

# Multi-scale thermal-hydraulic modelling for the primary heat transfer system of a tokamak

#### A. Froio

NEMO group, Dipartimento Energia, Politecnico di Torino

11<sup>th</sup> ENEN PhD Event & Prize @ PETRUS-ANNETTE PhD Conference June 29<sup>th</sup>, 2017, Lisboa



This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.







# Outline

- Introduction
- The EU DEMO Breeding Blanket
  - НСРВ
  - WCLL
- Aim of the work
- The GETTHEM code
- GETTHEM applications
  - Normal operation
  - In-vessel LOCA
- Conclusions & perspective





# Introduction

- EU DEMO aims to prove economic feasibility of fusion electricity
  - First reactor to include
    Power Conversion System
    and to breed tritium in situ
    → Breeding Blanket (BB)
- BB is the first component facing the plasma → largest total thermal load from plasma + nuclear reactions







# The EU DEMO BB (2015 revision)

- Tokamak toroidally divided in sectors
- Each sector → 2 inboard (IB) and 3 outboard (OB) BB segments
- Each segment → several Blanket Modules (BMs)
- First Wall (FW) and Breeding Zone (BZ)
- 4 BB concepts:
  - Helium-Cooled Pebble Bed (HCPB)
  - Water-Cooled Lithium-Lead (WCLL)
  - Helium-Cooled Lithium-Lead
  - Dual Cooled Lithium-Lead



[EU DEMO1 2015 CAD model; L. V. Boccaccini, 2015]





#### **HCPB**





[F. A. Hernández González, 2016]

- Coolant: He (8 MPa, 300 500 °C)
- Breeding material: Li<sub>4</sub>SiO<sub>4</sub> pebbles
- *n* multiplier: Be pebbles
- FW and BZ cooled in series (~2000 cooling channels per BM)
  - Square FW cooling channels
  - Rectangular BZ cooling channels, inside metallic Cooling Plates (CPs)





# WCLL

- Coolant: Water (15.5 MPa, 285 – 325 °C)
- Breeding & *n* multiplier material: PbLi eutectic (liquid)
- FW and BZ cooled by different loops (~500 cooling channels per BM)
  - Square FW cooling channels
  - Circular BZ cooling channels







# Aim of the work

<u>Problem</u>: fast analyses are fundamental during design stage, to check effect of different parameters → need for a system-level thermal-hydraulic modelling tool, for transient analysis of the DEMO Primary Heat Transfer System (PHTS) and Balance of Plant (BoP):

- Allow parametric analyses  $\rightarrow$  fast simulation
- Consider both normal and accidental transient scenarios
- Easy to update, to follow the design development  $\rightarrow$  flexible
- Written in an object-oriented language
- User-friendly





# The GETTHEM code (I)

<u>Solution</u>: develop the GEneral Tokamak THErmal-hydraulic Model (GETTHEM) supported by EUROfusion

- Main features:
  - <u>Fast</u> simulation of thermal-hydraulic transients in the <u>entire</u> PHTS
  - At present, HCPB and WCLL modules
  - System-level code developed using the equation-based, objectoriented Modelica language 
      $\rightarrow$  user-friendly
  - Developed in-house and relying on open source Modelica libraries
  - Runs on OpenModelica
  - Easy to update as the design evolves, thanks to its modular nature
- Solves mass and energy conservation equations:
  - OD lumped modelling approach for manifolds, pumps, valves
  - 1D Finite Volumes modelling approach for cooling channels and pipes
    - Momentum balance is also solved in 1D models





# The GETTHEM code (II)

The tool must be applicable to <u>nominal</u> and <u>accidental</u> scenarios  $\rightarrow$  use different modelling assumptions:

#### **NORMAL OPERATION:**

Look at the differences among the channels, due to geometry or heat load asymmetries  $\rightarrow$ simplification of the physics:

- Thermophysical properties of water linearized around operating point
- Helium modelled as ideal gas
- Constant thermophysical properties of structural material

#### **OFF-NORMAL OPERATION:**

Keep into account the details of the thermodynamic evolution of the coolant during an in-vessel Loss-Of-Coolant Accident (e.g. evaporation, flashing, 2-phase flow, choked flow)  $\rightarrow$ simplification of the geometry:

 All components (including PHTS) modelled with 0D approach

# GETTHEM applications: HCPB normal operation

CP

 BM caps (2/BM) and CPs (~60/BM) cooled in parallel

POLITECNICO DI TORINO

- Aim: optimize mass flow rate distribution to keep temperatures in the design range
- → Apply GETTHEM to study temperature distribution



2017 ENEN PhD Event - Lisboa





HCPB normal operation – Results (I)



- Cap channels have larger cross section  $\rightarrow$ smaller hydraulic resistance
- The 2 caps receive ~20 % of the coolant, the 60 CPs only ~80 %  $\rightarrow$  caps overcooled, CPs overheated



2017 ENEN PhD Event - Lisboa



#### GETTHEM applications: HCPB normal operation – Results (II)

 Introduce orifices at cap inlet → parametric analysis on orifice aperture to optimize temperature distribution

POLITECNICO DI TORINO

*T*<sub>He</sub> now always within design range → no overheating + higher plant efficiency







# GETTHEM applications: WCLL normal operation

- BZ cooling channels have different lengths → <</li>
   different resistances
- Channels closer to the plasma get higher heat flux
   → need higher coolant flow rate
- Aim: optimize mass flow rate distribution





#### WCLL normal operation – Results

 Most loaded channels receive the least mass flow rate → temperature increases close to saturation (343 °C)

POLITECNICO DI TORINO

 Dimension orifices at channel inlet to optimize mass flow rate → more uniform outlet temperature distribution → 15 °C below saturation



2017 ENEN PhD Event - Lisboa

[A. Froio et al., 2017]

#### POLITECNICO **GETTHEM applications:** off-normal conditions – in-VV LOCA



- Sudden energy deposition from plasma causes FW failure  $\rightarrow$  release of coolant inside Vacuum Vessel (VV)  $\rightarrow$  in-VV LOCA
  - VV operating pressure: ~10 mPa
  - VV maximum design pressure: 200 kPa
- $VV \rightarrow$  first containment barrier against release of radioactive materials  $\rightarrow$ avoid overpressure!
- Aim: analyse pressure transient inside VV following in-VV LOCA for He-cooled and H<sub>2</sub>O-cooled BBs

**DI TORINO** 







2017 ENEN PhD Event - Lisboa







- GETTHEM in-VV LOCA model for He-cooled BBs is applied in a scenario modelled with the validated CONSEN code (reported in [G. Caruso et al., 2017])
- Good agreement between the two models: discrepancy on relevant variables below 1 %



2017 ENEN PhD Event - Lisboa







## GETTHEM applications: in-VV LOCA step 1 – H<sub>2</sub>O model validation

- GETTHEM in-VV LOCA model for H<sub>2</sub>O-cooled BBs used to reproduce results of ICE experimental campaign (Japan, 2000)
- Excellent agreement on pressure evolution (within experimental uncertainty)



[A. Froio et al., 2017]







## in-VV LOCA step 2 – application to DEMO (He)

- Peak pressure overcomes VV limit (200 kPa)
- Transient is too fast to consider active mitigation systems (peak reached after ~4 s)
- Even after BD opening coolant removed from VV is ~1/6 of coolant entering VV → insufficient mitigation





# in-VV LOCA step 2 – application to DEMO (He)

 Peak pressure overcomes VV limit (200 kPa)

- Transient is too fast to consider active mitigation systems (peak reached after ~4 s)
- Even after BD opening coolant removed from VV is ~1/6 of coolant entering VV → insufficient mitigation





# in-VV LOCA step 2 – application to DEMO (He)

 Peak pressure overcomes VV limit (200 kPa)

- Transient is too fast to consider active mitigation systems (peak reached after ~4 s)
- Even after BD opening coolant removed from VV is ~1/6 of coolant entering VV → insufficient mitigation





# in-VV LOCA step 2 – application to DEMO (H<sub>2</sub>O)

 Peak pressure overcomes VV limit

- Transient is *much* slower than He (peak reached at ~30 s)
- Saturation conditions reached at ~1 s → water boils inside PHTS → 2-phase flow → pressure increase in VV slows down





# in-VV LOCA step 2 – application to DEMO (H<sub>2</sub>O)

 Peak pressure overcomes VV limit

- Transient is *much* slower than He (peak reached at ~30 s)
- Saturation conditions reached at ~1 s → water boils inside PHTS → 2-phase flow → pressure increase in VV slows down







# **Conclusions...**

GETTHEM model developed during PhD to allow fast transient thermal-hydraulic simulations for DEMO

- Code benchmarked and validated in off-normal scenarios
- ✓ Successfully applied to optimize flow distribution in normal operation for HCPB and WCLL
- ✓ Code used to predict pressure behaviour following an in-VV LOCA





# ...and perspective

- → Benchmark of code capabilities to predict hot-spot temperatures in solid materials during normal operation
- $\rightarrow$  Parametric analysis of different heat loads to FW
- $\rightarrow$  Parametric analysis of break size for in-VV LOCA
- $\rightarrow$ Include 1D PHTS model in LOCA analysis





# Acknowledgements

Thank you to:

- F. Cismondi, S. Ciattaglia and the EUROfusion Programme Management Unit for helpful interactions
- F. Casella for fundamental advices on Modelica development
- L. Savoldi for continuous support