

formations (like clay and salt water) in shallow-depth structures up to a theoretical 

depth of about 500 m (depending on the instrument and the sounding set up).  

The basic interpretation of TDEM data is a 1D resistivity profile under the 

receiver position. The voltage measurement of the receiver is usually converted to 

apparent resistivity (ρa) vs time (t) according to (Spichak 2015):  

𝜌𝑎(𝑡) =  (
√𝜋

20
 

𝜇5 2⁄ 𝑅4

𝑡5 2⁄  𝐸(𝑡) 𝐼⁄
)

2 3⁄

                         ( 2.30 ) 

where 𝑅 = 𝐿 √𝜋⁄  is the effective radius of a single-turn square loop of side L and 

𝐸(𝑡) 𝐼⁄  is the value of the normalized voltage measured at the receiver. 

2.5.2 TDEM data for the correction of MT static shift 

The TDEM method is commonly adopted to correct the MT static shift 

because it provides independent information, which is not affected by telluric 

distortion (Pellerin and Hohmann 1990). TDEM data have often been combined to 

MT data from geothermal areas even though the depth of investigation associated 

to TDEM data is typically much lower than that of the geothermal target 

(Cumming and Mackie 2010; Santilano et al. 2018). 

Sternberg et al. (1988) first proposed to convert the TDEM signal to the 

frequency domain in order to compare the TDEM and MT apparent-resistivity 

curves. The TDEM curve of ρa vs time (see equation 2.30) provides the 

undistorted value of the MT ρa, but only at short periods because the TDEM depth 

of investigation is lower than that of MT soundings. However, since the distortion 

(or shift) is static (or period-independent), the correction provided by the TDEM 

ρa at short periods is useful for the whole MT period band. The static shift is 

corrected by computing joint inversion of MT and TDEM data. In this kind of 

inversion scheme, the static shift is accounted by including a further parameter for 

the vertical shift of the observed MT ρa.  

Figure 2.6 illustrates an example of correction of the MT static shift using 

TDEM data (from Berdichevsky and Dmitriev 2008). The plot on the left shows 

the measured TDEM data (black squares from 0.001 to 0.2 s) and the observed or 

distorted MT data (crosses). The joint inversion of MT and TDEM data allowed 

the static shift to be corrected by moving the MT ρa curve to higher values of 

resistivity (ellipses) so that the two ρa curves perfectly matched in the period 

range 0.01-0.1 s. The plot on the right of  Figure 2.6 displays the resistivity 

profiles and, specifically, the difference in the interpretation between MT 

distorted data (long-dashed line) and MT corrected data (short-dashed line). This 

curve is in agreement with the well-log profile (solid line) and with the TDEM 

inversion result (dotted line). 

The MT data analyzed in this thesis were corrected for static shift using the 

method suggested in Santilano et al. (2018). Details of the optimization method 

are described in Section 3.3.2. The new TDEM survey and the static shift 
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correction of the investigated MT data set are described in Section 5.5 and 

Appendix C, respectively.  

 

Figure 2.6 Static-shift correction of MT data using TDEM data as  reference. On the left, the distorted MT 

data (crosses) are shifted to higher ρa values (ellipses) using TDEM data (black squares) at periods below 0.1 

s. On the right, the resistivity profile derived from well-log data (continuous line), inversion of MT distorted 

data (long-dashed line), of TDEM data (dotted line) and of MT corrected data (short-dashed line) (modified 

from Berdichevsky and Dmitriev 2008). 

2.6. MT modeling and inversion 

The MT field survey is usually organized following these steps:  

1. Data acquisition: the time-varying electric and magnetic fields are 

recorded for a long time (between a day and some months) depending on 

the objective of the project. The longer the acquisition time the longer the 

period range and the skin depth. 

2. Data processing: the EM fields are converted into the frequency domain by 

means of the Fourier transform. The transfer functions are calculated.  

3. Data analysis: dimensionality analysis, distortion evaluation and phase 

tensor analysis.  

4. Data interpretation: forward modeling or inversion. 

The link between the MT data and the Earth’s resistivity distribution is 

provided by the modeling process, that is, forward and inverse modeling. The 

forward modeling elaborates the MT transfer functions starting from a given 

resistivity model. Usually, the forward modeling calculates the apparent resistivity 

and phase of the impedance tensor as model responses (see equations 2.16 and 

2.17). The MT inversion is the fundamental step to obtain the resistivity 

distribution of the subsurface (i.e., the resistivity model) given the observed 
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impedances. The unknowns of the inverse problem are the resistivity values of the 

1D, 2D or 3D model domain. During the inversion, the resistivity model is 

iteratively updated in order to ensure the matching between the observed data and 

the model responses calculated by the forward modeling. The goal is to minimize 

an objective function that improves the correspondence between the observed and 

calculated responses. A reliable and stable forward-modeling routine is then the 

hearth of the MT inversion.  

The MT modeling consists in numerically solving the Maxwell’s equations 

(equations 2.8 - 2.11) following one of these three approaches: finite difference, 

finite elements and integral equations. While numerical simulations using finite 

difference are fast in convergence, finite-elements simulations can easily include 

topography and bathymetry in the grid. The integral equation approach has been 

sufficiently investigated but it is still hardly implemented due to its high 

computational cost (Wannamaker 1991; Avdeev et al. 2002; Kruglyakov and 

Bloshanskaya 2017). 

From a mathematical point of view, the MT inverse problem is ill-posed in 

nature with nonlinear and extremely sensitive solutions. This means that there are 

many models that can equally fit the data within a given tolerance threshold. 

Therefore, dealing with the MT inverse problem means solving a nonlinear, multi-

parametric and ill-posed problem affected by the equivalence of solutions. 

Fundamental books on the inverse theory are Tarantola (2005) and, more detailed 

for MT, Berdichevsky and Dmitriev (2002).  

2.6.1 Derivative-based MT inversion 

Various inversion algorithms have been proposed in the literature to solve the 

MT inverse problem for any dimensionality cases. The main inversion schemes 

are the standard Occam’s inversion (Constable et al. 1987), the data space 

Occam’s inversion (Siripunvaraporn and Egbert 2000), the Gauss–Newton 

method (Sasaki 2001), the Gauss–Newton with the conjugate gradient method 

(Siripunvaraporn and Egbert 2007), the non-linear conjugate gradient (NLCG) 

method (Rodi and Mackie 2001; Newman and Alumbaugh 2000; Kelbert et al. 

2008; Commer and Newman 2009) and the quasi-Newton method (Avdeev and 

Avdeeva 2009). A complete mathematical review of the main inversion 

techniques can be found in Siripunvaraporn (2012).  

The main 2D inversion codes are OCCAM2D (Degroot-Hedlin and Constable 

1990), MARE2DEM (Key 2016) and MT2DInvMatlab (Lee et al. 2009). The last 

two decades have witnessed a tremendous progress in the development of 3D 

inversion and forward modeling methods (Avdeev 2005; Siripunvaraporn 2012). 

The most established 3D inversion codes are ModEM based on NLCG (Kelbert et 

al. 2014), WSINV3DMT based on data-space Occam (Siripunvaraporn et al. 

2009) and AP3DMT based on NLCG (Singh et al. 2017). 

All the above-mentioned methods are derivative-based inversion algorithms 

or local search algorithms. In fact, the standard approach in geophysics is the 
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iterated and linearized inversion. It means that the forward function, that entails 

the numerical solution of the Maxwell’s equations and calculates the model 

responses, is approximated with its first-order Taylor expansion (the first-order 

derivative Jacobian matrix) about some reference model. Then, a model solution 

is computed and regarded as a new reference model. The generation of the 

Jacobian and the linear inversion are repeated up until the objective function is 

minimized. Since the nonlinear and ill-posed problem is based on the local search 

of the model domain, a general weakness is that the inversion can find local rather 

than global solutions. Moreover, a central issue of derivative-based inversion 

algorithms is that the reference model used to initialize the inversion can strongly 

bias the result and hence the interpretation (Dong and Jones 2018). Consequently, 

the final solution depends on the initial assumption of the starting model. If a 

homogeneous half-space is adopted as a starting model, some trials have to be 

done to define the most appropriate value of the electrical resistivity to start with, 

depending on the data set and inversion code (Miensopust et al. 2013). Otherwise, 

the inversion can be initially constrained by an a priori model derived by external 

information from well-log data (Yan et al. 2017a), seismic data (Yan et al. 

2017b), MT data (Santilano 2017) or other geophysical methods.  

2.6.2 The global search methods 

To solve the inverse problem, it is also possible to perform a global 

optimization instead of a linearized inversion. The global search approach, also 

called probabilistic or stochastic inverse modeling, is represented by methods like 

Monte-Carlo or metaheuristics (Sen and Stoffa 2013). Global search methods 

have become of major interest in geophysics because they are theoretically able to 

find the global minimum of a function as the final solution without being trapped 

in one of several local minima. The main reason is that the model space is 

sampled either randomly or according to a specific strategy (e.g. adaptive 

behavior). The consequence is that global search algorithms are time-consuming, 

while derivative-based algorithms come to convergence in few iterations. The 

essential advantage of global search algorithms is that the final solution is 

independent from the initial guess of the starting model. Unfortunately, for a 

number of years the application of global search algorithms to the geophysical 

inversion has been hindered by their high computational load. However, the 

striking improvements in computer efficiency of the present days have been 

essential in the decrease of the CPU-time required to run these algorithms.  

The family of global search algorithms is divided into two main groups. The 

first one is represented by Monte Carlo and is based on the random sampling of 

the search space of the solutions (Sambridge and Mosegaard 2002). Much 

research in recent years has focused on the 1D MT inverse problem by adopting 

the Markov-Chain-Monte-Carlo (MCMC) method (Grandis et al. 1999; Xiang et 

al. 2018; Conway et al. 2018; Mandolesi et al. 2018). The second group 

encompasses the metaheuristic methods, such as nature-inspired evolutionary 
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algorithms. The most important metaheuristics applied to the geophysical 

inversion are simulated annealing (SA), genetic algorithm (GA) (Sen and Stoffa 

2013), the ant colony algorithm (ACO) (Yuan et al. 2009), grey wolf optimizer 

(Agarwal et al. 2018) and particle swarm optimization (PSO) (Shaw and 

Srivastava 2007). The 1D MT inverse problem has been addressed using SA 

(Dosso and Oldenburg 1991) and PSO (Shaw and Srivastava 2007; Godio and 

Santilano 2018; Santilano et al. 2018). To date, only a limited number of works 

have applied metaheuristic methods to the 2D MT problem. For GA, there are the 

works of Everett and Schultz (1993) and Pérez-Flores and Schultz (2002), while 

the first study using PSO can be found in Pace et al. (2019). The application of the 

global search approach to the MT inverse problem is extensively explained in the 

following Chapters 3 and 4.  
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Chapter 3 

Population-based metaheuristics: 

the particle swarm optimization 

algorithm 

 

“Every aspect of learning or any other feature of intelligence can in principle 

be so precisely described that a machine can be made to simulate it” 

Dartmouth Summer Research Project on Artificial Intelligence, 1955 

 

This chapter introduces the adoption of global search methods for the 

geophysical inverse modeling. After, a brief overview of metaheuristic methods, 

the chapter focuses on population-based metaheuristics and, particularly, on the 

particle swarm optimization algorithm. This is then applied to the magnetotelluric 

method, whose fundamentals have been introduced in the previous chapter. 

Finally, a novel method is presented: the joint optimization of multiple 

geophysical data sets by means of multi-objective global search methods.  

3.1. Computational swarm intelligence 

The past fifty years have seen increasingly rapid advances in the field of 

Computer Science. A dramatic improvement in the machines’ performance has 

allowed more complex problems to be progressively solved. Artificial intelligence 

(AI) has been attracting a lot of interest since its first definition as “thinking 

machines” by Alan Turing (Computing machinery and intelligence, 1950). 

Nowadays, AI is essential for a wide range of technologies in the fields of 

autonomous cars, healthcare (identifying skin cancers, robotic surgery) and 

communications (understanding human speech, interpreting images).  
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A sub-branch of AI is Computational Intelligence (CI). It encompasses five 

paradigms which are all based on biological systems: a) artificial neural networks 

(ANN) models biological neural systems; b) evolutionary computation (EC) 

models genetic and behavioral evolution; c) swarm intelligence (SI) models the 

social behavior of organisms living in groups; d) artificial immune systems (AIS) 

models the human immune system; e) fuzzy systems (FS) models the interactions 

between the organisms and their environment.  

Among these nature-inspired metaheuristic methods, EC and SI are referred to 

as population-based algorithms since they are based on the behavior of groups of 

individuals (Engelbrecht 2007). The EC tenet is that the individuals with the best 

chromosomes survive (and the weakest individual have to die), so that only the 

selected chromosomes are inherited by new generations. The most important 

example of EC algorithm is the genetic algorithm (GA). SI is the problem-solving 

behavior emerging from the interactions of agents in a group. SI mimics the 

naturally-based social dynamics that provide individuals with more information 

than that gathered by their own senses. The algorithmic models of SI are referred 

to as computational swarm intelligence (CSI), whose main paradigms are particle 

swarm optimization (PSO) and ant colony optimization (ACO). 

During the past two decades, EC and CSI have been widely applied to solve 

optimization problems. The solution of the optimization problem is found after 

that the objective function, that is, the quantity to be optimized, is minimized (or 

maximized, depending on the problem) depending or not upon some constraints. 

Fundamentals of optimization theory can be found in Engelbrecht (2007). The 

typical properties of the most common (and challenging) optimization problems 

are 

a) Multivariate: there is more than one unknown 

b) Nonlinear: the objective function is non linear 

c) Constrained: the search space of the candidate solutions is restricted to 

specific regions according to equality or inequality constraints 

d) Multimodal or multi-solution: there is not only one clear solution, but a set 

of feasible candidate solutions referred to as local or global optima (whose 

mathematical definition is here omitted). 

When the optimization-minimization problem presents the a)-d) properties, 

the candidate solutions can be graphically represented as in Figure 3.1. The graph 

represents the objective function (f(x)) in the constrained search space of solutions 

(x). In this example, the local minima belong to the feasible region, while the 

global minimum is not a feasible solution due to the constraint. Therefore, the 

problem solution is the minimum point on the constraint. 

Another distinction of optimization problems is between single-objective or 

multi-objective problems, meaning that there is only one or more than one 

objective functions to be simultaneously optimized. In geophysics, an example of 

multi-objective optimization problem is the joint inversion of multiple 

geophysical data sets. This is discussed in Section 3.4.  
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Global search algorithms such as GA, PSO and ACO are theoretically able to 

find the global minimum of the objective function as final solution without being 

trapped in one of the several local minima. This point is of pivotal importance in 

CSI application to geophysics because the geophysical inverse problem is 

nonlinear, multi-solution and ill-posed. 

This chapter focuses on the PSO algorithm and its application to the 

geophysical inverse problem. In particular, Sections 3.3 and 3.4 describe PSO 

application to 1D optimization of magnetotelluric (MT), time-domain 

electromagnetic (TDEM) and vertical electrical sounding (VES) data. Chapter 4 

presents the PSO application to the 2D MT inverse problem.    

 

Figure 3.1 Global minimum and local minima in the search space of an optimization (minimization) 

constrained problem (modified from Engelbrecht 2007). 

The original idea of the PSO algorithm was born from the observation of the 

choreography of bird flocks and schools of fish (Kennedy and Eberhart 1995). 

The way they share knowledge to search for food or find the best reciprocal 

distance in motion fascinated Kennedy and Eberhart (1995) so strongly that they 

proposed applying this evolutionary approach to the optimization of nonlinear 

problems. Pivotal references for computational swarm intelligence are Kennedy et 

al. (2001) and Engelbrecht (2007). It writes: “PSO is a population-based search 

procedure where the individuals, referred to as particles, are grouped into a 

swarm. Each particle in the swarm represents a candidate solution to the 

optimization problem. In a PSO system, each particle is “flown” through the 

multidimensional search space, adjusting its position in search space according 

to its own experience and that of neighboring particles. A particle therefore 

makes use of the best position encountered by itself and the best position of its 

neighbors to position itself toward an optimum solution.”.  Simple interactions 

between individuals yield a complex collective behavior, meaning that each 

individual is able to adapt and derive new and coherent behaviors in case of 
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changes in the external environment. The most striking feature of this method is 

that every particle has a memory component that rules its behavior. This is 

influenced by both the cognitive knowledge of the particle and the experience of 

its neighbors, whose leadership can be emulated. “The effect is that particles 

“fly” toward an optimum, while still searching a wide area around the current 

best solution. The performance of each particle (i.e. the “closeness” of a particle 

to the global minimum) is measured according to a predefined fitness function 

which is related to the problem being solved”. The fitness function is the 

objective function.  

Many emerging real-world applications of EC and CSI are 

telecommunications networks, training neural networks, game learning, 

clustering, design, bioinformatics and data mining (Engelbrecht 2007). 

As mentioned in Section 2.6, global search algorithms have been widely 

applied to geophysics (Sen and Stoffa 2013). Geophysical applications of GA 

have covered: 1D seismic waveform inversion (Stoffa and Sen 1992), resistivity 

sounding data (Sen et al. 1993), MT data (Everett and Schultz 1993) and 

permeability distribution in reservoir modeling (Sen et al. 1992). PSO applications 

to the geophysical inverse problem include the interpretation of: vertical electrical 

sounding (Fernández Martínez et al. 2010a; Pace et al. 2019b), gravity data 

(Darisma et al. 2017), multi-transient electromagnetic data (Olalekan and Di 

2017), MT data (Shaw and Srivastava 2007; Godio and Santilano 2018; Santilano 

et al. 2018; Pace et al. 2019a) and Rayleigh wave dispersion curve (Song et al. 

2012).  

Some studies have demonstrated that PSO outperforms GA for higher 

accuracy and convergence in several geophysical applications (Yuan et al. 2009; 

Fernández Martínez et al. 2010a; Song et al. 2012). Moreover, a further reason for 

novel investigations on the geophysical applications of PSO is the encouraging 

results of PSO applied to 1D MT inverse problem (Shaw and Srivastava 2007; 

Godio and Santilano 2018; Santilano et al. 2018),  

3.2. Particle swarm optimization (PSO) 

A swarm is usually thought as a disorganized cluster of elements (insects, 

birds, fish, spiders, ants, bacteria) apparently moving chaotically and following 

random directions. They are actually sharing their knowledge to pursue the goal 

of escaping from predators or keeping the best reciprocal distance in motion or 

searching for food. Social behavior allows particles to reach a specific objective 

and adapt to the environment. Therefore, the elements of the swarm can be 

regarded as massless and volumeless mathematical abstractions aiming at 

optimizing the objective function. Assuming a nonlinear optimization problem 

affected by the non-uniqueness of its solution, the set of its possible solutions can 

be imagined as a set of particles grouping in a swarm. The particles populate the 

search space of the problem solutions and change their position to fulfill the 
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common objective. At the beginning of the optimization, the particles are 

initialized being given uniformly-distributed random position and null velocity. 

Then, the iterative swarming behavior begins. Each iteration, each particle is 

stochastically accelerated, on the one hand, toward its previous best position (i.e., 

where it minimized/maximized the objective function) and, on the other hand, 

toward the neighborhood best position (i.e., where any other particle 

minimized/maximized the objective function). These two basic approaches are 

referred to as, respectively, exploration and exploitation. They compete in 

searching for the global best. While the exploration is associated to cognitive 

behavior, that is, the memory component of the particle, the exploitation is related 

to the social behavior, that is, the convergence toward the leader.  

The ruling equations of the standard PSO are 

𝒗𝑖
𝑘+1 = 𝜔𝑘𝒗𝑖

𝑘 + 𝛼1𝛾1,𝑖(𝑷𝑖 − 𝒙𝑖
𝑘) + 𝛼2𝛾2,𝑖(𝑮 − 𝒙𝑖

𝑘)                ( 3.1 ) 

𝒙𝑖
𝑘+1 = 𝒙𝑖

𝑘 + 𝒗𝑖
𝑘+1                                            ( 3.2 ) 

where: x is the vector of the particle’s position composed of as many components 

as the problem unknowns, v is the velocity vector, i = [1, …, N], N is the number 

of particles forming the swarm, k is the current iteration number, 𝒙𝑖
𝑘 and 𝒗𝑖

𝑘 are 

the current vectors of position and velocity of the ith particle, respectively, ωk is 

the inertia weight that linearly decreases from 0.9 (first iteration) to 0.4 (last 

iteration) in order to balance the momentum remembered from the previous 

iteration (Shi and Eberhart 1998), α1 is the cognitive acceleration towards the best 

particle position P, also called “local best”, α2 is the social acceleration towards 

the best global position G (or “global best”) found by the group leader and γ1 and 

γ2 ∈ [0,1] are uniformly distributed random values which provide stochastic 

perturbation.  

Figure 3.2 clearly represents the graphical meaning of equations 3.1 and 3.2. 

The i-th particle moves from the position at iteration k (𝒙𝑖
𝑘) to the following 

position (𝒙𝑖
𝑘+1) (purple arrow) as the resulting contribution of the three terms of 

equation 3.1: inertia ωk (red arrow), cognitive attraction α1 (green arrow) and 

social attraction α2 (yellow arrow).  
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Figure 3.2 Graphical representation of the ruling equations of the PSO algorithm (adapted from Ebbesen et 

al. 2012). 

The PSO algorithm complies with the following three steps:  

1. To evaluate the objective function for each particle 

2. To update the individual and global best positions (P and G)  

3. To update the velocity and position of each particle.  

The previous steps are repeated as long as a valid ending condition is 

satisfied. The most common stopping criterion is to fix a maximum number of 

iterations. However, since the number of iterations is problem-dependent, there 

are some other stopping criteria to ensure an effective optimization of the 

objective function: an acceptable solution found, no improvements over a number 

of iterations, a normalized swarm radius tending towards zero or the objective-

function slope tending towards zero (Engelbrecht 2007). 

The values of the accelerations (α1 and α2) influence the way the particles 

explore the model space and change their trajectory with respect to the local and 

global bests. The accelerations values must obey the stability solution conditions 

(Perez and Behdinan 2007): 

𝛼1 + 𝛼2 < 4                                             ( 3.3 ) 
𝛼1+𝛼2

2
− 1 < 𝜔 < 1                                       ( 3.4 ) 

For standard PSO, the accelerations are constant through the iterations, i.e., 

they are not k-dependent (Fernández Martínez et al., 2010a; Godio and Santilano, 

2018; Santilano et al., 2018). However, a significant improvement in PSO 

efficiency has been observed by setting varying accelerations (Ratnaweera et al. 

2004). A thorough sensitivity analysis on both the accelerations can be found in 

Ratnaweera et al. (2004), Fernández Martínez al. (2010a; 2010b) and Pace et al. 

(2019a).  

A broad number of different PSO variants has been developed since the first 

algorithm of Kennedy and Eberhart (1995) appeared. The early improvements of 

the code concentrated on the inertia weight (Shi and Eberhart 1998) and the 

acceleration coefficients (Perez and Behdinan 2007). Further developments of the 

standard PSO proposed some sophisticated adjustments. The most important PSO 

developments are: the fuzzy-adaptive PSO with fuzzy system tuning the inertia 

weight (Shi and Eberhart 2001), the self-organizing hierarchical PSO with time-

varying acceleration coefficients (Ratnaweera et al. 2004), the hybrid quadratic 

PSO (Ying et al. 2006), the adaptive PSO (Zhan et al. 2009) and the individual-

difference evolution PSO (Gou et al. 2017).  

PSO has been successfully utilized in many real-world applications, such as 

artificial neural networks, biomedical engineering (modeling of the spread of 

antibiotic resistance), hydrogeology (Fernández Martínez et al. 2012), electronics, 

electromagnetics, power systems, robotics (robot path planning), and signal 

processing (Poli 2008; Adhan and Bansal 2017 and references therein). 
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3.3. PSO applied to Magnetotellurics 

The interpretation of the observed MT data is accomplished by solving the 

inverse problem, which results in a model of the resistivity distribution in the 

Earth’s subsurface (Section 2.6). The inversion consists in finding the model 

parameters m, considering the observed data dobs, and applying the functional F, 

which entails the physics of electromagnetic induction in the Earth.  

𝐹(𝒎) = 𝒅𝑜𝑏𝑠                                          ( 3.5 ) 

In MT, the model solution m is the electrical resistivity distribution along a 

single vertical direction (1D), a cross-section below the profile of MT sites (2D) 

or a volume (3D). The observed data dobs are the apparent resistivity (ρa,o) and 

phase (φo) derived from the impedance tensor Z (equations 2.16 and 2.17). 

Differently from traditional inversion techniques, solving the MT inverse 

problem by means of global search methods like PSO means that the forward 

functional F calculates the predicted responses ρa,p and φp for each assumed 

model m. The basic tenet of PSO applied to MT is that each particle of the swarm 

represents a possible solution of the inverse problem. The calculated responses 

ρa,p and φp are compared to the observed ρa,o and φo for each particle. Since the 

solution of the problem is affected by non-uniqueness, the search space of 

solutions needs to be fully explored in order to find the best model which fits the 

observed data. This need is fulfilled by the adaptive and swarming behavior of the 

particles. During the optimization process, iteration after iteration, the particles 

“fly” within the search space, bounded between a minimum and a maximum 

resistivity value. The final goal is the minimization of the objective function. The 

particle with the lowest fitness value is awarded with the global best position G 

and is going to attract neighbors depending on the social acceleration α2 (equation 

3.1).  At the end of the swarming, the optimized solution is expected to be 

identified.  

The objective function to be optimized, i.e., minimized in MT, is a misfit 

function that characterizes the differences between observed data and predicted 

responses calculated by the forward modelling from an assumed Earth model m. 

The objective function can also include a further term that manages the model 

roughness according to the concept of Occam’s inversion (Constable et al. 1987). 

It is known that in derivative-based inversion techniques, the closest fitting 

between observed and predicted data brings to the maximum roughness, or 

spurious structures. A smooth model avoids the over-interpretation of the data 

beyond their resolving capability. The concept of “Occam-like regularization” can 

be also applied to global search algorithms such as GA and PSO (Godio and 

Santilano 2018; Santilano et al. 2018; Pace et al. 2019a; Pace et al. 2019b). The 

reason is to set the optimization that minimizes not only the data deviations but 

also the model roughness of the electrical-resistivity vector m. 
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3.3.1 1D MT optimization 

In 1D, the Occam-like objective function has been defined as follows 

(Santilano et al. 2018): 

𝐹(𝒎) = (𝑎‖𝝆𝑎,𝑜 − 𝝆𝑎,𝑝‖
2

+ 𝑏‖𝝋𝑜 − 𝝋𝑝‖
2

) + 𝜆2 ‖𝜕𝒎‖2           ( 3.6 ) 

where: a and b are weighting coefficients between apparent resistivity and 

phase, respectively; ρa,o and φo are observed apparent resistivity and phase, 

respectively; ρa,p and φp are predicted apparent resistivity and phase, respectively; 

λ is the Lagrange multiplier that regulates the model roughness; || · ||2 refers to the 

Euclidean norm. The first term in the right side of equation 3.6 addresses the data 

misfit, while the second term controls the model roughness by means the 

Lagrange multiplier λ, which acts on ∂m, the differencing operator on m. The 

Lagrange multiplier λ acts as a smoothing factor and is chosen according to the L-

curve criterion (Farquharson and Oldenburg 2004). This criterion consists in 

finding the optimal λ as trade-off between the misfit of the data and the roughness 

of the final model (i.e., the model norm). The optimal value of λ is specific for 

each case study. In this way, the minimization of the objective function looks for 

the smoothest model that fits the data, thus ensuring a balance between the data 

fitting and the roughness of the model.  

In 1D, m is a vector composed of as many elements as the layers of the Earth 

model. The Occam-like optimization is an over-parametrized problem, which 

considers a model of many layers whose thickness is a priori fixed. It means that 

the layers’ thicknesses are not included in the problem unknowns but are set 

taking into account the loss of resolving power according to the skin depth 

concept.  

The link between equations 3.6 and 3.1 is here clarified. At each iteration of 

PSO, the particle that best minimizes the objective function is assumed as the 

global best solution (G), whereas the other particles can be either attracted or 

driven away looking for other solutions in the search space. At the end of the 

optimization, the particle with the minimum F(m) is selected as the final solution 

and most of the other particles converge to it (swarming behavior). 

One of the first applications of PSO to long-period MT data from a real-field 

data set is the work of Godio and Santilano (2018). A case study from that paper 

is here reported to explain a simple example before the novel 2D MT PSO, which 

is presented in the next chapter.  

 The COPROD dataset (Scotland) is publicly available for the scientific 

community to test 1D MT inversion routines (Jones and Hutton 1979). The 

Occam-like 1D PSO has been applied to a single MT site of the data set. The 

resistivity model was discretized into 19 layers whose thickness increased 

logarithmically with depth from 200 m to 350 km. The PSO ran for 200 iterations 

and each run was repeated 25 times (or trials) in order to check the solution 

variability with different randomly-distributed starting models. The swarm was 

composed of 300 particles and the lower and upper boundaries of the search space 
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were 1 and 5000 Ωm, respectively. The inertia ωk was k-dependent, while the 

acceleration values α1 and α2 were constant for the whole iterations and equal to 

0.5 and 1.5, respectively. The coefficients of the objective function were: a = 0.6, 

b = 0.4, λ = 10-4. 

Figure 3.3 shows the outcome of 1D optimization of COPROD data. Figure 

3.3a plots, on the left, the comparison between observed data (the red crosses) and 

predicted responses calculated from both the model with the minimum root-

means-square error (the blue dots) and the model resulting from the median of the 

resistivity values at each layer for the 25 different models (the green dots). Figure 

3.3a plots, on the right, the resistivity distribution with depth for the 25 models 

resulting from the PSO trials (the red lines) and for the model resulting from their 

median (the green line). The observed data and the predicted responses are largely 

comparable for both apparent resistivity and phase. Figure 3.3b reveals the 

validity of the PSO solution (the green line), which is largely comparable with the 

models published in literature and regarded as benchmark. The inversion results 

of Jones and Hutton (1979) and Constable et al. (1987) are plotted in black and 

blue, respectively. The probability density distribution of the resistivity value at 

each layer among the 25 trials was used as a-posteriori analysis for the validity of 

the 1D model. The a-posteriori analysis demonstrated unimodal distribution for 

the majority of the layers, thus proving the robustness of the PSO method (Godio 

and Santilano 2018). 

 

Figure 3.3 a) on the right, observed data from COPROD data set (red crosses) and predicted responses from 

1D PSO (blue and green dots) for apparent resistivity and phase; on the left, the resistivity distribution with 

depth. The red lines represent the models resulting from the 25 PSO trials. The green line is the model 

calculated from the median resistivity at each layer of the 25 models. b) the PSO median model (green line) is 

compared with the benchmark solutions of Jones and Hutton (1979) and Constable et al (1987) plotted in 

black and blue line, respectively (modified from Godio and Santilano (2018)). 
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The main finding emerging from this 1D example is the independence of the 

final solution from the starting model, which is traditionally recognized as strong 

bias in conventional MT inversion techniques. The work of Godio and Santilano 

(2018) outlined that the implementation of PSO to the 2D MT inverse problem 

would have been of huge interest in order to extend the stochastic approach to the 

interpretation of MT profiles instead of single MT sites. At the same time, they 

pointed out that the increase in the complexity of the forward modeling would 

have represented a significant challenge in terms of computation time.  

3.3.2 Static-shift correction by means of PSO 

Field MT data are usually affected by telluric distortion or static shift (Section 

2.4.2). The theoretical background of static shift correction by using the TDEM 

method was explained in Section 2.5.2. An effective method to correct the static 

shift by means of PSO has been proposed in Santilano et al. (2018). Their 

approach consists in a simultaneous optimization of MT and TDEM data 

measured at the same site. The objective function to be minimized is partially 

similar to equation 3.6 with the difference that the scalar value representing the 

shift of the MT apparent resistivity curve is considered as an additional problem 

unknown. In fact, the algorithm optimizes both the model parameters and an 

additional parameter accounting for the static shift. In the objective function, the 

observed data are composed of both the MT ρapp and phase and the TDEM ρapp, 

but the observed MT ρapp
 is iteratively optimized to match, at low periods, the 

reference curve of the TDEM ρapp. This method has been tested on both synthetic 

and field data (Santilano et al. 2018).  

The MT data set investigated in this thesis comes from the geothermal area of 

Travale (Italy). For 2D or 3D interpretation, the different xy and yx apparent-

resistivity curves were optimized separately because the two polarizations may 

present different levels of distortion. As an example, a typical outcome of the 

static shift correction using PSO is plotted in Figure 3.4 for the xy-polarization of 

site a1 (the complete data set is presented in Chapter 5). Figure 3.4a-b shows a 

remarkable overlap between the MT and TDEM data (red dots) and the calculated 

responses of ρapp and phase (blue crosses). The occurrence and correction of the 

static shift is apparent in Figure 3.4a, where the MT ρapp (the red dots in the range 

3·10-3 - 1000 s) are shifted upward to match the TDEM ρapp between 10-5 and 10-3 

s. The PSO ended after 600 iterations, when the root-mean-square-error (RMSE) 

was 1. The 1D resistivity model resulting from the optimization is shown in 

Figure 3.4c. However, its interpretation can be neglected due to the high 

dimensionality associated to the investigated structure. Further details on the 

outcomes of static shift correction of the other sites of our data set are given in 

Section 5.4.  
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Figure 3.4 Static shift correction for site a1 (xy-mode) using PSO; a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.005 s) and of MT from 0.003 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1-D resistivity model. 

3.4. Multi-Objective PSO 

This section is conceived as a synopsis of the paper Pace et al. (2019b) 

dealing with the multi-objective optimization of multiple geophysical data sets 

(TDEM and VES) by means of global search methods.  

An example of multi-objective optimization problem, whose definition is in 

Section 3.1, is the geophysical joint inversion. The joint inversion of multiple data 

sets can significantly improve their modeling by overcoming the intrinsic 

limitations of each geophysical method. The advantages in combining different 

geophysical measurements using a unique inversion scheme have been clear since 

the first introduction of joint inversion methods (Vozoff and Jupp 1975; Yang and 

Tong 1988). Joint inversion has been extensively applied to electrical and 

electromagnetic data to interpret one physical property, that of electrical 

conductivity. However, as with single inversion, joint inversion is still affected by 

non-uniqueness, nonlinearity and ill-posedness (Tarantola 2005).  

In the last decade, many derivative-based methods have been proposed for the 

joint inversion of different data sets. These methods have proved to successfully 

image the properties of the layered subsurface, thus outperforming the separate 

inversions and the correspondent ambiguities (Hering et al. 1995; Musil et al. 

2003; Gallardo and Meju 2003; Moorkamp et al. 2011). A main issue with joint 

inversion is data compatibility, since real-world data are acquired using different 

methods and usually present different resolutions, sensitivities, depth of 

investigations and/or error levels. Data incompatibility can hence lead to either a 

variety of final results or conflicting models. These are commonly avoided using a 

weighting factor between the objective functions that rule the inversion (Commer 

and Newman 2009; Meqbel and Ritter 2015). However, even when using 
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appropriate weighting factors, the choice of the proper one is still critical and may 

not resolve the conflict (Akca et al. 2014). Moreover, the search for a single best 

solution for a joint-inversion problem can still produce biased results. Therefore, 

the main drawbacks of the derivative-based joint inversion are: 1) the 

simplification of a multi-objective problem (joint inversion) into a succession of 

single-objective optimization problems with weighted objective functions; 2) the 

strong influence of the starting model on the final result, which is typical of the 

derivative-based inversion techniques.  

Multi-objective evolutionary algorithms (MOEAs) have recently been 

proposed for the joint inversion of multiple data sets because they deploy a multi-

objective optimizer (MOO) to solve the problem, without transforming it into a 

series of single-objective optimizations. This approach avoids the adoption of 

user-dependent weighting factors. MOEAs rate the solution quality by using the 

concept of Pareto optimality, first introduced by Edgeworth (1881) and Pareto 

(1896). A solution is considered Pareto-optimal if there is not another feasible 

solution that improves one objective without deteriorating the other objective. The 

whole set of solutions that fulfill this criterion is called the Pareto-optimal set. 

MOEAs are attracting widespread interest since the objective function is a unique 

vector of as many components as the different data sets to be optimized, without 

any need to rank them. The most widely-used EAs are GA and PSO algorithms 

(Engelbrecht, 2007; Kennedy and Eberhart, 2001). Due to the positive outcomes 

of PSO applied to single-objective problems, it has been proposed to tackle multi-

objective problems. Coello Coello et al. (2004) showed highly competitive results 

of multi-objective PSO (MOPSO) applied to benchmark test functions. 

Unfortunately, few studies have so far dealt with MOPSO applied to geophysics. 

One of the first works that adopted PSO for the joint inversion of synthetic data 

(GPR and P-wave seismic traveltimes) was given by Tronicke et al. (2011), but it 

actually simplified the problem into a single-objective one. Similarly, Paasche and 

Tronicke (2014) developed a hybrid approach on radar and P-wave traveltimes. 

Cheng et al. (2015) applied PSO to a whole forward process synchronized 

between transient electromagnetic method (TEM) and DC methods. There is 

hence little evidence of the potentiality of MOPSO on the geophysical joint 

inversion. The multi-objective version of GA has instead been more explored. 

Examples include the inversion of: Raleigh-wave dispersion curves and reflection 

travel times (Dal Moro and Pipan 2007), surface wave dispersion and horizontal-

to-vertical spectral ratio (Dal Moro 2010), AMT and broad-band MT data 

(Schnaidt et al. 2018), magnetic resonance and Vertical Electric Sounding (VES) 

data (Akca et al. 2014), seismic and well-log data for reservoir modeling (Emami 

Niri and Lumley 2015), and receiver functions, surface wave dispersion and MT 

data (Moorkamp et al. 2011). Although these works have adopted the 

Nondominated Sorting GA called NSGA-II (Deb et al. 2002), little attention has 

been paid to the most recent NSGA-III (Deb and Jain 2014).  
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The next sub-sections present the 1D joint inversion of different geophysical 

data sets using MOPSO as the multi-objective solver. Each data set was composed 

of integrated TDEM and VES soundings, so we dealt with a bi-objective problem 

that avoids both simplification into a single-objective problem and the use of the 

weighting factor. A preliminary introduction on the method can be found in Pace 

et al. (2018). The performance of MOPSO was directly compared with that of a 

NSGA-III, which is stable and widely adopted in geophysics. The economic 

concept of Pareto optimality was used to identify the final set of results among the 

feasible solutions.  

The method was first tested on synthetic data and then applied to two real data 

sets from two different surveys for groundwater prospecting in north-west Italy 

(Piedmont region). For the sake of brevity, this section reports only one field case 

study (Section 3.4.3). The other applications and the comparison with the single-

objective PSO are described in Appendix A.  

3.4.1 The method: objective-function and the Pareto optimality 

Our application of MOEAs to the geophysical joint optimization focuses on 

two geophysical methods, TDEM and VES, which deal with the same physical 

parameter, i.e., the electrical resistivity. The problem unknown is the p-

dimensional vector m = [m1, …, mp] of electrical resistivity, being p the number of 

layers whose thickness was defined before the optimization. The 1D-profile m is a 

feasible solution found after the minimization of the objective function  

𝒇(𝒎) = [𝑓1(𝒎), 𝑓2(𝒎)]                                   ( 3.7 )                                                    

where the two components of the vector refer to TDEM and VES, 

respectively. These components were simultaneously minimized in the multi-

dimensional space of the objective function. 

Since a variety of solutions are identified at the end of the MO optimization, 

the choice of the best solution is a critical point. MOEAs select the best set of 

tradeoff solutions using the optimality notion originally proposed by Edgeworth 

(1881), then generalized by Vilfredo Pareto and today well-known as the Pareto 

optimality (Pareto 1896). This principle identifies a range of compromises as 

feasible solutions, thus avoiding the results being biased by the user-driven 

weighting approach. This is the mathematical definition of Pareto dominance: 

given two possible solutions ma and mb, the vector f(ma) is said to dominate f(mb) 

(denoted by f(ma) ≼ f(mb)) if and only if  j  {1, 2}, fj(ma)  fj(mb)   j  {1, 

2}: fj(ma) < fj(mb). For us, j=1 refers to the TDEM component and j=2 to the VES 

component. All the non-dominated solutions form the Pareto-optimal set (P*) or 

non-dominated set. The corresponding objective functions of the non-dominated 

solutions form the Pareto Front (PF) in the objective space:  

𝑃𝐹 =  {𝒇(𝒎) =  (𝒇𝟏(𝒎), 𝒇𝟐(𝒎))|𝒎 𝑃∗}                   ( 3.8 )                                              

That is, when P* is projected onto a surface, it is referred to as the PF. In our 

two-dimensional objective space, the PF is graphically depicted as a tradeoff 
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surface showing which component of f(m) is mostly minimized. Besides, the PF 

can be analyzed to infer the compatibility between the different data sets 

(Schnaidt et al. 2018; Dal Moro and Pipan 2007). 

Each jth component of the objective function to be minimized was defined as 

the Euclidean norm of the misfit between observed data and calculated response 

plus an additional term to regulate the model smoothness: 

𝑓𝑗(𝒎) = ‖
𝝓𝑜−𝝓𝑐

𝝈𝜙
‖

2

+ 𝜆𝑗 ∥ 𝑙𝑜𝑔10(𝜕𝒎) ∥2                     ( 3.9 )                                           

where: ϕo is the observed TDEM signal if j=1 or the observed apparent resistivity 

if j=2; ϕc is the calculated response for TDEM signal if j=1 or the calculated 

apparent resistivity if j=2; the difference in ‖∙‖2 is normalized by the 

corresponding errors (σϕ) on the observed data; λj is called the Lagrange-

multiplier, or smoothing parameter. The right-hand side of equation 3 is 

composed of two terms: the first one assesses the distance of the observed data 

from the response calculated by the forward modeling; the second term addresses 

the minimization of the roughness of the model, by using the smoothing 

parameter λj on the first derivative of the model m. λj has the subscript in order to 

address the different level of smoothing required by the specific geophysical 

method. Even though the Occam’s inversion was first introduced for deterministic 

methods (Constable et al. 1987), the “Occam-like optimization” has been 

effectively proposed for PSO in Pace et al. (2019a), Godio and Santilano (2018) 

and Santilano et al. (2018). As explained in Section 3.3.1, we here applied the 

“Occam-like optimization” in order to search for the smoothest model that fitted 

the data, that is, a tradeoff between the minimum misfit achievable and 

unnecessary structure (or roughness) of the model. The proper value of λj was 

chosen following the L-curve criterion, which identified the optimal tradeoff 

between the misfit of the data and the roughness of the final model (i.e., the model 

norm) (Farquharson and Oldenburg 2004). It is obvious from equation 3.9 that a 

high value of λj results in a smooth model penalizing the misfit, while, on the 

contrary, a low λj yields a minimum data misfit and high resistivity contrasts 

(roughness) between the layers of the model. The forward modelling used to 

handle TDEM data was derived from the CR1Dmod algorithm (Ingeman-Nielsen 

and Baumgartner 2006). The VES forward modelling was adapted from the code 

VES1dmod in Ekinci and Demirci (2008). 

The MO optimization of TDEM and VES data was defined as a problem 

without equality and inequality constraints. The problem had boundary 

conditions: the search space of the solutions was bounded between a minimum 

and maximum value of electrical resistivity. This interval was set as large to 

enable the exploration of all the feasible solutions.  

3.4.2 The MO algorithms: MOPSO and NSGA-III 

The basic principles of MOPSO applied to the geophysical inversion are the 

same described in Sections 3.2 and 3.3 for single-objective PSO. The ruling 
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equation of MOPSO was slightly different from equation 3.1, which is adjusted as 

follows: 

𝒗𝑖
𝑘+1 = 𝜔𝑘𝒗𝑖

𝑘 + 𝛼1
𝑘𝛾1(𝑷𝑖 − 𝒙𝑖

𝑘) + 𝛼2
𝑘𝛾2(𝑮𝒌 − 𝒙𝑖

𝑘)              ( 3.10 ) 

The main difference with respect to equation 3.1 is that G, α1 and α2 are k-

dependent. While in single-objective PSO the leader G is the unique best-particle 

of the swarm, in multi-objective PSO the set of non-dominated solutions worked 

as swarm leader. The non-dominated solutions were stored in an archive called 

repository. It was updated at each k iteration with the advantage that a high 

number of iterations did not directly imply a high number of non-dominated 

solutions since a new non-dominated solution could dominate (and hence replace) 

a non-dominated solution of the previous iteration (Coello Coello et al. 2004). Gk 

was hence selected from the repository at each iteration according to a quasi-

random criterion based on the most crowded regions of the objective space. 

Equation 3.10 establishes that the particle’s velocity resulted from the balance 

among three terms: the inertia ωk, accounting for the past experiencet, the 

cognitive knowledge α1
k and the social attraction α2

k towards the leader. At the 

first iteration (k=0), the particles were initialized with null velocity (𝒗𝑖
0 = 0) and 

random positions uniformly distributed in the search space.  

Since the first appearance in 2000, several MOPSO variants have been 

proposed (for a review see Reyes-Sierra and Coello Coello 2006). We 

implemented the time-variant (or TV-) MOPSO to take advantage of the k-

dependent coefficients ωk, α1
k and α2

k. They change at each iteration to provide 

global exploration of the search space at the beginning of the optimization and 

local exploitation at the end. In detail, the TV inertia weight was proposed by Shi 

and Eberhart (1999), while the TV acceleration coefficients by Ratnaweera et al. 

(2004) and Tripathi et al. (2007). These works clearly demonstrate that a high α1
k 

improves the solution diversity, while a high α2
k fosters the convergence toward 

the global best. Therefore, we set α1
k larger than α2

k at the initial iterations. Then, 

during the optimization, α1
k linearly decreased and α2

k linearly increased, so that 

at the end they were reversed. In detail:  

     𝛼1
𝑘 = 𝛼1

𝑚𝑎𝑥 − (𝛼1
𝑚𝑎𝑥 − 𝛼1

𝑚𝑖𝑛) (
𝑘−1

𝑚𝑎𝑥(𝑘)−1
)                    ( 3.11 ) 

𝛼2
𝑘 = 𝛼2

𝑚𝑖𝑛 + (𝛼2
𝑚𝑎𝑥 − 𝛼2

𝑚𝑖𝑛) (
𝑘−1

𝑚𝑎𝑥(𝑘)−1
)                    ( 3.12 )  

where: αk is the acceleration value at iteration k; α1
max and α2

max are the maximum 

values for the cognitive and social accelerations, respectively; α1
min and α2

min are 

the minimum values for the cognitive and social accelerations, respectively; and 

max(k) is the maximum number of iterations set for the optimization (Engelbrecht 

2007 and references therein). Therefore, at the first iteration (k=1), 𝛼1
𝑘=1 = 𝛼1

max 

and 𝛼2
𝑘=1 = 𝛼2

𝑚𝑖𝑛, while, at the last iteration (k = max(k)), 𝛼1
𝑘=max (𝑘)

= 𝛼1
min and 

𝛼2
𝑘=max (𝑘)

= 𝛼2
𝑚𝑎𝑥. Following the stability criteria in Perez and Behdinan (2007) 

and the sensitivity analysis in Pace et al. (2019a), we set 𝛼1
𝑚𝑎𝑥 = 𝛼2

𝑚𝑎𝑥 = 2 and 

𝛼1
𝑚𝑖𝑛 = 𝛼2

𝑚𝑖𝑛 = 0.5. 
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Our TV-MOPSO algorithm included the mutation operator, that is typical of 

GA and scarcely effective in single-objective PSO. However, many theoretical 

studies have proposed the introduction of the mutation operator in multi-objective 

PSO, in order to boost the exploration of the remote regions of the search space 

and prevent premature convergence to the local PF (Coello Coello et al. 2004; 

Tripathi et al. 2007). We adopted the mutation operator equal to 0.5, in line with 

that works. It operated on a wide percentage of particles at the early iterations and 

then exponentially decreased its influence towards the end. The main advantage of 

the mutation operator is that it compensates for the loss of diversity throughout 

the optimization process.  

The algorithm ran until a specific number of iterations was achieved, that is, 

up to 1000 iterations. However, the total number of iterations is problem-

dependent and its initial and arbitrary choice has proven to be inadequate as the 

single stopping criterion (Engelbrecht 2007). Few iterations can lead to premature 

ending before the solution convergence and, on the other hand, too much 

iterations can result in unnecessary computation. Therefore, we set another 

stopping criterion: if the objective function did not minimize for 300 consecutive 

iterations, the run was terminated.   

Another fundamental setting of the MOPSO was the number of particles 

forming the swarm, i.e., the population size. This setting is dependent on the 

number of unknowns of the problem, namely, the number of layers the 1D profile 

was discretized into.  The rule of thumb prescribes the number of particles 

proportional to about 8-12 times the unknowns (Engelbrecht 2007; Fernández 

Martínez et al. 2010a; Pace et al. 2019a). We discretized the model into 19 layers 

and set the swarm size equal to about 9 times the unknowns, that is, 170 particles. 

 Our algorithm was developed in the Matlab programming environment using 

the Parallel Computing Toolbox. The general code of TV-MOPSO was adapted 

from Coello Coello et al. (2004) for the geophysical problem. The simulations ran 

on a 12-core node of the High Performance Computing (HPC) cluster for 

academic research at Politecnico di Torino. The CPU model of the single node is 

2x Intel Xeon E5-2680 v3 2.50 GHz 12 cores. When the computations were 

executed, in October 2018, the sustained performance of the cluster was globally 

20.13 TFLOPS. 

This paragraph describes the NSGA-III in a concise way, being our study 

focused on swarm intelligence. NSGA-III was essentially chosen as basis of 

comparison for MOPSO, since GAs are the most common global optimizers in 

geophysics. The NSGA-III is a bio-inspired metaheuristic that mimics the 

inheritance of the highest qualities from parents to children, the natural selection 

and the biodiversity. The population members represented the possible solutions 

of joint inversion and were sorted according to the Pareto-dominance ranking 

method. The selection of the non-dominated solutions was performed using the 

non-domination rank and the so-called crowding distance, that measured the 

neighbors surrounding each individual. The diversity was preserved according to 
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the tenet of fitness sharing, that promoted the solutions in the least populated 

regions of the search space (Coello Coello et al. 2007). These criteria of ranking 

and selection allowed the Pareto-optimal set to be identified.   

Some input arguments of NSGA-III were similar to those of MOPSO and 

hence were set following the previously explained criteria. These inputs were the 

population size, the number of iterations, the boundary conditions and the 

stopping criteria. The main difference between NSGA-III and MOPSO are the 

genetic operators known as crossover and mutation, the number of reference 

points and the absence of the external archive called repository. The crossover 

percentage was 0.5, meaning that, given any two random parents, half of the 

population of the new generation, namely the offspring, was subjected to the 

genetic crossover. The mutation percentage was 0.5, so that half of the population 

was subjected to mutation. In detail, the mutation rate was 0.02, meaning that the 

2% of the model represented by each selected individual was forced to mutate. A 

major novelty of NSGA-III compared to NSGA-II is the adoption of the reference 

points in order to enhance the diversity among the solutions found. In a two-

objective problem, the reference points are placed in the line that, in the 2D-

objective space, intercept the axes in 1. The population members associated to the 

reference points are emphasized, that is, allowed to evolve in the next generation 

(elitist selection). It has been proven that the most adequate number of reference 

points is equal to the population size, so we set it accordingly. This and further 

details are given in Deb and Jain (2014), which also reports the other differences 

and advantages with respect to the well-known NSGA-II. 

3.4.3 Calibration on real data 

The MOPSO was validated on synthetic TDEM and VES data to evaluate the 

performance of the algorithm (see Appendix A). Then, it was applied to a field 

data set composed of TDEM and VES soundings over a known stratigraphic 

setting in Piedmont, north-west Italy. The test site is located in the Stupinigi area 

(about 10 km south-west of Torino).  

Details on the TDEM method are explained in Section 2.5. The VES is an 

electric method that deploys two potential electrodes that measure the electric 

field induced by two current electrodes. The depth of investigation depends on the 

configuration of the electrodes and the spacing between the current electrodes. 

The measurements are typically displayed as apparent resistivity as a function of 

the current-electrode half-spacing. Despite VES is one of the oldest geophysical 

methods, it is still worthy considered due to the efficiency of the setup and the 

sensitivity to high-resistivity contrasts. Moreover, new joint interpretations of 

vintage data could provide a more complete characterization if combined with 

new acquisitions. 

The site of Stupinigi is characterized by a well-known lithological and 

stratigraphic sequence and a flat morphology. From a geological perspective, the 

site lies on an alluvial plain, characterized by sand and gravel deposits. The 
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uppermost formation is composed of recent coarse gravel deposits and is followed 

by an alternation of gravel and sand (well-consolidated and cemented) up to 

hundreds of meters of depth. These two formations constitute two different 

aquifers separated by embedded clayey layers.  

The TDEM data have been acquired using a coincident-loop configuration 

with a 50-m-long loop for both the transmitter and receiver. The injected current 

was equal to 3A, the turnoff time was 4 μs and a total of 27 samples were 

acquired in the range between 10-5 s and 10-3 s. The VES have been collected 

according to a Schlumberger array and deploying a 100-m maximum half-spacing 

of the current electrodes. The observed ρapp and the corresponding error bars for 

TDEM and VES are plotted with red dots in Figure 3.5a-b, respectively. The 

TDEM measurements had the correspondent uncertainties associated to the data, 

while the errors of VES data were not available and hence assumed by adding 

10% of Gaussian noise. 

A preliminary analysis of the data was performed to assess the compatibility 

between the electrical and electromagnetic sounding curves. It is known that VES 

curves may be affected by electrical static shift, or galvanic distortion, that must 

be identified and removed before the joint inversion. We adopted the scaling 

relationship of Meju (2005) to compare, on the one hand, the VES apparent 

resistivity curve as a function of the equivalent TDEM delay time and, on the 

other hand, the TDEM apparent resistivity curve transformed from the signal as a 

function of the delay time. The presence of a vertical displacement between the 

VES and TDEM curves is generally regarded as the proof of static-shift 

occurrence. Conversely, a good parallelism means that the data are compatible 

and suitable for 1D joint inversion (Meju 2005). This preliminary analysis (not 

shown here) proved that there was no vertical displacement of the curves and 

hence the 1D joint optimization could be carried out. 

The maximum depth of investigation granted by the half-spacing of VES 

electrodes was about 60 m. Keeping this value for the validity of the 

interpretation, we extended the maximum depth of the model up to 110 m to 

graphically represent the half-space. The model was discretized into 19 layers, 

whose thickness increased logarithmically with depth. Once the L-curve criterion 

was applied, the optimal Lagrange multiplier was set equal to 0.1 for both TDEM 

and VES components of the objective function. The boundary conditions of the 

solution search space were the minimum and maximum resistivity values of 1 Ωm 

and 500 Ωm, respectively. The MOPSO algorithm ran for 1000 iterations, giving 

in the end the family of the resistivity models, or Pareto-optimal solutions, plotted 

in Figure 3.5c. The solutions drawn from the PF are depicted in green, while the 

blue line corresponds to the solution with the minimum value for both the 

components of the objective function. As visible from Figure 3.5a-b, the fitting 

between the observed ρapp (red dots) and calculated response (blue line) is 

remarkable for both TDEM and VES, respectively. The model displayed in Figure 

3.5c reveals a resistive layer of about 200 Ωm in the shallow subsurface, till 10 m 
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of depth. A conductive region of less than 50 Ωm appears from a depth of about 

20 m to 40 m, while, at higher depths, the resistivity increases to 77 Ωm.  

 

Figure 3.5 The result of TV-MOPSO applied to the Stupinigi data set: observed data (red dots with error 

bars) and predicted apparent resistivity (blue-line-ρapp) for TDEM (a) and VES (b) data; c) the final resistivity 

models derived from the PF (green lines) and the best solution highlighted in blue. 

Figure 3.6a-b shows on separate plots the contextual minimization of the two 

components of the objective function (TDEM and VES, respectively) from the 

first to the last iteration. The red stars correspond to the particles with the 

minimum fj(m), while the black circles to the mean fj(m) among the remaining 

particles, i.e., solutions found. Figure 3.6c displays the two-dimensional space of 

the objective function at the final iteration. The black circles represent the fj(m) of 

the particles forming the swarm, while the red stars highlight the PF, that is, the 

fj(m) of the non-dominated solutions stored in the repository. The PF was assayed 

using three metrics whose equations are provided in Appendix A. The repository 

index (RI) measured the ratio of the non-dominated solutions with respect the 

population size and was 21.5%. The spacing (SP) measured the solution 

distribution throughout the PF and was 0.0041. The deviation angle α between the 

ideal line and the Theil-Sen-regression line over the non-dominated solutions was 

78.9°, as listed in Table 3.1. Figure 3.6d zooms in the PF, that gave the deviation 

angle between the grey-dashed ideal line and the Theil-Sen-regression blue line. 

As fully explained in Appendix A, α > 45° proved data incompatibility (Schnaidt 

et al. 2018) and a slight conflict between TDEM and VES was inferred from the 

asymmetric shape of PF (Dal Moro and Pipan 2007). 
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Figure 3.6 TV-MOPSO applied to the Stupinigi data set: the evolution of the TDEM (a) and VES (b) 

components of the objective function from the first to the last iteration for the best particle (red stars) and the 

remaining ones (black circles); c) the 2D space of the objective function (TDEM and VES components) at the 

last iteration: the red symbols identify the PF and the black circles the objective-function values assumed by 

the other solutions; d) the intersection between the ideal line (grey dashed) and the Theil-Sen regression line 

(blue) or the least-square regression line (black) identifies the deviation angle α. 

The resistivity model obtained using NSGA-III is shown in Figure 3.7c, 

together with the satisfactory match between TDEM and VES observed data and 

computed response of Figure 3.7 a-b, respectively. The model appears 

considerably similar to that of Figure 3.5c. The most apparent correspondences 

are the resistive layer of about 200 Ωm in the shallow subsurface and the 

conductive region (with the minimum of 20 Ωm) from 20 m to 40 m of depth. The 

main difference from Figure 3.5c is the evident similarity among the non-

dominated solutions (green lines of Figure 3.7c), which will be discussed later. 
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Figure 3.7 The result of NSGA-III applied to the Stupinigi data set: observed data (red dots with error bars) 

and predicted apparent resistivity (ρapp) for TDEM (a) and VES (b) data; c) the final resistivity models 

derived from the PF (green lines) and the best solution highlighted in blue. 

The performance of the NSGA-III algorithm can be analyzed from Figure 3.8. 

Figure 3.8a-b shows how, at the end of the optimization, both the TDEM and VES 

components converged toward the minimum value of the objective function, 

which is found by the best individuals of the population (red stars). Like Figure 

3.6a-b, the objective decreased of more than 80% after about 400 iterations, but 

the effective minimization was reached in 1000 iterations. At the end, the 

objective space hosted the PF, which is plotted in Figure 3.8c with red stars that 

are coincident to the black circles because all the population corresponded to non-

dominated solutions, thus giving RI=100%. The Theil-Sen regression line 

identified a deviation angle of 79.2° with the ideal line (Figure 3.8d), in line with 

that of MOPSO (see Table 3.1). The root mean square error normalized with 

respect to the mean value of data (NRMSE) was calculated for the results of 

MOPSO and NSGA-III, as listed in Table 3.1. 

Table 3.1 Analysis of the performance of MOPSO and NSGA-III on the data set from Stupinigi. The rows 

report: the number of iterations run, repository index (RI), spacing (SP), deviation angle (α) between the ideal 

and Theil-Sen regression line, total runtime in hours, normalized root-mean square error (NRMSE) for 

TDEM and VES. 

                              Stupinigi data set 

 MOPSO NSGA-III 

Iterations 1000 1000 

RI (%) 21.5 100 

SP 0.0041 0.0023 

α (°) 78.9 79.2 

Runtime (h) 8.9 8.3 

NRMSE TDEM 0.1611 

 

0.2728 

 

NRMSE VES 0.0681 

 

0.0645 
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Figure 3.8 NSGA-III applied to the Stupinigi data set: the evolution of the TDEM (a) and VES (b) 

components of the objective function from the first to the last iteration for the best individuals (red stars) and 

the remaining ones (black circles); c) the 2D space of the objective function (TDEM and VES components) at 

the last iteration: the red symbols identify the PF, while the black circles the objective-function values 

assumed by the other solutions; d) the intersection between the ideal line (grey dashed) and the Theil-Sen 

regression line (blue) or the least-square regression line (black) identifies the deviation angle α. 

 

3.4.4 Discussion 

The general overview of the results coming from the MOPSO and NSGA-III 

algorithms suggests some preliminary comments. The objective-function 

components were iteratively minimized according to a sharp slope at the early 

stages and, later, a flat trend (see a-b of Figure 3.6 and Figure 3.8). This happened 

because of the initial heterogeneity of solutions and the significant changes from 

one iteration to another given by the k-dependent coefficients of MOPSO and 

mutation and crossover of NSGA-III. After that, the largest part of the 

minimization was overtaken, the models became more homogeneous even though 

a slight diversity was ensured in MOPSO by the accelerations. 
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As regards the MOPSO algorithm applied to the Stupinigi data set, the shape 

of the PF and the high deviation angle in Figure 3.6d suggested data 

incompatibility. It was actually expected, since it is known that a perfect 

compatibility can be found only for synthetic data (Schnaidt et al. 2018) and real-

world problems commonly have conflicting objectives (for example, completing a 

task in the shortest time and in the cheapest way can be a multi-objective problem 

with conflicting objectives!). The incompatibility may be attributed to the 

different depths of investigation: that associated to the VES half-spacing was 

lower than that of TDEM. This difference resulted because TDEM explores 

subsurface volumes enlarging with depth according to the principle of the 

diffusion depth, while VES covers laterally extended volumes. Despite the 

incompatibility, we may conclude that the data were complementary, as evident 

from the separate optimizations supplied in Appendix A (Figure A.8 and Figure 

A.10). TDEM is more sensitive to the conductive region and VES to the 

superficial resistive layers. Our results can be directly compared to those obtained 

from separate Monte Carlo inversions in Piatti et al. (2010). This work was a 

benchmark for our models despite some differences between the two methods. 

TV-MOPSO deployed a random initialization and then the adaptive behavior, 

while the importance sampling method of Piatti et al. (2010) exploited the scale 

property of the apparent resistivity curves to integrate sampling and optimization. 

Figure 3.9 shows the solutions of our joint optimizations with MOPSO (dashed 

line) and NSGA-III (solid line) and the Monte Carlo inversion of TDEM (dotted 

line) from Piatti et al. (2010). This comparison made evidence of the clear 

advantages of MOPSO: the final model was achieved using a single optimizer for 

both the data sets instead of separate inversions. The dotted line in Figure 3.9 

reveals the limit of the single inversion. Given the same forward-modelling code, 

Piatti et al. (2010) performed 2ꞏ105 simulations with a three-layer parametrization 

while MOPSO ran for 1000 iterations with a 19-layer parametrization. The 

samplings and the runtime were less than in Piatti et al. (2010). Our results are 

also supported by the geological information derived from a borehole located very 

close to the investigated site. The stratigraphy is depicted in the right of Figure 3.9 

and is in good agreement with the inversion results. The correspondence between 

the gravel structure and high-resistivity layers in the shallow subsurface is 

remarkable. Our outcomes outperform the result of Piatti et al. (2010), which 

underestimated the superficial resistive structure and overestimated the thickness 

of the clay layer. 
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Figure 3.9 Comparison of the different interpretations of the Stupinigi data set using MOPSO (dashed line), 

NSGA-III (solid line) and Monte Carlo (dotted line) from Piatti et al. (2010). On the right, the stratigraphy 

from a borehole located very close to the sounding. 

3.5. Final remarks 

This chapter described the application of CSI to the geophysical inverse 

problem. Starting from the theoretical background of the PSO algorithm, two 

recent applications of PSO to magnetotellurics were reviewed. In particular, the 

recent implementations of PSO for the 1D MT inverse problem and for the static 

shift correction (Godio and Santilano 2018; Santilano et al. 2018). These 

contributions represented the scientific background of this work thesis in order to 

extend CSI to the 2D MT inverse problem, as will be presented in the next 

chapter.   

In the context of metaheuristic methods for 1D geophysical optimization, a 

new method was developed during the doctorate project: the joint optimization of 

multiple geophysical data sets by means of a pure multi-objective optimizer, the 

multi-objective PSO. The MOPSO algorithm revealed a number of attractive 

features: a single tool to tackle multiple data sets, a set of final models without 

multiple conflicting solutions because of the Pareto optimality and an effective 

insight in the trade-off meaning of the final solutions. In fact, the best trade-off 

solutions and their range were identified as final solutions because of the Pareto 

dominance. The shape of the PF provided insights into the compatibility between 

different geophysical data sets. The comparison of the joint-optimization result 

with stratigraphic information coming from boreholes corroborated our findings.  

Although the long computation time could be seen as a minor drawback, it 

must be borne in mind that the stochastic nature of the algorithm requires many 
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forward-modelling calculations, which result in a significant computational load. 

We managed the computationally demanding nature of MOPSO and NSGA-III 

using the HPC cluster of Politecnico di Torino. However, we are aware that there 

is room for improvement and, given the current striking progress in computational 

efficiency, we are confident this issue will be addressed in future investigations. 

The most important finding to emerge from the analysis was that the 

resistivity models obtained from MOPSO were fully comparable to the ones from 

NSGA-III, thus supporting the validity of the new proposed method. It can be 

concluded that MOPSO outperformed the NSGA-III given the more selective 

filling of the repository and wider variability of the non-dominated solutions (due 

to an effective exploration of the search space). 
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Chapter 4 

Particle swarm optimization of 2D 

MT data 

This chapter presents the first application of CSI to the 2D MT inverse 

problem. The PSO algorithm has been accurately described in the previous 

chapter and is here specifically implemented to properly address the complexity 

of the 2D inverse problem. Particular attention is paid to the selection of the PSO 

variant that enhances the stability and convergence of the solution, that are also 

ensured thanks to a detailed sensitivity analysis on the PSO input arguments. The 

PSO method is firstly validated on two synthetic examples of 2D MT data of 

different complexity. Then the method is extended to real-world data, the 

COPROD2 data set, that is the benchmark to test new 2D MT inversion routines. 

Finally, the chapter deals with the computational aspects of PSO. 

The method and results of this chapter are based on Pace et al. (2019a). 

4.1. Introduction 

The interpretation of MT data requires the solution of the inverse problem, 

which is nonlinear and ill posed (Section 2.6). During the past three decades, 

global search algorithms as inversion methods have become of growing interest 

because the probabilistic approach can be adopted to find the optimum solution, 

which is affected by non-uniqueness. The most important global search 

algorithms generally used for the inversion of geophysical data are simulated 

annealing (SA), the genetic algorithm (GA) (Sen and Stoffa 2013), the ant colony 

algorithm (ACO) (Yuan et al. 2009) and PSO (Shaw and Srivastava 2007). 

The inversion of MT data is usually based on algorithms such as Occam, 

nonlinear conjugate gradient (NLCG), and Gauss-Newton (GN), which are now 

widely recognized as milestones among 2D and 3D MT inversion codes 

(Siripunvaraporn 2012). Even if they ensure convergence in few iterations, they 
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are all based on the local search principle. Consequently, the final solution 

depends on the initial assumption of the starting model. If a homogeneous half-

space is adopted as a starting model, some trials have to be done to define the 

most appropriate value of the electrical resistivity to start with, depending on the 

data set and inversion code (Miensopust et al. 2013). Otherwise, the inversion 

should be initially constrained by an a priori model that can resolve the non-

uniqueness of the solution by using information from well-log data (Yan et al. 

2017a), seismic data (Yan et al. 2017b), MT data (Santilano 2017) or other 

geophysical methods. However, if the a priori knowledge is unreliable or 

unavailable, the initial guess can create a bias in the final result and interpretation 

(Dong and Jones 2018). Global search methods have recently become of pivotal 

importance in MT, with the essential advantage that the inversion is independent 

from the starting model. The advantage of metaheuristic methods, such as GA, SA 

and PSO, is that they are theoretically able to find the global minimum of a 

function as the final solution without being trapped in one of several local minima 

(Section 3.1). An essential literature review regarding global search applications 

to MT has been described in Section 2.6.2.  

PSO applications to MT have been studied by Shaw and Srivastava (2007), 

Godio and Santilano (2018) and Santilano et al. (2018), even though they 

investigated the 1D MT inverse problem. The ensuing sections present a novel 

implementation of the PSO algorithm for the 2D MT inverse problem (Pace et al. 

2019a). A preliminary application of this method to MT and audio-MT synthetic 

data has been presented in Pace et al. (2017). 

The novelty of this study concerns the validation of the PSO method on two 

MT synthetic models of different complexity and, for the first time to our 

knowledge, the application to real-field data, the COPROD2 data set (Jones 

1993a). This data set was made available to the electromagnetic induction 

scientific community with the aim of comparing different techniques for 2D MT 

inversion (Jones 1993b). Since several inversion solutions have been made 

available so far, COPROD2 represents an interesting (and challenging) field data 

set for the application of our method. The PSO source code has been derived from 

Ebbesen et al. (2012), but then modified for the specific MT application. The 

efficiency of the PSO algorithm was improved by applying a recent PSO variant: 

the hierarchical PSO with time-varying acceleration coefficients (HPSO-TVAC) 

(Ratnaweera et al. 2004). Previous works on PSO applied to the geophysical 

inverse problem have always considered constant values for the social and 

cognitive accelerations of equation 3.1 (Shaw and Srivastava 2007; Godio and 

Santilano 2018; Santilano et al. 2018). However, this assumption is not adequate 

for the 2D inverse problem due to its high dimensionality and complex searching 

behavior. A detailed sensitivity analysis was carried out to find the most 

appropriate values of the time-varying accelerations. Their iterative variation 

improved the convergence speed of the algorithm and prevented the solution from 

being trapped in some local minima. The tuning of the social and cognitive 
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accelerations of the particles was hence crucial to finally achieve the convergence 

of the solution. In addition, a new parallelized version of the code was developed 

to be run on a HPC cluster with the aim of overcoming the time-consuming nature 

of PSO, which is computationally demanding, like the other global search 

algorithms.  

4.2. PSO application to 2D MT inverse problem 

4.2.1 The choice of the variant of the PSO algorithm 

As previously explained in Section 3.3, the basic concept of PSO application 

to geophysics is that each particle of the swarm represents a possible solution of 

the MT inverse problem, that is, an electrical-resistivity model. Since the solution 

of the problem is affected by non-uniqueness, the search space of solutions needs 

to be fully explored to find the best model, which fits the observed data. This need 

is fulfilled by the adaptive and swarming behavior of the particles. At the end of 

the swarming, the optimized solution is identified.  

Since the implementation of the PSO algorithm for the 2D MT problem 

required a high number of particles forming the swarm and numerous iterations to 

achieve convergence, the standard release of the code for MATLAB appeared to 

need some modifications. Several variations of the PSO algorithm have been 

proposed to accelerate convergence and avoid a solution trapped in local minima 

(Zhan et al. 2009). The PSO variant that showed improved outcomes, with respect 

to the standard PSO, was the HPSO-TVAC (Ratnaweera et al. 2004). This method 

takes the social and cognitive behavior of particles into account to enhance the 

solution convergence and stability.  

In the 2D MT problem, the particle of the swarm represents a resistivity 

model, which is a vector whose elements are the resistivity values of the 2D mesh 

cells.  Each particle of the swarm changes its position x within the search space by 

means of the velocity vector v. The vectors x and v are updated iteration by 

iteration according to the ruling equations presented in Chapter 3. However, the 

ruling equations of the HPSO-TVAC are slightly different from equations 3.1 and 

3.2 in that the acceleration parameters are k-dependent. For the sake of clarity, the 

equations ruling the PSO of 2D MT data are here reported:  

𝒗𝑖
𝑘+1 = 𝜔𝑘𝒗𝑖

𝑘 + 𝛼1
𝑘𝛾1(𝑷𝑖 − 𝒙𝑖

𝑘) + 𝛼2
𝑘𝛾2(𝑮 − 𝒙𝑖

𝑘)             (  4.1  ) 

𝒙𝑖
𝑘+1 = 𝒙𝑖

𝑘 + 𝒗𝑖
𝑘+1                                     (  4.2  ) 

where the equation terms have been defined in Section 3.2. Equation 4.1 is similar 

to equation 3.10 except for the global best G, that, in single-objective 

optimization, is unique and not k-dependent.  

At the beginning of the optimization (k=0), the velocity vector (𝒗𝑖
0) is zero 

and the position vector (𝒙i
0) is randomly initialized. Then (k >0), the particle 

velocity (𝒗𝑖
𝑘) changes according to three terms: inertia component ωk, cognitive 

memory α1
k and social attraction α2

k. Finally, the particle position 𝒙𝑖
𝑘 is updated. 
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It is evident from equation 4.1 that the acceleration coefficients vary at each 

iteration, according to the HPSO-TVAC approach. It states that, at the beginning 

of the optimization, α1 is set larger than α2 and then they linearly reverse. In this 

way, at the start the diversity of the swarm ensured the search space exploration 

(high α1
k), and, at the end, the exploitation of the best regions and the convergence 

towards the best solution were enabled (high α2
k). The resulting adaptive behavior 

was hence enhanced. In more detail, the cognitive and social accelerations 

changed according to equations 3.11 and 3.12 and obeyed the stability equations 

3.3 and 3.4.  

The best range of the acceleration values ensuring the convergence and 

stability of the PSO algorithm has been tested and identified for several 

benchmark functions (Ratnaweera et al. 2004; Fernández Martínez al. 2010a, 

2010b). Starting from their results, and obeying equations 3.3, 3.4, 3.11, 3.12, we 

performed some tests to assess the influence of several acceleration values on the 

solution of the 2D MT inverse problem. For the cognitive and social accelerations, 

we adopted three different maximum values, 𝛼1
𝑚𝑎𝑥 and 𝛼2

𝑚𝑎𝑥 equal to 1.5, 2, and 

2.75, and three different minimum values, 𝛼1
𝑚𝑖𝑛 and 𝛼2

𝑚𝑖𝑛 equal to 0.25, 0.5, and 

0.75. This sensitivity analysis was applied to an example of 2D MT synthetic 

model, and the results are presented in Section 4.3. 

4.2.2 The objective function 

The final goal of the optimization process is the minimization of a selected 

objective function. The particle with the lowest objective-function value is 

awarded with the global best position G and is going to attract neighbors 

depending on the social acceleration α2. The objective function we adopted was 

the same as that of Everett and Schultz (1993) for the calculation of the data 

misfit, while the Occam-like regularization was added as proposed by deGroot-

Hedlin and Constable (1990). Therefore, for 2D MT data, the function to be 

minimized was 

𝐹(𝒎) = (
1

𝑀
‖

log(𝝆𝑎,𝑜)−log(𝝆𝒂,𝒑)

log(𝜟𝝆𝒂,𝒐)
‖

2

2

+
1

𝑀
‖

𝝋𝒐−𝝋𝒑

𝜟𝝋𝒐
‖

2

2

)

1

2

+ 𝜆𝑥 ‖𝜕𝑥𝒎‖2 + 𝜆𝑧 ‖𝜕𝑧𝒎‖2                                                                           

(  4.3  ) 

where: ρa,o and ρa,p are observed and predicted apparent resistivity, respectively; 

φo and φp are observed and predicted impedance phases, respectively; Δρa,o and 

Δφo are the errors in observed apparent resistivity and phase, respectively; M is 

the number of degrees of freedom, i.e., the number of evaluated data; λx and λz are 

the Lagrange multipliers in the x- and z-direction, respectively, set as the tradeoff 

between the model and data misfit  to regulate the model roughness, and ∂xm and 

∂zm are the first derivatives of the model solution along the x- and z-directions, 

respectively. The solution m is the electrical-resistivity model, i.e., the vector of 

resistivity values of the 2D domain. This vector has as many elements as the grid 

cells of the 2D mesh and is represented by the particles of the swarm. At each 
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iteration, the particle which best minimizes the objective function is assumed as 

the global best solution (G), while the other particles can be either attracted or 

driven away looking for other solutions in the search space. At the end of the 

optimization, the particle with the minimum F(m) is selected as the final solution 

and the majority of the other particles converge to it (swarming behavior). 

Apparent-resistivity values were transformed to their logarithmic values since 

they can cover different orders of magnitude. The first part in the right-hand side 

of equation 4.3 addresses the minimization between observed data, apparent 

resistivity and impedance phase, and predicted data computed by the forward 

modeling. This calculation of the misfit is defined as the square root of the sum of 

two squared Euclidean norms, since ρa and φ can have different orders of 

magnitude and ranges. The forward modeling incorporates the physics of the 

problem and, starting from the assumed model m, predicts the responses ρa, and φ 

for each particle of the swarm. The remaining part of equation 4.3 was added in 

order to minimize the roughness of the model solution m: in both horizontal and 

vertical directions, the differencing operator on m was weighted by the Lagrange 

multiplier λ. As explained in Section 3.3.1, this approach is the Occam-like 

optimization and has been adopted for 1D MT problem in Godio and Santilano 

(2018) and Santilano et al. (2018). The value of λ was appropriately chosen 

following the L-curve criterion of Farquharson and Oldenburg (2004), which 

finds the optimal tradeoff between the misfit of the data and the roughness of the 

final model (i.e., the model norm) in both horizontal and vertical directions. The 

synthetic and real models analyzed in this chapter had their specific optimal value 

of λ. In this way, the minimization of the objective function looks for the 

smoothest model that fits the data, thus ensuring a balance between the data fitting 

and the roughness of the model.  

4.2.3 PSO input arguments 

The main input arguments or tuning parameters of the PSO algorithm are:  

a) The acceleration coefficients α1 and α2 

b) The stopping criterion/criteria adopted to end the iterations (theory in 

Section 3.2) 

c) The swarm size N, i.e., the number of particles forming the swarm 

d) The initialization settings 

The need for the sensitivity analysis on the acceleration coefficients has been 

explained in Section 4.2.1. The identification of the most appropriate values is 

presented in Section 4.3.1.  

The PSO algorithm was iterated enough to guarantee as robust as possible 

minimization of the objective function (equation 4.3). Previous PSO applications 

adopted the maximum number of iterations as the unique stopping criterion 

(Godio and Santilano 2018; Santilano et al. 2018). However, the number of 

iterations is problem dependent and its arbitrary choice can lead to either an 

ending before the solution convergence or unnecessary computation (Engelbrecht 
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2007). In this study, we took into account the trend of the objective function 

during the minimization process. PSO ran as long as the fitness value did not 

minimize for 80 consecutive iterations or, if this condition was not satisfied, up to 

a maximum number of 6000 iterations. Another stopping criterion was the 

minimum root-mean-square error (RMSE) of the data equal to 1 (±10% of 

tolerance), to avoid the fitting of the data below their uncertainty (deGroot-Hedlin 

and Constable 1990). 

The swarm size N influences the way that particles distribute over the search 

space to guarantee the exploration of possible solutions. The swarm size must be 

sufficiently high to ensure a wide initial coverage of the search space, so that the 

particles can efficiently explore all of the regions potentially hosting the global 

minimum. This behavior is missed if the swarm is too small, although giving the 

advantage of unburdening the computational complexity. An interesting analysis 

on the relation between the swarm size and the computational complexity can be 

found in Van den Bergh and Engelbrecht (2001). The number of particles is a 

problem-dependent parameter and it is usually set proportional to the number of 

unknowns, that is, for us, the number of resistivity cells the 2D domain was 

discretized into. The ratio between the problem unknowns and the number of 

particles was suggested to be between 8 and 12 times the unknowns by 

Engelbrecht (2007, p. 241) for GA and Fernández Martínez et al. (2010a) for 

PSO. Starting from these guidelines, we performed a sensitivity analysis to verify 

the influence of this ratio on the solution of the MT inverse problem. The number 

of particles was set at 6, 8, 9, 10 and 12 times the number of unknowns. This 

analysis was carried out on an example of synthetic model and the results are 

shown in the next section. 

The initialization of the optimization is another essential feature of PSO. At 

the beginning, the particle distribution within the search space is, by default, 

completely random and bounded between a minimum and maximum value of 

resistivity. This range is kept constant during the optimization but might vary 

from each layer (or group of layers or cells) to another (Godio and Santilano 

2018). The decision of the lower and upper resistivity boundaries is problem 

dependent and should be coherent with the desired coverage of the search space of 

solutions. We set the boundaries far larger than the limits of the apparent-

resistivity curves. After the random initialization, the adaptive behavior controls 

the position updating and a stochastic perturbation is guaranteed by γ1 and γ2 of 

equation 4.1. Local search algorithms usually deploy a starting model (a 

homogeneous or a priori model) to initialize the geophysical inversion. The a 

priori information is derived from geologic (well-log) data or other geophysical 

methods. Although it is possible to use a priori information to partially influence 

the swarm behavior, the key factor of global search algorithms such as PSO is that 

they do not require a starting model. To demonstrate this, synthetic data were 

optimized starting with and without aprioristic information, which was given to 

the particles in the form of starting positions in the search space. This a priori 
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information was given only to a small amount of particles, 5% of the total, so that 

the initial position of the rest of the swarm was randomly selected and the 

swarming nature of PSO was obeyed. The a priori information were derived from 

the solution PSO gave for the 1D MT inverse problem.  

The PSO flow chart is shown in Figure 4.1. This procedure was repeated three 

times (or “trials”) for each study case, due to the variability on the solution given 

by the random initialization. In fact, the final solutions coming from different 

initial random distributions are quite similar but not identical, as shown in 

Santilano et al. (2018) for 1D MT. The solution with the lowest fitness value was 

then selected as the final optimized model. 

 

Figure 4.1 The PSO algorithm flowchart. P is the local best solution and G is the global best solution. 

4.3. 2D optimization of MT synthetic data 

The theoretical MT data sets were computed from two synthetic models 

depicted in Figure 4.2 and Figure 4.3. They covered a 2D domain 350 km long 

and 250 km deep, in order to take proper boundary conditions into account for the 

MT forward modeling (Simpson and Bahr 2005). Fifteen MT stations were 

centrally placed in the mesh and reciprocally spaced 1.3 km. The mesh 

discretization used for the generation of the synthetic data was different from that 

used for the optimization. Specifically, the latter was slightly coarser than the 

former due to the computational load given by the thousands of forward-modeling 

calculations within the PSO algorithm. The mesh size along the horizontal 

direction has been kept constant between the stations and doubled from the outer 

stations towards the boundaries. Along the vertical direction, the layer size 

increased logarithmically with depth. In the case of a priori given, the 
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optimization ran on a subdomain of about 400 cells, because the a priori 

information regarded only 15 stations. In the case of random initialization, the 

domain extended far away from the stations due to boundary conditions and the 

number of cells increased up to about 900 for synthetic model 1 and about 750 for 

synthetic model 2. 

Both synthetic models simulated the presence of one or more electrically 

conductive features embedded in a resistive body beneath the station sites. The 

first synthetic model is shown in Figure 4.2. Figure 4.2a shows the entire 2D 

mesh, discretized into 33 layers for a total of 957 grid cells. The synthetic model 1 

is quite simple and composed of a host medium of 100 Ωm including a conductive 

body of 10 Ωm from 3 to 5 km depth. Figure 4.2b shows synthetic model 1 as a 

zoom in the center of the whole mesh.  

 

Figure 4.2 Synthetic model 1: a) the 2D mesh is discretized into 33 layers and a total of 957 grid cells. The 

labels S1, …, S15 indicate the location of the 15 MT stations. The dashed area is shown in b) a 10 Ωm 

conductive body is hosted in a 100 Ωm medium. 

Figure 4.3 illustrates synthetic model 2 as a subsection of the true mesh. The 

mesh is discretized into 754 grid cells and, even so, the model space is not under-

sampled. The 100 Ωm resistive medium hosts, from the bottom up, a 10 Ωm body 

4-to-9 km deep on the left side of the mesh, a 10 Ωm body 1-to-2.5 km deep on 

the right side of the mesh, and a 50 Ωm body 0-to-500 m deep under stations S2-

S5.  

The forward modeling which created the synthetic data considered 26 

frequency values between 10-2 and 103 Hz. Synthetic data were corrupted with 

uncorrelated Gaussian noise of 10%. This noise corresponded to Δρa,o and Δφa 

matrices in equation 4.3, which are the normalization terms of the data misfit. At 

each kth iteration, the noise influenced the forward calculated response of the 

corresponding kth model m. The optimization process was constrained by upper 

and lower resistivity boundaries equal to 200 Ωm and 1 Ωm, respectively. 
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This section is divided into two parts. In the first sub-section (4.3.1), the 

Lagrange multiplier of synthetic model 1 is identified and, then, the synthetic 

model 1 is adopted as study case to calibrate two input arguments of PSO, the 

accelerations and the population size. In the second sub-section (4.3.2), the final 

resistivity models are presented for both synthetic model 1 and 2. 

 

Figure 4.3 Synthetic model 2: two 10  Ωm deep anomalies and one superficial 50  Ωm body are embedded in 

a 100  Ωm host medium. The labels S1, S2, …, S15 indicate the 15 MT stations. The zoomed-in box on the 

top shows the 50- Ωm body below S2-S5. 

4.3.1 Calibration of the PSO input arguments 

The sensitivity analysis on the Lagrange multiplier was carried out on 

synthetic model 1 using benchmark values for the accelerations and the 

population size. These values were chosen as benchmarks for the best 

convergence of the solution after Ratnaweera et al. (2004). The calibration of the 

accelerations and population size is presented in the next paragraph because it has 

significance if the most appropriate Lagrange multiplier is adopted. As a 

benchmark, the cognitive acceleration 𝛼1 linearly decreased from 𝛼1
𝑚𝑎𝑥 = 2 to 

𝛼1
𝑚𝑖𝑛 = 0.5 and the social acceleration 𝛼2 linearly increased from 𝛼2

𝑚𝑖𝑛 = 0.5 to 

𝛼2
𝑚𝑎𝑥 = 2. The benchmark population size was about 9 times the number of 

unknowns, that is, given 957 cells, 8600 particles. In order to retrieve the optimal 

value of the Lagrange multiplier λ, we performed a sensitivity analysis on five 

different values in the range between 0.001 and 10. λx and λz were contextually 

analyzed with the same value and the optimal value was chosen as the point of 

maximum curvature in the plot of data misfit versus model norm. Figure 4.4 

shows the data misfit of synthetic model 1 with respect to the model roughness 

along the horizontal (black diamonds) and vertical (red circles) directions. The 

best tradeoff value was equal to 0.1 for both λx and λz. 
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Figure 4.4 L-curve response for synthetic model 1 along the horizontal (black diamonds) and vertical (red 

circles) directions. The tradeoff between data misfit and model norm indicates the best Lagrange multiplier λ 

equal to 0.1. 

The sensitivity analysis on the cognitive and social accelerations was carried 

on for synthetic model 1 once its optimal value of the Lagrange multiplier was 

identified. For this calibration, the population size was fixed to the 

aforementioned benchmark value of 8600 particles and its sensitivity analysis is 

shown in the next paragraph. The three chosen values for the maximum cognitive 

acceleration were 𝛼1
𝑚𝑎𝑥 = 2.75, 2, 1.5 and for the social acceleration 𝛼2

𝑚𝑖𝑛 =

0.25, 0.5, 0.75. These values were selected on the basis of the existing literature 

and equations 3.3 and 3.4. The solution reliability was evaluated via some 

parameters of the optimization process, such as the first stopping criterion 

achieved, the solution clustering, and the trend of the objective function at each 

iteration. The simulations ran until one of the three stopping criteria explained in 

Section 4.2.3 was first fulfilled, that is, when the objective function did not 

significantly decrease and (almost) all the particles converged to a unique position 

in the search space or solutions. Table 4.1 lists the RMSEs and the objective-

function values (F(m)) at the end of the optimization of each test. Our results are 

largely consistent with the acceleration values pointed out in Ratnaweera et al. 

(2004) for other applications. The tests using 𝛼1
𝑘=1 = 2.75  with 𝛼2

𝑘=1 = 0.5 and 

with 𝛼2
𝑘=1 = 0.75 ended before that the RMSE was equal to 1, because the 

objective function did not decrease for 80 consecutive iterations. These values 

prevented an effective minimization, as shown in Figure 4.5, which summarizes 

the optimization performance using 𝛼1
𝑘=1 = 2.75  and 𝛼2

𝑘=1 = 0.5. The four 

subplots show, in order: Figure 4.5a the objective-function values of the best 

particle (red dots) and the mean  values of the rest of the swarm (black dots) from 

the first to the final iteration; Figure 4.5b the objective-function values of the 

whole swarm as a function of the particle positions in two representative 
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dimensions of the search space, i.e., the first two cells of the 2D grid, at the  first 

(grey dots) and final (blue dots) iterations; Figure 4.5c the positions, i.e., the 

resistivity values, of the particles in the first two cells of the 2D grid at the first 

and final iterations (grey dots and  blue dots, respectively); Figure 4.5d the 

histogram containing the  distribution of the objective-function values at the last 

iteration among all the particles (8600 in this case). Figure 4.5 reveals that the 

optimization did not end in a convergence state because at the last iteration the 

minimum F(m) was not reached by the totality of the particles (Figure 4.5a and 

d), and the distribution of the particles in the search space was still scattered (blue 

dots in Figure 4.5b and c).  

 

Figure 4.5 Objective function F(m) and particle positions at the end of the optimization: a) objective-function 

value, iteration after iteration, for the best particle (red dots) and the rest of the swarm (black dots); b) the 

objective-function value as a function of the particle positions in the resistivity (ρ) search space, at the first 

(grey dots) and final (blue dots) iterations; c) plain view of b); d) final distribution of the objective-function 

values among all the particles. 

The other tests in Table 4.1 show an optimal convergence, RMSEs equal to 

about 1 and the minimized F(m) between 1.33 and 1.73. Figure 4.6 plots the 

optimization performance using 𝛼1
𝑘=1 = 2  and 𝛼2

𝑘=1 = 0.5. The minimization of 

the objective function was more effective than that of Figure 4.5 because all the 

particles converged towards a unique position (blue dots in Figure 4.6b-c) with 

the same objective-function value corresponding to the peak in Figure 4.6d. It is 

evident that, iteration by iteration, particles converged from an initial scattered 

distribution to a unique position following the best particle leadership. In this way, 

the objective-function value dropped and the histogram developed a unique peak. 

This sensitivity analysis outlined 𝛼1
max = 2, 𝛼1

min = 0.5, 𝛼2
𝑚𝑖𝑛 = 0.5, and 𝛼2

𝑚𝑎𝑥 = 

2 as optimal acceleration values for a robust minimization of the objective 

function. These accelerations were applied to the optimization of the other MT 

data sets of this thesis. 
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Figure 4.6 Objective function F(m) and particle positions at the end of the optimization: a) objective -

function value, iteration after iteration, for the best particle (red dots) and the rest of the swarm (black dots); 

b) the objective-function value as a function of the particle positions in the resistivity (ρ) search space, at the 

first (grey dots) and final (blue dot) iterations; c) plain view of b) with all particles converged to the last 

position (red circled blue dot); d) final distribution of the objective-function values among all the particles. 

The synthetic model 1 was also a study case for the sensitivity analysis on the 

population size (N), in order to assess the influence of the number of particles on 

both the solution and the runtime. The tests were performed using 5 different 

values, chosen as multiples of the number of unknowns (957): 5700, 7500, 8600, 

9500, 11500 particles, that is, 6, 8, 9, 10, and 12 times the unknowns. The 

accelerations and Lagrange multiplier were set as explained before for the 

corresponding sensitivity analyses. The results are shown in Table 4.2. All the 

tests reached the minimum RMSE of about 0.9, but with different numbers of 

iterations and runtimes because of the different initial distributions of the particles 

in the search space of solutions. The test using the multiple 8 gave the worst result 

because the solution was found after the biggest runtime and the highest number 

of iterations. Differently, the multiple 9 gave the best result, with the minimum 

number of iterations and the second shortest runtime. The ratio of 9, i.e., 8600 

particles for synthetic example 1, ensured the most effective convergence and 

exploration of the solution space, so that it was adopted for the other tests 

presented in this work. 
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Table 4.1 Synthetic data from example 1 were adopted to perform the calibration of the cognitive 

acceleration α1 and social acceleration α2 starting from different values at the first iteration (k =1). The final 

values of the RMSE and objective function F(m) are listed for each test. 

 

 

 𝜶𝟐
𝒌=𝟏 = 𝟎. 𝟐𝟓 𝜶𝟐

𝒌=𝟏 = 𝟎. 𝟓 𝜶𝟐
𝒌=𝟏 = 𝟎. 𝟕𝟓 

𝜶𝟏
𝒌=𝟏 = 𝟐. 𝟕𝟓 

RMSE 0.91 

 

 

2.17 2.18 

F(m) 1.34 2.88 3.03 

𝜶𝟏
𝒌=𝟏 = 𝟐 

RMSE 0.88 0.86 0.91 

F(m) 1.47 1.37 1.33 

𝜶𝟏
𝒌=𝟏 = 𝟏. 𝟓 

RMSE 1.11 1.01 0.87 

F(m) 1.73 1.52 1.44 

44. 
 

Table 4.2 Sensitivity analysis on the population size as PSO input argument. The number of particles was 6, 

8, 9, 10, and 12 times the number of unknowns of the problem (957 grid cells). Results are analyzed in terms 

of: RMSE, total runtime in hours and the maximum number of iterations reached. 

Number of 

particles 

Times 

the unknowns 
RMSE Runtime (h) Iterations 

5700 6 0.88 3.47 166 

7500 8 0.90 7.17 275 

8600 9 0.86 4.60 154 

9500 10 0.88 5.82 176 

11500 12 0.87 6.52 165 

4.3.2 Results from two synthetic examples 

The results of PSO applied to the two synthetic examples in Figure 4.2 and 

Figure 4.3 are presented in this section. The optimization of MT data from the 

synthetic models was performed adopting the optimal values for the Lagrange 

multipliers, accelerations and population size reported in the previous section. The 

results regarding synthetic model 1 are presented in this order: the model obtained 

without external conditioning of the PSO initialization, the model resulting from a 

poorly populated swarm and finally the result after the PSO initialization with a 

priori information given as starting model. The resistivity model obtained without 

a priori information is shown in Figure 4.7. After about 150 iterations (and 4.6 

hours), the RMSE stabilized around the final value of 0.86, while F(m) was 1.37. 

These values are listed in Table 4.3, but they can also be found in Table 4.1 for 

𝛼1
𝑘=1 = 2 and 𝛼2

𝑘=1 = 0.5 and in Table 4.2 for 8600 particles.  The resistivity 

model in Figure 4.7 was largely comparable to the true model in Figure 4.2, since 

the conductive anomaly was correctly detected in both size and resistivity. Figure 

4.8 plots the fitting curves between synthetic and calculated data for both apparent 

resistivity (ρapp) and phase, both TE and TM polarizations. The synthetic data are 

marked as dots for TE, and diamonds for TM, while the PSO-predicted data are 
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plotted as solid lines for TE, and dashed lines for TM. Four stations were selected 

for their different positions in relation to the lateral discontinuities: S1, S4, S7, 

and S11. They show an example of poor (S4 ρapp), average (S11), and good fit 

(S1, and S7). Considering the high number of unknowns and the wide range of 

variation of ρapp, it could be said that these curves are clearly similar to each other 

as also proved by the low RMSE. 

 

 

Figure 4.7 PSO solution for synthetic model 1, after about 150 iterations without a priori initialization for the 

8600 particles of the swarm. Lagrange multiplier λ = 0.1. 
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Figure 4.8 Fitting curves between data of synthetic model 1 and calculated data for apparent resistivity (ρapp) 

and impedance phase for both TE and TM polarizations. The selected MT stations are S1, S4, S7, and S11. 

The synthetic data are marked as dots for TE, and diamonds for TM, while the PSO-predicted data are plotted 

as solid lines for TE, and dashed lines for TM. The optimization was randomly initialized. 

The influence of the population size on the optimization process is presented 

in Table 4.2. Figure 4.9 shows the effect of a poorly populated swarm on the final 

resistivity model. This result followed from a population size of 5700 particles, 

i.e., 6 times the unknowns. The result was similar to the true model in Figure 4.2, 

since the conductive body was identified. However, the output was not completely 

appreciable due to some lateral conductive artefacts that corrupted the 

homogeneous 100-Ωm background. As expected, this outcome was the 

consequence of an ineffective initial distribution of the particles in the search 

space of solutions, and, possibly, of the missing of the global minimum. 
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Figure 4.9 PSO solution for synthetic model 1 using a swarm size of only 5700 particles (6 times the 

unknowns), after about 160 iterations, without a priori initialization, and Lagrange multiplier λ = 0.1. 

The a priori information used to initialize the optimization came from the 

PSO solutions of the 1D inverse problem for the 15 stations of synthetic model 1. 

Only 5% of the particles were initially influenced with this solution. After 250 

iterations, the RMSE reached the minimum threshold, with a corresponding 

objective-function value of 1.4. The final resistivity model is shown in Figure 

4.10 and is comparable with the true model (Figure 4.2), since the conductive 

anomaly was adequately identified. Figure 4.11 plots the fitting curves of the 

selected stations. The PSO-predicted responses were distinctly consistent with the 

synthetic data and the difference with the curves of Figure 4.8 was negligible, 

except for the slight improvement for ρapp of S4 and S11. Table 4.3 lists the details 

regarding the RMSE, the runtime (in hours) and the total number of iterations. 

The optimization of synthetic data from synthetic model 2 (true model in 

Figure 4.3) was performed after the calibration of the input arguments, the 

accelerations, and population size. The identification of the optimal Lagrange 

multiplier λ for synthetic model 2 was inferred from the L-curve response 

presented in Figure 4.12. It refers to the data-misfit trend as a function of the 

horizontal (black diamonds) and vertical (red circles) roughness of synthetic 

model 2. The best tradeoff value was 0.1 for both λx and λz. 
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Figure 4.10 PSO solution for synthetic model 1, after about 250 iterations and with a priori information given 

to 5% of the particles. Lagrange multiplier λ = 0.1. 

 

Figure 4.11 Fitting curves between data of synthetic model 1 and calculated data for apparent resistivity 

(ρapp) and impedance phase for both TE and TM polarizations. The selected MT stations are S1, S4, S7, and 

S11. The synthetic data are marked as dots for TE, and diamonds for TM, while the PSO-predicted data are 

plotted as solid lines for TE, and dashed lines for TM.  The optimization was initialized with a priori 

information. 
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Figure 4.12 L-curve response for synthetic model 2 along horizontal (black diamonds) and vertical (red 

circles) directions. The tradeoff between data misfit and model norm indicates the best Lagrange multiplier λ 

equal to 0.1. 

The best solution for synthetic model 2 without a priori initialization is 

illustrated in Figure 4.13. All the three low-resistivity bodies were accurately 

positioned as can be seen from the zoom-in panel. After 1674 iterations, the 

minimum objective function value was 1.3 and the RMSE was 0.9. Figure 4.14 

plots the comparison between synthetic and calculated data for both apparent 

resistivity (ρapp) and phase (TE and TM). Stations S1, S5, S9, and S12 were 

selected as representative for their poor (S1), average (S5 and S9), and good fit 

(S12). Taking the complexity of this synthetic example into proper account, the 

curves are in good agreement. The runtime is listed in Table 4.3. 
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Figure 4.13 PSO solution for synthetic model 2, after 1674 iterations and without a priori initialization. 

Lagrange multiplier λ = 0.1. 

 

Figure 4.14 Fitting curves between data of synthetic model 2 and calculated data for apparent resistivity 

(ρapp) and impedance phase for both TE and TM polarizations. The selected MT stations are S1, S5, S9, and 

S12. The synthetic data are marked as dots for TE, and diamonds for TM, while the PSO-predicted data are 

plotted as solid lines for TE, and dashed lines for TM.  The optimization was randomly initialized. 

The a priori information was set as previously explained. Once 5% of the 

particles were initially influenced, convergence was reached only after 53 

iterations with a minimum objective-function value of 1.5. Figure 4.15 displays 

the final output. The 10-Ωm lateral bodies were correctly imaged, while the 

superficial 50-Ωm body was scarcely identified. A distinct difference between the 

models with and without a priori is indeed the superficial body, as can be seen in 

the zoom-in panels of Figure 4.13 and Figure 4.15. Figure 4.16 graphically 

demonstrates the low RMSE of 0.99 (Table 4.3). The fitting curves of Figure 4.16 

show a good agreement between synthetic and predicted data and no significant 

improvements compared with Figure 4.14.   
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Figure 4.15 PSO solution for synthetic model 2, after 53 iterations and with a priori information given to 5% 

of the particles. Lagrange multiplier λ = 0.1. 

 

Figure 4.16 Fitting curves between data of synthetic model 2 and calculated data for apparent resistivity 

(ρapp) and impedance phase for both TE and TM polarizations. The selected MT stations are S1, S5, S9, and 

S12. The synthetic data are marked as dots for TE, and diamonds for TM, while the PSO-predicted data are 
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plotted as solid lines for TE, and dashed lines for TM.  The optimization was initialized with a priori 

information. 

Table 4.3 Results of PSO applied to the two synthetic models (with and without a priori initialization) and to 

the COPROD2 data set (without a priori initialization). Results are presented in terms of: RMSE, runtime, 

and number of iterations performed before the optimization stop. The runtime is in hours and refers 

approximately to one single trial. 

Data set Initialization RMSE Runtime (h) Iterations 

Synthetic model 1 
No a priori 0.86 4.6 154 

A priori 0.91 3.17 250 

Synthetic model 2 
No a priori 0.9 28.8 1674 

A priori 0.99 0.55 53 

COPROD2 No a priori 2.42 8 6000 

4.4. 2D optimization of MT field data 

4.4.1 The COPROD2 data set 

The COPROD2 data set collects long-period MT measurements along a 

profile of 35 sites crossing a 2D geoelectrical structure in Saskatchewan and 

Manitoba, Canada (Jones and Savage 1986). The name stands for “Comparison of 

One-dimensional PROfiles from MT Data”, while the “2” refers to the two-

dimensionality, differently from the one-dimensional data set called “COPROD”. 

The most appreciable advantages of this data set are the following: a wide period 

bandwidth (from 2.6·10-3 s to 1.8·103 s), low impedance errors (< 2%), static shift 

corrected, and the possibility of comparing different models from well-established 

inversion algorithms (Jones 1993b).  Our aim is to apply the PSO algorithm to 

detect deep electromagnetic anomalies, while any geological interpretation is 

beyond the scope of this work.  

Since responses at low periods (below 10 s) have been widely recognized as 

one-dimensional, original data were selected from 10.67 s to 910.2 s (deGroot-

Hedlin and Constable 1993; Martì et al. 2009). As proposed in the aforementioned 

studies, a subset of 20 MT stations, from the 8th to the 27th of the original line, was 

chosen to focus only on the center of the 400 km east-west profile. This selection 

was adopted also because these 20 sites have the same number of acquisition 

frequencies (14) within the considered interval. The errors on the data were kept 

as original for both TE and TM apparent resistivity and phase. Figure 4.17 plots 

MT observations and error bars for stations 12, 13, and 14, chosen as 

representative of the subset. The maximum observed error is 1.2 for TE apparent 

resistivity (on logarithmic scale) and 6.92° for TM phase.  
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Figure 4.17  MT responses and error bars for TE and TM modes of three representative stations (12, 13, and 

14) of the COPROD2 data set. They show the high quality of the data. The ρapp stands for the apparent 

resistivity. 

The 2D model was divided into 10 layers, from 1.8 km to 60.5 km of depth, 

and the thickness of each layer increased logarithmically with depth. Along the 

horizontal direction, the mesh was about 200 km long and subdivided into 34 

bricks, one for each station plus others as boundary conditions. The total number 

of cells was 340. Since some structures of the region are known to be highly 

conductive, the lower boundary of the problem was set equal to 0.1 Ωm. 

Literature references also state that superficial sediments are far more conductive 

than the resistive basement. For this reason, the upper boundary of resistivity was 

chosen to be different between the upper and underlying layers. We observed that 

a search space too large for the upper layers would have driven the solution 

toward no convergence and erroneous local minima. In detail, the first two 

superficial layers, namely up to 5 km deep, had 10 Ωm as upper boundary, while, 

the layers below, 1000 Ωm. The population size was equal to 2500 particles, 

proportional to the number of cells. The Lagrange multiplier λ was chosen after a 

sensitivity analysis on five different values in the range between 0.001 and 10. 

The value that coincides with the point of maximum curvature in the plot of data 

misfit versus model norm is 0.1, as shown in Figure 4.18. A priori information 

was not given: the optimization started with a completely random initialization.  
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Figure 4.18 L-curve response for COPROD2 data along the horizontal (black diamonds) and vertical (red 

circles) directions. The tradeoff between data misfit and model norm indicates the best Lagrange multiplier λ 

equal to 0.1. 

4.4.2 Results and discussion 

The final model from COPROD2 data was computed after 6000 iterations and 

is depicted in Figure 4.19. The shallow conductive structure was extensively 

identified, while, at depth from 5 km to the bottom, the background resistivity was 

predominantly 1000 Ωm. The most significant feature of this model was 

represented by the low-resistivity anomalies below the station E3-E4 and 12-11 at 

around 20 to 35 km of depth. Our output is well comparable with the ones 

represented in Figure 4.20 and reported by Jones (1993b).  For ease of 

comparison, both the color scale and the name of the stations of Figure 4.19 were 

plotted as the original ones in Figure 4.20. There was good agreement between 

our model and those called “degroot-2” (deGroot-Hedlin and Constable 1993), 

“rasmussen” (Rasmussen 1993), “wu” (Wu et al. 1993), and “uchida” (Uchida 

1993): low-resistivity anomalies were identified in the same regions. The 

similarity can be explained by the same approach adopted in the Occam’s 

inversion using the smoothing parameter, excepted for “wu”, which used a 

different approach. In detail, the most evident similarity was the conductive 

region in the first 5-7 km of depth. Another similarity regarded the 30-km-deep 

conductor below the stations from E2 to 14 and its extension at greater depths. A 

further correspondence was the interruption of the 1000 Ωm structure below the 

stations from 13 to 11 at about 20 km of depth. Apart from the “wu” model, all 

the analyzed results presented a low-resistivity region (about 100 Ωm) in the 

westernmost part of the model at a depth greater than 30 km. 
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Figure 4.19 Resistivity model of COPROD2 data from PSO computation, after 6000 iterations. Lagrange 

multiplier λ = 0.1. 

Figure 4.21 plots the apparent resistivity (ρapp) and phase at selected periods 

for the 20 stations in the horizontal axis. The observed data are marked with dots 

for TE and diamonds for TM, and predicted responses are plotted with a solid line 

for TE and a dashed line for TM. The RMSE was 2.42, as listed in Table 4.3. The 

final objective-function value was 26.6.   
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Figure 4.20 Reference models of COPROD2 data from Jones (1993b). The 20 stations are sorted and named 

as in Figure 4.19. The color scale for the resistivity (ρ) is consistent with Figure 4.19: white (ρ < 1 Ωm), pink 

(ρ = 1 Ωm), red (ρ = 10 Ωm), yellow (ρ = 100 Ωm) and green (ρ = 1000 Ωm) 
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Figure 4.21 Fitting curves between observed apparent resistivity (ρapp) and phase, and predicted responses at 

selected periods: 56.9 s, 85.3 s, 341.3 s. Observed data include error bars and are marked with dots for TE 

and diamonds for TM. Calculated responses are plotted with solid line for TE and dashed line for TM.  The 

optimization was randomly initialized. 

4.5. Computational aspects 

Since the optimization process implied the computation of several model 

responses, the reliability of the solution was also related to the accuracy of the 

forward modeling. We adopted the 2D MT forward modeling described in 

Candansayar (2008) and references therein. It is based on the finite-difference 

technique, which solves the complex system of magnetotelluric equations for TE 

and TM polarizations. Firstly, the electric and magnetic fields are derived for each 

mesh node and, finally, the apparent resistivity and impedance phase are 

calculated. We adopted this forward-modelling code since it is stable, published, 

and written in MATLAB.  

Addressing the 2D problem made the overall computation time-consuming 

due to several factors. The runtime was affected not only by the number of 
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iterations, but also by the population size and the number of unknowns. The 

number of iterations depends on the complexity of the problem. The population 

size was related to the number of unknowns, i.e., to the desired resolution of the 

2D model. Obviously, a mesh grid unnecessarily dense would have made the 

computation excessively long. All these issues are responsible for a heavy 

computation effort. In order to speed up the computation, we developed and 

applied the parallel computing option for the PSO algorithm. Firstly, we enabled 

the option “UseParallel”, that was potentially provided but not implemented in the 

standard code. Then, the most overloaded “for” loops were set to run as parallel 

for loops, such as, for example, the loop that evaluates the objective function for 

each particle. Finally, the PSO algorithm was enabled to run in parallel on the 

academic cluster by activating the Parallel Computing Toolbox of MATLAB. All 

the simulations were executed on a 24-core node of an HPC cluster for academic 

research. The CPU model of the single node was an Intel Xeon E5-2680 v3 2.50 

GHz (turbo 3.3 GHz) with 128 GB of RAM. When the runs were computed, the 

sustained performance of the cluster was 9.7 TFLOPS. 

The tests on the HPC cluster proved that, when 24 cores were adopted, the 

runtime saving was more than 80% with respect to the use of 4 cores (see Figure 

4.22). A test using the non-parallelized release of the code (one single worker) 

would have been unfeasible in terms of machine working load. Figure 4.22 shows 

the dramatic speedup of PSO computation for a reference simulation of 150 

iterations and 10000 particles. The black lines indicate the running duration in 

hours, while the blue lines the total speedup in percentage. The parallel 

environment “shared” (dotted lines) exploited workers of the same node, while 

“orte” (dashed lines) referred to workers from different machines of the cluster. It 

could be seen that “shared” was a bit faster than “orte”, especially at high 

numbers of cores. 

 

Figure 4.22 Black curves show computation time in hours (left ordinate axis) as a function of the number of 

cores exploited for a reference PSO simulation of 150 iterations with a 10000-particle swarm. The right 

ordinate axis and blue curves refer to the total runtime speedup with exploited cores increasing. Dotted lines 

refers to “shared” parallel environment (workers of a single node), dashed lines to “orte” (workers of different 

nodes). 
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The total runtime of PSO computations is provided in Table 4.3 for each 

study case. These values refer to one single trial, while a total of three trials were 

performed. Runtimes are not directly comparable to each other because the 

stopping criterion was met after different numbers of iterations, that is, less than 

1600 iterations for the synthetic models and 6000 for the real data set. The 

optimization of synthetic examples stopped because the minimum RMSE was 

achieved, while the optimization of the real data stopped because the objective 

function did not minimize for 80 consecutive iterations. The synthetic examples 

were optimized in fewer iterations than those of the real data set, but the runtime 

was longer than that of COPROD2 data set due to the higher number of layers and 

particles. In fact, the big difference between the computation times is explained by 

the low number of layers of the COPROD2 model was discretized (about one-

third of that of the synthetic models). The optimization of synthetic data without a 

priori differed in the number of iterations needed, but the runtimes are quite 

similar, if the proportion between the iterations is taken into account.  The 

optimization of synthetic data had shorter runtimes when a priori initialization 

was given.  

4.6. Discussion 

Our tests on synthetic data demonstrate the reliability of PSO in solving the 

2D inverse problem for MT data sets.  

The choice of the most appropriate values of accelerations and population size 

was crucial for obtaining valid models. The initial sensitivity analysis on the PSO 

input arguments was essential to identify the most appropriate tuning coefficients 

which effectively minimized the objective function and enhanced the solution 

convergence. The calibration of the social and cognitive accelerations led to the 

optimal values of 𝛼1
max = 2, 𝛼1

min = 0.5, 𝛼2
𝑚𝑖𝑛 = 0.5, and 𝛼2

𝑚𝑎𝑥 = 2. Our findings 

are hence in agreement with Ratnaweera et al. (2004). We demonstrated that the 

population size was directly proportional to the total runtime, but, at the same 

time, a poorly populated swarm negatively influenced the model (Figure 4.9). The 

reason for this was that the search space was ineffectively covered by the initial 

random distribution of the particles. We showed that the best ratio between the 

number of unknowns and the number of particles was 9. This outcome is 

significant for our high-dimensional problem because, so far, the literature has 

suggested increasing the number of particles up to 12 times the number of 

unknowns. The conclusion of our analysis slightly modifies this ratio, with the 

advantage of avoiding extra computational load.   

We showed that the application of PSO did not require an initial assumption 

about the solution (i.e., a priori information). At the same time, we introduced a 

novel and valid tool to potentially communicate external or additional information 

to the swarm, in terms of the initial position of particles within the search space. 

Our findings showed that, if the geological or geophysical information is reliable 
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(e.g., from wells, seismic reflectors and so on), it influences the behavior of 

particles at the beginning of the optimization. This kind of initialization resulted 

in shorter runtimes (see Table 4.3) because the swarm did not waste time 

searching for local minima, which were already given from the beginning. On the 

other hand, using default random initialization, the results of synthetic models 

proved that there was no requirement for a priori initialization, since the final 

resistivity model was perfectly comparable with the original synthetic model. 

Moreover, there was high solution quality, despite two factors: Gaussian noise 

disturbing the data and the presence of equivalent solutions in the MT inverse 

problem. In fact, the conductive anomalies embedded in the resistive host medium 

were accurately identified in terms of size and resistivity values. RMSEs were 

around 1 and, interestingly quite similar with and without a priori initialization. 

Another element confirming the PSO independence  from the starting model is the 

comparison of the fitting curves in Figure 4.8 and Figure 4.11 for synthetic model 

1, and Figure 4.14 and Figure 4.16 for synthetic model 2. These plots proved that 

there were not substantial differences between calculated responses with and 

without a priori, even considering the stations above the lateral discontinuities (S4 

and S11 for synthetic model 1 and S5 and S9 for synthetic model 2).   

A significant result arose from the application of PSO to real 2D data, the 

COPROD2 data set. As regards the problem settings, the uppermost layers of the 

2D mesh had different boundary conditions with respect to the underlying layers, 

due to the complexity of the investigated area. Many applications of global search 

algorithms to geophysics have considered different resistivity boundaries between 

one layer (or group of layers) and another, so that each unknown of the problem 

can independently be bounded within its search space (Godio and Santilano 

2018). The setting of the boundary conditions is not a trivial step for the 

deterministic inversion either, because it implies full comprehension of the 

problem and some insight into the possible solution. For the optimization of the 

COPROD2 data set, preliminary information from the geology of the area 

facilitated the definition of a wide interval of resistivity values within which the 

solution could be searched. We applied this approach in order to enhance the 

convergence of the solution. This option distinguished the solution space of upper 

layers from that of deep layers. The final model had a mean resistivity of 6 Ωm in 

the two upper layers, thus confirming the presence of superficial sediments. At a 

depth of about 25 km, a conductive region breaks the 1000 Ωm background, with 

a minimum value of 1.2 Ωm. The final RMSE was slightly bigger than that of the 

synthetic examples and negatively affected by the mismatch of data at long 

periods (Figure 4.21). This was unexpected, given the satisfactory behavior of the  

fitting curves of the synthetic examples in Figure 4.8 and Figure 4.14. It would 

have been interesting to quantitatively compare our result with the model obtained 

by Everett and Schultz (1993) using GA, which is a global search algorithm too. 

Unfortunately, their RMS Misfit of 1.48 is not directly comparable with our value 

of 2.42 because there were substantial differences in the method, such as: period 
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range, number of stations, mesh discretization, stopping criteria for iterations. 

Interestingly, the adoption of Occam-like optimization may provide a more 

effective solution of the resistivity distribution with respect to the GA.  It has also 

been proved in literature that PSO ensures a higher convergence with respect to 

the other global search algorithms (Yuan et al. 2009; Fernández Martínez et al. 

2010a). The application to field data represents a new encouraging approach for 

their optimization by means of computational swarm intelligence. 

As regards the optimizations run without a priori initialization, the runtimes of 

the different data sets were not straightforwardly comparable due to the different 

number of iterations required to achieve convergence. The COPROD2 

optimization needed 6000 iterations to stop at RMSE = 2.42, while the synthetic 

examples reached RMSE=1 in fewer iterations but taking a runtime proportionally 

longer than that for the real-data optimization. This is mainly explained by the 

high level of mesh discretization for the synthetic models, about 800 cells, 

compared to about 340 cells for the domain chosen for real-data interpretation. 

The more the unknowns, the greater the swarm size and hence the computation 

time.  

The computationally demanding nature of the PSO algorithm was actually 

expected due to the high number of iterations, population size and cells 

assembling the mesh. The standard release of the code was not effective in 

addressing the 2D inverse problem, therefore we applied some modifications to 

develop a parallelized version of PSO. The tests performed on a HPC cluster 

pointed out the capability of our version of PSO to speed up the computation by 

more than 4 times with respect to running it on a simple machine of 4 cores. The 

decrease of the runtime allowed us to efficiently perform several trials of the 

optimization process, starting from different random distributions of the swarm. 

The final objective-function value of the synthetic examples was lower than that 

of the real data due to the peculiarity of the data sets.  

The choice of the optimal Lagrangian multiplier may be seen as a 

computational cost, because the sensitivity analysis of different values of λ was 

performed. This analysis could represent a slight limitation of the presented 

method, since PSO ran for each investigated value of λ. However, once the 

balance was found, we were able to deploy the model with the adequate level of 

smoothing. 

Although we reduced the computation time, it remained not comparable with 

that of deterministic algorithms. PSO applied to the 2D inverse problem is 

relatively time-consuming if clusters cannot be exploited and densely discretized 

meshes are adopted. However, the parallelization of the code has the potential of 

making the PSO computation reasonable. Moreover, high computing capacity has 

become largely available and global search algorithms, despite the skeptical view 

of the past, can now be considered worthy of attention. We do not see the long 

runtime as a scientific barrier for the application of PSO to high-dimensional 

geophysical problems. The computational load was balanced by the advantages of 
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this metaheuristic method, namely, the independence from the choice of the 

starting model and the solution driven by the evolutionary approach. 

4.7. Final remarks 

The PSO algorithm has proven to be a valid method to solve the 2D inverse 

problem for MT data, for both synthetic and field (COPROD2) data sets. This 

work extended the application of PSO to MT inversion from the one-dimensional 

problem, already visited in the literature, to the 2D problem. The stochastic nature 

of PSO and the combination of exploration and exploitation behaviors played a 

key role in finding the optimized solution within the search space, which was 

composed of all the possible solutions of resistivity models.  

The standard release of the code was easily implemented for our specific 

application. We observed striking improvements moving from standard PSO to 

hierarchical PSO with time-varying acceleration coefficients (HPSO-TVAC). This 

issue has not been addressed in previous research on PSO applied to geophysics, 

but was crucial in the optimization of 2D MT data. In fact, thanks to time-varying 

acceleration coefficients, the optimization ended with true convergence and 

stability. We carried out a detailed sensitivity analysis on some input parameters 

of the PSO algorithm due to their direct influence on the stability and convergence 

of the solution. The social and cognitive accelerations and the population size 

were investigated to retrieve their optimal values and analyze their effect on both 

the final resistivity models and total runtime.  

The complexity of the 2D problem had a direct influence on the computation 

time, which we reduced with the parallelization of the code. Running PSO on a 

High Performance Computing (HPC) cluster resulted in runtime savings of about 

80%.  

We first applied PSO to 2D MT synthetic data, in order to validate the 

method. The initialization of the optimization was purely random by default, but 

we also tried to influence it with a starting model derived from PSO solutions of 

the 1D problem. In this case, the optimization was externally but not totally 

influenced, because only a small portion of the swarm was influenced. We proved 

that a priori information as the starting model can be avoided. The resistivity 

models which did not receive the a priori initialization were in line with the true 

synthetic models. Then, PSO was applied to the field data set COPROD2, using a 

random initialization. The optimization of COPROD2 data produced a valid 

resistivity model, largely comparable with results from existing research.  

The most important conclusions of this work are that PSO can be successfully 

applied to the 2D MT inverse problem and the a priori starting model is not 

required for the achievement of valid models. Our results are encouraging enough 

to extend the application of evolutionary algorithms to other geophysical inverse 

problems, bearing in mind that the high dimensionality of the problem implies 

runtimes longer than those of local search methods.  
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The next chapters present the 2D PSO of MT data from the geothermal area 

of Travale (Italy), where the independence of the inversion method from the 

starting model could be crucial due to the geological complexity of the area and 

the uncertainty of external information, useful to potentially constraint the 

inversion. 
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Chapter 5 

The MT data set of the Travale 

geothermal field (Italy) 

This chapter deals with the description of the Larderello-Travale geothermal 

area, located in southern Tuscany, Italy. After an updated review on the 

geothermal prominence of the whole area, a detailed geological and geophysical 

framework is depicted regarding only the Travale geothermal system. Then, the 

MT field data set is accurately presented and analyzed in terms of geoelectrical 

dimensionality, phase tensor and strike direction. Finally, the static shift occurring 

for some MT apparent-resistivity curves is corrected by means of TDEM data, 

which were acquired during a recent field survey. The research questions 

emerging from this chapter are going to be clarified thanks to new MT inversion 

results presented in Chapters 6 and 7 as 2D and 3D models, respectively.  

5.1. Introduction 

5.1.1 General overview of the study area 

The Larderello-Travale geothermal area is located in southern Tuscany 

(central Italy) and represents the world-renowned place where the geothermal 

exploitation is said to be born.  The geothermal fields of Larderello and Travale 

cover an area of 400 km2, as shown in Figure 5.1. 

In this area, the natural geothermal manifestations have been documented 

since the time of Romans and hot springs and mineral deposits have been 

exploited along the centuries. The first case of deployment of geothermal energy 

for industrial uses happened in 1818, when the French merchant Francesco de 

Larderel exploited the geothermal fumaroles to extract the boric acid. During the 

XIX century, the town of Larderello grew thanks to the economic growth around 

the industrial plants for boric-acid extraction. The large occurrence of natural 
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geothermal manifestations (fumaroles and hot springs) induced some scientists 

and innovators of the time to experiment pioneering utilization of this energy. In 

1904, prince Ginori Conti succeeded in the famous five-lamps experiment, that 

consisted in steam-energy conversion into electrical power using the thermal 

energy of the hydrothermal fluids from a well drilled in Larderello (Figure 5.2 

left). In 1913, the first geothermal power plant started operating under the name of 

“Larderello 1” (Figure 5.2 right). From then on, geothermal power production 

spread all over the world. 

 

Figure 5.1 The geothermal area of Larderello-Travale is located in southern Tuscany, Italy (source: Manzella 

et al. 2018) 

 

Figure 5.2 left) the experiment of Prince Ginori Conti in 1913: the geothermal energy was converted to 

switch on five bulb lamps (source https://www.unionegeotermica.it/esperimento_ginori_conti.asp); right) the 

first electric power plant “Larderello 1” started operating in 1913 (courtesy of Alessandro Lenzi. Presented 

during the GEO200 conference in Pisa, May 2018) 

Nowadays, the Larderello-Travale geothermal field is one of the most 

productive geothermal system in the world with an installed geothermal electric 

capacity of 916 MWe and a yearly geothermal electricity generation of 6064 GWh 

(Manzella et al. 2019). According the last World Geothermal Congress in 2015, 

Italy is the sixth in the world and second in Europe for installed capacity (EGEC 

https://www.unionegeotermica.it/esperimento_ginori_conti.asp
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Geothermal Market Report 2018). In the Larderello-Travale geothermal field 

there are today 29 geothermal plants (Enel Green Power annual report 2018), 

providing 2.0% of the Italian electric power need and 30% of the electric need in 

Tuscany (TERNA 2016; Manzella et al. 2019). Enel Green Power is the only 

company producing geo-electricity in Italy (Figure 5.3). To date, about 230 

production wells extract hot steam within a temperature range of 150-270°C and a 

pressure range of 0.2-2 MPa (Conti et al. 2016).   

 

Figure 5.3 Pictures of the Larderello-Travale geothermal area taken during the 2019 TDEM geophysical 

survey. 

The Larderello-Travale geothermal area represents a milestone for the 

exploitation of geothermal resources for electric power production. More in 

general, it embodies a virtuous example of renewable energy in the contest of 

recent environment-related issues aiming at fulfilling the Sustainable 

Development Goals (SDGs) listed by the United Nation General Assembly in 

2015. In fact, the geothermal resources are entailed in SDG 7 that prescribes to 

“ensure access to affordable, reliable, sustainable and modern energy for all”. The 

mitigation of climate change, limitation of the world-temperature growth and de-

carbonization were signed in 2015 as urgent actions in the famous global 

agreement after the Conference of the Parties 21 of Paris.  

5.1.2 Geothermal background of the Larderello-Travale 

geothermal system 

Geothermal resources provide the thermal energy generated and stored in the 

Earth’s interior. This energy can arise in spectacular forms like volcanoes, geysers 

and fumaroles or can be stored in the ground and aquifers. The geothermal fluid is 

extracted from the underground to the surface for direct or indirect utilization. 

Depending on the fluid temperature and extraction depth, geothermal resources 

are divided into: 

- High temperature fluids (more than 150 °C), which are accessible only by 

means of wells drilled up to 4 km of depth at very specific locations, such 

as Larderello-Travale in Italy, the Geysers in USA and Cerro Prieto in 

Mexico 
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- Medium temperature fluids (between 90°C and 150°C), which are useful 

for district heating and industrial processes 

- Low temperature fluids (below 90 °C), which are stored in the shallow 

subsurface and exploited by means of ground-source or ground-water heat 

pumps for aquaculture, thermal bathing, greenhouse heating or district 

heating (Piga, Casasso, Pace et al. 2017). 

However, this classification based only on the temperature of the geothermal 

fluid has been regarded simplistic because every geothermal system has its 

peculiar geological, petrophysical and thermodynamic conditions (Santilano et al. 

2015a). Following the research of Moeck et al. (2014), the geothermal systems 

can be classified according to the concept of “geothermal play”, based on 

geological and geodynamical features. The Larderello-Travale geothermal system 

has been classified as a convective intrusive geothermal play, meaning that the 

heat transfer is based on convection of the hydrothermal fluid whose high 

temperature results from a plutonic heat source (Santilano et al. 2015a). 

Another classification of the geothermal systems is between conventional and 

unconventional geothermal resources, depending on the possibility of exploiting 

them with or without consolidated technology, respectively. Conventional 

geothermal systems, also called hydrothermal systems, are characterized by 

convective heat transfer of hot fluids whose extraction is economically and 

technologically feasible. The conventional hydrothermal system of Larderello-

Travale has been exploited since more than 100 years. The fundamental elements 

that characterize a hydrothermal system are depicted in Figure 5.4 and are  

- the heat source, represented by an igneous intrusion or magmatic chamber  

- the reservoir, a volume of hot permeable rocks that can be vapor-

dominated or water-dominated 

- the heat-carrier fluid, that is water in the liquid or vapor phase (depending 

on its temperature and pressure) containing usually chemicals and gases 

such as CO2, H2S, etc. 

- the impermeable cap rock, that prevents the cooling of the system 

- the recharge area, through which the meteoric water replaces the fluids 

naturally flowed out or extracted by boreholes. 

In the Larderello-Travale geothermal system, unconventional geothermal 

resources are expected at 2-5 km of depth, where supercritical fluids at high 

temperature can exist related to igneous intrusions (IMAGE project - EU FP7; 

DESCRAMBLE project – EU H2020). The deep supercritical conditions are 

currently under exploration in the Larderello field, in the framework of the 

pioneering deep-drilling project DESCRAMBLE. The first evidence of 

supercritical conditions resulted in 2017 from the drilling test in Venelle-2 well, 

where at a depth of 2.9 km 510 °C and 300 bar were measured. To preserve safety 

conditions, the experiment was suspended due to the very high temperature and 

http://www.image-fp7.fr/Pages/default.aspx
http://www.descramble-h2020.eu/
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the unexpected behavior of drilling mud. That drilling did not prove the existence 

of a reservoir and supercritical fluids, but introduced new open questions for 

future investigations (Bertani et al. 2018).  

 

Figure 5.4 Schematic conceptual model of a typical geothermal system (Dickson and Fanelli 2004) 

After the first geothermal plant settled in 1913, two different periods of 

industrial development can be identified in the geothermal exploitation of the 

Larderello-Travale field. The first phase, from the 1930s to the mid-1970s, 

exploited the shallow carbonate reservoir. After deep drilling projects in the ‘80s, 

the gross electricity generation increased thanks to a new deep target located in 

the crystalline reservoir.  

To underline the extraordinary conditions of the Larderello-Travale system, it 

is worth noting the geothermal gradient and the heat flow. While the average 

continental geothermal gradient is 30°C/km, in the Larderello-Travale system it 

can reach 100 °C/km (as observed in Venelle-2 well) and peaks of 300 °C/km 

(Bertani et al. 2018; Romagnoli et al. 2010). Anomalous high values of heat flow 

occur in southern Tuscany, with a regional background of 150-200 mW/m2 

measured at surface (Della Vedova et al. 2008). Heat flow maxima are correlated 

with normal faults and deep shear zones and rise by up to 1000 mW/m2 in the 

Larderello area and to 500 mW/m2 in the Travale area (Bellani et al. 2004).  

Even though the Larderello-Travale geothermal area is regarded as a whole 

region, several differences occur between the Larderello and Travale sectors. The 

geothermal field has been extensively studied since more than 200 years from 

both the scientific community and industrial companies. Therefore, a number of 

works have been published and also updated with new findings. The knowledge 

of this geothermal field covers the scientific subjects of geology, geophysics, 

tectonics, geochemistry, mineralogy, geodynamics, petro-physics, hydrogeology 

and thermodynamics. As a consequence, it is not an easy task to grasp this 
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dissemination of information. Moreover, despite rigorous research, the geothermal 

system appears so complex that some of its geological, thermodynamic, petro-

physical and chemical features are still under investigation and debate (Gola et al. 

2017).  

5.1.3 The Travale geothermal area 

The Travale-Radicondoli geothermal area (hereafter only “Travale”) is about 

50 km2 large south-east of Larderello, that is about 15 km far from the town of 

Travale (Figure 5.5). In 2018, 38 wells and 8 plants were in production with an 

installed capacity of 200 MWe (Manzella et al. 2019). The geothermal area 

extends over the municipalities of Montieri, Radicondoli and Chiusdino, 

belonging to the provinces of Grosseto and Siena (Figure 5.5). 

The geothermal exploration of the last decade has pointed out two important 

features of the Travale system: 1) the two distinct shallow reservoirs of Larderello 

and Travale represent the “outcrop” of a unique deep geothermal reservoir that is 

3-4 km deep and 400 km2 large; 2) productive layers have been observed at a 

depth of about 4 km (Conti et al. 2016). More in detail, from 3 to 4 km of depth, 

the measured temperature is 300-350 °C and the pressure is 6-7 MPa (Bertani et 

al. 2005; Romagnoli et al. 2010; Spichak and Zakharova 2014; Manzella et al 

2019). 3D numerical modeling of temperature and pressure was investigated in 

order to explain the nature of the heat source of the reservoir, the production 

mechanism of superheated steam and the field sustainability (Romagnoli et al. 

2010).  

The two following sections present a systematic overview of the geological 

framework and the geophysical knowledge of the Travale geothermal field. 
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Figure 5.5 The Travale geothermal area (red box) is located in southern Tuscany, central Italy. The map in 

the background is a digital terrain model with cell size of 10 meters (extracted from Geoportale Geoscopio 

web site). 

5.2. Geological framework of the Travale geothermal 

system 

Two different reservoirs characterize the Travale geothermal field (Bertani et 

al. 2005; Bertini et al. 2005; Romagnoli et al. 2010). The shallow reservoir is 

hosted in the evaporite-carbonate units with an average temperature of around 

200°C. It is characterized by an upper reservoir (called “horst”) at a depth of 600-

800 m exploited since the 70s and an intermediate reservoir (called “graben”) at a 

depth of 1300-2500 m whose exploration started in the 80s. The deep reservoir is 

hosted in the metamorphic basement and Neogene granitoids at a depth of about 

2500-4000 m.  

The geological framework of the Travale area is well documented in Bellani 

et al. (2004), Bertini et al. (2006), Romagnoli et al. (2010) and Casini et al. 

(2010). Figure 5.6 reports the geology of the Travale geothermal region derived 

from the open-access webgis database of the Tuscan Region (Geoportale 

Geoscopio web site). The superficial outcrops are composed of: 1) Quaternary 

deposits, 2) Neoautochthonous terrigenous deposits (or Neogene sediments), 3) 

Ligurian and sub-ligurian flysch complex, 4a) Tuscan nappe sediments, 4b) 

Tuscan nappe basal evaporites. The outcropping carbonate formations represent 

the recharge area of the shallow reservoir, which is cooled down and hence less 

exploited than the deep reservoir. The thick black curves in the left side of Figure 

5.6 are the main faults and normal faults, as documented in the Geoportale 

Geoscopio web site. The black dots are labeled with the name of the MT sites 

examined in this thesis, as described in more detail in Section 5.4.  

The right-side of Figure 5.6 shows the geologic cross-section of the Travale 

area reconstructed by using data from deep wells and geophysical surveys (Bertini 

et al. 2006; Romagnoli et al. 2010). The structural-stratigraphic conceptual model 

is depicted in Figure 5.7 and outlines the following geological units: 1) 

Quaternary deposits, 2) Neoautochthonous terrigenous deposits (Lower Pliocene – 

Upper Miocene), 3) Ligurian and sub-ligurian flysch complex (Jurassic – Eocene), 

4) Tuscan nappe (Triassic - Lower Miocene) including limestone, carbonate and 

anhydrite rocks, 5) Tectonic wedge complex (Paleozoic-Triassic), 6) phyllitic and 

quartzitic complex and micaschist complex, 7) gneiss complex, 8) Pliocene 

granite and Quaternary granite. The shallow geothermal reservoir is hosted in the 

carbonate units 4 and 5, while the deep metamorphic reservoir in units 6, 7 and 8. 

The reservoir located in the metamorphic basement is characterized by a high 

degree of heterogeneity and anisotropy and by the presence of superheated steam. 

The intrusive complex represents the heat source of the long-living geothermal 

system (Gola et al. 2017).  

http://www502.regione.toscana.it/geoscopio/cartoteca.html
http://www502.regione.toscana.it/geoscopio/cartoteca.html
http://www502.regione.toscana.it/geoscopio/cartoteca.html
http://www502.regione.toscana.it/geoscopio/cartoteca.html
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Figure 5.6 left) Geological map of the area of study: 1) Quaternary deposits, 2) Neoautochthonous 

terrigenous deposits, 3) Ligurian and sub-ligurian flysch complex, 4a) Tuscan nappe sediments, 4b) Tuscan 

nappe basal evaporites. The black dots are the 51 MT sites included in 3D inversion (Chapter 7). The thick 

black curves are the main faults and normal faults (source: Geoportale Geoscopio web site). The red-dashed 

A-A’ profile tracks the geological cross-section reported in the right (modified from Romagnoli et al. 2010); 

right): 5) phyllitic and quartzitic complex, 6) micaschist complex, 7) gneiss complex, 8) Pliocene granite 

(yellow) and Quaternary granite (red). The red lines in the cross-section are the isotherms. The K-horizon is 

highlighted with the dashed-yellow line. 

 

Figure 5.7 Schematic sketch of the tectono-stratigraphic and hydrogeological complexes of Larderello-

Travale geothermal area (modified from Gola et al. 2017) 

5.3. Geophysical knowledge of the Travale geothermal 

system 

5.3.1 Previous MT studies 

Magnetotellurics is one of the most effective geophysical techniques for the 

investigation of deep geothermal systems because it can image the electrical-

http://www502.regione.toscana.it/geoscopio/cartoteca.html
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resistivity distribution up to the depth corresponding to that of the geothermal 

targets (Pellerin et al. 1996; Spichak and Manzella 2009; Muñoz 2014). 

The MT study of the Travale area started in the 80s, when a high conductive 

and fractured basement was recognized (Duprat and Gole, 1985; Hutton, 1985; 

Schwarz et al., 1985). From 1990 to 2009 a number of MT surveys have been 

carried out in the Travale geothermal field with the aim of industrial exploration 

or scientific research (Fiordelisi et al. 1998; Manzella 2004; Manzella et al. 2006; 

Santilano 2017; Santilano et al. 2018). Travale was also investigated as part of the 

European projects INTAS and I-GET (Cei et al. 2009; Manzella et al. 2010; 

Spichak and Zakharova 2014).  

The collection of the “vintage” MT data is composed of three data sets, as 

shown in Figure 5.8. The survey acquired in 1992 is depicted with black-labeled 

squares and covers both the Larderello and Travale areas. The profile composed 

of 13 sites from LS3 to LS16 is investigated in Chapter 6 with more detail. The 

surveys acquired in 2004 and 2006-07 are depicted in blue-labeled circles (55 

sites) and red-labeled triangles (19 sites), respectively. The MT data acquired in 

Travale have been interpreted using both 1D optimization and 2D inversion 

(Manzella et al. 2006; Santilano 2017). Therefore, both 2D MT optimization 

presented in Chapter 4 and the most recent methods for 3D MT inversion remain 

unexplored so far.  

 

Figure 5.8 The collection of MT data sets in the Larderello-Travale area. The data set acquired in 1992 

(LN13, …, LN18; LS3, …, LS16) is marked with black-labeled squares. The data set acquired in 2004 (55 

sites) is marked with blue-labeled circles. The data set acquired in 2006-07 (19 sites) is marked with red-

labeled triangles. The main towns of Larderello, Lago Boracifero and Travale are marked with white circles. 

The geothermal wells “MN1” and “Radicondoli7bis” are marked with yellow stars. This map was created by 

reading a georeferenced image within Matlab Mapping Toolbox by Mathworks. 

A previous MT study of the Travale geothermal system converged in the 2D 

resistivity model of Figure 5.9 (Manzella et al. 2006; Manzella et al. 2010). The 

MT profile had an orientation SW-NE crossing sites k1, k2, k3, k4, k5, j0, g2, f4, 

e4, c7 and a8 (see Figure 5.8 for their location). 2D inversion has been performed 

following the algorithm of Rodi and Mackie (2001) and has adopted as starting 

model the a priori geological section of the profile. The 2D model in Figure 5.9 
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reveals a strong heterogeneity of resistivity distribution. The inversion result 

presents a highly conductive shallow subsurface and a large resistive body 

(around 800 Ωm) from 3 to 6 km of depth. This deep resistive body overlies the 

K-horizon, a seismic reflector whose importance is specified in the following 

section. The resistivity anomaly above the deep resistivity body is geometrically 

complex and is in contrast with the presence of super-heated steam and with the 

lithology registered from well-logs (Manzella et al. 2006, 2010). This reduction in 

resistivity was partly explained by the phyllosilicate abundances, after analyzing 

the average mineral content of the samples belonging to the same lithological unit 

(Manzella et al. 2010). Another possible interpretation was the occurrence of 

adsorbed or interstitial water in the reservoir. The low resistive response below 6 

km of depth was related to the possible occurrence of partial melt intrusions 

(Manzella et al. 2010).   

The main issues emerging from this investigation are 1) the possible causes of 

the resistivity anomaly in the steam-dominated Travale reservoir hosted in 

crystalline rocks and 2) the correlation between the deep conductive region 

(below 7 km) and the heat source of the system interpreted as igneous and melted 

intrusions.  

Unfortunately, the works of Manzella et al. (2006; 2010) did not present any 

chance to appreciate the data fitting resulting from the resistivity models. Only the 

RMSE corresponding to the profile in Figure 5.9 was given. The interpretation in 

Manzella et al. (2010) led to a resistivity model (not reported here) with an RMSE 

of 6, an error floor of 2% for apparent resistivity and of 1% for phase. For this 

reason, and in the light of the most recent inversion techniques, this profile needs 

to be re-examined. The 2D stochastic modelling is presented in Chapter 6 and 3D 

inversion in Chapter 7.  
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Figure 5.9 The 2D resistivity model of Travale after 2D NLCG inversion of the profile acquired in 2004 

(from Manzella et al. 2006) 

5.3.2 Seismic methods 

A schematic conceptual model of the Travale geothermal system is shown in 

Figure 5.10 (from Bertini et al. 2005).  

From seismic reflection data, two seismic reflectors have been detected in the 

deep structure of the Travale field (Bertini et al. 2006; Casini et al. 2010; De 

Franco et al. 2019). The shallow marker is referred to as “H-horizon” and is a 

discontinuous high-amplitude reflector. It is located in the metamorphic reservoir 

at a depth of 2.5-4 km, above the Pliocene granitoids. In Travale, this reflector 

represents the actual mining target and in fact all the drilled wells encountering 

the H-horizon are productive (Casini et al. 2010).  The H-horizon could be 

interpreted as the metamorphic contact aureole of the old (2-3 My) granitic 

intrusion (Bertani et al. 2005). The deep marker “K-horizon” is a high-amplitude 

discontinuous reflector showing local bright spot features at a range of depths 

between 3 km (in Larderello) and 8 km (in Travale). This horizon occurs at the 

top of the Quaternary granite intrusions and could be interpreted as a metamorphic 

contact aureole of the Quaternary granitic intrusion (Bertini et al. 2006; Bertani et 

al. 2018). The K-horizon has been often associated to the 400-450 °C isotherm 

and to the occurrence of supercritical fluids, but a recent deep-drilling revealed 

dry condition and about 510 °C in proximity of the Larderello area (Bertani et al. 

2018). Its origin and nature are still under debate (Vanorio et al. 2004; De Matteis 

et al. 2008; Sani et al 2016; Gola et al. 2017; De Franco et al. 2019). 
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Figure 5.10 Schematic structural model of the Travale geothermal field (from Bertini et al. 2005). This 

section is directed NW-SE.  

An interesting correlation has been pointed out between the H-horizon 

inferred from 2D seismic modeling and the productive levels of the drilled wells 

(Bertani et al. 2005; Casini et al. 2010). Figure 5.11 illustrates the seismic signal 

of two lines crossing the wells Radicondoli7bis and MN1. These wells are located 

in the same area of the MT sites, as marked in Figure 5.8 with yellow stars. Figure 

5.11a shows a NW-SE section from a seismic line crossing the well 

Radicondoli7bis, whose productive levels (yellow ellipses) matches the 

reflections of the H-horizon. Figure 5.11b reveals that the productive areas of the 

well MN1 corresponds to the fractured zone of the H-horizon at a depth of 1.7-2.2 

km b.g.l., corresponding to the metamorphic basement above the top of the granite 

intrusion.  
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Figure 5.11 Seismic sections of two drilled wells from seismic reflection lines in the Travale area. The 

location of these wells is depicted in Figure 5.8. a) the productive zones of the well Radicondoli7bis (yellow 

ellipses) are included between the reflections of the H-horizon (from Casini et al. 2010); b) the well MN1 

reaches the fractured zone of the H-horizon below 1730 m of depth b.g.l. (from Bertani et al. 2005). 

The most recent seismic study in the Travale area is the local-earthquake 

tomography derived by travel-time inversion (Bagagli et al. 2020). The 3D model 

of P-wave velocity (vp) of the upper crust highlighted a deep-rooted low-velocity 

body (vp = 5.7 km/s) from 3 to 7.5 km b.s.l. below the Travale area, between the 

H- and K- horizons. Figure 5.12 shows the low-velocity body as appears from two 

cross-sections. The eastern side of the W-E section (Figure 5.12a) is very close to 

the town of Travale and well MN1 and shows an abrupt transition from a dome-

shape high-velocity body to the deep-rooted low-velocity body. Another view of 

the same low-velocity body is given in Figure 5.12c. The CC’ section is the same 

SW-NE section of the geological profile in Figure 5.6right (Bertini et al. 2006; 

Romagnoli et al. 2010). The velocity anomaly in Figure 5.12c has been attributed 

to the NW-SE striking and N-dipping normal faults of the area which “might have 

caused a thickened uppermost crustal layer of lower velocities at the eastern 

margin of our profile” (Bagagli et al. 2020). Considering the tectonic features of 

this area and, above all, the presence of a major sub-vertical transcurrent fault, this 

low-velocity region has been assumed as a “preferential pathway” for fluids 

coming from the K-horizon to the surface. From travel-time inversion emerged 

that the K-horizon marks a transition towards a high-velocity substratum, thus 

confirming the previous interpretation (of Bertini et al. 2005, 2006) for a 

metamorphic contact aureole at the top of the Quaternary granitic intrusions.  
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Figure 5.12 Tomographic cross-sections modified from the 3D P-wave velocity model of Bagagli et al. 

(2020). The red squares below the wells correspond to the encountered H-horizon. The K-horizon is plotted 

as grey line. The white circles are the hypocenters of local earthquakes; a) the W-E section (XX’ profile) 

crosses the Travale area in the eastern sector where a velocity anomaly below well  MN1 is surrounded by the 

5.7 km/s white-dashed isoline (from Bagagli et al. 2020); b) map of the XX’ profile (grey-dotted line), CC’ 

profile (black-dotted line), the main towns (white circles), MT sites (black dots and squares), geothermal 

wells (red triangles); c) the SW-NE section (CC’ profile) shows a low-velocity body (vp around 5 km/s) 

bounded between the H- and K-horizons (from Bagagli et al. 2020). 

5.3.3 Other studies 

The Travale geothermal area is characterized by a low gravity anomaly of 

about 10-20 mGal (Orlando 2005). This anomaly occurs in coincidence with the 

highest heat flow of about 200 mW/m2 measured at surface.  

The resistivity well-log of the well Radicondoli7bis (location in Figure 5.8 

and productive levels in Figure 5.11a) is available from literature (Giolito et al. 

2009; Manzella et al. 2010). The left side of Figure 5.13 plots the true resistivity 

log (grey line) and the averaged resistivity for each lithological unit (black-dotted 

line). Within the phyllitic quartzitic complex, the phyllite member (green blocks) 

has an average resistivity of around 100 Ωm, while the carbonate-anhydritic 

member (orange blocks) has an average resistivity of around 1000 Ωm. At higher 

depth corresponding to micaschists and granite, the resistivity rises by up to 1000 

Ωm. The right side of Figure 5.13 shows the relative x-ray diffraction (XRD) 

intensity, which has been correlated with the presence of chlorite and muscovite 

in the framework of mineralogical studies (Giolito et al. 2009).  
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Figure 5.13 left) Resistivity-log of the well Radicondoli7bis. Litho-stratigraphic units: 1) Ligurian units, 2) 

anhydrites of the Tuscan complex, 3) Phyllite member of the phyllitic quartzitic complex, 4) Carbonate-

anhydritic member of the phyllitic quartzitic complex, 5) Micaschists and contact-metamorphic rocks, 6) 

granite. The depth is in m b.g.l.; right) relative x-ray diffraction (XRD) intensity (from Giolito et al. 2009). 

5.4. Analysis of the MT data set 

Following the geological and geophysical framework outlined so far, some 

research questions/gaps can be outlined for the Travale geothermal system: 

1. There is not direct information regarding the supercritical reservoir and the 

K-horizon because no well to date has been drilled below 2500 m of depth 

b.g.l. By contrast, for the Larderello system there was the experiment of 

Venelle-2 (Section 5.1.2). 

2. The deep structures of the system are not completely understood. 

3. A 3D MT characterization and interpretation of the vintage data set has not 

yet been investigated. 

5.4.1 The MT data set 

The Travale geothermal field was involved in three MT campaigns conducted 

in 1992, 2004 and 2006-07 (Manzella et al. 2006; Santilano et al. 2017). The sites 
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are depicted in Figure 5.8 with different symbols according to the year of 

acquisition. For details on the data set see Appendix B.  

The acquisition settings of each of the three data sets were slightly different. 

The 1992 data set is composed of two long E-W profiles and was acquired as part 

of an exploration project using Phoenix V-5 system (Fiordelisi et al. 1998; 

Manzella 2004). A remote reference processing technique was applied using the 

remote site located in the Island of Capraia (Tuscan Archipelago). 

The sites acquired in 2004 cover an area of 48 km2 and the average distance 

from the coast line is 60 km. The minimum and the maximum elevations are 314 

m (site c9) and 652 m (site k5) a.s.l., respectively. Figure 5.14 shows in detail the 

MT data set acquired in 2004 and highlights, with red dots, the sites where the 

vertical transfer function (or Tipper) has been acquired. A subset of 26 out of 55 

sites includes the Tipper.   

 

Figure 5.14 The MT data set examined in this work is composed of 55 sites. The 26 sites marked in red 

include the vertical transfer function (Tipper), while the remaining sites (black dots) include only the four 

components of the MT tensor. The town of Travale is located between sites k5 and k6. This map was created 

by reading a georeferenced image (coming from “openstreetmap”) within Matlab Mapping Toolbox (by 

Mathworks). 

As regards the 2004 data set, four components data (and five components for 

some sites) were collected using the Phoenix MTU system within the INTAS 

(EU) Project. At each site, the MT signal was recorded overnight for (at least) 12 

hours in the range 0.003 – 993 s. Quality controls were carried out on time series, 

spectra and transfer functions and a strong signature of noise was observed for 

some sites (Manzella et al. 2006). The source of noise for short-period MT data 

was related to the local power plants and geothermal exploiting activities. To 

solve this, the remote-reference processing technique acquired synchronized data 
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simultaneously measured at the local sites. Long-period MT data were 

contaminated by noise arising from the electrified railways. To solve this, a 

remote site was placed in Sardinia, around 500 km south-west of Travale. The 

whole data set was processed using Phoenix Geophysics software based on the 

remote reference robust processing method (Jones et al. 1989). In order to remove 

the industrial noise, a further manual editing and smoothing of transfer functions 

was carried out. 

The 2006-07 dataset was acquired in the frame of the I-GET (EU) Project. 

Long-period MT data (period range: 0.2 - 1000 s) were measured using the MT 

systems “NIMS” or “LEMI”, while audio-MT data (period range: 0.001 - 10 s) 

using the Stratagem system (Manzella et al. 2010).  

In this study, the data set acquired in 2004 was selected for 2D stochastic 

modeling and 3D inversion (blue-labeled dots in Figure 5.8). The main reasons of 

this choice were low level of noise, coherence of the frequency band and regular 

spatial distribution of the site locations. It should be clarified that for the 

dimensionality and directionality analyses we included the whole data set of the 

Travale area (86 sites listed in Appendix B), while for 3D inversion modeling we 

selected the subset of 51 MT soundings acquired in 2004. 

5.4.2 Dimensionality analysis 

The dimensionality analysis was carried out for the whole MT data set 

depicted in Figure 5.8 in order to provide a general overview of the region. The 

geoelectrical dimensionality was determined by using the WALDIM software 

described in Section 2.4.1 (Martì et al. 2009). This dimensionality analysis gives a 

first indication of the spatial distribution (1D, 2D or 3D) of the electrical 

resistivity at depth by analyzing the “WAL” invariants derived by the MT tensor 

(Weaver et al. 2000). To perform the dimensionality analysis on the WALDIM 

software, an error level of 5% was considered for the four impedance components. 

The threshold value for the WAL invariants was 0.15. The results were grouped in 

seven decades of period bands, covering the period range 10-3 – 104 s (only the 

data set of 2006-07 was acquired with periods higher than 103 s).  

Figure 5.15a-g illustrates the response of the dimensionality analysis. The 

responses were predominantly 3D for all the periods, as shown also in the bar 

graphs. At periods lower than 1 s (Figure 5.15a-c), a discrete number of 1D and 

2D structures were identified north-east of the area. At longer periods (Figure 

5.15d-g), a 3D behavior, with or without regional 2D structures, characterized the 

totality of sites. Only 17% of sites, that is, the data set acquired in 2007, had 

periods above 1000 s. Considering the whole period range, a negligible number of 

sites, less than 8%, had undetermined dimensionality due to errors overlapping the 

used threshold (the stars in Figure 5.15a-g). The dimensionality analysis clearly 

outlined the 3D nature of the subsurface electrical structures at periods higher than 

10 s. 
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Figure 5.15 Dimensionality analysis results of the MT data from the Travale geothermal area from 

WALDIM software (Martì et al. 2009). The output was classified in seven decades of periods: a)10-3-10-2 s, 

…, g) 103-104 s according to one of the following dimensionality: 1D, 2D, 3D/2D (regional 2D structure 

affected by galvanic distortion), 3D/2D1D (galvanic distortion over a 1D or 2D structure), 3D, undetermined 

(errors higher than the threshold), no data acquired in that period. 

5.4.3 Phase tensor analysis 

Further insight into the data came from the phase tensor analysis, based on the 

observed impedance tensor (Caldwell et al. 2004). The phase tensor (Φ) is not 

affected by the galvanic distortion and does not require any assumption of 

dimensionality (Section 2.4.3). Therefore, the analysis of Φ could provide further 

insight into the interpretation of the underlying conductivity distribution. The 

direction of the tensor and the three coordinate invariants (Φmin, Φmax, β) are 

graphically represented by means of the tensor ellipse, which may disclose the 

orientation as well as the lateral variations of the underlying electrical structures. 

We adopted the open-source python toolbox MTpy for the phase tensor analysis 

(Krieger and Peacock 2014; Kirkby et al. 2019). Figure 5.16a-f shows the tensor 

ellipses of the MT sites at six selected periods. The color scale considers the skew 

angle β of the phase tensor, which measures the asymmetry of the tensor. Some 

considerations can be outlined: 
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a) The circular shape of some ellipses at periods lower than 0.1 s revealed 

local 1D resistivity distributions in the shallow subsurface, in line with the 

dimensionality analysis of Figure 5.16a-b. 

b) Low values of the skew angle, i.e. β ~ 0, were infrequent, meaning scarce 

1D or 2D distribution (for 2D, β = 0 is a necessary but not sufficient 

condition).   

c) Non-zero values of β imply the non-symmetry of the phase tensor. If -3 < 

β < 3 and if there is a significant difference between major and minor axes 

of the ellipse, the distribution is 3D. This occurred for the majority of the 

sites and periods, thus stating a mostly 3-D resistivity distribution and 

confirming the previous interpretation of dimensionality.   

d) The orientation of the ellipses is related to the strike direction (with 90° of 

ambiguity). The ellipses in Figure 5.16a-f had an N130°E orientation (see 

also Figure 5.18), representing also the strike of the main tectonic 

structures parallel to the Apennine chain. Few sites presented an ellipse 

orientation of about N40-50°E. This can be related either to tectonic 

structures with NE-SW trend, whose occurrence has already been pointed 

out in southern Tuscany, or to the intrinsic ambiguity of 90°. Given the 

orientation of the majority of the ellipses at periods above 1 s, a low 

resistivity region can be expected with a NW-SE trend.  

 

Figure 5.16 Phase tensor ellipses at selected periods from 10-3 s (a) to 103 s (f). The phase tensor skew angle 

β (°) is null (white) in case of 1D distribution and increases in magnitude (red or blue colors) in case of 3D 

distribution. The elongated ellipses indicate a 3D distribution and point toward a conductive region. 

The geomagnetic transfer function, also known as Tipper, represents the ratio 

between the vertical and horizontal components of the magnetic field. The real 

part of the Tipper vector is usually represented by means of induction arrows 

pointing toward the region of highest conductance according to the Parkinson 

criterion (Parkinson 1959). Figure 5.17a-f shows the phase-tensor ellipses 

overlapped by the Tipper vectors of the subset of 26 sites whose vertical transfer 

function has been measured. At periods of 1 s and 10 s (Figure 5.17c-d), the 

vectors were mainly orientated orthogonally to the strike direction and, similarly 
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to the ellipses in Figure 5.16, their direction suggested a possible NW-SE-oriented 

conductive region. The color scale of the ellipses in Figure 5.17 ranges from 0° to 

90° and refers to the phase-tensor determinant. It deviates from an angle of 45° if 

there is not 1D regional distribution in the subsurface.  

 

Figure 5.17 Tipper arrows at selected periods from 10-3 s (a) to 103 s (f) for the 26 sites with measured 

geomagnetic transfer function. Most of the vectors point toward a predictable North-Eastern conductive 

region (Parkinson criterion) and are fairly orthogonal to the strike direction shown in Figure 5.18. The 

horizontal arrow on the bottom of the graph shows the Tipper vector length in case of magnitude 1. The color 

scale of the phase-tensor ellipses refers to its determinant. 

5.4.4 Strike analysis 

The tensor ellipses gave an approximate idea of the strike direction, which 

was definitely confirmed by the strike analysis. We deployed the strike-analysis 

tool of the MTpy package (Krieger and Peacock 2014; Kirkby et al. 2019). The 

strike direction was estimated from the impedance invariants (Weaver et al. 

2000), the phase tensor azimuth (Caldwell et al. 2004) and the induction arrows. 

Figure 5.18 reports the rose diagram of the strike direction calculated from the 

impedance tensor Z (Figure 5.18a), the phase-tensor azimuth (Figure 5.18b) and 

the Tipper matrix (Figure 5.18c). These three outcomes were in agreement with 

each other and defined the direction of N130°E for the geoelectrical strike. This 

value represents the strike direction averaged on the frequency full range. A 

detailed analysis of the strike direction estimated at each period decade is shown 

in Figure 5.19. In the range 0.1-100 s, there was a clear and unambiguous strike 

direction because all the histogram bins aligned toward a unique value of 130°. At 

higher periods, there was a leading direction of around N150°E, but a small 

number of histogram bins were oriented around N45°E.  
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Figure 5.18 Rose diagrams of the strike direction calculated over the whole period range from a) the 

impedance tensor Z, b) the phase tensor azimuth and c) the Tipper matrix. 

 

 

Figure 5.19 Rose diagrams of the strike direction calculated at each period decade from a) the impedance 

tensor Z and b) the phase tensor azimuth. 

Finally, there is a good agreement in the orthogonality between the strike 

direction and the orientation of the induction arrows (Figure 5.19 and Figure 5.17, 

respectively). Moreover, there is a substantial parallelism between the strike 

direction and the NNW-SSE orientation of the main faults shown in Figure 5.6left 

for the Radicondoli-Volterra basin (Sani et al. 2016). This pointed out the role of 

the NNW-SSE-oriented Radicondoli sedimentary basin, which is located North-

East of the study area (sensu Brogi et al. 2003 or Sani et al. 2016). The direction 

of the normal faults and strike are also reflected in the surface fracture patterns 

detected by satellite images, which have displayed a N110°E – N150°E trend 

(Bertini et al. 2005). 

5.5. The new TDEM soundings for static shift correction 

TDEM data have often been combined to MT data from geothermal areas 

even though their depth of investigation is usually much lower than that of the 

geothermal target (Section 2.5). We carried out a TDEM survey in the Travale 

area to manage the static shift that could affect one or both the polarizations of the 

MT apparent-resistivity curves.  

In February 2019, we acquired 8 TDEM soundings in order to constrain the 

MT soundings placed in different geological settings and to ensure a wide spatial 

coverage. The sites were a1, b2, b6, e1, g1, k1, k4 and k5 (see Figure 5.14 for 
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locations). Unfortunately, it was not possible to acquire more soundings due to 

logistic issues.  

TDEM data were acquired using the TEM-FAST 48 instrument by AEMR 

company. The acquisition configuration was a coincident loop of 100 x 100 m or 

75 x 75 m, depending on the accessibility of the site. The injected current was 3 

A, the turn-off time was 7-8 μs and a total of 32-40 samples were acquired in the 

range 4 - 4000 μs. 

      

Figure 5.20 Some pictures of the TDEM survey carried out around Travale in February 2019 left) the 

instrument used for TDEM acquisition was a TEMFAST48; right) the most accessible sites allowed a loop-

size of 100 m to be set up. 

At first, the TDEM data were adopted to directly correct the static shift of the 

correspondent MT site and then to verify and, if needed, correct the static shift of 

the closest MT site belonging to the same geological unit. The correction was 

carried out using the PSO approach previously explained in Section 3.3.2. The 

optimization was performed for each MT polarization. The algorithm optimizes 

both the model parameters, i.e. the resistivity model, and an additional parameter 

accounting for the static shift. Input data were both the MT ρapp and phase and the 

TDEM ρapp, but the observed MT ρapp
 was iteratively optimized to match the 

reference curve of the TDEM ρapp.  

An example of static shift correction using PSO was presented in Chapter 3 for 

site a1 (Figure 3.4). As another example, site b6 is shown in Figure 5.21 and 

Figure 5.22 for the xy- and yx- modes, respectively. The raw apparent resistivity 

showing the level of distortion of the data can be appreciated from the red dots in 

Figure 5.21a and Figure 5.22a. Figure 5.21a shows that at short periods (below 

6·10-3 s) the TDEM curve of ρapp (red dots) provides the undistorted value of the 

MT ρapp (blue crosses). The multiplicative factor calculated for static-shift 

correction was around 2. Since the distortion (or shift) is static (or period-

independent), the correction provided by TDEM ρapp at short periods is useful for 

the whole MT period band (blue crosses at periods above 3·10-3 s). The 1D model 

in Figure 5.21c is negligible for our interpretation. The optimization terminated 

when the RMSE was 1. Figure 5.22a shows that the yx-mode of site b6 was barely 

affected by static shift, being the corrective factor equal to 1.  
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The static shift correction of the other MT sites is supplied in Appendix C.  

As regards the other sites affected by static shift, the majority of the observed ρapp 

curves which, at the lowest periods, lay either above 100 Ωm or below 10 Ωm 

were shifted in the range 10 - 100 Ωm. In particular, the sites on the quaternary 

deposits (such as a1 and b2) had a corrected ρapp starting from around 100 Ωm, 

while the sites on the Ligurian unit (such as e1 and d3) had a corrected ρapp 

starting from around 20-30 Ωm. In general, the static-shift factor was between 0.5 

and 10. 

 

Figure 5.21 Static shift correction for site b6 (xy-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.005 s) and of MT from 0.003 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 

 

Figure 5.22 Static shift correction for site b6 (yx-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.005 s) and of MT from 0.003 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 
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5.6. Final considerations 

This chapter set out the framework of the geothermal area of Travale from the 

geothermal, geologic and geophysical point of view. The state of the art of the MT 

characterization of the area pointed out a scientific gap. The vintage MT data set 

acquired over the last few decades was recovered and thoroughly studied 

following the latest tools of MT data analysis. The detailed analysis carried out in 

this section proved that, although a 2D strike direction around N130°E could be 

considered as a “first approach”, the most appropriated interpretation of our data 

needs for 3D MT inversion. Therefore, further knowledge may arise from the 

interpretation of the data set presented in this chapter by using two new 

methodical approaches: 

a) The novel 2D particle swarm optimization of MT data. It was applied to 

two MT profiles and is presented in Chapter 6  

b) The 3D inversion, that is the recent hot topic in the MT community. A 3D 

resistivity model of the geothermal system is revealed in Chapter 7. 
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Chapter 6 

Stochastic inverse modeling of MT 

data from the Larderello-Travale 

geothermal area 

This chapter is concerned with the 2D stochastic inverse modeling of two MT 

profiles located in the Larderello and Travale geothermal areas. The method 

adopted for this purpose was the novel PSO specifically implemented for 2D MT 

data, as accurately described in Chapter 4. The MT data set was presented and 

analyzed in Chapter 5 (further details in Appendix B). The results of this chapter 

highlight the importance of the stochastic approach to interpret MT data from 

geothermal areas, where the geological complexity and the difficulty in retrieving 

reliable external constraints (e.g., from well-log or other geophysical methods) 

can negatively affect the solution of the inverse problem.  

Even though the dimensionality analysis depicted in Chapter 5 may suggest 

3D interpretation as the most appropriate for this data set, there are some 

conditions for the validity of 2D interpretation: inadequate spatial coverage 

(isolated MT profile), a clear strike direction (as suggested in Section 5.4.4, 

Figure 5.18 and Figure 5.19) and the extremely computational and numerical 

complexity of 3D modeling (Ledo 2005). 

The 2D optimization of the MT profile located close to Lago Boracifero 

(hereafter “LS” profile) was presented as a talk during the 1st Conference on 

Geophysics for Geothermal and Renewable Energy Storage (European 

Association of Geosicentists and Engineers (EAGE), The Hague, Netherlands, 

September 08 - 12, 2019). The conference proceeding is Pace et al. (2019c). The 

2D optimization of the MT profile close to Travale (hereafter “Travale” profile) 

was presented as a talk during the 38° Convegno Nazionale Gruppo Nazionale di 

Geofisica della Terra Solida (Rome, Italy, November 12 - 14, 2019). The abstract 

is Pace et al. (2019d). 
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6.1. The MT profiles 

6.1.1 The “LS” profile 

The “LS” profile is located south of Larderello and south-west of Travale and 

belongs to the data set acquired in 1992 as described in Section 5.4.1 (Figure 5.8). 

As shown more in detail in Figure 6.1, it is composed of 13 MT sites because 

three of the original sites were discarded due to the poor quality of measured data.  

This profile has been investigated in the past by means of the 2D inversion 

scheme based on non-linear conjugate gradient (Santilano et al. 2015b; Santilano 

2017; Rodi and Mackie 2001). 

 Figure 6.2 plots the phase-tensor ellipses in a pseudo-section format for the 

“LS” profile (Caldwell et al. 2004). At each period, the ellipses are depicted 

according to the value of the skew angle (β) and are overlapped by the arrow 

representing the real value of the Tipper vector. The considerations arising from 

this phase-tensor pseudo-section are similar to those written in Section 5.4.3. 

Some ellipses have a circular shape at low periods, e.g., ls04 and ls15 at 0.1 s or 

ls09 and ls13 at around 1 s. Low values of the skew angle, i.e., β ~ 0, appears only 

at periods lower than 1 s, meaning 1D or 2D dimensionality only in the shallow 

subsurface (see the color scale in Figure 6.2). At higher periods, the non-

symmetry of the phase tensor and hence 3D dimensionality are proved by -3 < β < 

3 and a significant difference between the major and minor axes of the ellipses. 

For this reason, the period range selected for 2D optimization was from 10-3 s to 

23 s. 

 
Figure 6.1 The “LS” profile is composed of 13 MT sites (LS3, .., LS16) and is located south of Lago 

Boracifero and south-west of Travale. This map was created by reading a georeferenced image (extracted 

from “Open Street Map”) within Matlab Mapping Toolbox (by Mathworks). 
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Figure 6.2 Phase-tensor map in a pseudo-section format for profile "LS". The color scale refers to the skew 

angle β and the arrows to the real part of the Tipper vector. 

6.1.2 The “Travale” profile 

The “Travale” profile is depicted in Figure 6.3. It is composed of 11 sites 

acquired in 2004 (Manzella et al. 2006). The strike analysis reported in Section 

5.4.4 outlined a strike direction of N130°E (Figure 5.18 and Figure 5.19). As can 

be seen from Figure 6.3, the investigated profile is orthogonal to this direction. 

Figure 6.4 presents the phase-tensor map as a function of the period for the 11 

sites of the “Travale” profile (Caldwell et al. 2004). The circular shape of the 

phase-tensor ellipses and the low value of the skew angle (| β |< 3) are evident at 

periods lower than 1 s. As demonstrated in the previous chapter, we obtained 

evidence of three-dimensionality at periods above 10 s.  

Some MT sites were affected by static shift due to local shallow 

heterogeneities that may provoke the telluric distortion of the impedance tensor. 

We corrected the static shift by performing the joint optimization (PSO) of TDEM 

and MT data of the same site (Section 3.3.2). We selected 8 MT sites, with static 

shift effects, for TDEM data acquisition. The TDEM survey was carried out in 

February 2019 using a TEM-FAST48 instrument (Section 5.5 and Appendix C).  

In addition to what stated in the introduction, a further reason of our 2D 

approach is to enrich the investigation of this area with the contribution of 

stochastic inverse modeling.  Manzella et al. (2006) inverted this profile using 2D 

NLCG inversion (Rodi and Mackie 2001) and adopting an external geological 

model as starting model.  Our contribution is to overcome the external bias on the 

solution by taking advantage of random initialization and adaptive global search. 
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Figure 6.3 The “Travale” profile is directed SW-NE and is composed of 11 MT sites (k1, .., a8) crossing the 

town of Travale. This map was created by reading a georeferenced image (extracted from “Open Street 

Map”) within Matlab Mapping Toolbox (by Mathworks). 

 

Figure 6.4 Phase-tensor map in a pseudo-section format for profile "Travale". The color scale refers to the 

skew angle β and the arrows to the real part of the Tipper vector.  
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6.2. Result from 2D PSO 

The objective function to be minimized to find the 2D electrical-resistivity 

model was provided in equation 4.3. This objective function was defined to 

minimize the data misfit (between the observed data and calculated response) and 

the model roughness. We adopted the optimization with the Occam’s razor 

principle, that minimizes the effect of spurious features derived by the closest 

fitting between observed data and calculated response. The high computational 

cost (in the order of hours) was due to the thousands of MT forward calculations 

to be performed and was managed by using 24 cores from the HPC cluster at 

Politecnico di Torino. 

The PSO input arguments, namely, the accelerations coefficients and the 

swarm size, were selected according to the sensitive analysis reported in Section 

4.3.1 in order to ensure the solution stability, the convergence speed and an 

effective minimization of the objective function.  

6.2.1 The model from the “LS” profile 

The application of the PSO algorithm to the “LS” profile represents the first 

case study of 2D stochastic inverse modeling of MT data coming from the 

Larderello-Travale geothermal area. 

To perform the optimization, the errors associated to the data were kept as 

original, despite they were higher than 20% at high periods. The mesh of the 2D 

model was discretized into 10 layers and a total of 270 cells. The number of 

particles (i.e., the solutions explored) was 2430 because, following our previous 

sensitivity analysis, it should be 9 times the number of unknowns (i.e., the model 

cells). After applying the L-curve criterion to calibrate the level of smoothing of 

the model, the optimal Lagrange multiplier was 0.01 for both the horizontal and 

vertical directions. The minimum and maximum boundaries of the search space of 

solutions were 1 Ωm and 1000 Ωm, respectively. As for the field data set 

COPROD2 (Section 4.4), each PSO run was repeated three times (or “trials”) in 

order to assess the final solutions coming from different initial random 

distributions, which are quite similar, but not identical. Among the three trials, the 

one that gave the solution with the lowest RMSE was selected as the final model. 

The total number of iterations was 1626 and obeyed the stopping criteria 

established in Section 4.2.3. No external information was used to initialize the 

PSO. The starting model was hence created by a random initialization. This was a 

novelty with respect to the previous results published in literature, that used 

homogeneous and geological starting models (Santilano et al. 2015b; Santilano 

2017). 

The runtime of a single trials was 3.8 hours, the final RMSE was 3.55 and the 

objective-function value at the last iteration was 3.65. The resistivity model 

following from PSO is depicted in Figure 6.2. In the shallow subsurface, the local 

resistivity anomalies (<30 Ωm) correspond to the Neoautochthonous and Ligurian 
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Complexes. A moderately resistive region (average 100 Ωm) up to a depth of 2.5 

km is associated with the Tuscan unit, Tectonic Wedge Complex and Phyllitic 

complex. This low resistivity value in this region of metamorphic rocks has been 

justified by the presence of high resistive layers alternated to very conductive 

layers (possibly due to graphite, Santilano 2017) and confirmed by surface-hole 

ERT (Capozzoli et al. 2016). The main deep structures are the high-resistivity 

bodies of about 1000 Ωm below sites from LS3 to LS5 and from LS10 to LS14 at a 

depth from 4 to 8 km. They could be associated to the Pliocene granite and the 

gneiss unit (Romagnoli et al. 2010). At about the same depth, the large conductive 

region below sites from LS5 to LS10 is associated with the deep geothermal 

reservoir, that in the Lago Boracifero area lies below the K-horizon. This anomaly 

has been interpreted as belonging to a deep 3D conductive structure elongated 

N30E (Santilano 2017). 

 

Figure 6.5 The 2D resistivity model of “LS” profile from PSO computation, after 1626 iterations and random 

initialization of the model.  

Figure 6.6 and Figure 6.7 show the fitting curves between observed data and 

calculated response for apparent resistivity (ρapp) and impedance phase for 

transverse-electric (TE) and transverse-magnetic (TM) polarizations. Two periods 

were selected according to their satisfactory matching: 0.02 s and 0.2 s. 

Generally speaking, our result is consistent with the 2D resistivity models of 

previous interpretations (Santilano 2017; Santilano et al. 2015b; Fiordelisi et al. 

1998). The advantage of our method was that the modelling was not initially 

constrained by an external starting model. The relevant improvement was that the 

final RMSE was lower than those of the previous models. In fact, in Santilano 

(2017), the inversion was constrained by an initial geological model and the final 

RMSE was 6.69 (5% error floor for apparent resistivity and phase). In Santilano et 

al. (2015b), the inversion started from a homogeneous starting model and ended 

with an RMSE of 4.68 (5% error floor for apparent resistivity and 2% for phase). 
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Our result can be compared with the geophysical interpretation of seismic 

tomography by De Matteis et al. (2008). In that work, they presented the cross-

section of the ratio between P- and S-wave velocities (vp / vs) for a seismic profile 

whose orientation and extension were similar to our “LS” profile. The ratio vp / vs 

assumed a maximum value around 2 in an 8-km-large region at a depth between 3 

and 7 km, fairly corresponding to the conductive anomaly below sites LS5-LS10 

in Figure 6.5. The lateral high-resistivity structures at the same depth compare 

well with the regions characterized by a vp / vs anomaly (≈ 1.3-1.5) and associated 

to the presence of steam-bearing formations or steam saturation. 

 

Figure 6.6 Data fitting for TE and TM apparent resistivity (ρapp) and phase at selected period 0.02 s for the 13 

MT sites of "LS" profile. 

 

Figure 6.7 Data fitting for TE and TM apparent resistivity (ρapp) and phase at selected period 0.2 s for the 13 

MT sites of "LS" profile. 
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6.2.2 The model from the “Travale” profile 

The period range of the data was between 0.003 s and 993 s. The data were 

perturbed with random error up to 10%. The 2D mesh of the model was 

discretized to logarithmically increase towards the boundaries, with a total of 375 

cells. The PSO input arguments were set as follows: the number of particles (i.e., 

the solutions explored) was 3400; the optimal Lagrange multiplier λ was 0.01 for 

both the horizontal and vertical directions; the boundaries of the search space of 

solutions were 0.1 Ωm and 10000 Ωm.  

The resistivity model resulting from PSO after about 4000 iterations is shown 

in Figure 6.8. The resistivity distribution of the subsurface presents a shallow 

conductive area below sites g2-a8, in line with the geology of the area 

(sedimentary deposits according to Romagnoli et al. 2010). In the first kilometer 

of depth below sites k4-j0, a high-resistivity region is imaged and justified by the 

formations of the Tuscan Nappe. From 2 to 5 km of depth in the central part of the 

2D model a large body of about 1000 Ωm was identified. This body is coherent 

with the geological information because of the presence of granite (see Figure 5.6) 

and supports the model of Manzella et al. (2006) in Figure 5.9. The only evident 

difference is that in the PSO model the deep resistive body does not result 

laterally continuous. A possible reason may be the presence of trans-current faults 

conveying the geothermal fluid. In fact, the geological information overlapping 

the model of Figure 5.9 reveals the presence of faults between sites k3 and k4 and 

between e4 and c7. (These faults can be also appreciated from Figure 2 in 

Manzella et al. (2006) and from Figure 9 in Sani et al. (2016)). Another possible 

reason for the lateral discontinuity of the deep resistive body in the PSO model 

can be the random initialization of the stochastic inverse modeling, because the 

horizontally-layered geological model given as a priori in the inversion of 

Manzella et al. (2006) definitely affected (and probably biased) the final inversion 

model. Further comments on this result will be reported in the next chapter, 

together with the findings from the 3D MT inversion of the Travale data set.  

The final PSO model in Figure 6.8 is associated to an RMSE of 4.18. Details 

of the fitting between observed and calculated data are plotted in Figure 6.9 and 

Figure 6.10 for apparent resistivity (ρapp) and  phase of transverse-electric (TE) 

and transverse-magnetic (TM) polarizations. The data fitting was not ideal for 

apparent resistivity of stations 8-11 (i.e., sites f4, e4, c7, a8), but the matching was 

satisfactory for the other sites at both low (Figure 6.9) and high periods (Figure 

6.10). 
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Figure 6.8 The 2D resistivity model of “Travale” profile from PSO computation, after 4000 iterations and 

random initialization of the model. 

 

Figure 6.9 Data fitting for TE and TM apparent resistivity (ρapp) and phase at selected period 0.03 s for the 11 

MT sites of "Travale" profile. 
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Figure 6.10 Data fitting for TE and TM apparent resistivity (ρapp) and phase at selected period 11.4 s for the 

11 MT sites of "Travale" profile. 

6.3. Final considerations 

The PSO algorithm was adopted for the 2D stochastic inverse modelling of 

two MT profiles located in the Larderello-Travale geothermal area. This kind of 

field data set was 2D interpreted for the first time using a metaheuristic method. 

The final models imaged resistivity structures similar to those presented in 

previous research, but some advantages emerge from the application of PSO:  

1. Differently from previous interpretations, the modelling was not initially 

biased by an external starting model derived from geology (see Santilano 

(2015b, 2017) for the “LS” profile and Manzella et al. (2006) for the 

“Travale” profile) 

2. The stochastic approach was beneficial to improve the data fitting. For 

both the case studies, the final RMSE associated to the final PSO model 

was lower than those associated to the models obtained in the past using 

derivative-based inversion techniques (Santilano et al. 2015b; Santilano 

2017; Manzella et al. 2006; Manzella et al. 2010) 

3. Although sometimes the data fitting was not ideal, our outcome can be 

appreciated in detail thanks to the graphs showing the fitting between 

observed data and calculated response (Figure 6.6, Figure 6.7, Figure 6.9 

and Figure 6.10). This level of insight was not available for the previously 

cited works reporting the 2D inverted models.  

The application of PSO to solve the 2D MT inverse problem has proven to be 

a valid tool for the investigation of very complex electrical structures. A novel and 

broad characterization of the Travale geothermal system will emerge from the 3D 

MT inversion presented in the next chapter. 
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Chapter 7 

3D MT inversion of the Travale 

data set  

The 3D resistivity model is derived from pure 3D MT inversion and provides 

new insight into the geoelectrical structures of the Travale geothermal field. No 

work to date has focused on the 3D MT characterization of the Travale 

geothermal system. The main objective is to enlighten some debated issues by 

taking advantage of the information obtained from the full MT impedance tensor 

and the vertical magnetic transfer function (i.e. Tipper).  

This chapter is based on the manuscript recently submitted to the journal 

Surveys in geophysics with the title: “Three-dimensional magnetotelluric 

characterization of the Travale geothermal field (Italy)” (Pace et al. submitted).  

7.1. Preliminary considerations 

The geoelectrical dimensionality and strike direction of the MT data set was 

discussed in Chapter 5, where phase tensor analysis was performed to ensure a 

complete understanding of the data. Static shift was corrected through new TDEM 

measurements (Appendix C, Figure 5.21 and Figure 5.22). So far, the MT data 

from the Travale geothermal area have been 2D interpreted by means of NLCG 

inversion (Manzella et al. 2006) and stochastic inverse modeling (Chapter 6; Pace 

et al. 2019c and 2019d). However, the detailed analysis carried out in Chapter 5 

proved that, although a 2D strike direction around N130°E could be considered as 

a “first approach”, the most appropriated interpretation of our data needs for 3D 

MT inversion. 

The MT data set acquired in 2004 was selected for 3D inversion because of 

low level of noise, coherence of the frequency band and regular spatial 

distribution of the site locations (see Appendix B and Figure 5.14). Sites k1, k2, k3 

and k4 were not included in the 3D inversion because they strictly belong to the 
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2D profile and would have corrupted the 3D modeling and meshing. Therefore, 

the final data set addressed to the inversion was composed of 51 sites, which are 

depicted in Figure 7.1 on the geological map. The data acquisition included a 

period range between 0.003 and 993 s, originally discretized into 75 values, then 

resampled in 20 values to unburden the time-consuming 3D computation. 

 

Figure 7.1 Geological map of the area of study: 1) Quaternary deposits, 2) Neoautochthonous terrigenous 

deposits, 3) Ligurian and sub-ligurian flysch complex, 4a) Tuscan nappe sediments, 4b) Tuscan nappe 

carbonates. The black dots are the 51 MT sites included in 3D inversion. The thick black curves are the main 

faults and normal faults (source: Geoportale Geoscopio web site). 

The 3D inversion was computed using the ModEM software, which is 

available for the EM research community (Egbert and Kelbert 2012; Kelbert et al. 

2014). Both the inversion settings and the result analysis were arranged in 3D-

GRID Academic, a supporting tool kindly provided by prof. N. Meqbel for 

research purposes. The inversion scheme of ModEM is based on NLCG and the 

objective function minimizes both the data misfit and model roughness penalizing 

the deviations from the starting model. Being the inverse problem over-

parametrized, the choice of the smoothing factor as well as of the starting model is 

crucial to obtain a valid outcome (Tietze and Ritter 2013).  

Finding a proper numerical solution of the 3D MT inverse problem is not an 

easy task for several reasons: the inverse problem is ill-posed with nonlinear and 

extremely sensitive solutions, the choice of the stabilizing functional is critical for 

the obtained solution (since it accounts for smoothness and/or a priori 

information), the 3D forward routine must be fast and accurate, the intensive 

computational load (thousands of data to be inverted and tens of thousands of 

http://www502.regione.toscana.it/geoscopio/cartoteca.html
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model parameters) makes necessary to run the computation on HPC clusters 

(Avdeev 2005; Siripunvaraporn 2012).  

The preliminary inversion tests of this work were executed on the 32-core 

workstation in the Department of Geodynamics and Geophysics of the University 

of Barcelona, during the research period spent there in spring 2019. The last 

simulations were executed using 72 cores (3 nodes) of the HPC cluster of 

Politecnico di Torino. The CPU model of the single node was an Intel Xeon E5-

2680 v3 2.50 GHz (turbo 3.3 GHz) with 3.6 TB (DDR4) of RAM. When the runs 

were computed, the sustained performance of the HPC cluster was 20.13 

TFLOPS. 

7.2. 3D MT modeling and inversion 

The 3D mesh was prepared in the software package 3D-GRID (kindly 

provided by prof. N. Meqbel). The domain is depicted in Figure 7.2. It was 200 

km large and around 350 km deep, consistently with the boundary conditions and 

the electromagnetic skin depth. The mesh included the topography and 

bathymetry and the resistivity of the sea was fixed to 0.3 Ωm. Along the 

horizontal directions, the model mesh was discretized into 100 x 100 cells, whose 

size was constant (191 m) for the central 58 x 58 cells and linearly increasing by a 

factor of 1.25 for the external cells (21 planes for each lateral side towards the 

boundary of the domain). The vertical direction was discretized into 75 layers, 

whose thickness was 100 m from the air layers up to 3000 m of depth, then 

increasing by a factor of 1.15.  

 

Figure 7.2 The 3D model is 200 x 200 km large and 350 km deep. The mesh included the topography and 

bathymetry. The figure was created in 3D-GRID Academic.   

The starting model that initialized the inversion was a homogeneous body of 

100 Ωm, because it gave the minimum initial RMSE compared to other resistivity 

values. We also performed a further inversion test with an a priori starting model 

derived from the 2D inversion result of Manzella et al. (2006). That SW-NE 
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profile was orthogonal to the Radicondoli Basin and to the strike direction plotted 

in Figure 5.18. The essential feature of that 2D model was an elongated high-

resistivity body (around 800 Ωm) at a depth of 3-6 km b.s.l. within the 

metamorphic basement. This body represented the key factor to setup our a priori 

model for 3D inversion. The a priori model had a 500-Ωm body buried in a 100-

Ωm domain below sites from k5 to a8 at a depth from 3 to 7 km. The main reason 

of this choice came from the observation of preliminary 3D inversion tests: the 

final models presented many superficial structures, but the model heterogeneity 

disappeared with depth. Therefore, the 3D discontinuity of the a priori model was 

located below 3 km of depth in order to prevent the strong bias given by specific 

superficial features of a local solution.  

The smoothing factor controls the model regularization along the three 

dimensions. Its choice was as critical as that of the starting model because of the 

over-parametrization of the inverse problem that can lead to different outcomes. 

After some trials, we set 0.2 as smoothing factor for the horizontal directions and 

0.1 for the vertical direction, in order to emphasize the vertical contrasts among 

the deep structures. When the inversion was initialized by the a priori starting 

model, the smoothing factors were increased to 0.5 and 0.4, respectively. The 

main reason was evident after some tests on the regularization terms: the inversion 

required high smoothing factors to enable slight adjustments of the a priori-given 

3D contrasts. 

The inversions were performed using two different coordinate systems. The 

first coordinate system presented the x-axis aligned with the geographic North 

(N0°), as usually set for 3D modeling. The second coordinate system (N130°E) 

was aligned with the geoelectrical strike (i.e., x-axis parallel to the strike) in order 

to consider the a priori model coming from 2D interpretation. Even though the 

coherence between the strike direction and the rotation of the model mesh and 

data is fundamental in 2D modeling, it has turned out to be critical in 3D 

modeling as well (Tietze and Ritter 2013; Kiyan et al. 2014).  Tietze and Ritter 

(2013) demonstrated that the 3D inversion result is not independent from the 

coordinate system and recommended a strike-oriented model mesh since it mostly 

minimizes the coupling among the four components of the impedance tensor 

(which, in ModEM, are handled independently). The MT tensors were rotated 

accordingly to the coordinate system, that is, 0° in the case of geographic 

coordinate system (N0°) and N50°W in the case of strike-oriented model mesh 

(N130°E).   

We inverted all the components of the impedance tensor (Z) because, in a 3D 

environment, the information about the subsurface resistivity distribution is 

included in all the tensor elements, which can improve the spatial resolution. In 

addition, the inversion of the vertical transfer function (the Tipper T) was 

included to improve the sensitivity at depth and to seek out lateral constraints 

(Čuma et al. 2017). After evaluating the quality of our data for the inversion, we 
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selected 24 out of 26 sites with Tipper. We explored both the separate inversions 

of Z and T and the full inversion of both Z and T. 

The error floor was set as portion of the absolute value of the impedance 

components (|Zij|) instead of as a portion of the mean of the off-diagonal 

components (|Zxy· Zxy|
0.5), because the mean value could have underestimated one 

component of the tensor with respect to the other ones (Tietze and Ritter 2013). 

Since the original errors of the data were not negligible, we set an error floor of 

10% for the off-diagonal components of Z and of 15% for the on-diagonal 

components Z, which presented relatively high magnitude. The error floor of the 

Tipper components was assigned following Gabàs and Marcuello (2003), that is, 

equal to the error associated to the logarithm of the apparent resistivity, i.e., 10%. 

For the separate inversions of Z and T, the error floor was decreased in order to 

amplify the information stored in the tensor. In fact, it is known from the literature 

that, if the signal-to-noise ratio increases, the inversion performance is expected to 

improve (Newman et al. 2008). In the separate inversions of Z and T, the error 

floor was 5% for the off-diagonal components of Z and for T and 10% for the 

diagonal components of Z.  

A summary of the performed inversion tests is given in Table 7.1. 

7.3. Inversion result 

For the first time, to the authors’ knowledge, this work presents a 3D 

inversion resistivity model of the Travale geothermal system. The 3D inversion of 

MT data offered new insight into the electrical resistivity distribution in the 

subsurface of the Travale geothermal field.  

The choice of different settings to drive the inversion regarded the starting 

model, the smoothing factors, mesh orientation and error floors. These settings 

were chosen following the most recent literature findings but also adapted to our 

specific data set.  

An overview of the settings for the performed inversion tests is listed in Table 

7.1. Inversion tests A-D inverted both the full Z and T, inversion E included only 

full Z and test F only T.  Excepting inversion test A, based on the geographic 

coordinate system, all the inversions were performed using the strike-aligned 

mesh (N130°E). Inversion test C was the only test adopting the a priori starting 

model and higher smoothing factors, whereas all the other inversions assumed a 

homogeneous starting model. The error floor of inversions D, E and F was 5% 

lower than that of inversions A, B and C. 

Taken together, the final models led to good data fitting, as proved by the 

normalized RMSEs in Table 7.1. The inversions of full Z and T (tests A, B and C) 

always ended with an RMSE lower than 2. There was a slight increasing of 

RMSE in test B compared with test A, being the rotation of the grid the only 

difference for inversion. The decrease of the error floor in tests D, E and F 

resulted in a slight worsening of the RMSE.  
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The final resistivity models of the different tests were similar to each other. 

The following sections present the inversion result of tests A and D, as they both 

properly represented the geology of the area. The specific result of the other 

inversion tests listed in Table 7.1 is provided in Appendix E, in order to compare 

different grid rotations and error floors. 

Table 7.1 The inversion tests performed on the MT data set of Travale. Inversion A had the coordinate 

system aligned with the geographic North (N0°). Inversions B-F had the strike-aligned mesh (N130°E). 

Inversion C was initialized with a priori starting model derived from the 2D model of Manzella et al. (2006). 

Inversions E and F separately inverted the impedance (Z) and Tipper (T) tensor, respectively. 

Settings 

Inversion tests 

A B C D E F 

Grid rotation N0° N130°E N130°E N130°E N130°E N130°E 

Tensor inverted Z & T Z & T Z & T Z & T Z  T 

Error floor Zxy,Zyx 10% 10% 10% 5% 5% - 

Error floor Zxx,Zyy 15% 15% 15% 10% 10% - 

Error floor Txz,Tyz 10% 10% 10% 5% - 5% 

Starting model homogeneous homogeneous a priori homogeneous homogeneous homogeneous 

Smoothing (x, y, z) (0.2,0.2,0.1) (0.2,0.2,0.1) (0.5,0.5,0.4) (0.2,0.2,0.1) (0.2,0.2,0.1) (0.2,0.2,0.1) 

Final RMSE 1.62 1.72 1.95 2.79 3.14 2.22 

7.3.1 Inversion of full Z and T with north-oriented grid (test A) 

The 3D resistivity model obtained with the coordinate system aligned with the 

geographic North is shown in Figure 7.3, Figure 7.5 and Figure 7.6. Figure 7.3 

presents the plain view of the resistivity distribution at four different depths: 78 m 

a.s.l., 222 m, 522 m and 4.7 km b.s.l. As expected from the induction arrow 

representation (Figure 5.17), the North-Eastern region is characterized by low 

conductivity values (< 10 Ωm), hereafter C1, and is elongated according to the 

strike direction. The resistivity in the southern region has a maximum of 800 Ωm 

and keeps a value much higher than the surroundings up to a depth of about 1.5 

km b.s.l. This remarkable contrast, hereafter R1, is in line with the geological 

setting of the area, characterized by the carbonates of the Tuscan unit (see Figure 

7.1). Figure 7.4 shows some vertical cross sections along the ZY and ZX plains 

(the traces of these sections are marked in the plain view of Figure 7.3b).  

Figure 7.5 plots the SW-NE vertical cross-section corresponding to the MT 

profile investigated in Section 6.3. The most important feature required by long 

period data is a large 200-Ωm body, hereafter R2, imaged between 3 and 7 km of 
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depth. This resistive body extends orthogonally to the strike direction, as emerged 

also from the plain view of Figure 7.3d.  

The RMSE was 1.60 for Z and 1.72 for T. The exact RMSE at each site 

normalized for the full period range is shown in Figure 7.6a-b, which plots the 

distribution of RMSE in the frequency–space domain for Z and T, respectively. 

Considering only Z, the majority of sites had a final RMSE lower than 2: the best 

data fitting resulted in site c6 (RMSE = 1.01), while the worst one in site g1 

(RMSE = 4.94). For the data fitting of T, the worst RMSE was 3 for site c1, while 

the majority of sites resulted in an appreciable data fitting (RMSE < 2). Details of 

the fitting between the four-components of the observed impedance tensor and the 

calculated data are provided in Appendix D for all the 51 sites. 

 

 

Figure 7.3 Plain view of the 3D resistivity model of test A at different depths: a) 78 m a.s.l., b) 222 m, c) 522 

m, d) 4.7 km b.s.l. The x-axis of the mesh is aligned with the geographic North (N0°). The lines in b) are the 

vertical cross-sections shown in Figure 7.4. The black-dashed profile drawn in a) from site k5 to a8 is the 

cross-section reported in Figure 7.5. 
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Figure 7.4 Vertical cross-sections of the model from test A: a) ZY1 section at X=-1.7 km; b) ZY2 section at 

X=1.6 km; c) ZX1 section at Y=-1.6 km; d) ZX2 section at Y=1.3 km. 
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Figure 7.5 Vertical cross-section of the model from test A corresponding to the MT profile investigated in 

Section 6.3. The SW-NE profile is orthogonal to the strike direction and crosses sites from k5 to a8 (see 

Figure 7.3). 

 

Figure 7.6 Distribution of RMSE at each site for test A a) Total normalized RMSE for the impedance tensor 

(Z). b) Total normalized RMSE for the Tipper matrix (T). The black dots in b) mean no Tipper data. The 

errors are normalized for the full period range. 
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7.3.2 Inversion of full Z and T with strike-aligned mesh (test D) 

This section reports the result of inversion test D (Table 7.1). Differently 

from test A, the coordinate system was aligned with the geoelectrical strike and 

the error floor for both Z and T was 5% lower than that of test A.  

The key results are displayed as in the previous section. Figure 7.7 shows the 

resistivity distribution in the horizontal plain at four different depths: 78 m a.s.l., 

222 m, 522 m and 4.7 km b.s.l. In the superficial structures (Figure 7.7a-b), there 

is a clear difference between the North-Eeastern conductive region C1 (< 10 Ωm) 

extending parallel to the x-axis and the south-western region where the resistivity 

rises by up to 1300 Ωm (R1 in left side of the subplots). At around 5 km of depth 

(Figure 7.7d), the resistive body R2 of around 250 Ωm elongates orthogonally to 

the strike (i.e., in parallel to the y-axis). Figure 7.8 shows some vertical cross 

sections along the ZY and ZX plains (the traces of these sections are marked in 

the plain view of Figure 7.7b). 

The vertical cross-section depicted in Figure 7.9 is directly comparable with 

the 2D model in Section 6.3. It shows superficial features similar to those imaged 

from inversion test A (Figure 7.5). At a depth between 300 m and 1.5 km b.s.l., 

the area located in the central-eastern part of Figure 7.7b-c (sites g4-a8 in Figure 

7.9) imaged a mildly resistive region of about 100 Ωm. The most relevant feature 

at greater depth is the large resistive body R2 also visible in Figure 7.7d and 

Figure 7.8.  

The data fitting was negatively affected by the low error-floor setting, as can 

be seen from Figure 7.10a-b. The final RMSE normalized for the full period 

bandwidth was 2.78 for Z and 2.91 for T. The lowest RMSE for Z was measured 

in site k5 (1.31) and for T in site b8. The worst RMSE resulted in site g1 (9.2) for 

Z and in site c1 for T. The data fitting for all the sites is provided in Appendix D.  
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Figure 7.7 Plain view of the 3D resistivity model of test D at different depths: a) 78 m a.s.l., b) 222 m, c) 522 

m, d) 4.7 km b.s.l. The mesh is aligned with the geoelectrical strike (N130°E), that is, the North is rotated 40° 

clockwise and the x-axis is parallel to the strike. The lines in b) are the vertical cross-sections shown in 

Figure 7.8.  The black-dashed profile drawn in a) from site k5 to a8 is the cross-section reported in Figure 

7.9. 
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Figure 7.8 Vertical cross-sections of the model from test A: a) ZY1 section at X=-2 km; b) ZY2 section 

at X=1.2 km; c) ZX1 section at Y=-2 km; d) ZX2 section at Y=1.3 km. 
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Figure 7.9 Vertical cross-section of the model from test D corresponding to the MT profile investigated in 

Section 6.3. The SW-NE profile is orthogonal to the strike direction and crosses sites from k5 to a8 (see 

Figure 7.6) 

 

Figure 7.10 Distribution of RMSE at each site for test D resistivity model. a) Total normalized RMSE for the 

impedance tensor Z b) Total normalized RMSE for the Tipper matrix (T). The black dots in b) mean no 

Tipper data. The errors are normalized for the full period 
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7.4. Discussion 

The 3D resistivity model represents a fundamental contribution to the 

investigation of the Travale geothermal field, as previous MT studies only 

converged in a 2D characterization. We explored different inversion setups given 

that 3D inversion in geothermal areas is potentially challenging, mainly due to 

their complex geology. Inversion test D confirmed the main resistivity structures 

of test A, but the strike-aligned approach had the advantage of showing more 

clearly the features at high depth (compare Figure 7.3d with Figure 7.7d and 

Figure 7.5 with Figure 7.9). 

Our result is consistent with the known geology of the Travale geothermal 

system. The xy-plain view of the resistivity distribution at shallow depth in Figure 

7.3a and Figure 7.7a is in agreement with the expected resistivity of the 

outcropping rocks described in the geological map of Figure 7.1. The North-

Eastern conductive area (C1) corresponds to the quaternary deposits and 

Neoautochthonous terrigenous deposits and was imaged up to a depth of 300 m 

b.s.l. The central mildly resistive area (10-50 Ωm) corresponds to the spatial 

coverage of the Ligurian and sub-ligurian flysch complex. Finally, the southern 

region R1, showing 800 Ωm in resistivity, matches the sediments and carbonates 

of the Tuscan Nappe. It should be noted, however, that the irregular space-

covering of the sites may have influenced the shape of the imaged resistive 

structures, as can be seen in Figure 7.3 and Figure 7.7. Figure 7.3c-d and Figure 

7.7c-d display the loss of resolution with depth, which can be explained by two 

main reasons. The first reason is related to the data set: around 20% of sites had 

no data above 10 s and the amplitudes of the on-diagonal and off-diagonal 

components of Z were similar at high period. The second reason regards the 

imaged shallow conductors (such as C1), which may have reduced the potential 

skin depth. 

Interestingly, we found a resistivity contrast in correspondence to the bottom 

of the Neogene sediments of the Radicondoli basin and separating it from the 

underlying units piled in the chain. Figure 7.11 shows a North-South section of 

the model crossing sites a4, b4, d4 and f4. The geological surface (in pink) was 

processed in Petrel environment from the findings of Casini et al. (2010) and 

represents the base of the Neogene sedimentary unit. To the North, below site b4, 

the basin-bottom surface descends to a depth of around 600 m b.s.l., where the 

resistivity jumps from 5 Ωm to 40 Ωm. This outcome represents a remarkable link 

between the resistivity contrast and the features of the geothermal system. 
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Figure 7.11 The 3D resistivity model of test D is compared with the pink surface corresponding to the base 

of the geological unit of Neogene (from Casini et al. 2010). The section goes North-South and crosses sites 

a4, b4, e4 and f4. 

The sections of the 3D model in Figure 7.5 and Figure 7.9 correspond to the 

profile investigated in Section 6.3 and in Manzella et al. (2006), except for 4 sites 

strictly belonging to the 2D line. The resistivity distribution of the 3D model is 

generally similar to that of the 2D model of Manzella et al. 2006 (Figure 5.9), but 

a few new features emerged from 3D inversion: the shallow structure R1 (up to 

1.5 km b.s.l.) below sites k6-g2 was far more resistive (800 Ωm); below sites g4-

a8 from 0 to around 3 km b.s.l. there was a moderately resistive region (100 Ωm) 

and not an anomaly; the resistive body R2 at 3-8 km b.s.l. had a different shape, 

boundaries and resistive value. The section from the 3D model can be also 

compared with the PSO result of Figure 6.8. The shallow resistive body below 

sites from k6 to g2 from 500 m to 1500 m of depth is in line with R1 in terms of 

resistivity value. Below sites from e4 to a8, there is a highly conductive structure, 

but C1 is shallower than the body imaged in Figure 6.8. Finally, R2 from 3D 

inversion resulted deeper and larger than the deep resistive body in Figure 6.8. 

The 3D-inversion result overcame the main limitations of the 2D model, which 

might have missed some heterogeneities due to the adoption of a 2D approach for 

the inversion of 3D data. Moreover, the 2D model in Figure 5.9 could have been 

strongly biased by the a priori geological cross section used as starting model. Our 

results also provided the data fitting and RMS distribution, which have not been 

shown in previous works.  
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The deep resistive body (R2) of Figure 7.3d-Figure 7.5, Figure 7.7d-Figure 

7.9 was imaged in all the inversion models and showed high resistivity (>200 

Ωm) between 3 and 8 km of depth. Figure 7.12 displays the model of test D for 

selected resistivity values higher than 200 Ωm. The deep resistive body R2 is 

oriented orthogonally to the main strike direction. This can be justified because 

some of the soundings showed a strike direction of N40-50°E (Figure 5.19). 

Moreover, this orientation around N40°E is quite similar to that observed for the 

deep 3D structures imaged below the “Lago Boracifero” area in the adjacent 

Larderello geothermal field (Santilano 2017; Santilano et al. in preparation). The 

deep conductive anomaly in the Larderello field has been justified by the 

occurrence of mineral alteration processes and residually melted intrusions 

(Santilano 2017; Santilano et al. in preparation). Given the same spatial 

orientation, the deep structures differ in that the one in the Larderello field is low 

resistive (< 100 Ωm), while the one imaged in the Travale geothermal field is 

more resistive than the background (> 200 Ωm). The resistive nature of the deep 

body was actually not unexpected because it is hosted in a vapor-dominated 

system in correspondence to the granite units. 

The orientation of R2 represents a major outcome in terms of interpretation 

for the knowledge improving of the Travale geothermal field. A strict relation 

between the strike-slip tectonics transversal to the Apennine direction and the 

deep magma emplacement or hydrothermal circulation was recently claimed by 

various studies (Acocella et al. 2006; Sani et al. 2016; Santilano et al. 2017; 

Santilano et al. in preparation; Liotta and Brogi 2020).  

An interesting relationship can be inferred between our resistivity model and 

the seismic marker K-horizon. The bottom of R2 in Figure 7.12 was around 8 km 

deep, thus coinciding with the depth of the K-horizon, i.e., in Travale from 6 to 8 

km (Romagnoli et al. 2010). This deep contrast and the seismic marker have been 

previously associated with a depth of around 5 km (Manzella et al. 2006), but our 

model highlighted a higher depth, in line with the recent updates on the K-horizon 

(Romagnoli et al. 2010).  
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Figure 7.12 The 3D model of inversion test D displayed for selected resistivity values higher than 200 Ωm. 

The deep resistive body is imaged between 3 and 8 km of depth and is directed about N40°E. The white 

circles represent the MT sites. 

In order to constrain the interpretation of the resistive body (R2) below the 

Travale-Radicondoli field, we compared the 3-D resistivity model with the 3-D 

local earthquake tomography of Bagagli et al. (2020) (see Figure 5.12). An 

impressive correspondence occurs between the resistive body R2 and the low-

velocity body detected in the vp images below the Travale area. The velocity 

model revealed a 5-km-wide low velocity body (vp about 5 km/s) deeply rooted in 

the crust and bounded between the H- and K-horizons (at 3-7 km of depth). The 

similarity with our deep resistivity body is remarkable. Furthermore, that authors 

showed the occurrence of several hypocenters in correspondence of the 

anomalous volume. This implies the occurrence of fragile regime and rocks 

fracturing.  

It should be noted that, in Bagagli et al. (2020), the orientation of the low 

velocity body seems different from that of the R2 body, even though some tests 

performed in Bagagli et al. (2020) showed a NE-SW trend at 7.5 km of depth 

(starting-model velocity of 6 km/s). The NE-SW orientation of R2 is largely 

supported by observing the map of the 3D vp velocity model between 5 and 7 km 

of depth obtained by Vanorio et al. (2004) and De Matteis et al. (2008). 
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Figure 7.13 The resistive body (R2) from test-D inversion model is compared with the 3D velocity model 

from local earthquake tomography of Bagagli et al. (2020). The R2 body (> 200 Ωm) and the low-velocity 

body with vp around 5 km/s are highly comparable and extend both between 3 and 7 km of depth. 

In our opinion the R2 body can correspond to a highly fractured volume of 

crystalline rocks hosting a high-temperature hydrothermal circulation. The 

resistive nature of the deep body is explained with the vapor-dominated condition 

of the crystalline reservoir, i.e., highly resistive fluids circulating in highly restive 

rocks. Moreover, the results of the I-GET project proved the absence of pervasive 

alteration in the area of Travale by analyzing well cuttings and cores, which were 

suitable to decrease the bulk resistivity of the rocks (Giolito et al. 2009; Manzella 

et al. 2010). Our 3D model had scarce resolution below R2, but the general 

decrease in resistivity might be associated to the presence of the main heat source 

of the geothermal system.  

The resistivity distribution of the inversion models can be correlated with the 

resistivity well-logs. Unfortunately, the database of the wells is not published 

except for the well log of Radicondoli-7bis, located south of sites e4 and e5 and 

shown in Figures 5.8, 5.11 and 5.13 (Giolito et al. 2009; Manzella et al. 2010; 

IMAGE final report). Giolito et al. (2009) reported the litho-stratigraphy, the 

resistivity well-log and the mean resistivity of the drilled formations of the well. 

The results of the IMAGE project (IMAGE D5.01; Santilano 2017; Santilano et 

al. in preparation) can lend support for the interpretation of the volume of rocks 

with about 100 Ωm at depth of about 800-2000 m embedded between the low-
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resistive cap-rock (C1) and the high-resistive body (R2) (see Figure 7.3c, Figure 

7.5, Figure 7.7c and Figure 7.9). At this level, an extremely heterogeneous unit 

(Tectonic Wedge Complex) occurs with a very wide range of electrical resistivity 

(from 10-1 to 104 Ωm), as measured from the geophysical well logs (such as the 

wells Radicondoli 7bis in Figure 5.13). This could have affected the measured EM 

signal, which provided an averaged resistivity of this geological unit (also 

confirmed by Surface-Hole ERT in the area of Larderello from Capozzoli et al. 

2016). The reliability of this 100 Ωm volume of rocks in the 3D inversion model 

was confirmed by a sensitivity analysis performing forward calculation with 

perturbed resistivity models (example in Appendix E, Figure E.11).  

Below 2300 m b.s.l., the well-log mean resistivity rises by up to around one 

order of magnitude in coincidence of the Phyllitic-Quartzitic Complex, 

micaschists and granite. This trend is largely comparable with the resistivity of R2 

(Figure 7.5, Figure 7.9 and Figure 7.12). The significant variation of the acoustic 

impedance measured in the Radicondoli-7bis has been associated with a fractured 

zone at around 2500 m of depth b.s.l., in correspondence to the H-horizon and the 

productive levels of 13 geothermal wells (Casini et al. 2010). 

7.5. Conclusion 

We presented the first 3D resistivity model of the geothermal area of Travale 

(Italy) resulting from a complete 3D MT inversion. The MT data set was 

accurately analyzed in terms of geoelectrical dimensionality and the static shift 

was carefully corrected by means of recently-acquired TDEM soundings. A 

number of 3D inversion tests were performed by varying the grid rotation, error 

floor and initialization in order to assess the resistivity distribution of this complex 

and largely-investigated geothermal system.  

The inversion model shed light on the 3D subsurface structures, thus 

extending previous knowledge of those structures, which so far have been 

interpreted only for a single MT profile.  The validity of our result is supported by 

geological information, resistivity well-logs and seismic data. A distinct 

correlation emerged between the resistivity contrast at shallow depth and the 

geological surface of the base of the Neogene unit. At intermediate depth, about 

800-2000 m b.s.l., the moderate resistivity (100 Ωm) may be interpreted as an 

average value of a heterogeneous geological unit composed of a wide range of 

lithology. The contribution of hydrothermal circulation is not recognizable at this 

level. A deep resistive body was imaged in agreement with the 2D model of 

previous literature but with new insight into its spatial extension and orientation. 

At a depth of 3-7 km, the resistivity was higher than 200 Ωm and the orientation 

N40-50°E. This high-resistive body corresponds to a low velocity body and can 

be interpreted as a highly-fractured volume of rocks with vapor-dominated 

circulation.     
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3D MT inversion was challenging due to the time-consuming computation 

which can involve 100 times more the unknowns of a 2D inversion. Furthermore, 

the framework of the geothermal system is still under debate. Our work offers the 

first 3D subsurface electrical distribution in the Travale area from a geophysical 

interpretation and can pave the way to further insight about the geothermal 

system. 

Future work should broaden the MT characterization of the Travale area by 

means of new acquisition campaigns that would enlarge the investigated zone, 

ideally with a regular space-covering of the sites. The existing data set need to be 

enriched for all the sites with the acquisition of the geomagnetic transfer function, 

which is fundamental for 3D inversion. The integration of multiple geophysical 

data sets would also be beneficial for a comprehensive study of the geothermal 

system.  
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Chapter 8 

Conclusions  

This doctoral research was developed around two main cores with the MT 

method as common thread (Chapter 2). The first main core investigated a new 

method, based on computational swarm intelligence, to perform stochastic inverse 

modeling of both multiple geophysical data sets (Chapter 3) and 2D MT data 

(Chapter 4). The second core comprised the MT study of the Larderello-Travale 

geothermal area (Chapter 5) by means of PSO (Chapter 6) and 3D MT inversion 

(Chapter 7).  

The initial purpose of the work was to extend the adoption of metaheuristic 

algorithms from 1D to 2D to solve the MT inverse problem. In fact, the state of 

the art of global search methods in MT is composed of a few 1D applications 

(Monte Carlo, PSO and GA) and a single 2D example (GA by Everett and Schulz, 

1993). As well as this scientific gap in the methodology, metaheuristic methods 

were recognized to be effectively applied to the characterization of geothermal 

areas, where the geological complexity and the difficulty in retrieving reliable 

external constraints can negatively affect the solution of the inverse problem. A 

second aim of this study was to investigate the LTGA, where some geological, 

physical and thermo-dynamical aspects are still unclear or under debate, despite 

more than a century of scientific research. Furthermore, 3D MT inversion is 

currently an area of very intensive research and no work to date has focused on 

3D inversion of MT data from the Travale geothermal area.  

This thesis has proved that the PSO algorithm can be a valid method to solve 

the 2D inverse problem for both synthetic and field MT data sets. This work also 

presented a new MT characterization of the Travale geothermal system. Even 

though a new MT field campaign was not carried out, we recovered the MT data 

acquired in the geothermal area in the past to provide new interpretation in the 

light of new methodologies. The new MT inversion results were presented as 2D 

and 3D models, after stochastic inverse modeling and NLCG inversion, 
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respectively. New TDEM data were acquired in 2019 to correct the MT static 

shift.  

The main findings of this thesis are: 

1. A new method for 2D MT stochastic inverse modeling has 

successfully been applied to synthetic and field data. Thus the 

application of PSO to MT inversion has been extended from the 1D 

problem, already visited in the literature, to the 2D problem. After 

validating the method on synthetic data of different complexity, it was 

applied to the benchmark for real-field MT data, the COPROD2 data 

set (Canada). The optimization of the COPROD2 data set provided a 

resistivity model of the Earth in line with results from previous 

interpretations. The stochastic nature of PSO and the combination of 

exploration and exploitation behaviors played a key role in finding the 

global minimum of the search space as final solution. 

2. The standard release of the PSO code was not ideal to properly 

address the complexity of the 2D MT inverse problem, which entails 

hundreds of unknowns and thousands of forward-modeling 

calculations. We observed striking improvements in the shift from 

standard PSO to hierarchical PSO with time-varying acceleration 

coefficients (HPSO-TVAC). This issue has not been addressed in 

previous research on PSO applied to geophysics, but was crucial in the 

optimization of 2D MT data. In fact, the optimization ended with true 

convergence and stability because some input arguments (namely, the 

acceleration coefficients) were set as iteration-varying parameters and 

not as constants. Moreover, a detailed sensitivity analysis has been 

carried out on the acceleration coefficients and population size to 

calibrate and retrieve their optimal values and to ensure the stability 

and convergence of the solution. This represents an upgrade of 

previous PSO applications to geophysical data.  

3. PSO did not require an initial assumption about the solution, i.e., a 

priori information. To prove this, PSO of synthetic data was 

performed both by giving a priori information at the beginning and by 

using a random initialization. The a priori information was given to a 

small portion of the swarm as initial position within the search space 

of solutions (i.e., proposed models), so that the swarming behavior 

was only slightly influenced. In this way, if the data agreed with a-

priori information, the optimization was influenced by it, otherwise the 

optimization disregarded the information and searched for a valid 

solution thanks to its adaptive behavior. We have demonstrated that 

there is no need for a priori initialization to obtain robust 2D models, 

since the a-priori-initialized results were largely comparable with the 

randomly initialized results. In fact, when no a-priori information was 

set, a random initial model ensured the exploration of all the possible 
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solutions and then the adaptive behavior ensured the convergence 

towards the global minimum. An advantage of the PSO method is that 

it is independent of the starting model, and consequently, it does not 

necessarily require external information to initialize the optimization. 

4. The complexity of the 2D MT inverse problem and the 

computationally demanding nature of PSO as a global search 

algorithm had a direct influence on the computation time, which has 

been reduced with the parallelization of the code. In order to speed up 

the computation, we developed and applied the parallel computing 

option for the PSO algorithm.  Running PSO on a High Performance 

Computing (HPC) cluster resulted in runtime savings of about 80%.  

5. The PSO algorithm has been applied to two MT profiles located in the 

Larderello-Travale geothermal area. For the first time, MT data from 

this geothermal area have been 2D interpreted using a metaheuristic 

method. The final models succeeded in imaging very complex 

resistivity structures similar to those presented in previous research, 

but with a number of advantages derived from the application of PSO. 

Firstly, the final models were not initially biased by an external 

starting model derived from geology. Secondly, the RMSEs associated 

to the final PSO models were lower than those associated to the 

models obtained by derivative-based inversion techniques. 

6. A first 3D inversion resistivity model of the Travale geothermal 

system has been obtained from NLCG 3D MT inversion. This 

outcome provides comprehensive insight into the complex and still-

uncertain electrical resistivity distribution in the subsurface of the 

Travale geothermal field. The 3D resistivity model has extended our 

knowledge of 3D subsurface structures, in particular their spatial 

orientation and extension. The findings of the 3D inversion 

complement those of earlier studies, that have interpreted only isolated 

profiles. This final outcome has been successfully correlated to 

geological information, resistivity well-logs and seismic data. Finally, 

the identification of the deep resistivity contrasts has significant 

implications for the understanding of the vapor-dominated circulation 

in the deep reservoir of the geothermalfield.  

PSO of 2D MT data and 3D MT inversion share a common issue: a high 

computational load. This represented a scientific and technological barrier up to 

few years ago, but today is being overcome thanks to the rapid progress of parallel 

and cloud computing, which have become globally available. The computational 

effort was managed by running the simulations on the HPC cluster of Politecnico 

di Torino.  

One possible source of weakness of the 3D MT study of the Travale 

geothermal system was the inhomogeneous spatial covering of the MT sites, 
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which may have affected the inversion result. It is also unfortunate that some MT 

sites have not been included in the 3D inversion due do the high level of noise.  

Overall, the MT study of the Travale geothermal system provides continuity 

of the past European projects INTAS and I-GET and contributes to the 

characterization of the deep structures, in line with the recent projects IMAGE 

and DESCRAMBLE. The 3D inversion model presented in this thesis may have 

practical implications for future deep explorations of the geothermal field of 

Travale, as it represents the first important result that clearly depicts 3D bodies 

and lateral discontinuities in resistivity. Furthermore, this study strengthens the 

idea that vintage data can save essential information if re-evaluated in the light of 

new methodologies.  

A natural development of this work could be to acquire new MT data 

covering the whole LTGA to draw a very broad resistivity model at a regional 

scale. A larger number of sites, ideally displaced with regular spatial covering, 

would be of help for a greater degree of accuracy in the 3D inversion model. 

Given the encouraging results from PSO of 2D MT data, a further possible 

direction for future work could be the adoption of the models resulting from PSO 

to initially constrain the 3D MT inversion. 

Finally, a fruitful area would be 3D MT stochastic inverse modeling. The 

main premises are that 3D MT forward-modeling routines are beginning to be 

released to the research community and that global search methods are starting to 

be positively accepted in spite of the skeptical view of the past. A greater focus on 

3D stochastic inverse modeling could produce interesting findings that account 

more for complex geoelectrical structures. The challenge now is to manage the 

computational demand, but we are confident that it will be promptly overcome in 

the near future. 
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Appendix A 

Joint optimization of geophysical 

data using multi-objective swarm 

intelligence 

A.1 Solution evaluation 

We adopted three metrics as performance measures assessing both the number 

of non-dominated solutions and the PF. 

1) The repository index (RI): 

𝑹𝑰 (%) =
𝑵𝒓𝒆𝒑

𝑵𝒕𝒐𝒕
                                           ( A.1 ) 

where: Nrep is the number of non-dominated solutions (or, in MOPSO, the 

particles stored in the repository), and Ntot is the total number of solutions 

analyzed (i.e., the population size in both MOPSO and NSGA-III). RI 

measured the level of non-dominated solutions at the last iteration.  

2) The spacing (SP):  

𝐒𝐏 = √
1

𝑁𝑟𝑒𝑝−1
∑ (�̅� − 𝑑𝑖)

2𝑁𝑟𝑒𝑝

𝑖=1
                                ( A.2 ) 

where: 𝑑𝑖 = 𝑚𝑖𝑛𝑗(|𝑓1
𝑖(𝒎) − 𝑓1

𝑗(𝒎)| + |𝑓2
𝑖(𝒎) − 𝑓2

𝑗(𝒎)|); 𝑖, 𝑗 =

1,  … , 𝑁𝑟𝑒𝑝, and �̅� is the mean of all 𝑑𝑖  (Coello Coello et al., 2004). This 

metric effectively measured the distribution of the solutions throughout the 

PF and was 0 in case of uniform distribution (i.e., equidistant spacing) 

between the beginning and the end of the PF-curve.  

3) The deviation angle (α) between two lines: the bisector of the objective 

space (with slope 1) and the linear fit of the PF calculated using the Theil-

Sen estimator (Theil 1950; Sen 1968). The angle α was derived from the 

tangent:  

tan 𝛼 = |
�̃�−1

1+�̃�
|                                    ( A.3 ) 
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where �̃� is the median of the slopes between all the possible pairs of points of 

the 2D PF {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1, … , 𝑁𝑟𝑒𝑝} : 

�̃� = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑚𝑖,𝑗|𝑖, 𝑗 = 1, … , 𝑁𝑟𝑒𝑝 , 𝑖 ≠ 𝑗, 𝑖 > 𝑗 }             ( A.4 ) 

𝑚𝑖,𝑗 =  
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
                                               ( A.5 ) 

The deviation angle α is an indicator of the data set compatibility because 

only if the data sets are perfectly compatible, the objective components converge 

to the same value and the PF aligns along the ideal line of slope 1 (Schnaidt et al. 

2018). Otherwise, conflicting objective components lead to a marked deviation of 

the Theil-Sen regression line. In detail, the condition 0°< α <45° proves data 

compatibility and can be easily observed in case of synthetic data sets. If, instead, 

45°< α <90° data incompatibility occurs, and the PF deviates from the ideal line. 

Unfortunately, field data sets are commonly affected by incompatibility or partial 

compatibility due to the specific differences of the geophysical methods. 

However, the regression line, or simply, the PF shape is effective in showing how 

much one objective-component is in contrast with the other one (Dal Moro 2010).  

A.2 Validation on synthetic data 

Our novel joint-optimization algorithm was first validated on a synthetic 

example. The true model was conceived in some ways similar to the experimental 

data to be tested. The synthetic model was composed of five layers of different 

resistivity and is shown in Figure A.1c with a red-dashed line, while the TDEM 

and VES curves are marked with red dots in Figure A.1a-b, respectively. These 

curves were computed using the forward solvers mentioned before and adopted 

for the optimization. The error bars refer to 10% Gaussian noise added to the data. 

The model solution was discretized into 19 layers and its maximum depth was 

consistent with the concept of electromagnetic diffusion depth. The application of 

the L-curve criterion identified the optimal Lagrange multipliers equal to 0.1 for 

TDEM and 0.01 for VES. The boundary conditions of the search space of 

solutions were 1 and 500 Ωm. The TV-MOPSO stopped after 1000 iterations and 

the outcome is presented in Figure A.1. On the left (Figure A.1a-b), the blue lines 

represent the calculated responses satisfactory fitting the synthetic curves. Figure 

A.1c displays the final result (blue line) compared to the true model (red-dashed 

line) and the other optimized solutions belonging to the Pareto Front (green lines). 

The MOPSO outcome was largely consistent with the true synthetic model, thus 

demonstrating its applicability to real data. Table A.1 lists other details of the 

optimization, such as: the RI (equation A.1), the SP (equation A.2), the angle α 

(equation A.3), the total runtime (in hours), the data misfit and model misfit 

calculated as the root mean square error normalized by the mean value (NRMSE). 
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Figure A.1 The result of TV-MOPSO applied to the synthetic example; a) TDEM theoretical signal (red dots 

with error bars) and predicted response in the range 0.9·10-5 - 2·10-3 s; b) VES data cover 1 to 1000 m of half-

spacing; c) the true model (red-dashed line), the final resistivity models derived from the PF (green lines) and 

the best solution highlighted in blue. 

Table A.1 Analysis of the performance of MOPSO on the synthetic example. The rows report: the number of 

iterations run, repository index (RI), spacing (SP), deviation angle (α) between the ideal and Theil-Sen 

regression line, total runtime in hours, data misfit (NRMSE) for TDEM and VES and model misfit (NRMSE). 

Synthetic data 

 MOPSO 

Iterations 1000 

RI (%) 7.6 

SP 0.0033 

α (°) 48.3 

Runtime (h) 13 

Data NRMSE TDEM  0.0367 

Data NRMSE VES 0.0209 

Model NRMSE 0.188 

A.3 Test on the Villafranca data set (Italy) 

The site of Villafranca d’Asti is located about 40 km south-east of Torino and 

represents an exploration site, where a large well-field extensively exploits a 

confined aquifer to supply drinking water to 43 municipalities within the Asti 

Province (De Luca et al. 2018). The exploited aquifer consists of Pliocene marine 

deposits (mainly "Asti Sands" formation) bounded at the base by a Pre-pliocene 

marine complex, consisting of silty-clayey sediments, and by a Lower-Middle 

Pliocene marine complex (represented by the Lugagnano Clay), consisting of 

sandy-marly clay, upward intercalated with coarser sediments (De Luca et al. 

2014; Lasagna et al. 2014). Both these lower complexes have a very low or 

negligible permeability and represent an aquiclude, under the overlying Asti 

Sands. By contrast, the Asti Sands are sandy sediments, alternated with levels of 

fine sand, sandy-gravel, clayey sand, silty-sandy and silty-clayey levels with very 

low permeability. The alternation between mainly sandy sediments with a good 
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permeability and poorly permeable levels makes this complex a multi-layered 

aquifer system, in which the various aquifer levels can intercommunicate through 

semi-permeable levels. 

A geophysical survey has been carried out in the area to better understand the 

formation of this aquifer layer and potentially identify new positions for water 

wells (De Luca et al., 2018). Within the performed surveys, acquisition of TDEM 

data has been carried out using a coil size of 100 × 100 m for the transmitter, and 

both 0.6 × 0.6 m (20 turns) and 10 × 10 m (2 turns) receiver coils for the receiver, 

located at the center of the transmitter coil. TDEM transient curve has consisted of 

40 measuring points, from 1.2 × 10−6 s to 8.8 × 10−3 s. Injected current has been 

around 10 A and a stacking of 2000 measurements has been performed. The 

acquisition has been carried out using an ABEM WalkTEM instrument. Several of 

these soundings have been performed over the area and then globally inversed 

with a Spatially Constrained Inversion (SCI) algorithm (De Luca et al. 2018). In 

our study, a single TDEM sounding was integrated with one VES sounding. The 

available vintage VES acquisition has been performed using the Schlumberger 

configuration with a maximum half-spacing of about 850 m between the current 

electrodes (Città di Asti 1962). As in the Stupinigi case study, the TDEM 

measurements had the original uncertainties associated to the data, while the 

errors of VES data were assumed by adding 10% of Gaussian noise. This may be 

regarded as the contribution of: the original experimental errors, the possible 

inaccuracy of the conversion from the original data to the digital form and the 

inaccuracy of editing and smoothing apparent-resistivity curves. 

VES and TDEM curves were preliminary analyzed to infer the possible 

occurrence of the electrical static shift. After applying the scaling relationship of 

Meju (2005), we verified that the two data sets were acceptably compatible for 

joint inversion. 

In the MOPSO algorithm, the lower and upper boundaries of the search space 

were fixed at 1 and 200 Ωm, respectively. The application of the L-curve criterion 

identified the optimal Lagrange multipliers equal to 0.1 for TDEM and 10-4 for 

VES. The results from MOPSO are presented in Figure A.2. On the left, the fitting 

between observed (red error bars) and calculated (blue line) data is noteworthy for 

both TDEM signal (Figure A.2a) and VES apparent resistivity (Figure A.2b). On 

the right, Figure A.2c) displays the set of Pareto-optimal solutions in green and 

the selected one with the minimum components of f(m) in blue. The 1D vertical 

profile was composed of 19 layers, up to a maximum depth of about 380 m. The 

family of non-dominated solutions reveals two resistive regions. The first region 

overcomes 100 Ωm in the shallow subsurface (about 20 m of depth). The second 

ranges from 100 Ωm to 200 Ωm at a depth from about 50 to 150 m. This last 

resistive layer may be related to the confined aquifer object of the investigation in 

the area, as mentioned before. 
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Figure A.2 The result of TV-MOPSO applied to the Villafranca data set: observed data (red dots with error 

bars) and predicted apparent resistivity (ρapp) for TDEM (a) and VES (b) data; c) the final resistivity models 

belonging to the PF (green lines) and the best solution highlighted in blue. 

The MOPSO ran for 600 out of 1000 iterations, since the repository was not 

filled for 300 consecutive iterations (second stopping criterion). Figure A.3a-b 

plots the trend, iteration after iteration, of the TDEM and VES components of the 

objective function, respectively. At the final stages of the optimization, the mean 

fj(m) (black circles) slightly increased, but the minimum fj(m) (red stars) showed 

convergence. At the last iteration, the PF took the shape shown in Figure A.3c) 

with red stars. The objective-function values of the other particles of the swarm 

are marked with black circles. The zoom-in box reveals a complete view of the 

search space and, in particular, the wide range of the VES-component values for 

the particles outside the repository. The metrics for the solution appraisal are 

listed in Table A.2: the RI was 12.4% and the SP was 0.3584. The deviation angle 

of 47.3° is highlighted in Figure A.3d) between the Theil-Sen-regression and ideal 

line, that is, the blue and grey-dashed lines, respectively. The vertical shape of the 

PF as well as the α slightly greater than 45° suggested a partial compatibility 

between the data sets. 
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Figure A.3 TV-MOPSO applied to the Villafranca data set: the evolution of the TDEM (a) and VES (b) 

components of the objective function from the first to the last iteration for the best particle (red stars) and the 

remaining ones (black circles); c) the 2D space of the objective function (TDEM and VES components) at the 

last iteration: the red symbols identify the PF and the black circles the objective-function values assumed by 

the other solutions; d) the intersection between the ideal line (grey dashed) and the Theil-Sen regression line 

(red) or the least-square regression line (blue) identifies the deviation angle α. 

The benchmark algorithm NSGA-III was applied to the Villafranca data set 

yielding the outcome illustrated in Figure A.4. Figure A.4a shows the appreciable 

match between observed TDEM signal (red dots) and calculated response (blue 

line), while Figure A.4b reports an acceptable fitting for the VES ρapp. The non-

dominated solutions drawn from the PF are plotted in green in Figure A.4c and 

the selected blue-model does not present significant differences from them. A 

resistive body with a peak of 130 Ωm is imaged at about 10-15 m of depth, while 

from 50 m to 100 m of depth the resistivity increases up to a maximum of 85 Ωm. 

Then it gradually decreases to 50 Ωm. 



Appendices 161 

 

 

Figure A.4 The result of NSGA-III applied to the Villafranca data set: observed data (red dots with error 

bars) and predicted apparent resistivity (ρapp) for TDEM (a) and VES (b) data; c) the final resistivity models 

belonging to the PF (green lines) and the best solution highlighted in blue. 

The performance of NSGA-III can be read from Figure A.5 and Table A.2. 

1000 iterations were requested for a robust minimization of both components of 

the objective function. Even though Figure A.5a-b shows a decreasing trend, the 

mean value of the VES component (black circles in Figure A.5b) was two orders 

of magnitude larger than the corresponding TDEM. However, at the end of the 

optimization, the minimum values of the TDEM and VES components were quite 

similar, as depicted in Figure A.5c. It is the snapshot of the objective space at the 

last iteration. All the population members were evaluated as non-dominated 

solutions and hence the corresponding objective-function values were marked 

with black circles and red symbols at the same time (RI=100%). The PF is plotted 

with red stars in Figure A.5d, to highlight the deviation angle α = 46.7° between 

the Theil-Sen-regression blue line and grey-dashed ideal line. The NRMSE is 

listed in Table A.2 for the results from MOPSO and NSGA-III. 

Table A.2 Analysis of the performance of MOPSO and NSGA-III on the data set from Villafranca. The rows 

report: the number of iterations run, repository index (RI), spacing (SP), deviation angle (α) between the ideal 

and Theil-Sen regression line, total runtime in hours, normalized root-mean square error (NRMSE) for 

TDEM and VES. 

Villafranca data set 

 MOPSO NSGA-III 

Iterations 600 1000 

RI (%) 12.4 100 

SP 0.3584 0.0164 

α (°) 47.3 46.7 

Runtime (h) 7.1 10.8 

NRMSE TDEM 0.173 0.2009 

 NRMSE VES 

 

 

 

 

0.0272 

 

0.0384 
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Figure A.5 NSGA-III applied to the Villafranca data set: the evolution of the TDEM (a) and VES (b) 

components of the objective function from the first to the last iteration for the best individuals (red stars) and 

the remaining ones (black circles); c) the 2D space of the objective function (TDEM and VES components) at 

the last iteration: the red symbols identify the PF, while the black circles the objective-function values 

assumed by the other solutions; d) the intersection between the ideal line (grey dashed) and the Theil-Sen 

regression line (red) or the least-square regression line (blue) identifies the deviation angle α. 

The application of MOPSO to the Villafranca data set offered an insight into 

data compatibility. Given the maximum half-spacing of the current electrodes 

(844 m), the VES reached a depth of investigation higher than that of TDEM 

sounding, that was negatively affected by the superficial conductive region. The 

deviation angle of 47.3° > 45° proved the lack of data compatibility. However, a 

partial compatibility may be assumed because α was slightly bigger than 45° and 

the PF was almost vertical, as proved by the Theil-Sen regression line that tends 

to bend towards the y-axis (VES component in Figure A.3c). From 40 m of depth 

downwards, the TDEM data lost resolution and hence the tradeoff solutions from 

MOPSO mainly interpreted the information from VES. In fact, Figure A.3c 

showed a clear convergence of the particles on the same value for the TDEM 

component and, in contrast, a large distribution for the VES components. This 

explains the vertical shape of the PF and the high value of SP. The resistivity 
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model obtained from the Villafranca data set using the MOPSO algorithm is in 

line with the results published in De Luca et al. (2018) using the same TDEM data 

set. Both the models are in good agreement about the top and bottom of the deep 

resistive layer constituting the aquifer.  Moreover, the introduction of VES 

information in the MOPSO inversion allowed a more refined definition of the 

highest resistive portions of the multi-layered aquifer system. From literature, 

these portions are supposed to be related to the more permeable sandy layers and 

therefore relevant for water exploitation. Unfortunately, there is no availability of 

geological or geophysical information on this specific site (well logs, seismic, 

etc.). In fact, this was the reason for the recent geophysical investigations.  

A.4 Results from the single-objective separate optimizations 

This section presents the separate optimizations of the synthetic and real data 

sets using the single-objective PSO. The input parameters of the algorithm were 

kept as previously explained: the model was discretized into 19 layers, the swarm 

was composed of 170 particles and the L-curve criterion identified the optimal the 

Lagrange multiplier. Since the process of separate optimization is simpler than the 

multi-objective problem, few iterations were required to gain the solution 

convergence. The PSO algorithm ran for a maximum of 500 iterations or stopped 

before if the fitness functions did not minimize for 100 consecutive iterations 

(second stopping criterion). Each run was launched ten times (or “trials”) in order 

to test the solution variability coming from the initial random distributions. 

Santilano et al. (2018) indeed proved for 1D MT that different random 

initializations of the model resulted in highly comparable but not identical final 

solutions. The MOPSO was not launched for different trials because the 

dominance criterion exercised, among the possible solutions, the same selective 

choice performed by several trials of single-objective PSO. In MOPSO, the best-

solution selection is a mathematically refined process, while in simple PSO it is 

based on the straightforward minimization of a single objective. The solution with 

the minimum NRMSE among the ten solutions was eventually selected as the best 

optimized model. The boundary conditions of the search space of the solutions 

were kept as reported in the previous paragraphs for the two data sets, 

respectively. The simulations have been run by adopting only two workers of the 

HPC cluster because unnecessary computational resources were not allowed. For 

this reason, the comparison between the multi-objective and single-objective 

optimizer could not be assessed in terms of runtime.  

For the single-objective PSO of synthetic data, the Lagrange multiplier was 

10-3. The best trial of TDEM optimization ran for 398 iterations and the 

corresponding predicted response and final resistivity model are plotted in blue in 

Figure A.6a-b, respectively. The outcomes from the other trials are marked in 

green, while the true model in red. The final NRMSE of the data fitting was 

0.0277 and of the model fitting was 0.4445 (Table A.3).  The best result from 

PSO of VES synthetic data, after 419 iterations, is shown in Figure A.7 and gave a 
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final NRMSE of 0.0065 as data misfit and of 0.27 as model misfit (Table A.3). 

The validity of the synthetic test was evident from the model misfit: the one of 

MOPSO (Table A.1) was lower than those of the single optimizations (Table 

A.3). By contrast, the data misfits from the single optimizations (Table A.3) were 

a little lower than those from MOPSO, but this was not surprising. It is reasonable 

to assume that the interpretation of both TDEM and VES information limited the 

data fitting but yielded a better definition of the final model (i.e., lower model 

misfit). 

 

Figure A.6 Single PSO of TDEM synthetic data. a) fitting between observed signal (red dots and error bars) 

and predicted response (blue line); b) the red-dashed line is the true model, the green lines correspond to the 

resistivity models from different PSO trials while the blue line is the best solution. 

 
Figure A.7 Single PSO of VES synthetic data. a) fitting between observed apparent resistivity ρapp (red dots 

and error bars) and predicted response (blue line); b) the red-dashed line is the true model, the green lines 

correspond to the resistivity models from different PSO trials while the blue line is the best solution. 

As regard the Stupinigi site, the Lagrange multiplier was 10-3 and the best 

trial ran for 500 iterations.  The response from PSO of TDEM data is shown in 

Figure A.8. Figure A.8a plots the significant match between the observed data 

(red dots and error bars) and the calculated response (blue line) from the best 

model. It is marked in blue in Figure A.8b and the solutions from other trials in 

green. All the models concur in identifying a conductive region of about 30 Ωm 

between 20 and 40 m of depth. Table A.3 lists the final NRMSE of 0.0791.  
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Figure A.8 Single PSO of TDEM measurements at Stupinigi site. a) fitting between observed apparent 

resistivity ρapp (red dots and error bars) and predicted response (blue line); b) the resistivity models in green 

correspond to the different PSO trials while the best solution is marked in blue. 

The trend of the optimization is visible in Figure A.9. Figure A.9a plots the 

decrease of the objective function (f(m)) from the first to the last iteration as 

assumed by the best particle (black dots) and the mean value of the remaining 

particles (blue dots). Figure A.9b represents the value of f(m) assumed by the 

particles as a function of their position in the first two layers of the model 

(represented by the two horizontal axes): the grey dots reveal the initial random 

positions of the particles, while the red-circled blue dot is the final position of the 

whole swarm at convergence. Figure A.9c is the plain view of Figure A.9b and 

highlights the random initialization of the particles (grey dots). The bar plot of 

Figure A.9d displays how many particles had the same f(m) at the end of PSO. 

 

Figure A.9 PSO performance at the end of the optimization: a) the decrease of the fitness function, iteration 

after iteration, for the best particle (black dots) and the remaining swarm (blue dots); b) the fitness-function 

value as a function of the particle positions in the resistivity (ρ) search space, at the first (grey dots) and final 

(red-circled blue dots) iterations; c) plain view of b); d) final distribution of the fitness-function values among 

all the particles. 

The response from PSO of VES data is shown in Figure A.10. Figure A.10a 

plots the significant match between the observed ρapp (red dots and error bars) and 
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the calculated response (blue line) from the best model, that is marked in blue in 

Figure A.10b. Excepting one trial, the remaining models (green lines), are highly 

comparable and image a resistive body of about 180 Ωm at about 5 m of depth.  

Table A.3 lists the final NRMSE of 0.0288. 

 

Figure A.10 Single PSO of VES data at Stupinigi site. a) fitting between observed apparent resistivity ρapp 

(red dots and error bars) and predicted response (blue line); b) the resistivity models in green correspond to 

the different PSO trials while the best solution is marked in blue. 

The independent optimizations of TDEM and VES from the Villafranca data 

set spawned the results of  Figure A.11 and Figure A.12, respectively. The 

predicted TDEM signal of Figure A.11a is not dissimilar to the observed data 

marked with red dots and error bars. The resistivity models of Figure A.11b are 

plotted in green, while the best trial is marked in blue and was obtained after 325 

iterations. The model shows a slight decrease of resistivity from 10 to 25 m of 

depth and then at 40 m deep an increase from 20 Ωm to 80 Ωm. The NRMSE was 

0.2106, as listed in Table A.3. The VES ρapp was distinctly matched after 421 

iterations as shown in Figure A.12a. The observed ρapp is plotted with red dots and 

without the error bars because the measurements were resampled on the original 

smoothed curve, thus making ambiguous any consideration about errors. Figure 

A.12b shows the solutions obtained after the ten trials: the best trial is plotted in 

blue and gave an NRMSE of 0.0148 (Table A.3). The best model images in top-

down order: a resistive subsurface of about 90 Ωm, a conductive break with the 

minimum 6 Ωm at about 30 m of depth and a deep resistive region of about 100 

Ωm.  
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Table A.3 Analysis of the performance of single-objective PSO on the synthetic, Stupinigi and Villafranca 

data sets. The columns report: the method, the number of iterations run, the normalized root-mean square 

error (NRMSE) and the runtime of a single trial (in minutes’). 

 Method Iterations NRMSE one-trial runtime(’) 

Synthetic test 

TDEM 302 
0.0299 (data) 

0.4276 (model) 
122.45 

VES 465 
0.0053 (data) 

0.2621 (model) 
2.6 

Stupinigi data 

set 

TDEM 500 0.0791 21.37 

VES 500 0.0288 1.48 

Villafranca 

data set 

TDEM 325 0.2106 84.86 

VES 421 0.0148 3.61 

 

Figure A.11 Single PSO of TDEM measurements at Villafranca site. a) fitting between observed signal (red 

dots and error bars) and predicted response (blue line); b) the resistivity models in green correspond to the 

different PSO trials while the best solution is marked in blue. 

 

Figure A.12 Single PSO of VES data at Villafranca site. a) fitting between observed apparent resistivity ρapp 

(red dots) and predicted response (blue line); b) the resistivity models in green correspond to the different 

PSO trials while the best solution is marked in blue. 
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Appendix B 

The MT sites of the Larderello-

Travale data set 

The following table lists complete information on the MT site examined in 

this thesis. The 86 MT sites were analyzed in terms of dimensionality, strike and 

phase tensor analysis (Section 5.4). Eleven sites belonging to the same profile 

were selected for 2D optimization using PSO:  k1, k2, k3, k4, k6, j0, g2, f4, e4, c7, 

a8. The 3D MT inversion was carried out on 51 sites due to the regularity of their 

spatial distribution and the good quality of measurements. The Tipper vector, 

where measured, was included in 3D inversion.  

 

SITE 

NAME 
LATITUDE LONGITUDE 

ALTIT

UDE  

(m a.s.l.) 

TIP 

PER? 

# 

PERIO

DS 

MIN. 

PERIOD 

MAX. 

PERIOD 

2D 

OPTIMI

ZATION 

3D 

INVERS

ION 

A1 43.209359 11.028041 426  72 0.0045 993.0487  yes 

A4 43.211859 11.050540 386 yes 69 0.0028 364.0334  yes 

A5 43.207137 11.053040 378  75 0.0028 993.0487  yes 

A7 43.204915 11.068317 411 yes 74 0.0033 993.0487  yes 

A8 43.205748 11.077483 387  75 0.0028 993.0487 yes yes 

B2 43.205471 11.042485 440 yes 74 0.0033 993.0487  yes 

B4 43.201304 11.048873 391  70 0.0067 993.0487  yes 

B5 43.201860 11.055262 375 yes 75 0.0028 993.0487  yes 

B6 43.204637 11.059151 351 yes 60 0.0028 75.8725  yes 

B7 43.201582 11.067483 378  75 0.0028 993.0487  yes 

B8 43.203804 11.073317 391 yes 35 0.0028 0.9699  yes 

C1 43.197415 11.032207 438 yes 48 0.0028 9.4787  yes 

C4 43.200193 11.054151 364  55 0.0028 31.0270  yes 

C6 43.198249 11.061650 342  75 0.0028 993.0487  yes 

C7 43.198526 11.067761 341 yes 74 0.0033 993.0487 yes yes 

C8 43.200193 11.076094 350  75 0.0028 993.0487  yes 

C9 43.197415 11.074428 314 yes 74 0.0033 993.0487  yes 

D3 43.194915 11.042762 451  56 0.0028 37.9219  yes 

D4 43.193249 11.048318 438  75 0.0028 993.0487  yes 

D5 43.194915 11.053040 374  75 0.0028 993.0487  yes 

D8 43.194638 11.072761 350 yes 75 0.0028 993.0487  yes 

D9 43.193249 11.074150 338  61 0.0028 90.9918  yes 

E1 43.186860 11.029152 407 yes 63 0.0222 993.0487  yes 

E2 43.190749 11.033596 447  75 0.0028 993.0487  yes 

E4 43.189638 11.052484 457  75 0.0028 993.0487 yes yes 

E5 43.189360 11.057484 425 yes 75 0.0028 993.0487  yes 

E6 43.190471 11.063872 414 yes 62 0.0028 105.0310  yes 
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E7 43.190471 11.067761 387 yes 75 0.0028 993.0487  yes 

E8 43.192693 11.071094 385 yes 75 0.0028 993.0487  yes 

F2 43.184915 11.035263 489  53 0.0028 22.7531  yes 

F4 43.185193 11.048873 482 yes 75 0.0028 993.0487 yes yes 

F8 43.187416 11.069983 388  75 0.0028 993.0487  yes 

F9 43.189360 11.073316 384  75 0.0028 993.0487  yes 

F10 43.184916 11.075816 379  60 0.0028 75.8725  yes 

G1 43.181027 11.030818 475  63 0.0222 993.0487  yes 

G2 43.178804 11.036096 472  75 0.0028 993.0487 yes yes 

G4 43.184360 11.043873 493  41 0.9699 993.0487  yes 

G6 43.182693 11.064428 346  75 0.0028 993.0487  yes 

G7 43.182693 11.068872 337 yes 69 0.0028 364.0334  yes 

G8 43.182693 11.073872 333 yes 75 0.0028 993.0487  yes 

G9 43.181582 11.083594 318 yes 75 0.0028 993.0487  yes 

H4 43.176860 11.043040 411 yes 74 0.0033 993.0487  yes 

I1 43.176582 11.023874 569  61 0.0028 90.9918  yes 

I2 43.175749 11.030818 516  44 0.0028 4.7416  yes 

I4 43.172971 11.041373 405 yes 56 0.0056 75.8725  yes 

J0 43.171860 11.019430 527 yes 75 0.0028 993.0487 yes yes 

J1 43.166583 11.028318 472  50 0.0028 13.1285  yes 

J2 43.167416 11.032207 422 yes 68 0.0091 993.0487  yes 

J3 43.164916 11.036929 429 yes 75 0.0028 993.0487  yes 

K1 43.121583 10.926101 595  75 0.0028 993.0487 yes  

K2 43.126861 10.950544 506 yes 68 0.0028 303.3981 yes  

K3 43.141583 10.972765 755  75 0.0028 993.0487 yes  

K4 43.160194 10.978599 763  61 0.0028 90.9918 yes  

K5 43.171027 10.997764 652  47 0.0045 7.7580  yes 

K6 43.170749 11.013875 453 yes 75 0.0028 993.0487 yes yes 

LN13 43.216784 10.930136 435  31 0.0038 546.1496   

LN14 43.214216 10.948829 575  30 0.0038 287.4390   

LN15 43.219932 10.969941 390  31 0.0038 287.4390   

LN16 43.220044 11.002386 325  34 0.0038 546.1496   

LN17 43.218421 11.017907 275  32 0.0038 546.1496   

LN18 43.213575 11.062373 350  32 0.0038 546.1496   

LS11 43.142904 10.927778 460  19 0.0038 10.4221   

LS12 43.148679 10.952587 700  30 0.0038 546.1496   

LS13 43.143456 10.979546 713  20 0.0306 546.1496   

LS14 43.143455 10.996711 570  34 0.0038 546.1496   

LS15 43.140454 11.026542 630  34 0.0038 546.1496   

LS16 43.134787 11.034875 560  26 0.0038 151.6991   

SITE

1 43.149140 11.052961 600 
 

91 0.0013 3276.540 

  

SITE

2 43.140856 11.002197 596 
 

78 0.0013 3276.540 

  

SITE

3 43.163571 11.061612 481 
 

78 0.0013 3276.540 

  

SITE

4 43.176761 11.093921 358 
 

94 0.0010 3276.540 

  

SITE

5 43.162718 11.083847 380 
 

88 0.0010 3276.540 
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SITE

7 43.155640 11.031828 529 
 

73 0.0079 3276.540 

  

SITE

8 43.162460 11.048290 600 
 

63 0.0013 3276.540 

  

SITE

9 43.176992 11.081256 348 
 

55 0.0126 3276.540 

  

SITE

10 43.169040 11.072867 458 
 

95 0.0010 3276.540 

  

SITE

11 43.149473 11.069980 300 
 

86 0.0010 3276.540 

  

SITE

12 43.140509 11.016818 642 
 

81 0.0010 3276.540 

  

SITE

13 43.156577 11.006818 300 
 

58 0.0025 3276.540 

  

SITE

14 43.146842 11.007963 520 
 

82 0.0010 3276.540 

  

SITE

15 43.169450 11.055167 526 
 

66 0.0020 1424.704 

  

SITE

16 43.135017 10.985900 636 
 

72 0.0010 1170.274 

  

SITE

17 43.144824 10.991505 553 
 

70 0.0010 3276.540 

  

SITE

18 43.158993 11.020501 509 
 

86 0.0013 3276.540 

  

SITE

19 43.178967 11.066670 300 
 

61 1.2191 3276.540 

  

SITE

20 43.146762 11.029812 690 
 

89 0.0016 1424.704 
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Appendix C 

Static shift correction for the MT 

sites of the Travale data set 

C.1 The new time-domain electromagnetic (TDEM) survey 

During the last year of the doctorate program, a TDEM survey was carried out 

in the geothermal area of Travale in order to correct the static shift occurring for 

some MT sites. The following figure shows the location of the eight TDEM 

soundings, whose name was the same of the correspondent MT site. 

 

Figure C.1 The MT data set investigated for 2D PSO and 3D inversion covers the Travale geothermal area. 

The 8 TDEM sites are marked with blue triangles. The town of Travale is located between sites k5 and k6. 

This map was created by reading a georeferenced image (coming from “openstreetmap”) within Matlab 

Mapping Toolbox (by Mathworks). 

C.2 The static-shift corrected curves 

The MT apparent-resistivity curves were corrected for the static shift using 

the optimization method explained in Section 3.3.2. The result for site b6 was 

presented in Section 5.5. The following figures show the corrected MT curves 

(both xy and yx modes) for the sites: a1, b2, e1, g1, k1, k4 and k5. The raw 
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apparent-resistivity curves (ρapp) affected by distortion are marked with red dots in 

the box a) of each Figure.  

 

 

Figure C.2 Static shift correction for site a1 (xy-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.005 s) and of MT from 0.004 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 

 

Figure C.3 Static shift correction for site a1 (yx-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.005 s) and of MT from 0.004 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 
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Figure C.4 Static shift correction for site b2 (xy-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.005 s) and of MT from 0.003 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 

 
Figure C.5 Static shift correction for site b2 (yx-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.03 s) and of MT from 0.003 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 

 

 



176  Appendices 

 

 

Figure C.6 Static shift correction for site e1 (xy-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.01 s) and of MT from 0.02 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 

 
Figure C.7 Static shift correction for site e1 (yx-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.01 s) and of MT from 0.02 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 
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Figure C.8 Static shift correction for site g1 (xy-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.001 s) and of MT from 0.002 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 

 

Figure C.9 Static shift correction for site g1 (yx-mode) using PSO. a) The red dots are the observed apparent 

resistivity (ρapp) of TDEM at low periods (up to 0.001 s) and of MT from 0.002 s upward. The blue crosses 

indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) Observed (red 

dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted here). 
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Figure C.10 Static shift correction for site k1 (xy-mode) using PSO. a) The red dots are the observed 

apparent resistivity (ρapp) of TDEM at low periods (up to 0.007 s) and of MT from 0.003 s upward. The blue 

crosses indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) 

Observed (red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted 

here). 

 

Figure C.11 Static shift correction for site k1 (yx-mode) using PSO. a) The red dots are the observed 

apparent resistivity (ρapp) of TDEM at low periods (up to 0.007 s) and of MT from 0.003 s upward. The blue 

crosses indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) 

Observed (red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted 

here). 
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Figure C.12 Static shift correction for site k4 (xy-mode) using PSO. a) The red dots are the observed 

apparent resistivity (ρapp) of TDEM at low periods (up to 0.006 s) and of MT from 0.003 s upward. The blue 

crosses indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) 

Observed (red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted 

here). 

 

Figure C.13 Static shift correction for site k4 (yx-mode) using PSO. a) The red dots are the observed 

apparent resistivity (ρapp) of TDEM at low periods (up to 0.006 s) and of MT from 0.003 s upward. The blue 

crosses indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) 

Observed (red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted 

here). 
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Figure C.14 Static shift correction for site k5 (xy-mode) using PSO. a) The red dots are the observed 

apparent resistivity (ρapp) of TDEM at low periods (up to 0.006 s) and of MT from 0.003 s upward. The blue 

crosses indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) 

Observed (red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted 

here). 

 

Figure C.15 Static shift correction for site k5 (yx-mode) using PSO. a) The red dots are the observed 

apparent resistivity (ρapp) of TDEM at low periods (up to 0.006 s) and of MT from 0.003 s upward. The blue 

crosses indicate the predicted MT ρapp that correct the static shift according to TDEM information; b) 

Observed (red dots) and predicted (blue crosses) MT phase; c) The 1D resistivity model (not interpreted 

here). 
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Appendix D 

Supplementary material of 3D MT 

inversion: data fitting of inversion 

test A 

The following figures show the data fitting for the 51 MT sites after the 

inversion test A, whose inversion setting are north-oriented grid, full Z and T 

inversion, 10% error floor for Zxy, Zyx and T, 15% error floor for Zxx and Zyy, 

homogeneous starting model and smoothing factors along the horizontal and 

vertical directions equal to 0.2, 0.2 and 0.1, respectively (Table 7.1) The fitting 

between measured data (colored dots) and predicted response (colored lines) is 

plotted for apparent resistivity and phase of the impedance tensor components. 
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Appendix E 

3D MT inversion tests 

E.1 Inversion of full Z and T with strike-aligned grid (test B)  

The inversion test B assumed a homogeneous starting model and 10% error 

floor for Zxy, Zyx and T and 15% error floor for Zxx,and Zyy. The outcome is shown 

in Figures. E.1, E.2 and E.3. With respect to test A (Figures 7.2, 7.3, 7.4), the 

RMSE was little higher and the resistivity structures were more smoothed. In 

particular, the deep resistive body of Figure E.3d reached a maximum resistivity 

value higher than that of test A. This could be attributed to the strike-aligned 

rotation of the grid.  

 
Figure E.1 Plain view of the 3D resistivity model of test B (N130°E) at different depths: a) 78 m a.s.l., b) 

222 m, c) 522 m, d) 4.7 km b.s.l.. The mesh is aligned with the geoelectrical strike, that is, the North is 

rotated 40° clockwise and the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site k5 

to a8) is the cross-section reported in Figure E.2 
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Figure E.2 Vertical cross-section of the model from test B corresponding to the MT profile investigated in 

Section 6.3. The profile is directed SW-NE orthogonally to the strike direction and crosses sites from k5 to a8 

(see Figure E.1a) 

 
Figure E.3 Distribution of RMSE at each site for test B. a) Total normalized RMSE for the impedance tensor 

(Z). b) Total normalized RMSE for the Tipper matrix (T).  The black dots in b mean no Tipper data. The 

errors are normalized for the full period range. 

E.2 Inversion of full Z and T with strike-aligned grid and a priori 

(test C)  

Inversion test C was initialized by using an a priori model derived from the 

2D inversion result of Manzella et al. (2006). Although driven by prior 
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knowledge, the final 3D model shown in Figures E.4, E.5 and E.6 was compatible 

with the resistivity distribution of test D (Figures 7.5, 7.6, 7.7). The deep resistive 

body was characterized by sharp edges, resulting from the a priori starting model 

and little changed after the inversion. This minimal modification of the starting 

model stems from the intrinsic inversion scheme of ModEM software, that solve 

the inverse problem for the rough transformed model parameter. The presence of 

the a priori structure positively influenced the data fitting. In fact, the final RMSE 

normalized for the full period bandwidth was 1.75 for Z and 1.42 for T (Table 

7.1). 

 
Figure E.4 Plain view of the 3D resistivity model of test C (N130°E) at different depths: a) 78 m a.s.l., b) 

222 m, c) 522 m, d) 4.7 km b.s.l.. The mesh is aligned with the geoelectrical strike, that is, the North is 

rotated 40° clockwise and the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site k5 

to a8) is the cross-section reported in Figure E.5 
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Figure E.5 Vertical cross-section of the model from test C corresponding to the MT profile investigated in 

Section 6.3. The profile is directed SW-NE orthogonally to the strike direction and crosses sites from k5 to a8 

(see Figure E.4a) 

 
Figure E.6 Distribution of RMSE at each site for test C. a) Total normalized RMSE for the impedance tensor 

(Z). b) Total normalized RMSE for the Tipper matrix (T). The black dots in b mean no Tipper data. The 

errors are normalized for the full period range. 
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E.3 Inversion of full Z with strike-aligned grid (test E)  

Inversion test E yielded the worst RMSE (Table 7.1 and Figure E.8). The 

superficial resistivity structures depicted in Figures E.7 and E.8 were not 

dissimilar to those of test D (Figures 7.5 and 7.6). From 1.5 to 3 km of depth 

b.s.l., the model was more homogeneous than the model of test D and the deep 

resistive body was less resistive than in test D.  

 
Figure E.7 Plain view of the 3D resistivity model of test E (N130°E) at different depths: a) 78 m a.s.l., 

b) 222 m, c) 522 m, d) 4.7 km b.s.l.. The mesh is aligned with the geoelectrical strike, that is, the North is 

rotated 40° clockwise and the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site k5 

to a8) is the cross-section reported in Figure E.8 
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Figure E.8 left) Vertical cross-section of the model from test E corresponding to the MT profile 

investigated in Section 6.3. The profile is directed SW-NE orthogonally to the strike direction and crosses 

sites from k5 to a8 (see Figure E.7a); right) Distribution of RMSE at each site for test E. Total normalized 

RMSE for the impedance tensor (Z). The errors are normalized for the full period range. 

E.4 Inversion of T with strike-aligned grid (test F)  

Given the low error floor, inversion test F resulted in an appreciable final 

RMSE (Table 7.1 and Figure E.10). The importance of the inversion of only the 

vertical transfer function appeared from the resistivity contrasts highlighted in 

Figures E.9 and E.10. Similarly to all the other inversion tests, the deep resistive 

body was imaged between 3 and 8 km of depth b.s.l. but it resulted shifted 

towards west, probably due to the poor number of sites including Tipper data. the 

most important contribution of this test was its significant sensitivity at depth and 

the evidence of lateral constraints. 
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Figure E.9 Plain view of the 3D resistivity model of test F (N130°E) at different depths: a) 78 m a.s.l., 

b) 222 m, c) 522 m, d) 4.7 km b.s.l. The mesh is aligned with the geoelectrical strike, that is, the North is 

rotated 40° clockwise and the x-axis is parallel to the strike. The black-dashed profile drawn in a (from site k6 

to b8) is the cross-section reported in Figure E.10. 
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Figure E.10 left) Vertical cross-section of the model from test F corresponding to the MT profile 

investigated in Section 6.3. The profile is directed SW-NE orthogonally to the strike direction and crosses 

sites from k5 to a8 (see Figure E.9a); right) Distribution of RMSE at each site for test F. Total normalized 

RMSE for the Tipper matrix (T). The errors are normalized for the full period range. 

E.5 Sensitivity test for the inversion model from test D 

A sensitivity test was carried out for the 100-Ωm structure that in inversion 

model D was embedded between C1 and R2 below sites k5-e4 (see Figure 7.9). 

From 2D modeling (Figure 5.9 and Figure 6.8), it resulted slightly more 

conductive (30-70 Ωm) than in the 3D-inversion model. To assess if the 100-Ωm 

structure was necessary to fit the data, it was replaced with a 1-Ωm body. The 

perturbed model is shown in Figure E.11 and is about 8 km large from 0.6 km to 

2.5 km of depth.  

The recalculation of the forward problem led to an overall RMSE increase of 

130%, and to an RMSE increase from 116% to 280% for the sites above the body. 

An example of worsening of data fitting is in Figure E.12. This test confirmed that 

the 100-Ωm structure was required by the model in order to fit the data. 
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Figure E.11 Vertical cross-section of the model from test D where the 100-Ωm structure was tested and 

replaced with a 1-Ωm conductor (modified body). The section corresponds to the MT profile investigated in 

Section 6.3. The conductor is about 8 km large from 0.6 km to 2.5 km of depth.  

 

Figure E.12 For site c7 the fitting between measured data (colored dots) and predicted response 

(colored lines) is plotted for apparent resistivity and phase of the off-diagonal impedance tensor components: 

left) data fitting after sensitivity test; right) data fitting after inversion test D. 





 

Stochastic music 

Music can explain everything. 

 

Jonchaies for 109 musicians by Iannis Xenakis 

 

This piece of music was written by the Greek musician and engineer Iannis 

Xenakis. It presents the application of complex mathematics, such as statistics, 

theory and geometry, to the composition of music in order to create the so called 

stochastic music. This cerebral and eccentric piece of music can be associated to 

the choreography of bird flocks and the swarming behavior of elements in a 

group. By using clusters of sound and almost cacophonic elements, the composer 

effectively depicts the hard search for the global optimum in the infinite 

exploration space and the need for many desperate iterations.  

https://www.youtube.com/watch?v=lO2NB8LJu_s

