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Abstract: Convolutional Neural Networks (CNNs) consistently proved state-of-the-art results in
image Super-resolution (SR), representing an exceptional opportunity for the remote sensing field
to extract further information and knowledge from captured data. However, most of the works
published in the literature focused on the Single-image Super-resolution problem so far. At present,
satellite-based remote sensing platforms offer huge data availability with high temporal resolution
and low spatial resolution. In this context, the presented research proposes a novel residual
attention model (RAMS) that efficiently tackles the Multi-image Super-resolution task, simultaneously
exploiting spatial and temporal correlations to combine multiple images. We introduce the mechanism
of visual feature attention with 3D convolutions in order to obtain an aware data fusion and
information extraction of the multiple low-resolution images, transcending limitations of the local
region of convolutional operations. Moreover, having multiple inputs with the same scene, our
representation learning network makes extensive use of nestled residual connections to let flow
redundant low-frequency signals and focus the computation on more important high-frequency
components. Extensive experimentation and evaluations against other available solutions, either for
Single or Multi-image Super-resolution, demonstrated that the proposed deep learning-based solution
can be considered state-of-the-art for Multi-image Super-resolution for remote sensing applications.

Keywords: deep learning; multi-image super-resolution; attention networks; 3D convolutional
neural networks

1. Introduction

Super-resolution (SR) algorithms serve the purpose of reconstructing high-resolution (HR) images
from either single or multiple low-resolution (LR) images. Due to constraints such as sensor limitations
and exceedingly high acquisition costs, it is often challenging to obtain HR images. In this regard,
SR algorithms provide viable opportunity to enhance and reconstruct HR images from LR images
recorded by the sensors. Over more than three decades, progress has steadily been observed in the
development of super-resolution, as both multi-frame and single-frame SR now have substantial
applications that can use the image generation purposefully.

SR is very significant to Remote Sensing because it provides opportunity to enhance LR images
despite the inherent problems often faced in remote-sensing scenarios. The hardware and material
costs for smaller missions around data accumulation are very high. Additionally, onboard instruments
on satellites continue to generate ever-increasing data as spatial and spectral resolutions also increase,
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and this has progressively become challenging for compression algorithms [1], as they try to meet the
bandwidth restrictions [2,3]. Remote sensing is fundamental in obtaining images covering most of the
globe, permitting many vital projects such as disaster monitoring, military surveillance, urban maps,
and vegetation growth monitoring. It is thus imperative that enhancements and progress be made in
post-processing techniques to overcome obstacles of increasing spatial resolution.

There are two main methods used in Super-resolution: Single-image SR (SISR) and Multi-image
SR (MISR). SISR employs a single image to reconstruct a HR version of it. However, a single image is
quite limited in the amount of information that it provides, mainly post the LR image formation process.
Contrastingly, MISR involves multiple LR images of the same scene acquired from the same or different
sensors to construct an HR image. The significant advantage MISR holds over SISR is in how it can
draw out otherwise unavailable information from the different image observations of the same scene.
It consequently constructs high spatial resolution image. However, to achieve the additional benefits
of MISR, a multitude of problems need to be solved. Conventionally, multiple images are obtained
by either a satellite during its multiple orbits or by different satellites at different times or different
sensors acquiring images at the same time. With so many variables involved, many complications need
to be considered, such as cloud coverage, time variance in scene content, and invariance to absolute
brightness variability.

There has been significant progress in Single-image SR as deep learning methods and deep neural
networks were brought into use, allowing a better efficient generation of non-linear maps to deal with
complex degradation models. However, there has not been any similar progress in MISR.

In this paper, building over the latest breakthroughs in SISR [4–8], we propose a deep learning
MISR solution for remote-sensing applications that exploits both spatial and temporal correlations to
combine multiple low-resolution acquisitions smartly. Indeed, our model provides a real end-to-end
efficient solution to recover high-resolution images, overcoming limitations of previous similar
methodologies, and providing enhanced reconstruction results. Therefore, the presented research
constitutes an exceptional opportunity, easily replicable, to access better quality and more useful
information for the remote-sensing community. In particular, the main contribution of our work lies in:

1. The use of 3D convolutions to efficiently extract, directly from the stack of multiple low-resolution
images, high-level representations, simultaneously exploiting spatial and temporal correlations.

2. The introduction of a novel feature attention mechanism for 3D convolutions that lets the network
focus on most promising high-frequency information largely overcoming main locality limitations
of convolutional operations. Moreover, the concurrent use of multiple nested residuals, inside the
network, let low-frequency components flow directly to the output of the model.

3. The conceptualization and development of an efficient, highly replicable, deep learning neural
network for MISR that makes use of 2D and 3D convolutions exclusively in the low-resolution
space. It has been extensively evaluated on a major multi-frame open-source remote-sensing
dataset proving state-of-the-art results with a considerable margin. Therefore, it constitutes an
exceptional tool and opportunity for the remote-sensing research community.

The remainder of this paper is structured as follows. Section 2 covers the related work on
SR and its developments in techniques for both SISR and MISR. Section 3 explains the overall
methodology, network architecture and its subsequent blocks, and training process. Section 4 discusses
the experimentation, the Proba-V dataset, data pre-processing, and results. Section 5 draws some
conclusions and future directions.

2. Related Work

Related literature is organized as follows. Firstly, a wide range of studies related to SISR are
discussed which involve state-of-the-art methods and recent developments in SISR techniques, which is
the basis of every SR method. Secondly, studies performed for SR in remote sensing domain are
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discussed. Lastly, MISR related studies, which are rarely addressed, are discussed including latest
developments.

2.1. Single-Image Super-Resolution

Ever since the late 1980s and the early 1990s, there has been an eager interest in SR,
comprehensively reviewed by Borman and Stevenson [9]. Following forth in the works of Tsai
and Huang [10] and afterward, Kim et al. [11], the new approaches considered processing images in
the frequency domain to recover lost information of higher-frequency. These first works had certain
drawbacks, such as the level of difficulty observed in successfully incorporating the prior available
spatial information. Several studies performed by Irani and Peleg [12–14] focused over the spatial
domain, proposing methods for SR reconstruction.

Learning-based methods build upon the relation between LR-HR images, and there have been
many recent advancements in this approach, mostly due to deep convolutional neural networks
(CNNs) [4,15,16]. The leading force for this was Dong et al. [17], who achieved superior results by
proposing a Super-resolution CNN (SRCNN) framework. Kim et al. introduced residual learning
and suggested very deep SR (VDSR) [16] and deeply recursive CN (DRCN) [18] with 20 layers.
Later, Tai et al. pioneered deep recursive residual network (DRRN) [19] and memory blocks in
MemNet [20]. There is some inevitable loss of details; however, the increase in computation is
significant. So going forth, particular emphasis has been placed on proper upscaling of spatial
resolutions at network tail-ends, as well as extracting information of the original scale LR inputs. To that
end, some enhancements were proposed for accelerating the testing and training needed for SRCNN,
a faster network structure FSRCNN [15]. Ledig et al. [21] proposed SRGAN, a generative adversarial
network (GAN) for photo-realistic SR with perceptual losses [22], and K. He et al. introduced
ResNet [23] for image SR and to make a deeper network SRResNet. EnhanceNet [24] also used a
GAN-based model to merge perceptual loss with automated texture synthesis. Though, the predicted
results can produce some artifacts and may not be a faithful reconstruction.

In recent past years, enhancements in deep networks have been proposed and showed promising
results for SISR, for example, in [5], an Enhanced Deep Super-resolution (EDSR) network was
developed to improve the performance by removing unnecessary modules and expanding the model
size with the stable training process in conventional residual networks. Yu et al. [6] demonstrated
better results in terms of accurate SR by generating models with a wide range of features before ReLU
activation and training with normalized weights. Zhang et al. [7] proposed residual channel attention
networks (RCAN) that exploits very deep network structure based on residual in residual (RIR) which
bypass excessive low-frequency information through multiple skip connections.

2.2. SR for Remotely Sensed Imagery

With the increasing availability of recent satellite-based multispectral sensors and transmission
bandwidth restrictions [25], it is possible to obtain images at different spatial resolutions with multiple
spectral bands. Keen attention is being paid to developing better methods of super-resolving the
lower-resolution bands but simultaneously keeping the images at a high spatial resolution. An example
can be seen in [26], where-through the use of only lower resolution bands–SR of multispectral remote
sensing images is applied with convolutional layers. [27] shows the integration of residual connections
into a single image SR-based architecture to achieve better SR performance. The performance of image
enhancement methods in computer vision can also be increased prominently through generative
adversarial networks (GANs) [21,28]. Moreover, GANs were also exploited to super-resolve remote
sensing images. For example, Ma et al. [29] developed a dense residual generative adversarial network
(DRGAN)-based SISR method to super resolve remote sensing images. By designing a dense residual
network as the generative network in GAN, their method makes full use of the hierarchical features
from low-resolution (LR) images.
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Dong et al. [30] proposed a novel multi-perception attention network (MPSR) for Super-resolution
of low resolution remotely sensed images, which achieved better results by incorporating the proposed
enhanced residual block (ERB) and residual channel attention group (RCAG). Their methodology
is capable of dealing with low-resolution remote sensing images via multi-perception learning and
multi-level information adaptive weighted fusion. They claimed that a pre-train and transfer learning
strategy can improve the SR performance and stabilize the training procedure. Gargiulo et. al. [31]
proposed a CNN-based approach to provide a 10 m super-resolved image of the original 20 m bands
of remotely sensed Sentinel-2 images. In their experimental results, they claimed that the proposed
solution can achieve better performance with respect to most of the state-of-the-art methods, including
other deep learning based ones with a considerable saving of computational burden. Recently methods
to enhance spatial resolution of remotely sensed images used Parallel Residual Network [32],
Bidirectional Convolutional LSTMs [33], Deep Residual Squeez and Excitation Network [34].

2.3. Multi-Image Super-Resolution

Multi-image SR (MISR) involves the extraction of information from many LR observations of
the same scene to reconstruct HR images [35]. The earliest work for MISR was proposed by Tsai
and Huang [10] using a frequency-domain technique, by combining multiple images with sub-pixel
displacements to improve the spatial resolution of images. Due to the some weaknesses of the first
proposed method related to incorporate prior information of HR images, several spatial domain MISR
techniques were considered [36]. These include projection onto convex sets (POCS) [37], non-uniform
interpolation [38], regularized methods [39,40], and sparse coding [41]. With the availability of more
data from the multiple observations of the scene, it is possible to obtain a more accurate reconstruction
than through single-image methods. MISR techniques involve different ways of degrading the original
image by following an image model, and these involve blurring, warping, noise contamination,
and decimation. Then the degradation is reversed by solving an ill-posed optimization problem.
To this end, Bayesian reconstruction in the gradient projection algorithm was used alongside subpixel
displacement estimation [42]. An enhanced Fast and Robust SR (FRSR) [43] employs estimation of
maximum likelihood analysis and simplified regulation. Another proposal in SR was for the Adaptive
detail enhancement (SR-ADE) [44], which reconstructs satellite images with the use of a bilateral filter
for decomposing input images while also amplifying high-frequency detail information.

Another approach Iterative Back Projection (IBP), introduced by Irani and Peleg [13], used a
back-projection of the difference between the actual LR images obtained and the simulated LR images
to the SR image. The forward imaging process is inverted and iteratively attempted in updates. As with
MISR, there are apparent drawbacks when prior images are difficult to be included, or it is difficult to
model an image’s degradation process.

In the past few years, many deep learning-based approaches have been exploited to address
the MISR problems in the context of enhancing video sequences [45–47]. However, MISR is rarely
exploited for remotely sensed satellite imagery. Kawulok et al. [48] demonstrated the potential benefits
of information fusion offered by multiple satellite images reconstruction and learning-based SISR
approaches. In their work, EvoNet framework [49] based on several deep CNNs was adopted to
exploit SISR in the preprocessing phase of the input data for MISR.

Recently, a challenge was set by the European Space Agency (ESA) to super-resolved
multi-temporal PROBA-V satellite imagery (https://kelvins.esa.int/proba-v-super-resolution
(accessed on 2 July 2020)). In this context, a new CNN-based architecture DeepSUM was proposed by
Molini et al. [50] to super resolve multi-temporal PROBA-V imagery. An end-to-end learning approach
was established by exploiting both spatial and temporal correlations. Most recently, Deudon et al.
presented HighRes-net based on deep learning to deal with the MISR of remotely sensed PROBA-V
satellite imagery [51]. They proposed an end-to-end mechanism that learns the sub-tasks involved in
MISR, which are co-registration, fusion, upsampling, and registration-at-the-loss.

https://kelvins.esa.int/proba-v-super-resolution
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3. Methodology

MISR aims at recovering an HR image IHR from a set of T LR images ILR
[1,T] of the same scene

acquired in a certain temporal window. In contrast to SISR, MISR can simultaneously benefit from
spatial and temporal correlations, being able to achieve far better reconstruction results theoretically.
Either way, SR is an inherently ill-posed problem since a multiplicity of solutions exist for any given
set of low-resolution images. Therefore, it is an underdetermined inverse problem, whose solution is
not unique. Our proposed methodology, based on a representation learning model, aims at generating
a super-resolved image ISR applying a function HRAMS to the set of ILR

[1,T] images:

ISR = HRAMS(ILR
[1,T], Θ) (1)

where Θ are model parameters learned with an iterative optimization process.
In other words, we propose a fully convolutional Residual Attention Multi-image Super-resolution

network (RAMS) that can efficiently extract high-level features concurrently from T LR images and
fuse them exploiting a built-in visual attention mechanism. Attention directs the focus of the model
only on most promising extracted features, reducing the importance of less relevant ones and mostly
transcending limitations of the local region of convolutional operations. Moreover, extensive use
of nested residual connections lets all the redundant low-frequency information, present in the
set ILR

[1,T] of LR images, flow through the network, leaving the model focusing its computation
only on high-frequency components. Indeed, high-frequency features are more informative for
HR reconstruction, while LR images contain abundant low-frequency information that can directly
be forwarded to the final output [7]. Finally, as the majority of the model for Single-image
Super-resolution [5,6,8,15], all computations in our network are efficiently performed in the LR
feature space requiring only an upsample operation at the final stage of the model.

In the following paragraphs, we present the overall architecture of the network with a detailed
overview of the main blocks. Finally, we conclude the methodology section with precise details of the
optimization process for training the network.

3.1. Network Architecture

An overview of the RAMS network, with its main three blocks and two branches, is depicted
in Figure 1. As a high-level description, the model takes as input a single set of T low-resolution
images ILR

[1,T] that can be represented as a tensor X(i) with shape H×W × T× C where H, W and C are
the height, width, and channels of the single low-resolution images, respectively. The upper global
residual path proposes a simple SR solution, making an aware fusion of the T input images. On the
other hand, the central branch exploits 3D convolutions residual-based blocks in order to extract spatial
and temporal correlations from the same set of T LR images and provide a refinement to the residual
simple SR image.

More in detail, in the first part of the main path of the model, we use a simple 3D convolutional
layer, with each filter of size fh × fw × ft, to extract F shallow features from the input set ILR

[1,T]
of LR images. Then, we apply a cascade of N residual feature attention blocks that increasingly
extract higher-level features, exploiting local and non-local, temporal, and spatial correlations.
Moreover, we make use of a long skip connection for the shallow features and several short skip
connections inside each feature attention block to let flow all redundant low-frequency signals and let
the network focus on more valuable high-frequency components. The three dimensions H, W and T
are always preserved through reflecting padding. The first part of the main branch can be modeled
as a single function HI that maps each tensor X(i) to a new higher dimensional one X(i)

I with shape
H ×W × T × F:

X(i)
I = HI(X(i)) (2)
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Figure 1. Overview of the Residual Attention Multi-image Super-resolution Network (RAMS),
assuming to work with single-channel LR images (C = 1) to simplify the discussion. A tensor
of T single-channel LR images constitutes the input of the proposed model. The main branch extracts
features, with 3D convolutions, in a hierarchical fashion, while a feature attention mechanism allows
the network to select and focus on most promising inner representations. Concurrently, a global
residual path exploits a similar attention operation in order to make an aware fusion of the T distinct
LR images. All computations are efficiently performed in the LR feature space and only at the last stage
of the model an upsampling operation is performed in both branches.

In the second part of the main branch, we further process the output tensor X(i)
I with bT/( ft −

1)c − 1 temporal reduction blocks. In each block, we intersperse a residual feature attention block with
3D convolutional layer without padding on the temporal T dimension (TR-Conv). Therefore, H, W
and F remain invariant and only the temporal dimension is reduced. The output of this second block
is a new tensor X(i)

I I with shape H ×W × ft × F, where the temporal dimension T is reduced to ft:

X(i)
I I = HI I(X

(i)
I ) (3)

Finally, the output tensor X(i)
I I is processed by a further TR-Conv layer that reduces T to one

and an upscale function HUP|3D
that generates a tensor X(i)

UP|3D
of shape sH × sW × C where s is the

scaling factor.
The overall output X(i)

UP|3D
of the main branch sums with the trivial solution provided by the

global residual. Indeed, the global path simply weights the T LR images of the input tensor X(i) with a
residual temporal attention block with filters of size fh × fw. Then it produces an output tensor X(i)

UP|2D
of shape sH × sW × C that is added to the one of the main branch. Therefore, the final SR prediction

of the network Ŷ
(i)

= ISR is the sum of the two contributions:

Ŷ
(i)

= HRAMS(X(i)) = (X(i)
UP|3D

+ X(i)
UP|2D

) (4)

The upscaling procedure is identical for both branches; after several trials with different
methodologies, such as transposed convolutions [51], bi-linear resizing and nearest-neighbor
upsampling [52], we adopted a sub-pixel convolution layer as explained in detail in [53].
Therefore, for either branch, the last 2D or 3D convolution generates s2 · C features in order to produce
the final tensors of shape sH × sW × C for the residual sum.
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In conclusion, the overall model takes as input a tensor X(i) with shape H ×W × T × C,
works always efficiently in the LR space and generates only at the final stage an output tensor

Ŷ
(i)

with shape sH × sW × C.
In the following sub-paragraphs, the three major functional blocks, residual feature attention,

residual temporal attention, and temporal reduction blocks are further explained and analyzed.

3.2. Residual Attention Blocks

Residual attention blocks are at the core of the RAMS model; their specific architecture allows it
to focus on relevant high-frequency components and let redundant, low-frequency information flow
through the residual connections of the network. Inter-dependencies among features, in the case of
feature attention blocks, or temporal steps, in the case of temporal attention blocks, are taken into
account computing for each of them, relevant statistics that take into account local and non-local,
temporal and spatial correlations. Indeed, either 3D or 2D convolution filters operate with local
receptive fields loosing the possibility to exploit contextual information outside of their limited region
of view.

3.2.1. Residual Feature Attention

Except for the global residual path, all residual attention blocks are residual feature attention
blocks, as shown in Figure 1. Indeed, each block of features is weighted up in order to trace most
promising high-frequency components, and a residual connection lets low-frequency information flow
through the network.

More formally, the output of a residual feature attention block with a generic tensor, X(i)
n , is

equal to:
FRFA(X

(i)
n ) = X(i)

n + HFA(X
(i)
∗ ) · X(i)

∗ (5)

where HFA is the feature attention function and X(i)
∗ is the output of two stacked 3D

convolutional layers.
X(i)
∗ = W2 ∗max(0, W1 ∗ X(i)

n + B1) + B2 (6)

where W1,W2 and B1, B2 represent the filters with size fh × fw × ft and biases respectively and,
’∗’ denotes the 3D convolution operation. The number of filters is always equal to F as the ones
extracted by the first 3D convolutional layer.

Therefore, all low-frequency components in X(i)
n can flow through the residual connection and

HFA can focus the attention of the network to more valuable high-frequency signals. To this end, the
feature attention block takes the feature-wise global spatial and temporal information into a feature
descriptor by using a global average pooling. Therefore, from the tensor X(i)

∗ with shape H×W× T× F
we extract zF ∈ RF feature statistics using the following equation:

zF =
1

H ×W × T

H

∑
i=1

W

∑
j=1

T

∑
k=1

X(i)
∗ (i, j, k) (7)

Statistics of the feature zF can be viewed as a collection of descriptors, whose values contribute to
express the whole stack of temporal images [54].

In Figure 2, it is possible to observe the global pooling operation which output is a tensor Z(i)
F

with shape 1× 1× 1× F and last dimension equal to zF. In addition, the output tensor Z(i)
F is further

processed by a stack of two 3D convolutional layers with a ReLU [55] and sigmoid activation function,
respectively. Indeed, as discussed in [54], the stack of two convolutional layers with the filter of size
1× 1× 1 allows creating a non-linear mapping function which is able to deeply capture feature-wise
dependencies from the aggregated information extracted by the global pooling operation. The first
3D convolutional layer reduces the feature size by a factor of r, and then the second layer restores
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the original dimension and constraints its values from zero to one with a sigmoid function in a
non-mutually exclusive relationship.

Finally, the original tensor X(i)
∗ is weighted up by the processed attention statistics as shown in

Equation (5).

G
lobal Pooling

3D
 C

onv

3D
 C

onv

Sigm
oid

HxWxTxF 1x1x1xF 1x1x1x _Fr 1x1x1xF HxWxTxF

Figure 2. Reference architecture of a feature attention block. A series of convolutional operations
and non-linear activations are applied to the input tensor with shape H ×W × T × F in order to
generate different attention statistics for each feature F that concurrently take advantage of local
and non-local correlations. Consequently, each tensor’s feature is properly re-scaled, enabling the
network to focus on most promising components and letting residual connections heed of all redundant
low-frequency signals.

3.2.2. Residual Temporal Attention

The primary purpose of the global residual path is to generate a starting trivial solution for the
upsampling problem. More accurate is this starting prediction, and more simplified is the role of the
main branch of the network, leading to a lower reconstruction error. However, the input of the model
X(i) has T different LR images that have to be merged. Intuitively, for each input sample ILR

[1,T], there are
some LR images more similar to each other. Therefore, giving them more relevance when merging
the T LR images would most probably lead to higher quality predictions. In this context, the aim of
the residual temporal attention block is to make an aware weighing of the different input temporal
images, letting the network to make an upsample solution with primarily the most similar temporal
steps. That is accomplished with an asymmetrical mechanism to the one employed in the residual
feature attention blocks and can be summarized by the following formula:

FRTA(X(i)) = X(i) + HTA(X
(i)
∗ ) · X(i)

∗ (8)

where HTA is the temporal attention function and X(i)
∗ is the product of a stack of two 2D convolutional

operations as depicted in Figure 3 with fh × fw and T · C as filter size and number of features,
respectively. Then, as already introduced with the feature attention blocks, the temporal block takes
the temporal-wise global spatial information into a feature descriptor by using a global average
pooling operation. Finally, those statistical descriptors are processed by a stack of 2D convolutional
layers with ReLU and sigmoid as activation function, respectively, scaling the T · C channels of the
input tensor, as shown in Equation (8). As for feature attention blocks, the first convolutional layer
reduces the number of the last dimension by a factor of r, giving the network the possibility to fully
capture temporal-wise dependencies from the aggregated output information of the global average
pooling operation.



Remote Sens. 2020, 12, 2207 9 of 20

Residual	Temporal	Attention	Block

Temporal	Attention

++

2D
	Conv
ReLU
2D
	Conv

G
lobal	pooling
2D
	Conv
ReLU
2D
	Conv

Sigm
oid

Reshape

Figure 3. Reference architecture of a residual temporal attention block. If the number of channels C 6= 1
the input tensor X(i) is reshaped in H×W × (T · C). Consequently, all temporal channels are weighted
with some statistics computed by the layers of the temporal attention block.

3.3. Temporal Reduction Blocks

The aim of the last block of the main branch is to slowly reduce the number of temporal steps so
that the temporal depth eventually reduces to one. Indeed, the output tensor X(i)

I of the N residual
feature attention blocks has T temporal dimensions that need to be merged. To this end, we further
process the incoming tensors with bT/( ft − 1)c − 1 temporal reduction blocks. Each one is composed
of a residual feature attention block and a 3D convolutional layer without any reflecting padding in
the temporal dimension, denoted TR-Conv. Therefore, at each TR-Conv layer we reduce T of ft − 1.
The attention blocks allow the network to learn the best space to decouple image features, “highlighting”
more promising features to maintain when reducing the temporal dimension. The output of the last
temporal reduction block is a tensor X(i)

I I with shape H ×W × ft × F where the temporal dimension T
is reduced to ft. The last TR-Conv, before the upsampling function HUP|3D

, reduces to one the number
of temporal steps and generates s2 · C features for the sub-pixel convolutional layer.

3.4. Training Process

Learning the end-to-end mapping function HRAMS requires the estimation of model parameters
Θ. That is achieved by minimizing a loss L between the reconstructed super-resolved images ISR and
the corresponding ground truth high-resolution images IHR.

Several loss functions were proposed and investigated for the SISR problem, such as
L1 [5,6,56,57], L2 [4,11,20,50] and perceptual and adversarial losses [21,22]. However, in typical
MISR remote-sensing problems, LR images are taken within a certain time window and they could
have an undefined spatial misalignment one to each other. Therefore, we must take into account that
the super-resolved output of the model ISR will be inherently not registered with the target image
IHR. Moreover, since we can have very different conditions among the images part of the same scene,
it is important to make the loss function independent from possible intensity biases between the
super-resolved ISR and the target IHR. Indeed, if we get a super-resolved image ISR = IHR + ε, with ε

constant and low enough to avoid numerical saturation, we can consider its reconstruction perfect,
since it represents the scene with the same level of detail of the ground truth.

With these premises, inspired by the metric proposed in [58], we defined ISR
crop as the

super-resolved output cropped of d pixels on each border and we consider each possible patch
IHR
u,v , u, v ∈ [0, 2d] of size (sH − 2d)× (sW − 2d) extracted from the ground truth IHR. We compute

the mean biases between the cropped ISR
crop and the patches IHR

u,v as follows:

bu,v =
∑sH−2d

i=1 ∑sW−2d
j=1

[
IHR
u,v − ISR

u,v
]
(i, j)

(sH − 2d)(sW − 2d)
(9)

The loss is then defined as the minimum mean absolute error (L1 loss) between ISR
crop and each

possible alignment patch IHR
u,v . We use the MAE instead of the most used MSE since we experimentally

find that provides better results for image restoration problems, as proved by the previous works [5,7,59].
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L = min
u,v∈[0,2d]

‖IHR
u,v − (ISR

u,v + bu,v)‖1

(sH − 2d)(sW − 2d)
(10)

where ‖ · ‖1 represents the L1 norm of a matrix, i.e., the sum of its absolute values.

4. Experiments and Discussion

In this section, we test the proposed methodology in an experimental context, training it on
a dataset of real-world satellite images and evaluating its performance in comparison with other
approaches, including a state-of-the-art SISR algorithm, to demonstrate the superiority of Multi-image
models. We first present the dataset and the preprocessing stages, we define all the parameters used
during the experimentation, and then we propose quantitative and qualitative results. We also perform
an ablation study to demonstrate the contribution of the global residual branch that implements
a temporal attention mechanism. To implement our network, we use the TensorFlow framework.
The complete code with a pre-trained version of our model is available online (https://github.com/
EscVM/RAMS).

4.1. The Proba-V Dataset

To train our model, we exploit the dataset released by the Advanced Concept Team of the
European Space Agency (ESA) [58]. This dataset has been specifically conceived for MISR problems,
and it is composed of several images taken by the Proba-V satellite (https://esa.int/Applications/
Observing_the_Earth/Proba-V (accessed on 2 July 2020)) in the two different spectral bands RED and
NIR (near-infrared). Proba-V satellite has been launched by ESA in 2013 and is specifically designed for
land covering and vegetation growth monitoring across almost the entire globe. The satellite provides
images in two resolutions with different revisit frequency. HR images have a 100 m per pixel spatial
resolution and are released roughly every five days, while LR images have 300 m per pixel resolution
and are available almost daily. The characteristics of the Proba-V imagery make it particularly suitable
for MISR algorithms since it provides both resolutions natively, allowing for the application of the SR
process without the need for artificially degrading and downsampling the HR images.

The dataset has been released for the Proba-V Super Resolution challenge (https://kelvins.esa.
int/proba-v-super-resolution (accessed on 2 July 2020)) and is composed of two main parts: the
train part provides both LR and HR images, while the test part LR images, only. In order to verify
the effectiveness of our approach, we consider the train part and not the test part, since it has been
conceived for the challenge evaluation only and it does not include the ground truths. Thus, we
subdivide the train part in training and validation sets. To ease the comparison with previous methods,
we use the same validation images used in [50]. In total, we have 415 scenes for training and 176 for
validation for the RED band and 396 for training and 170 for validation for NIR.

Each scene is composed of several LR images (from 9 to 35, depending on the scene) with a
dimension of 128 × 128 pixels and a single HR ground truth with a dimension of 384 × 384 pixels.
The images are encoded as 16-bit png files, even if the actual signal bit-depth is 14 bits. Additionally,
each image features a binary mask that distinguishes reliable pixels from unreliable ones (e.g., due
to cloud coverage). This information is vital since the images are not taken in the same weather and
temporal conditions, but a maximum period of 30 days can be covered in a single scene. For this
reason, non-trivial changes in the landscape can occur between different LR images and their HR
counterpart and are essential to understand which pixels carry meaningful information and which do
not. Trying to infer the value of pixels that are concealed by clouds would mean being able to predict
the weather in an unknown time by merely looking at the condition in other unspecified moments.
For this reason, it is essential to train the network so that unreliable pixels do not influence the SR
process. To assess the quality of each image, we define c as the clearance of the image, i.e., the fraction
of reliable pixels in the correspondent binary mask.

https://github.com/EscVM/RAMS
https://github.com/EscVM/RAMS
https://esa.int/Applications/Observing_the_Earth/Proba-V
https://esa.int/Applications/Observing_the_Earth/Proba-V
https://kelvins.esa.int/proba-v-super-resolution
https://kelvins.esa.int/proba-v-super-resolution
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4.2. Data Pre-Processing

Before training the model, we pre-process the dataset with the following steps:

• register each LR image using as reference the one with maximum clearance c
• select the clearest T images from each scene that are above a certain clearance threshold cmin

• pre-augment the training dataset with np temporal permutations of the LR input images
• normalize the images by subtracting the dataset mean intensity value and dividing by the

standard deviation

Since each LR image is taken at a different time and with some intrinsic spatial misalignment
with respect to the others, it is important to resample each pixel value in order to have a coherent
reference frame. For each scene of the dataset, we consider as a reference image the one with the
maximum clearance c. During the registration process, we consider translation as transformation
model, which computes the necessary shifts to register each image for both the axes. Masks are taken
into consideration during this process in order to avoid bad registration caused by unreliable pixels.
The registration is performed in the Fourier domain using normalized cross-correlation as in [60].
After computing the shifts, both LR images and the correspondent masks are shifted accordingly.
We use a reflect padding to add pixels to LR images and a constant zero padding for masks. In this
way, these extra pixels will be considered unreliable.

For each scene, we must select some LR images in order to match the temporal dimension T of
the network. We set a threshold cmin = 0.85 on the clearance for an image to be accepted to avoid
using awful images that can worsen the SR performance. The acceptable images are then sorted in
order of clearance, and the best T are selected. In the case of a scene with less than T images, we
sample randomly from the set of acceptable images until T are reached. If a scene is only composed
of clearances under cmin, it is entirely removed from the dataset. This selection process is performed
after the registration so that heavily bad registered images are also removed, even if they had an initial
clearance above the threshold. Since each scene of the dataset contains at least 9 LR images, we set
T = 9 to fully exploit all the available information for most of the scenes.

One of the characteristics of the Proba-V dataset is that the LR images of a particular scene have
no clear temporal order. Therefore, there is no reason to prefer a specific order in the T input images
to another. The training dataset is, therefore, pre-augmented by performing np random temporal
permutations of the selected T input images to help generalization. In this way, we can train the
algorithm to identify the best temporal image independently on the position inside the input tensor.
We set this permutation parameter to np = 7, reaching a total of 2905 training data-points for RED and
2751 for NIR.

Finally, each image is normalized by subtracting the mean pixel intensity value computed on the
entire dataset and dividing by the standard deviation. After the forward pass in the network, all the
tensors are then denormalized, and the subsequent evaluations are performed on the 16 bits unsigned
integer arrays.

4.3. Experimental Settings

The scaling factor of the Proba-V dataset is s = 3. Since we have different scenes for RED and
NIR data, we treat the problem for the two bands separately. For this reason, we have C = 1, since we
consider images with a single channel. We set F = 32 and fh = fw = ft = 3 as number of filters and
kernel size respectively for each convolutional layer. Therefore, the number of temporal reduction
blocks is bT/( ft− 1)c − 1 = 3, since each block reduces the temporal dimension of 2. In all the residual
attention blocks, we set r = 8 as the reduction factor. After testing different values with a grid search,
we set N = 12 as the number of residual feature attention blocks in the main branch of the network.
We find that decreasing this number causes a loss of performance while increasing it gives a little
improvement in the results at the cost of a high increase in the number of parameters. N = 12 is,
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therefore, the best compromise between network size and prediction results. In total, our model has
slightly less than 1M parameters.

In most of the SR applications present in the literature, LR images are obtained from the artificial
degradation of the target HR images. In contrast, the real-world nature of the dataset, in which LR
images are obtained independently from HR images, causes an unavoidable misalignment between
the super-resolved output and the ground truth. To take into account this problem, the authors of the
dataset consider a maximum shift of ±3 pixels on each axis between ISR and target IHR, computed on
the basis of the geolocation accuracy of the Proba-V satellite [58]. When computing the loss function
presented in Section 3.4, we can therefore set d = 3. Besides, since the Proba-V dataset also provides
binary mask that marks with one reliable pixel and with 0 unreliable (e.g., concealed by clouds) ones,
we adapt the loss function to use this information to refine the training process. During the loss
computation, we want pixels marked as unreliable in the target binary mask MHR not to influence
the loss computation. Practically, we can simply multiply the cropped super-resolved image ISR

crop,
and the HR patch IHR

u,v by the correspondent cropped mask MHR
u,v and average all the quantities over

the number of clear pixels. The bias computation is therefore adapted from Equation (9) as:

bu,v =
∑i,j

[
IHR
u,v ·MHR

u,v − ISR
u,v ·MHR

u,v
]
(i, j)

‖MHR
u,v ‖1

(11)

where ‖ · ‖1 represents the L1 norm of a matrix, i.e., the sum of its absolute values. In the same way,
the loss is adapted from Equation (10) as:

L = min
u,v∈[0,6]

‖IHR
u,v ·MHR

u,v − (ISR
u,v ·MHR

u,v + bu,v)‖1

‖MHR
u,v ‖1

(12)

To train the model, we extract from each LR image 16 patches with a size of 32× 32 pixels and the
corresponding HR and masks patches with a size of 96× 96. We further check every single patch and
remove those that have a target mask MHR with less than 0.85 clearance. The total number of training
data points obtained is 41,678 for RED and 40,173 for NIR. During the training process, we further
perform data augmentation with random rotations of 90◦, 180◦ and 270◦ and random horizontal flips.

We set the batch size to 32. Therefore, during training, we have an input tensor with shape
32× 32× 32× 9× 1 and an output tensor with shape 32× 96× 96× 1. We optimize the loss function
with Adam algorithm [61] with default parameters β1 = 0.9, β2 = 0.999 and ε = 10−7. We set an
initial learning rate ηi = 5× 10−4 and we reduce it with a linear decay down to ηf = 5× 10−7. We
train two different networks for RED and NIR spectral bands on a workstation with an Nvidia RTX
2080Ti GPU with 11GB of memory and 64GB of DDR4 SDRAM. We use the TensorFlow 2.0 framework
with CUDA 10. In total, we train the models for 100 training epochs for about 16 hours.

4.4. Quantitative Results

To evaluate the obtained results, we need to use a slightly modified version of PSNR and SSIM [62]
criteria to take into consideration all the aspects we considered in the previous section to obtain a
proper loss function. Martens et al. [58] propose a corrected version of the PSNR, called cPSNS, which
is obtained from a corrected mean squared error (cMSE). The computation of the cMSE is performed
in the same way as we did for the loss in Equation (12): it is the minimum MSE between ISR

crop + bu,v

and the HR patches IHR
u,v :

cMSE = min
u,v∈[0,6]

MSE
clear

(
IHR
u,v , ISR

crop + bu,v
)

(13)

where MSE
clear

represents the mean squared error computed only on pixels marked as clear in the

binary mask MHR
u,v . Again, we can simply multiply the matrices by the mask to make unreliable

pixels irrelevant:
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MSE
clear

=
‖IHR

u,v ·MHR
u,v − (ISR

u,v ·MHR
u,v + bu,v)‖2

2
‖MHR

u,v ‖1
(14)

where ‖ · ‖2 represents the Frobenius (L2) norm of a matrix, i.e., the square root of the sum of its
squared values. We can then compute the cPSNR as:

cPSNR = 10 log10
(216 − 1)2

cMSE

= max
u,v∈[0,6]

10 log10
(216 − 1)2

MSE
clear

(IHR
u,v , ISR

crop + bu,v)

(15)

where 216 − 1 is the maximum pixel intensity for an image encoded on 16 bits.
In the same way, we can define a corrected version of the SSIM metric: cSSIM is the maximum

SSIM between ISR
crop + bu,v and the HR patches IHR

u,v , again multiplied for the mask MHR
u,v .

cSSIM = max
u,v∈[0,6]

SSIM
(

IHR
u,v ·MHR

u,v , ISR
crop ·MHR

u,v + bu,v
)

(16)

4.4.1. Temporal Self-Ensemble (RAMS+)

As in Section 4.2, during the training process images are augmented with random permutation in
the temporal axis. For this reason, it is possible to maximize the performance of the model, by adopting
a self-ensemble mechanism during inference, similarly to what done in previous super-resolution
works [5,7,63]. For each input scene, we consider a certain number P of random permutations on the
temporal axis and we denote as

{
ILR
[1,T], 0 , · · · , ILR

[1,T], P

}
the resulting set of inputs. The output of the

inference process is therefore the average of the predictions on the whole set. We call this methodology
RAMS+P, where P is the number of random permutations performed:

ISR =
1
P

P

∑
i=1

HRAMS
(

ILR
[1,T], i

)
(17)

Figure 4 shows cPSNR results on the testing dataset for a different number of permutated
predictions. The trend clearly shows how increasing P results in better performance on both the
spectral bands, with an effect that tends to saturate for P ≥ 25. For the following evaluation, we select
P = 20 to present the results for RAMS+. It is worth noting that even if this method allows increasing
the performance of the network sharply, inference time grows linearly with P, with RAMS+20 taking
roughly 20 times as long as RAMS. Another aspect to highlight is that the permutations are performed
randomly, so different results can be achieved even with the same value of P.

4.4.2. Comparison with State-of-The-Art Methods

Table 1 shows the comparison of cPSNR and cSSIM metrics with several methods on the validation
set. We consider as the baseline the bicubic interpolation of the best image of the scene selected
considering the clearance, i.e., the number of clear pixels as marked by the binary masks.

IBP [13] and BTV [43] methods are tested with the same methodology presented in
Molini et al. [50]. They achieve slightly better results than the baseline with both the metrics.

RCAN [7] is currently one of the Single-image Super-resolution state-of-the-art networks.
We trained from scratch two models, one for each spectral band, setting G = 5 and B = 5, as the
number of residual groups and residual channel attention blocks respectively, for a total of about
2 million parameters. We train the two models from scratch on the Proba-V dataset, selecting the best
image per scene as input. RCAN shows better performance with respect to classical methods but is far
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beyond the other MISR networks, showing how the additional information coming from both spatial
and temporal correlations is vital to boost the super-resolution process.

VSR-DUF [47] has been developed to upsample video signals using a temporal window of several
frames. We train two models from scratch, one for each spectral bands, using 9 LR images as input as
in our methodology. The authors consider three different architectures depending on the number of
convolutional layers and find better results, increasing the depth of the model. We select the baseline 16
layers deep architecture that already has more than double parameters with respect to RAMS, with the
same number of input images.

Figure 4. Results with a temporal self-ensemble of size P. The highlighted curves represent an
exponential moving average of the results to clearly show the trend. The values for P = 1 are
equivalent to RAMS.

HighRes-net [51] algorithm got the second place in the Proba-V challenge and featured a single
network for both spectral bands that recursively reduce the temporal dimension to fuse the input
LR images. We train the model on our training dataset with default architectures. Since the authors
designed the architecture to have an input temporal dimension multiple of 2, we set it to 16, as it is
closest to 9.

DeepSUM [50] is the algorithm winner of the original Proba-V challenge, and the authors have
further developed it with DeepSUM++ [64]. We train our RAMS on the same training dataset as these
two works.

Results clearly show how the proposed methodology can obtain the best results with the two
metrics on both the spectral bands and thus represents the current state-of-the-art for Multi-image
Super-resolution for remote sensing applications. Using temporal self-ensemble, RAMS+ is able to
achieve even higher performance. We show the value for RAMS+, setting P = 20 as the size of the
ensemble, which is the value at which we experimentally find that the resulting gain starts to saturate.
However, further increasing the ensemble size can result in even better performance, though at the
cost of a significant inference speed drop.

It is worth mentioning that our methodology reaches a result of 0.9336790819983855 on the test
set of the Proba-V challenge as provided by the official site and places at the top of the leaderboard
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available after the end of the official challenge (https://kelvins.esa.int/proba-v-super-resolution-post-
mortem/leaderboard (accessed on 2 July 2020)). This score is computed as the mean ratio between the
cPSNR values of the challenge baseline on each testing scene, and the correspondent submitted cPSNR
for both the spectral bands. This result has been obtained by retraining the two networks with both
training and validation datasets together.

Figure 5 shows a direct comparison between the cPSNR results of RAMS and the bicubic
interpolation baseline and RCAN (SISR state-of-the-art). Each cross represents a scene of the validation
dataset of the corresponding spectral band. The graphs on the left show how our method strongly
beats the bicubic upsampling on almost all the scenes, 98% for RED and 91% for NIR. That is coherent
with a general worse behavior of all the methods on the NIR images, probably due to an intrinsic worse
information quality of the NIR dataset. The graphs on the right show, on the other hand, the enormous
potential of MISR with respect to SISR methods. It can be observed how again RAMS outperforms
RCAN an almost all the scenes, with results only slightly worse than to bicubic interpolation, 92% for
RED, and 91% for NIR. That is reasonable since RCAN results are someway in the middle between
bicubic and RAMS.

Table 1. Average cPSNR (dB) and cSSIM over the validation dataset for different methods. Our solution
is highlighted in bold at the end of the table.

Band NIR RED

Metric cPSNR cSSIM cPSNR cSSIM

Bicubic 45.12 0.9767 47.63 0.9846
IBP [13] 45.96 0.9796 48.21 0.9865
BTV [43] 45.93 0.9794 48.12 0.9861
RCAN [7] 45.66 0.9798 48.22 0.9870
VSR-DUF [47] 47.20 0.9850 49.59 0.9902
HighRes-net [51] 47.55 0.9855 49.75 0.9904
DeepSUM [50] 47.84 0.9858 50.00 0.9908
DeepSUM++ [64] 47.93 0.9862 50.08 0.9912
RAMS (ours) 48.23 0.9875 50.17 0.9913
RAMS+20 (ours) 48.51 0.9880 50.44 0.9917

4.4.3. Importance of the Residual Temporal Attention Branch

As a final analysis, we perform an ablation study to demonstrate the importance of the global
residual branch that implements a temporal attention mechanism. We train two alternative networks,
one for each spectral band, that have the same architecture of RAMS, except that we delete the residual
temporal attention (RTA) branch. These reduced networks are trained from scratch independently
from the complete ones.

Table 2 shows a significant drop in the results obtained without the global residual branch and
demonstrates the importance of selecting the best temporal views to ease the super-resolution process
of the main branch. We find this difference particularly relevant for the RED band, since the training
repeatedly failed without the RTA branch, with a diverging behavior after some epochs. The result
reported in the table is computed with the last valuable parameters before the divergence starts.

Table 2. RAMS results with and without RTA (residual temporal attention) branch. Values for RED
without RTA, highlighted with the asterisks, are computed with the last valuable parameters before
training diverges.

without RTA with RTA

cPSNR cSSIM cPSNR cSSIM

NIR 47.96 0.9869 48.23 0.9875
RED 47.98 * 0.9863 * 50.17 0.9913

https://kelvins.esa.int/proba-v-super-resolution-post-mortem/leaderboard
https://kelvins.esa.int/proba-v-super-resolution-post-mortem/leaderboard
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Figure 5. cPSNR comparison between RAMS and bicubic inteprolation and RAMS and RCAN(SISR)
on the validation set. Each data point represents a scene of the dataset: when a cross is above the line,
the correspondent scene is reconstructed better by RAMS.

4.5. Qualitative Results

A visual comparison between some of the methods taken in the exam is shown in Figures 6 and 7
for a RED and NIR image respectively. We provide a zoomed patch of the best LR input image of the
scene, its bicubic interpolation, and the inference output of RCAN, VSR-DUF, DeepSUM, RAMS and
RAMS+20, together with the target HR ground truth.

LR
(cPSNR / cSSIM)

Bicubic
(48.30 / 0.9857)

RCAN [7]
(49.18 / 0.9887)

VSR-DUF [47]
(50.29 / 0.9909)

DeepSUM [50]
(50.73 / 0.9917)

RAMS
(51.53 / 0.9930)

RAMS+20
(51.64 / 0.9932)

HR
(cPSNR / cSSIM)

Figure 6. Qualitative comparison between different methods on RED imgset0302.

LR
(cPSNR / cSSIM)

Bicubic
(44.09 / 0.9758)

RCAN [7]
(44.81 / 0.9830)

VSR-DUF [47]
(45.94 / 0.9857)

DeepSUM [50]
(47.73 / 0.9887)

RAMS
(48.19 / 0.9899)

RAMS+20
(48.92 / 0.9909)

HR
(cPSNR / cSSIM)

Figure 7. Qualitative comparison between different methods on NIR imgset0596.

cPSNR and cSSIM scores for the image under analysis are also provided. From this comparison,
MISR methods clearly show a better performance with respect to bicubic and SISR (RCAN).
However, it is not trivial to understand which method is the better among MISR algorithms with
a visual inspection of the results, only. As found by Ledig et al. [21], the task of achieving
pleasant-looking results is a different optimization problem from maximizing the fidelity of the
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reconstructed information. Therefore, results with high content-related metrics as PSNR and SSIM
frequently appear less photo-realistic to a human eye. However, in the context of remote sensing,
the fidelity of the pixels content is vital to ensure that the super-resolved image are meaningful, thus the
quality of results should be inferred by using content-related metrics, rather than by visual inspection.

5. Conclusions

In this paper, we proposed a novel representation learning model to super-resolve remotely sensed
multi-temporal LR images by exploiting concurrently spatial and temporal correlations. We introduced
feature and temporal attention mechanisms with 3D convolutions that, coupled with nestled residual
connections, let the network focus on high-frequency components, flow redundant low-frequency
information and transcend the local region of convolutional operations. Extensive experiments on
the open-source Proba-V MISR dataset, either with single image and multi-image SR methodologies,
demonstrated the effectiveness of our proposed methodology. In both NIR and RED spectral bands,
our efficient and straightforward solution achieved considerably better results than other literature
methodologies obtaining 48.51 dB and 50.44 dB of cPSNR, respectively for the two channels. That is
further proved by the score of the official post-mortem Prova-V challenge where RAMS claimed the
first place in the leaderboard. Future work may investigate the performance of the RAMS architecture
on hyperspectral remote sensing imaging.
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