
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On-line Self-test Mechanism for Dual-Core Lockstep System-on-Chips / Floridia, Andrea; Sanchez, Ernesto. - In:
MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - ELETTRONICO. - 112C:(2020), pp. 1-10.
[10.1016/j.microrel.2020.113770]

Original

On-line Self-test Mechanism for Dual-Core Lockstep System-on-Chips

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.microrel.2020.113770

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.microrel.2020.113770

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2838960 since: 2020-07-22T13:32:54Z

Elsevier



On-line Self-test Mechanism for Dual-Core Lockstep 

System-on-Chips 

Andrea Floridia1, Ernesto Sanchez 

Dipartimento di Automatica e Informatica, Politecnico di Torino 

 5 

Abstract 

The Dual-Core Lockstep configuration is largely employed in safety-critical System-

on-Chips for the sake of compliance with functional safety standards. Such 

configuration includes two processor cores paired together, always fed with the same 

identical inputs and their outputs are continuously compared by a set of comparators. 10 

However, permanent faults affecting the comparators may invalidate the system 

functionalities, thus in-field self-test mechanisms are mandatory. In this paper, 

different in-field self-test solutions are first discussed. Then, a hybrid hardware-

software scheme for the on-line testing of the lockstep logic is proposed. Such a 

solution leverages test programs developed according to the Software-Based Self-Test 15 

(SBST) approach, used in conjunction with a specialized hardware module. The 

effectiveness of this approach was assessed on a modified version of the OpenRISC 

1200 processor. Exhaustive experiments demonstrated that it is possible to achieve a 

fault coverage of stuck-at faults greater than 99%, while at the same time significantly 

reduce the area overhead of classical approaches. 20 
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1. Introduction 25 

In the last decade, the high-quality requirements imposed by the automotive market 

radically changed the manufacturing process of the System-on-Chips (SoCs). These 

requirements not only imply an end-of-manufacturing testing plan able to yield a 

defect level (expressed in Defective Parts Per Million, DPPM) close to zero, but also 

the capability to detect hardware random failures when in mission mode.  30 

For this reason, the usage of electronics devices in the automotive domain is 

regulated by the ISO 26262 [1] functional safety standard.  

 

The standard covers the entire spectrum of the functional safety of electronics 

components in automotive applications, from the software to the hardware. 35 

Specifically, regarding the hardware, the ultimate goal is to avoid that a failure in a 

given hardware component lead to a catastrophic consequence (i.e., damage to human 

beings or properties). Towards this end, the standard defines the so-called safety 

mechanisms. A safety mechanism is a portion of the digital system intended for 

detecting faults, controlling system failures in order to achieve or maintain a safe 40 

state. Failures are generated due to the occurrence of a fault (either transient or 

permanent), which are classified as Single-point faults or Multi-point Latent faults. 

The former are immediately effective faults, since they would directly cause critical 

failures without a suitable safety mechanism guarding them. For the most critical 

systems, the predominant safety mechanisms commonly used against these faults are 45 

based on redundancy:  

• End-to-End Error Correction Code (ECC) for memories [2], [3], [4]; 

• Redundant hardware execution units, Dual-Core Lockstep (DCLS): two 

processor cores (main and checker) are paired together, and their output is 

continuously monitored by a set of comparators [5], [6]. 50 

The additional circuitry introduced by those safety mechanisms must be equally 

tested. Indeed, the accumulation of Multi-point Latent faults could invalidate their 

functionalities. When these faults arise within the safety mechanisms, they do not 

cause directly a failure. However, they can become dangerous if a second fault arise 

in the module guarded by the safety mechanism.  For this reason, additional 55 



diagnostic safety mechanisms are required. Such safety mechanisms are mainly 

intended for implementing in-field self-test functionalities. During the power-up 

phase, the preferred self-test mechanism is based on Logic and Memory Built-In Self-

Test (LBIST and MBIST respectively). The former targets mainly the permanent 

faults in the digital logic, while the latter in the embedded memories [7], [8]. In most 60 

of the cases, the MBIST can be executed transparently with respect to the content of 

the memory [9]. Since the LBIST is based on the already existing scan logic, it 

usually requires a full system reset after its completion. Therefore, its applicability is 

limited to the Power-On Self-Test (POST), that is the in-field test performed when the 

device is turned on.  65 

 

This could become problematic if the time interval between two power-on events is 

too long, as in the case of several hours of continuous operations. Indeed, latent faults 

should be checked even when the system is fully on-line, that is with the mission 

software already running. This kind of in-field test is called on-line test. For this 70 

purpose, Software Test Libraries (STLs) are increasingly becoming adopted [10], 

[11], [12], [13], [14], [15]. An STL consists in a set of software self-test procedures, 

and the main target are permanent faults within the processor. This technique, also 

known in literature as Software-Based Self-Test or SBST, converts test patterns into 

instructions, and then accumulate their results to generate a test signature. Such 75 

signature is then used in field to determine whether the test passed or failed. 

Normally, this kind of self-test exclusively relies on the already existing on-chip 

resources. 

In the context of this work, since the main target of an STL is the processor itself, 

SBST test programs are particular useful when used in conjunction with DCLS for 80 

avoiding latent fault accumulation in both the checker and the main core at run-time. 

It is important to highlight that the software approaches can produce pure functional 

stimuli, only. This is generally positive, since it complements the scan-based LBIST 

test, providing additional defect coverage for the processor core (being most critical 

module of a processor-based system) [16]. However, from the lockstep comparators 85 

standpoint it means that some critical faults cannot be addressed with the support of 

this method only. Indeed, some latent faults might escape the test. Specifically faults 



within the lockstep comparators might cause faults within the main core being 

masked, inhibiting the lockstep functionalities. While most of the latent faults are 

detected during the POST with the application of the LBIST, when on-line usually a 90 

specific circuitry is added to the comparators for implementing the self-test. This 

additional hardware has the penalty of additional system area to be devoted 

exclusively for test purposes. 

 

The aim of this paper is manifold. First, it discusses the different software and 95 

hardware self-test strategies commonly adopted by the industries for testing lockstep 

comparators. Then, it describes a novel hybrid hardware-software approach, to be 

used as an effective alternative to the classical mechanisms. The experiments 

demonstrated that it is possible to achieve almost the same fault coverage of 

hardware-based self-test mechanisms, while at the same time halving the area 100 

requirements. 

 

The proposed approach extends the architecture proposed in [17], presenting an 

alternative hybrid software-hardware on-line testing strategy for all the comparators 

of a lockstep system, targeting permanent latent faults (e.g., stuck-at faults). The key 105 

idea is to move parts of the self-test features from the hardware to the software, 

leveraging the flexibility of a software approach, in conjunction with a specialized 

hardware module. Specifically, regarding to this new architecture, the paper provides: 

1. Detailed description of a low-area overhead hardware module to be 

integrated within the SoC for assisting the execution of self-test routines 110 

oriented to the on-line test of the lockstep logic; 

2. Guidelines for generating effective self-test routines; 

3. Guidelines for performing the Failure Mode Effects and Diagnostic 

Analysis (FMEDA) of the additional hardware integrated within the SoC 

and possible countermeasures. 115 

The rest of the paper is organized as follows: Section 2 discusses the most relevant 

related works to the one presented in this paper. Section 3 provides additional details 

about the ISO 26262 requirements and the FMEDA process, with the emphasis on the 

dual-core lockstep configuration and its possible failure modes: the goal is to present 



the main motivations leading to this research; in Section 4, the descriptions of the 120 

hardware module and the proposed testing strategy are presented; Section 5 presents 

the case study, the experimental results and the results of the FMEDA process; 

finally, Section 6 concludes the paper. 

 

2. Related Work 125 

Hybrid solutions for testing purposes are not new. In [18], a memory core storing 

an SBST-like test sequence is inserted in the system and connected to the system bus. 

During the testing phase, the processor is forced to execute the instructions provided 

by this module. Also the authors of [19] proposed a solution which consists of a 

software-hardware-cooperated BIST as an attempt to reduce the test time for DRAM 130 

memories. Another hybrid solution that leverages the on-chip programmable 

resources has been presented in [20]. The approach suggests the usage of the 

embedded DMA for RAM memory testing. It is also worth to mention that hybrid 

approaches have been extensively adopted also as hardening mechanism against 

transient faults [21], [22]. 135 

 

In [23] additional instructions are added to the ISA for testing purposes only (e.g., 

accessing to particular flip-flops within the processor), whereas in [24], observation 

points are inserted within the processor for increasing the effectiveness of self-test 

programs. As an attempt to mitigate the cost and performances penalties introduced 140 

by the safety mechanisms, in [25] the authors proposed a cooperation between 

hardware and software modules. In order to achieve the targeted safety level for a 

given SoC: for the main computational units (e.g., the CPU), they suggest the usage of 

hardware-based application-independent safety mechanisms. For the remaining of the 

system (e.g., peripherals) a combination of hardware-software mechanisms 145 

(application-specific). Our previous works already explored hybrid approaches: in 

[17] the targeted module was the set of comparators that checks the integrity of data 

and address signals directed to the data and instruction memory. In this work, we 



target also the comparators that monitor the control signals, along with a detailed 

analysis on the safety of the hybrid structure itself (not previously addressed). To 150 

achieve that, in this paper we resorted to a test structure similar to the one presented in 

[26]. In the aforementioned paper, the goal was to test computational modules only. 

3. Background 

3.1 The ISO 26262 

Depending on the risk associated to the failure of a given hardware module, the 155 

ISO 26262 defines the Automotive Safety Integrity Levels (ASILs). These ASILs 

range from A (the lowest, indicating that the module is not safety relevant) to D (the 

most critical). For each of these levels, two metrics define the reliability requirements: 

the Single-Point Fault Metric (SPFM) and the Latent Fault Metric (LFM).  For 

assessing whether or not a given hardware module is compliant with the targeted 160 

ASIL, the Failure Mode Effects and Diagnostic Analysis (FMEDA) is performed 

[27]. The FMEDA is a structured approach to define failure modes, failure rate, and 

diagnostic capabilities of a hardware component. In particular, failure rate and 

diagnostic capabilities directly contribute to determine the SPFM. While the failure 

rate (measured in Failure in Time, FIT) depends on the technology node used, the 165 

diagnostic capabilities are expressed with the Diagnostic Coverage (DC). The DC 

indicates the number of critical faults leading to a failure (i.e., single-point faults) 

detected by the safety mechanism: the most commonly used fault models for 

computing this metric are the stuck-at fault model and the transient fault model (i.e., 

Single-Event Upset, SEU). In early analyses, the SPFM can be approximated with the 170 

DC (computed via fault injections campaigns [28], [29]). Table 1 reports the 

requirements in terms of DC for each of the ASILs. 

The LFM indicates instead the number of latent faults in the safety mechanisms 

covered by an in-field test mechanism (e.g., LBIST, MBIST or STL). For this metric, 

the test coverage is computed typically with respect to the stuck-at fault model. 175 

Depending on the ASIL, the standard defines also the Fault Tolerant Time Interval 



(FTTI), that is the time required for detecting a fault and react accordingly. For ASIL 

D, the single-point fault FTTI is in the range 10-150 ms, while the latent fault FTTI is 

expressed as multiple of 10 hours.  

Considering for example a processor core, in order to achieve these metrics, it is 180 

common to use DCLS for achieving the SPFM metric, while a combination of LBIST 

(for the detection of latent faults during the power-on phase) and STL (for the 

detection of latent faults during the on-line phase) for the LFM. 

 

Table 1: ISO 26262 Diagnostic Coverage Requirements for Safety-relevant 185 

Modules 

ASIL SPFM/DC LFM 

B At least 90% At least 60% 

C At least 97% At least 80% 

D At least 99% At least 90% 

3.2 The Dual-Core Lockstep Configuration 

Dual-Core Lockstep (DCLS) is one of many techniques aiming at enhancing the 

reliability of processor-based systems. Major IP and Semiconductor companies 

involved in the automotive market provide DCLS-based solutions for safety-critical 190 

applications [6], [30]. Briefly, a system including DCLS consists of two identical 

processor cores, both initialized to the same initial state and fed with identical inputs. 

As a consequence, identical outputs should always be produced. A logic failure (due 

to permanent or transient faults) reaching the output in one of the two cores can be 

detected by continuously comparing their output. Once a failure is detected, the 195 

system reacts depending on the application requirements. Usually, one of the two 

cores is named the main core, while the other the checker core. The only purpose of 

the checker core is to confirm the correctness of the main core outputs, being fed with 

the very same instructions and data of the main core. 

 200 

While extremely efficient to detect single-point faults, The DCLS configuration 

described above cannot detect failures that occur at the same point in both cores. 

These failures are normally called common mode failures, which cause comparators to 



produce a false match. A common technique for reducing such risk of failure is to 

provide temporal diversity to the two cores composing the system. This strategy 205 

consists on delaying the inputs fed to the checker core by means of a bank of shift 

registers. Obviously, the outputs must be resynchronized before being compared. This 

is achieved by delaying the main core outputs by the same amount of clock cycles of 

the checker core inputs. It is worth noting that the whole architecture is completely 

transparent from the application code perspective: indeed, the checker core does not 210 

have any direct access to the system resources. The overall architecture is shown in 

Figure 1. For the sake of better comprehension, all the bits belonging to the same 

signal are grouped in a unique comparator (e.g., DATA RAM wires). The control 

signals (i.e., the system bus interface) are also grouped in a single comparator (CTRL 

CMP). All the comparators are then organized in a cluster, whom output is 215 

comparators' outputs OR-ed each other’s.  Hardware faults in the comparators (Figure 

2) could either cause a false alarm or an undetected critical failure. In the former, the 

ALARM signal is fired even though the two inputs match, while in the latter the signal 

is not fired even though the two inputs differ. Clearly, a false alarm is positive since it 

means that the hardware fault is detected. Instead, the second effect is potentially 220 

dangerous since a failure of the main core is not reported correctly. Therefore, it is 

evident that in order to obtain complete system dependability, it is necessary to devise 

a suitable self-test mechanism for latent faults to be applied when on-line.  

 

For simplicity, in the following it is assumed that the cluster has the structure of 225 

Figure 1 but without any particular knowledge of the comparators implementation. 

 



 

Figure 1: Typical delayed DCLS architecture. 

 230 

 

Figure 2: Example of latent fault causing a failure of the main core being 

masked. 

 

4. Limitations of pure Hardware and Software Strategies 235 

 As already shown in Section 3, the basic elements composing a DCLS system are 

the two processor cores and a set of comparators. Authors of [31] already proposed an 

effective test strategy for the comparators. To fully test an m-bit wide comparator 

(i.e., two m-bit wide inputs), 2m+2 test patterns are required. As stated by the authors, 



the effectiveness of such patterns is independent on the low-level implementation of 240 

the comparators. The 2m patterns generate a mismatch in only one bit at a time, and in 

practice this correspond to a walking 0 (or 1), starting from the MSB (or LSB) up to 

the LSB (or MSB). The last two patterns correspond to the case in which the two 

comparator inputs are equal, namely both inputs with all bits at 1 and then at 0. An 

example of the test patterns applied by this algorithm to a set of 4-bit comparators is 245 

shown in Table 2. 

Table 2 Test algorithm for a 4-bit wide comparator 

# pattern Input A Input B 

1 0111 1111 

2 1011 1111 

3 1101 1111 

4 1110 1111 

5 1111 0111 

6 1111 1011 

7 1111 1101 

8 1111 1110 

9 1111 1111 

10 0000 0000 

 

Intuitively, when considering a pure software approach (e.g., execution of self-test 

procedures belonging to an STL), the aforementioned test stimuli can be hardly 250 

generated in the system under analysis. As the reported experimental results confirm, 

the structure of a DCLS configuration imposes a constraint on the generation of those 

test patterns. In particular, both the checker and the main cores are fed with the very 

same inputs and always produce the same outputs (unless a fault is present). As a 

consequence, it is not possible to create the difference needed by the 2m patterns. 255 

Moreover, a further challenge derives from the fact that the DCLS comparators do not 

only check for the integrity of data, but also all the processors' outputs. Therefore, the 

previous algorithm must be translated in a proper sequence of instructions that force 



the processor to generate those values (which is not feasible with a pure software 

approach). 260 

On the other hand, a pure hardware self-test (e.g., [32]) guarantees the 

completeness of the test in terms of generated test patterns. Nevertheless, it suffers the 

problem of excessive additional hardware devoted exclusively for testing purposes. 

 

5. Proposed Approach 265 

 The main intent of this study is to propose an efficient low-area overhead solution 

for the on-line test of the most crucial part of the lockstep system, namely the DCLS 

comparators. 

5.1 Hybrid self-test architecture 

   During the in-field test of the DCLS, a pure functional-based approach is only 270 

able to produce 2 out of the required 2m+2 test patterns, reaching in this way an 

insufficient fault coverage. Thus, in order to overcome this problem, the proposed test 

strategy is composed of two main elements: a set of test programs and a hardware 

module. The latter, called the Lockstep Self-test Management Unit (LSMU), supports 

the test programs during their execution. Figure 3 depicts the overall architecture.  275 



 

Figure 3: Architecture of the system including the LSMU. For simplicity, the 

main core is not included in this figure. 

 

The LSMU is composed of two parts, a control unit (CU) and a datapath (DP). The 280 

CU includes the bus interface logic, an FSM and a set of registers; the DP is made of 

a comparator, the Instruction Substitution Module (ISM) and the Control Signals 

Substitution Module (CSSM). The LSMU is directly connected to the system bus and 

it exclusively intercepts all the instructions that the checker core receives as input. At 

each clock cycle, it monitors whether a particular instruction (hereinafter target 285 

instruction) is going to be fed to the checker core. If and only if the instruction going 

to be fed to the checker core is the target instruction, the ISM replaces such 

instruction with a so-called substituted instruction. Similarly, the LSMU receives as 

input the output control signals of both the checker and main cores. When the CSSM 

is active and the target instruction is fed to the cores, the value of the control signals 290 

is substituted with a specific test pattern intended for testing the control comparators. 

As it is demonstrated later in this section, while for address and data comparators the 

ISM is enough for generating the required test patterns, the CSSM is required for 

control comparators since controlling the value of control signals is not always 

feasible via software. Relying exclusively on the ISM would yield a lower fault 295 

coverage, since the control comparators would not be correctly addressed. Moreover, 

the reader should note that the output control signals are substituted right before being 



fed to the comparators. Thus, the SoC is transparent to this substitution, since the real 

output directed to the system (namely the main core outputs) are left unchanged. 

 300 

Instructions, test patterns and other functionalities can be programmed by the main 

core via a set of registers at runtime, as a standard memory-mapped peripheral. As 

mentioned before, testing the comparators requires to create a difference in just one of 

the bits fed to the DCLS comparators. This is not always possible since normally the 

comparators are grouped into a single cluster and the execution of different 305 

instructions by the two cores could lead to different control signals activated 

contemporary. More than one comparator active at the same time may cause masking 

problems, since their outputs are OR-ed together. For this reason, during the test 

phase, the main core can program the LSMU to disable the comparators that should 

not be tested (VALID signals in Figure 3) during the current test session so that they 310 

will not influence the targeted comparator. For example, let us assume that both the 

main and the checker cores execute a store byte but accessing to different addresses. 

As a consequence, a different byte should be selected which means that different 

control signals are activated, hence two different comparators are fired (CTRL CMP 

and ADDR RAM CMP in Figure 1).  315 

For implementing the behavior described above, three registers are required: 

• COMPARE REGISTER (CMP REG): containing the target instruction. 

The instruction written in this register must be encoded as in the program 

memory; 

• SUBSTITUTE REGISTER (SUB REG): containing the substituted 320 

instruction or the test pattern to be applied to the control comparators; 

• CONTROL REGISTER (CTRL REG): this register drives the behavior of 

the FSM and DCLS comparators to be disabled. 

 

The bit-width of the first register depends on the considered processor architecture 325 

(i.e., 32/64-bit architecture), the second one should have a bit-width at least equal to 

the CMP REG (for fitting the substituted instruction). Possibly, if the number of 

control signals is higher, additional bits should be comprised in this register. The 



CTRL REG depends on the number of comparators. The first three bits of CTRL REG 

are dedicated to the substitution mode. To provide as much flexibility as possible, 330 

without bounding the test programs to any particular implementation, two substitution 

modes are provided: 

• ONE-SHOT SUBSTITUTION: it substitutes the target instruction only 

once, and then the LSMU disables itself; 

• CONTINUOS SUBSTITUTION: the ISM continuously substitutes the 335 

target instruction, until the LSMU is disabled by the main core. 

 

The remaining bits are dedicated to the TEST MODE, which allows disabling the 

comparators. The fourth bit specifies whether TEST MODE should be entered or not, 

while there are as many bits as the number of comparators to be disabled. During the 340 

normal operational phase, all the comparators are enabled. If the TEST MODE bit is 

set, then only those comparators for which the corresponding bit is set are enabled. 

Finally, one bit should be reserved for enabling the ISM or the CSSM. As an example, 

let us consider again the architecture of Figure 1. Given such architecture (once again, 

all the control signals are grouped in a single comparator), the CTRL REG has the 345 

structure shown in Figure 4. In the aforementioned figure, it is assumed that the 

ADDRESS FLASH comparators are enabled when the test mode is entered. Thus, it is 

not necessary to have a further dedicated bit within the CTRL REG. 



 

Figure 4: Control register (CTRL REG) description. The ADDRESS FLASH 350 

CMP are automatically enabled when the TEST MODE bit is set. 

 

5.2 On-line testing flow 

In order to test the DCLS comparators, it is necessary to execute a suitable test 

program while enabling the LSMU, providing in this way, the desired stimuli to the 355 

targeted hardware. Let us consider first the case in which the test of DATA RAM 

comparator (each input is 32-bit wide) is performed. The test program structure is the 

one reported in Figure 5. For sake of compactness, it was assumed that the mov 

instructions support the sign-extension (as it happens with many modern RISC-based 

processors). 360 



 

Figure 5: A possible SBST program that leverages the ISM for testing the 

DATA RAM CMP. Before ISM activation, both cores execute the same 

instructions. After its activation, the instructions underlined in red are those 

substituted in the checker core. 365 

Testing that comparator can be achieved by the execution of a sequence of store 

operations to a fixed address, each of these providing one of the 2m patterns. The first 

two store operations (lines 1 to 4 in Figure 5) correspond to apply the hexadecimal 

patterns 0xFFFFFFFF, 0x00000000. Since the same values should be applied to both 

inputs, the ISM is not active. 370 

 

In the next step, since it is required to apply a difference to the comparator, the 

ISM must be activated.  



Clearly, the reader should note that the three registers are programmed depending 

on how the test patterns are generated by the test program. Assuming that the 375 

continuous substitution mode is enabled, the CTRL REG is programmed with the 

value 001001011. Considering the example, the CMP and SUB registers are 

programmed to replace the store operation with the store of a different value (i.e., 

register R7 instead of R6 as in line 7, 10, 13, 16). Then, the patterns are generated 

with a loop that implements the walking 0 followed by a store operation of the newly 380 

generated pattern (lines 5 to 10). It is worth noting that one input must vary while the 

other one must be maintained unchanged; thus, the generation loop must be applied 

twice: first on R6, then on R7 (lines 11 to 16). Given the presence of the ISM, the 

final effect is to have the main core producing the first m patterns (walking 0 on the 

first input) and then the checker core producing the remaining m patterns (walking 0 385 

on the second input). Once all the patterns are applied, the module is disabled, and the 

test routine terminates. 

The same reasoning applies to the ADDRESS RAM comparators. The test program 

structure is similar to the one discussed before, but the value stored is fixed while the 

addresses are generated resorting to a walking 0 strategy. In most of the cases, the two 390 

patterns 0xFFFFFFFF, 0x00000000 cannot be applied as the accessibility to these 

addresses depends on the particular memory map of the system under analysis. 

Indeed, normally RAM addresses are restricted to a particular range. Thus, to 

maximize the fault coverage, the two patterns correspond to storing data at the lowest 

possible address (with as many 0 as possible) and at the highest possible address (with 395 

as many 1 as possible). Then, starting from the highest address, walking 0 is applied. 

The same strategy pertains also for ADDRESS FLASH, but instead of a sequence of 

store operations, function calls are required. As depicted in Figure 6, each jump forces 

a different address (at each generated address, a valid function or piece of code must 

be present) so that all the required patterns are generated (clearly, within the address 400 

range of the program memory).  



 

Figure 6: Fragment of SBST program testing the ADDRESS FLASH CMP. 

It is important to note that forcing the main and the checker cores to jump at two 

different addresses in the program memory is totally safe, since in a DCLS system 405 

(Figure 1), the checker outputs are directed to the comparators only, while its inputs 

are driven by the main core. Therefore, it is always the main core that drives the 

execution flow in both cores. 

When dealing with the control comparators (CTRL CMP in Figure 1), the CSSM is 

required to be active. In this case, the self-test routine should: 1) setup the LSMU so 410 

that CSSM is active and all the other comparators but the CTRL CMP disabled; 2) 

configure the CMP REG with the target instruction; 3) configure  SUB REG with the 

test pattern to be applied; 4) Execute the target instruction, which in this case behaves 

as a trigger for the substitution. If the CONTINUOUS SUBSTITUTION mode is used, 

step 3 and 4 are repeated until all test patterns are applied. The LSMU allows for any 415 

test pattern to be applied, without any particular restriction. For obtaining a short and 

efficient test, they can be generated internally to the self-test routine following the 

walking bit strategy presented so far (e.g., as in Figure 5). Clearly, patterns can be 

stored in the memory Flash as constants. However, this would require additional 

space for the testing routine.   420 



Finally, the adoption of the LSMU requires the insertion of the VALID signal 

(which acts as an enable) within the comparators. To achieve a complete fault 

coverage, it is required to test the hardware introduced for implementing such signals. 

For each comparator, the self-test routine should maintain the other comparators 

disabled and: 1) enable the target comparator and force the inputs such that they differ 425 

and then correspond; 2) disable the target comparator and force the inputs such that 

they differ and then correspond once again. In the fault-free scenario, the outcome of 

step 2 should be independent from the value of the inputs. Step 1 is intrinsically 

implemented in the self-test algorithms presented in this section. Step 2 would instead 

require a custom routine. 430 

 

5.3 Observation mechanism 

Alarms raised by DCLS comparators are normally handled by a specific module 

integrated within the SoC, that reacts depending on the application requirements. 

Clearly, in order to adopt the strategy described above, such module must include a 435 

configuration setup that keeps track of the DCLS alarms raised during the on-line 

testing procedure and report any unexpected misbehavior. 

  

6. Experimental Results 

The following section is organized as follows: initially, the description of the case 440 

study is provided. Successively, the gathered experimental results for both pure 

software and hardware self-test methods are discussed. Finally, the effectiveness and 

overhead of the proposed hybrid approach is reported, along with a detailed FMEDA 

process. 

 445 



6.1 Case Study 

Experiments were conducted on an in-house modified version of the OpenRISC 

1200 (OR1200) soft-core processor. It consists of a 32-bit pipelined RISC 

microarchitecture, with MMU and basic DSP functionalities. It includes also data and 

instruction caches. For the purpose of this work, caches and MMU were not included 450 

in the final synthesized version. The RTL source files are described in Verilog and are 

available from GitHub [33], [34]. Finally, the system includes also a behavioral 

description of a Flash and RAM memory. All the logic simulations were performed 

using Synopsys VCS, whereas Synopsys Design Compiler as logic synthesis tool. The 

effectiveness was assessed by means of fault simulation campaigns, using Z01X by 455 

Synopsys. Z01X is used widely for functional safety verification, providing an 

extremely flexible environment for the fault simulation. All the experiments were 

performed on a workstation with an Intel Xeon CPU running at 2.5 GHz, equipped 

with 12 cores, and 256 GB of RAM. 

A delayed DCLS configuration was implemented at the CPU level (i.e., all the 460 

logic within the CPU was duplicated), with a temporal diversity of two clock cycles 

between the two cores. A further bank of flip-flops was added for main and checker 

outputs to isolate any critical path from the comparators.  

Concerning the fault simulation campaigns, stuck-at faults were exclusively 

considered (1,374 faults), being the most commonly used fault model for this kind of 465 

analyses. Nevertheless, the reader should note that the method is easily extensible to 

other fault models. Although the set of considered faults is relatively small, from the 

safety viewpoint they are extremely relevant. Indeed, the processor core is one of the 

main components of modern SoC and any failure of this unit is likely to affect the 

main application. 470 

6.2 Evaluation of pure software self-test 

 

In the following, the fault coverage results of a set of software programs are 

analyzed. The programs used during the experiments fall into two categories: 



• Application programs; 475 

• Test programs targeting stuck-at faults within the CPU core only. 

 

For sake of conciseness, stuck-at faults located within DATA RAM, ADDRESS 

RAM and ADDRESS FLASH comparators were considered. These three modules 

account for 936 stuck-at faults.  In order to show the ineffectiveness of a software 480 

approach when addressing the type of faults mentioned above, four application 

programs were initially considered (Table 3). They implement simple applications: 

vector sorting (bubble_sor}, quick_sort), minimum path identification in a graph 

(dijk) and random number generation (lfsr_32). 
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Table 3: Characteristics of applications programs 

Programs Duration [c.c.] Size [Bytes] FC [%] 

dijk 5,170 604 71.34 

bubble_sort 1,184 192 70.84 

quick_sort 3,278 932 71.34 

lfsr_32 3,304 388 71.09 

 

Table 4: Stuck-at oriented SBST Programs 

Test Programs Duration [c.c.] Size [Bytes] FC [%] 

rf_test 1,502 3,508 71.84 

cu_test 538 808 71.34 

opmux_test 308 484 71.09 

alu_test 10,820 3,448 71.84 

mac_test 3,248 2,596 71.84 

lsu_test 2,108 4,216 72.08 

genpc_test 24,914 2,690 71.84 

wbmux_test 538 808 71.34 
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The DCLS modules are hard to be tested even when targeting the on-line testing of 

the CPU core via SBST programs. Indeed, it was considered also a set of eight 

handcrafted test programs (Table 4), each test program was developed to test a 

specific part of the processor core. The fault coverage of the entire test suite against 

the whole processor stuck-at faults is 80.79%. For each program in Table 4 and 3 the 495 

duration (in clock cycles, C.C.), the size (expressed in bytes) and the achievable fault 

coverage (FC) are reported. 

By comparing Table 3 and 4, one could immediately observe that for both sets, the 

fault coverage saturates at around 71%. The only test program that reaches a fault 

coverage of 72% is the one addressing processor Load Store Unit (LSU). Such test 500 

program generates a considerable activity on the memory interface; thus, it is 

reasonable that the fault coverage is higher than any other program in the two sets. 

6.3 Evaluation of pure hardware self-test 

 

As hardware self-test mechanism for the test of the comparators, the architecture 505 

described in [32] was selected. For sake of a fair comparison, the hardware module 

was designed in order to generate the whole set of test patterns described in [31]. It is 

important to notice that the architecture described in [32] does not specify any test 

sequence to be used. The post-synthesis results are shown in Table 5. When applying 

patterns generated with this method, the overall fault coverage is 99.7% (obtained in 510 

about 500 clock cycles). The major drawback of this approach stems from the fact 

that the area overhead is directly proportional to the bit-width of the lockstep 

comparators (i.e., number of signals to be compared). The remaining faults not 

covered by this approach are related to the reset circuitry and as further explained in 

the next sub-section, they never produce a failure when in mission mode. 515 

Table 5: Hardware Self-Test [32] Synthesis - Area Breakdown 

Module Area [µm2] Total Area [%] 

DCLS CPU 140,891.39 100.0 

Self-test module [32] 6,293.6 4.47 



 

6.4 Evaluation of the proposed hybrid self-test architecture 

The LSMU was designed in Verilog and included in the final RTL version. The 

overall system architecture is the same described in the previous section in Figure 3 520 

and Figure 1, with all the control signals grouped in a single comparator. The entire 

system was synthesized and mapped to a 65nm CMOS technology library. The post-

synthesis results are shown in Table 6. 

Table 6: LSMU Synthesis - Area Breakdown 

Module Area [µm2] Total Area [%] 

DCLS CPU 140,891.39 100.0 

LSMU (ISM) 335.40 0.2 

LSMU (CSSM) 204.36 0.1 

LSMU (CU) 2,107.55 1.5 
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As it can be noticed, the LSMU accounts for the 1.88% of the of the entire DCLS 

CPU. The controller (CU) contains the CMP, SUB, CTRL registers and the finite-state 

machine (FSM). The latter accounts for the 0.2%. It includes also the system bus 

interface, which represents the most expensive part (in terms of logic gates) of the 

block. It is worth noting that the ISM includes also the comparator for the target 530 

instruction shown in Figure 3. For avoiding performance degradation, the ISM was 

placed in between the two banks of flip-flops that delay the checker inputs. 

In the following, the effectiveness of test programs leveraging the LSMU are 

analyzed. Four self-test programs were developed, each of them targets a specific 

comparator (including the test of the VALID signal). Table 7 summarizes the achieved 535 

fault coverage. While the data_ram achieves quite high fault coverage, the remaining 

programs were not so effective. Indeed, they are mainly limited from the fact that 

some fault locations are not accessible due system memory map. Therefore, an 

analysis of the fault list was performed in order to identify possible Safe Faults. As 

specified in the ISO 26262, these are faults whose occurrence do not cause any 540 



failure. Following the guidelines presented in [35], it was possible to remove faults 

due to the system memory map. It is important to notice that these are on-line 

functionally untestable faults, which are application independent and therefore they 

can be individuated in any device. In the system under analysis, the following valid 

addresses exist: 545 

• RAM from 0x0000_2000 to 0x001F_FFFF; 

• Flash from 0x0400_0000 to 0x0400_FFFC. 

 

The reasoning behind this procedure stems from the fact that the processor is able 

to access only a portion of the available address space. As an example, according to 550 

the specifications mentioned above, when dealing with flash addresses the upper part 

of the address holds exclusively the value 0x0400. This causes having logic gates 

stuck to fixed value during the whole in-field behavior: as a consequence, it is not 

possible to change the value of some bits by executing any software. Such faults were 

identified resorting to TetraMax by Synopsys. The comparators inputs were 555 

connected to Vdd or ground and then, given these constraints, the tool was instructed 

to perform a structural untestability analysis on the modified netlist.  

After this process, it was possible to remove about 20% of faults from ADDRESS 

RAM and ADDRESS FLASH comparators fault list. Then, further analyses were 

conducted on the remaining faults. Specifically, by using Inspect by Synopsys, it was 560 

possible to link the remaining faults to the reset signal of the comparators (that 

include flip-flops for breaking critical paths). Such faults would prevent the flip-flops 

from being initialized during the reset phase. However, when designing lockstep 

systems, it is common practice to invalidate comparators outputs for a certain number 

of clock cycles after the system leaves the power-on reset. This prevents receiving 565 

bogus data from both checker and main. As a consequence, those faults never provoke 

a failure (thus can be considered as safe) of the lockstep because when the 

comparators become active, they receive initialized data. The total percentage of safe 

faults removed is around 13% of the initial fault list. The final fault coverage after this 

pruning process is shown in the fifth column of Table 7. 570 



Using the hybrid test strategy described in previous section it was possible to 

achieve an overall fault coverage of 99.5% for all the cluster, with reasonable test 

duration and program size. Considering a clock period of 40ns (as in the performed 

experiments), the test programs were executed in 198.8µs, while their overall memory 

footprint is about 4KB. Lastly, it is noteworthy that the test program address_flash 575 

has a memory footprint almost double with respect to the other two test programs due 

to the additional portions of code needed by the test strategy for testing those 

comparators. 

Table 7: Characteristics of the ad-hoc test programs exploiting the LSMU 

Test Program Duration [c.c.]  Size [Bytes] FC [%] Safe FC [%] 

data_ram 1,392 818 99.03 100.0 

addr_ram 1,626 1,308 91.35 100.0 

addr_flash 1,132 1,738 75.32 99.12 

ctrl_cmp 1,820 706 91.22 100.0 
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6.5 LSMU Failure Mode Effects and Diagnostic Analysis 

 

Normally, a complete FMEDA analysis involves also the computation of the 

failure rate. However, this depend on the technology used for the final 585 

implementation. Clearly, since the goal of the paper is to introduce a new architecture, 

these data are missing. For this reason, the focus of this analysis is mainly centered in 

determining the possible failure modes of the LSMU (and the related critical faults 

causing the failure), assessing their impact (i.e., whether they lead to a critical failure) 

and possible countermeasures against these faults.  590 

The possible failure modes (denoted as FM) affecting the LSMU (and its 

submodules) due to permanent faults are: 

• FM1: the ISM is active, but is not able to correctly substitute the target 

instruction with the substituted instruction; 



• FM2: The ISM is active, but is not able to recognize the target instruction 595 

(namely it does not perform the substitution at all); 

• FM3: The CSSM is active, but is not able to substitute the control signals 

with the test pattern at all; 

• FM4: The CSSM is active, but is not able to correctly substitute the 

control signals with the test pattern; 600 

• FM5: The LSMU is not active, but the CU disables the lockstep 

comparators; 

•  FM6: The ISM is not active, but it performs a substitution of the 

instruction;  

•  FM7: The CSSM is not active, but it performs a substitution of the 605 

control signals. 

 

Failure modes FM1-4 do not impact the safety of the application, since they 

become relevant during the test mode only. Thus, the only inconvenient is a lower 

fault coverage. FM7 is likely to be detected by the lockstep comparators and do not 610 

cause any critical failure since CSSM outputs are directly connected to those 

comparators. To further eases the detection of these faults, the reset value of the SUB 

REG could be set to a value such that only 1 bit differ (e.g., all zeros and a bit at one 

only). By doing so, it is possible to immediately detect the occurrence of faults 

causing this specific failure mode.  615 

 

Failure modes FM5 and FM6 are quite critical instead, since directly impact the 

normal execution of any user application. For identifying critical faults that cause 

these failures, it was built a functional safety verification environment with Z01X. For 

increasing the truthfulness of the experiments, functional fault simulations (that is 620 

fault simulation of the entire SoC including the memories) were performed. The 

chosen fault model was still the single stuck-at, and fault were injected in the LSMU 

logic only (3,286 faults). When performing these evaluations, it is important to 

specify observation points and diagnostic points. The former are points of the design 

(namely, ports or internal wires) where to observe the effect of the faults. The latter 625 



instead are points of the design where to observe the reaction of the safety 

mechanism. Faults detected in both observation and diagnostic points can be labeled 

as dangerous detected. All the faults detected in an observation point but not in a 

diagnostic one are labeled as dangerous undetected. The remaining faults can be 

considered as safe faults.  630 

For both failure modes, the same application programs used for the experiments in 

[17] were executed during the fault simulations. For FM6, using as reference Figure 3, 

the observation point was placed on the checker inputs. The FM6 causes a wrong 

instruction to be fed to checker, thus by observing its inputs, it is possible to identify 

faults leading to that failure mode. After running the fault simulations, the 5.17% of 635 

the total faults cause a wrong instruction to be fed to the checker. As safety 

mechanism (i.e., countermeasure) for these faults, it is possible to use the already 

existing comparators of the DCLS configuration. This can be done since it is assumed 

a single stuck-at fault only. The fault simulations were repeated, and the diagnostic 

point was placed on the ALARM signal. At the end of this campaign, all the 5.17% 640 

critical faults were detected also at the diagnostic point. Thus, they can be labeled as 

dangerous detected whereas the remaining 94.83% as safe since they do not cause this 

specific failure.   

The same procedure was performed for FM5 as well. Since this failure mode 

causes lockstep comparators to be disabled, the observation point was situated on the 645 

VALID signal, output of the LSMU. In this case, 5.42% of the total faults lead to this 

failure and they all belong to the FSM within the CU. As countermeasures, two 

options are possible: leverage the self-test routines of Table 7 or use a Triple Module 

Redundancy (TMR) configuration for the FSM within the LSMU.  
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Considering the first option, by placing the diagnostic point on ALARM (namely 

the same when testing the lockstep comparators) 97.25% of the critical faults results 

being detected. This means that most of the faults are actually detected during the test 

of the DCLS comparators.  

Concerning the second option, using FSM in a TMR configuration on one hand 655 

increases the fault coverage, the detection time, but also silicon area of the LSMU. As 

already shown at the beginning of this section, the FSM accounts for the 0.2% of the 



total design. By using a lockstep variant, the overhead of this module increases up to 

the 0.66%. Although a TMR configuration is adopted, it is important to notice that 

few faults in the majority voter logic might still lead to a failure. However, such faults 660 

are less than the 0.2% and thus there is still compliance with the ISO 26262 standard. 

Table 8 summarizes the possible failure modes and the countermeasures, along with 

the achievable Diagnostic Coverage (indicated with DC, being the number of critical 

faults detected by the safety mechanism). 

Table 8: FMEDA LSMU - Failure Modes and Countermeasures 665 

Sub-module Failure Mode Critical Safety 

Mechanism 

DC [%] 

ISM FM1 NO NONE - 

ISM FM2 NO NONE - 

CSSM FM3 NO NONE - 

CSSM FM4 NO NONE - 

CU FM5 YES Self-Test 

Programs 

97.25 

CU FM5 YES TMR-FSM 99.99 

ISSM FM6 YES DCLS 100.0 

CSSM FM7 YES DCLS + SUB 

reg safe reset 

100.0 

 

 

6.6 Discussion of the three possible approaches 

Table 9 summarizes the three self-test alternatives described in this section. The 

first important observation is that the STL solely does not detect all the possible faults 670 

within this specific safety mechanism. Therefore, the STL must be necessarily 

complemented with either a pure hardware self-test module (e.g., [32]) or the 

proposed hybrid architecture. The former yields a complete fault coverage with a 

short test application time. Instead, the proposed one is still able to generate the 



required test stimuli, while mitigating the area overhead introduced by a pure 675 

hardware self-test approach (halving the area overhead). On the other hand, since now 

part of the stimuli are generated via software, the test duration is higher. 

Unlike pure hardware strategies, in which the test patterns are hardwired, the test 

performed with the proposed approach is much more flexible: test patterns are not 

anymore fixed and can be updated on-the-fly. Finally, it is worth mentioning that the 680 

area reported in Table 9 for the proposed approach includes also the additional 

circuitry that mitigates the critical failures. 

Table 9: Area, Fault Coverage and Test Duration for the three considered 

approaches. 

Self-test 

Approach 

Area w.r.t DCLS 

[%] 

FC [%] Duration [c.c.] 

Hardware [32] 4.47 99.7 500 

STL 0.00 72.0 43,976 

LSMU 2.10 99.5 5,970 

 685 

 

7. Conclusions 

This paper reports a detailed analysis of the possible   self-test mechanisms to be 

used for the on-line testing of the comparators required for implementing a DCLS 

configuration. It was proven through the experiments the inadequacy of an STL to 690 

address all the possible permanent faults within the comparators. At the same time, it 

was shown the overhead in terms of area of a pure hardware self-test module. An 

alternative self-test approach is then introduced: it is based on the insertion into the 

system of a hardware module (LSMU) that assists test programs for the generation the 

required test stimuli. Therefore, the proposed strategy is hybrid, since it is based on 695 

both software and hardware.  

The proposed strategy provides several advantages: 



1. Low hardware overhead compared to a pure hardware approach: part of 

the test patterns generator is implemented in software; 

2. Flexibility: as it is partially based on software, it inherits its flexibility: the 700 

test can be split in different test sessions to fit the test time budget when 

on-line. Moreover, the test patterns are not fixed anymore and can be 

updated as required; 

3. Promotes IP re-usability: the hardware module is the least intrusive as 

possible. Indeed, it is not required any modification nor a detailed 705 

knowledge of the processor core. The system designer oversees the 

integration of the module in the final SoC, as it happens with a standard 

IP; 

4. Scalability: the hardware overhead minimally depends on the complexity 

of the considered processor. The ISM depends only on the considered 710 

architecture (e.g. 32 or 64-bit), while the CSSM depends on the number of 

control signals of the processor core. 

 

The paper provides also a set of countermeasures to be used against single-point 

faults that could arise within the LSMU, in order to improve the safety of the module. 715 

Latent faults within the LSMU can be addressed following the same approach of a 

pure hardware module (i.e., LBIST-based approaches).  

Although the single stuck-at fault model was used as fault model, the applicability 

of the concepts presented in this work are easily extensible to other fault models. 
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