
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On-line Self-test Mechanism for Dual-Core Lockstep System-on-Chips / Floridia, Andrea; Sanchez, Ernesto. - In:
MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - ELETTRONICO. - 112C:(2020), pp. 1-10.
[10.1016/j.microrel.2020.113770]

Original

On-line Self-test Mechanism for Dual-Core Lockstep System-on-Chips

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.microrel.2020.113770

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.microrel.2020.113770

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2838960 since: 2020-07-22T13:32:54Z

Elsevier

On-line Self-test Mechanism for Dual-Core Lockstep

System-on-Chips

Andrea Floridia1, Ernesto Sanchez

Dipartimento di Automatica e Informatica, Politecnico di Torino

 5

Abstract

The Dual-Core Lockstep configuration is largely employed in safety-critical System-

on-Chips for the sake of compliance with functional safety standards. Such

configuration includes two processor cores paired together, always fed with the same

identical inputs and their outputs are continuously compared by a set of comparators. 10

However, permanent faults affecting the comparators may invalidate the system

functionalities, thus in-field self-test mechanisms are mandatory. In this paper,

different in-field self-test solutions are first discussed. Then, a hybrid hardware-

software scheme for the on-line testing of the lockstep logic is proposed. Such a

solution leverages test programs developed according to the Software-Based Self-Test 15

(SBST) approach, used in conjunction with a specialized hardware module. The

effectiveness of this approach was assessed on a modified version of the OpenRISC

1200 processor. Exhaustive experiments demonstrated that it is possible to achieve a

fault coverage of stuck-at faults greater than 99%, while at the same time significantly

reduce the area overhead of classical approaches. 20

Keywords: Multi-core Systems, On-line Testing, Self-Test, Safety-Critical

Applications, Software-Based Self-Test, Functional Safety, Lockstep Computing

1 Corresponding Author:

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

Corso Duca degli Abruzzi, 10129

Tel: +39 011 090 7091

Email Address: andrea.floridia@polito.it (Andrea Floridia)

mailto:andrea.floridia@polito.it

1. Introduction 25

In the last decade, the high-quality requirements imposed by the automotive market

radically changed the manufacturing process of the System-on-Chips (SoCs). These

requirements not only imply an end-of-manufacturing testing plan able to yield a

defect level (expressed in Defective Parts Per Million, DPPM) close to zero, but also

the capability to detect hardware random failures when in mission mode. 30

For this reason, the usage of electronics devices in the automotive domain is

regulated by the ISO 26262 [1] functional safety standard.

The standard covers the entire spectrum of the functional safety of electronics

components in automotive applications, from the software to the hardware. 35

Specifically, regarding the hardware, the ultimate goal is to avoid that a failure in a

given hardware component lead to a catastrophic consequence (i.e., damage to human

beings or properties). Towards this end, the standard defines the so-called safety

mechanisms. A safety mechanism is a portion of the digital system intended for

detecting faults, controlling system failures in order to achieve or maintain a safe 40

state. Failures are generated due to the occurrence of a fault (either transient or

permanent), which are classified as Single-point faults or Multi-point Latent faults.

The former are immediately effective faults, since they would directly cause critical

failures without a suitable safety mechanism guarding them. For the most critical

systems, the predominant safety mechanisms commonly used against these faults are 45

based on redundancy:

• End-to-End Error Correction Code (ECC) for memories [2], [3], [4];

• Redundant hardware execution units, Dual-Core Lockstep (DCLS): two

processor cores (main and checker) are paired together, and their output is

continuously monitored by a set of comparators [5], [6]. 50

The additional circuitry introduced by those safety mechanisms must be equally

tested. Indeed, the accumulation of Multi-point Latent faults could invalidate their

functionalities. When these faults arise within the safety mechanisms, they do not

cause directly a failure. However, they can become dangerous if a second fault arise

in the module guarded by the safety mechanism. For this reason, additional 55

diagnostic safety mechanisms are required. Such safety mechanisms are mainly

intended for implementing in-field self-test functionalities. During the power-up

phase, the preferred self-test mechanism is based on Logic and Memory Built-In Self-

Test (LBIST and MBIST respectively). The former targets mainly the permanent

faults in the digital logic, while the latter in the embedded memories [7], [8]. In most 60

of the cases, the MBIST can be executed transparently with respect to the content of

the memory [9]. Since the LBIST is based on the already existing scan logic, it

usually requires a full system reset after its completion. Therefore, its applicability is

limited to the Power-On Self-Test (POST), that is the in-field test performed when the

device is turned on. 65

This could become problematic if the time interval between two power-on events is

too long, as in the case of several hours of continuous operations. Indeed, latent faults

should be checked even when the system is fully on-line, that is with the mission

software already running. This kind of in-field test is called on-line test. For this 70

purpose, Software Test Libraries (STLs) are increasingly becoming adopted [10],

[11], [12], [13], [14], [15]. An STL consists in a set of software self-test procedures,

and the main target are permanent faults within the processor. This technique, also

known in literature as Software-Based Self-Test or SBST, converts test patterns into

instructions, and then accumulate their results to generate a test signature. Such 75

signature is then used in field to determine whether the test passed or failed.

Normally, this kind of self-test exclusively relies on the already existing on-chip

resources.

In the context of this work, since the main target of an STL is the processor itself,

SBST test programs are particular useful when used in conjunction with DCLS for 80

avoiding latent fault accumulation in both the checker and the main core at run-time.

It is important to highlight that the software approaches can produce pure functional

stimuli, only. This is generally positive, since it complements the scan-based LBIST

test, providing additional defect coverage for the processor core (being most critical

module of a processor-based system) [16]. However, from the lockstep comparators 85

standpoint it means that some critical faults cannot be addressed with the support of

this method only. Indeed, some latent faults might escape the test. Specifically faults

within the lockstep comparators might cause faults within the main core being

masked, inhibiting the lockstep functionalities. While most of the latent faults are

detected during the POST with the application of the LBIST, when on-line usually a 90

specific circuitry is added to the comparators for implementing the self-test. This

additional hardware has the penalty of additional system area to be devoted

exclusively for test purposes.

The aim of this paper is manifold. First, it discusses the different software and 95

hardware self-test strategies commonly adopted by the industries for testing lockstep

comparators. Then, it describes a novel hybrid hardware-software approach, to be

used as an effective alternative to the classical mechanisms. The experiments

demonstrated that it is possible to achieve almost the same fault coverage of

hardware-based self-test mechanisms, while at the same time halving the area 100

requirements.

The proposed approach extends the architecture proposed in [17], presenting an

alternative hybrid software-hardware on-line testing strategy for all the comparators

of a lockstep system, targeting permanent latent faults (e.g., stuck-at faults). The key 105

idea is to move parts of the self-test features from the hardware to the software,

leveraging the flexibility of a software approach, in conjunction with a specialized

hardware module. Specifically, regarding to this new architecture, the paper provides:

1. Detailed description of a low-area overhead hardware module to be

integrated within the SoC for assisting the execution of self-test routines 110

oriented to the on-line test of the lockstep logic;

2. Guidelines for generating effective self-test routines;

3. Guidelines for performing the Failure Mode Effects and Diagnostic

Analysis (FMEDA) of the additional hardware integrated within the SoC

and possible countermeasures. 115

The rest of the paper is organized as follows: Section 2 discusses the most relevant

related works to the one presented in this paper. Section 3 provides additional details

about the ISO 26262 requirements and the FMEDA process, with the emphasis on the

dual-core lockstep configuration and its possible failure modes: the goal is to present

the main motivations leading to this research; in Section 4, the descriptions of the 120

hardware module and the proposed testing strategy are presented; Section 5 presents

the case study, the experimental results and the results of the FMEDA process;

finally, Section 6 concludes the paper.

2. Related Work 125

Hybrid solutions for testing purposes are not new. In [18], a memory core storing

an SBST-like test sequence is inserted in the system and connected to the system bus.

During the testing phase, the processor is forced to execute the instructions provided

by this module. Also the authors of [19] proposed a solution which consists of a

software-hardware-cooperated BIST as an attempt to reduce the test time for DRAM 130

memories. Another hybrid solution that leverages the on-chip programmable

resources has been presented in [20]. The approach suggests the usage of the

embedded DMA for RAM memory testing. It is also worth to mention that hybrid

approaches have been extensively adopted also as hardening mechanism against

transient faults [21], [22]. 135

In [23] additional instructions are added to the ISA for testing purposes only (e.g.,

accessing to particular flip-flops within the processor), whereas in [24], observation

points are inserted within the processor for increasing the effectiveness of self-test

programs. As an attempt to mitigate the cost and performances penalties introduced 140

by the safety mechanisms, in [25] the authors proposed a cooperation between

hardware and software modules. In order to achieve the targeted safety level for a

given SoC: for the main computational units (e.g., the CPU), they suggest the usage of

hardware-based application-independent safety mechanisms. For the remaining of the

system (e.g., peripherals) a combination of hardware-software mechanisms 145

(application-specific). Our previous works already explored hybrid approaches: in

[17] the targeted module was the set of comparators that checks the integrity of data

and address signals directed to the data and instruction memory. In this work, we

target also the comparators that monitor the control signals, along with a detailed

analysis on the safety of the hybrid structure itself (not previously addressed). To 150

achieve that, in this paper we resorted to a test structure similar to the one presented in

[26]. In the aforementioned paper, the goal was to test computational modules only.

3. Background

3.1 The ISO 26262

Depending on the risk associated to the failure of a given hardware module, the 155

ISO 26262 defines the Automotive Safety Integrity Levels (ASILs). These ASILs

range from A (the lowest, indicating that the module is not safety relevant) to D (the

most critical). For each of these levels, two metrics define the reliability requirements:

the Single-Point Fault Metric (SPFM) and the Latent Fault Metric (LFM). For

assessing whether or not a given hardware module is compliant with the targeted 160

ASIL, the Failure Mode Effects and Diagnostic Analysis (FMEDA) is performed

[27]. The FMEDA is a structured approach to define failure modes, failure rate, and

diagnostic capabilities of a hardware component. In particular, failure rate and

diagnostic capabilities directly contribute to determine the SPFM. While the failure

rate (measured in Failure in Time, FIT) depends on the technology node used, the 165

diagnostic capabilities are expressed with the Diagnostic Coverage (DC). The DC

indicates the number of critical faults leading to a failure (i.e., single-point faults)

detected by the safety mechanism: the most commonly used fault models for

computing this metric are the stuck-at fault model and the transient fault model (i.e.,

Single-Event Upset, SEU). In early analyses, the SPFM can be approximated with the 170

DC (computed via fault injections campaigns [28], [29]). Table 1 reports the

requirements in terms of DC for each of the ASILs.

The LFM indicates instead the number of latent faults in the safety mechanisms

covered by an in-field test mechanism (e.g., LBIST, MBIST or STL). For this metric,

the test coverage is computed typically with respect to the stuck-at fault model. 175

Depending on the ASIL, the standard defines also the Fault Tolerant Time Interval

(FTTI), that is the time required for detecting a fault and react accordingly. For ASIL

D, the single-point fault FTTI is in the range 10-150 ms, while the latent fault FTTI is

expressed as multiple of 10 hours.

Considering for example a processor core, in order to achieve these metrics, it is 180

common to use DCLS for achieving the SPFM metric, while a combination of LBIST

(for the detection of latent faults during the power-on phase) and STL (for the

detection of latent faults during the on-line phase) for the LFM.

Table 1: ISO 26262 Diagnostic Coverage Requirements for Safety-relevant 185

Modules

ASIL SPFM/DC LFM

B At least 90% At least 60%

C At least 97% At least 80%

D At least 99% At least 90%

3.2 The Dual-Core Lockstep Configuration

Dual-Core Lockstep (DCLS) is one of many techniques aiming at enhancing the

reliability of processor-based systems. Major IP and Semiconductor companies

involved in the automotive market provide DCLS-based solutions for safety-critical 190

applications [6], [30]. Briefly, a system including DCLS consists of two identical

processor cores, both initialized to the same initial state and fed with identical inputs.

As a consequence, identical outputs should always be produced. A logic failure (due

to permanent or transient faults) reaching the output in one of the two cores can be

detected by continuously comparing their output. Once a failure is detected, the 195

system reacts depending on the application requirements. Usually, one of the two

cores is named the main core, while the other the checker core. The only purpose of

the checker core is to confirm the correctness of the main core outputs, being fed with

the very same instructions and data of the main core.

 200

While extremely efficient to detect single-point faults, The DCLS configuration

described above cannot detect failures that occur at the same point in both cores.

These failures are normally called common mode failures, which cause comparators to

produce a false match. A common technique for reducing such risk of failure is to

provide temporal diversity to the two cores composing the system. This strategy 205

consists on delaying the inputs fed to the checker core by means of a bank of shift

registers. Obviously, the outputs must be resynchronized before being compared. This

is achieved by delaying the main core outputs by the same amount of clock cycles of

the checker core inputs. It is worth noting that the whole architecture is completely

transparent from the application code perspective: indeed, the checker core does not 210

have any direct access to the system resources. The overall architecture is shown in

Figure 1. For the sake of better comprehension, all the bits belonging to the same

signal are grouped in a unique comparator (e.g., DATA RAM wires). The control

signals (i.e., the system bus interface) are also grouped in a single comparator (CTRL

CMP). All the comparators are then organized in a cluster, whom output is 215

comparators' outputs OR-ed each other’s. Hardware faults in the comparators (Figure

2) could either cause a false alarm or an undetected critical failure. In the former, the

ALARM signal is fired even though the two inputs match, while in the latter the signal

is not fired even though the two inputs differ. Clearly, a false alarm is positive since it

means that the hardware fault is detected. Instead, the second effect is potentially 220

dangerous since a failure of the main core is not reported correctly. Therefore, it is

evident that in order to obtain complete system dependability, it is necessary to devise

a suitable self-test mechanism for latent faults to be applied when on-line.

For simplicity, in the following it is assumed that the cluster has the structure of 225

Figure 1 but without any particular knowledge of the comparators implementation.

Figure 1: Typical delayed DCLS architecture.

 230

Figure 2: Example of latent fault causing a failure of the main core being

masked.

4. Limitations of pure Hardware and Software Strategies 235

 As already shown in Section 3, the basic elements composing a DCLS system are

the two processor cores and a set of comparators. Authors of [31] already proposed an

effective test strategy for the comparators. To fully test an m-bit wide comparator

(i.e., two m-bit wide inputs), 2m+2 test patterns are required. As stated by the authors,

the effectiveness of such patterns is independent on the low-level implementation of 240

the comparators. The 2m patterns generate a mismatch in only one bit at a time, and in

practice this correspond to a walking 0 (or 1), starting from the MSB (or LSB) up to

the LSB (or MSB). The last two patterns correspond to the case in which the two

comparator inputs are equal, namely both inputs with all bits at 1 and then at 0. An

example of the test patterns applied by this algorithm to a set of 4-bit comparators is 245

shown in Table 2.

Table 2 Test algorithm for a 4-bit wide comparator

pattern Input A Input B

1 0111 1111

2 1011 1111

3 1101 1111

4 1110 1111

5 1111 0111

6 1111 1011

7 1111 1101

8 1111 1110

9 1111 1111

10 0000 0000

Intuitively, when considering a pure software approach (e.g., execution of self-test

procedures belonging to an STL), the aforementioned test stimuli can be hardly 250

generated in the system under analysis. As the reported experimental results confirm,

the structure of a DCLS configuration imposes a constraint on the generation of those

test patterns. In particular, both the checker and the main cores are fed with the very

same inputs and always produce the same outputs (unless a fault is present). As a

consequence, it is not possible to create the difference needed by the 2m patterns. 255

Moreover, a further challenge derives from the fact that the DCLS comparators do not

only check for the integrity of data, but also all the processors' outputs. Therefore, the

previous algorithm must be translated in a proper sequence of instructions that force

the processor to generate those values (which is not feasible with a pure software

approach). 260

On the other hand, a pure hardware self-test (e.g., [32]) guarantees the

completeness of the test in terms of generated test patterns. Nevertheless, it suffers the

problem of excessive additional hardware devoted exclusively for testing purposes.

5. Proposed Approach 265

 The main intent of this study is to propose an efficient low-area overhead solution

for the on-line test of the most crucial part of the lockstep system, namely the DCLS

comparators.

5.1 Hybrid self-test architecture

 During the in-field test of the DCLS, a pure functional-based approach is only 270

able to produce 2 out of the required 2m+2 test patterns, reaching in this way an

insufficient fault coverage. Thus, in order to overcome this problem, the proposed test

strategy is composed of two main elements: a set of test programs and a hardware

module. The latter, called the Lockstep Self-test Management Unit (LSMU), supports

the test programs during their execution. Figure 3 depicts the overall architecture. 275

Figure 3: Architecture of the system including the LSMU. For simplicity, the

main core is not included in this figure.

The LSMU is composed of two parts, a control unit (CU) and a datapath (DP). The 280

CU includes the bus interface logic, an FSM and a set of registers; the DP is made of

a comparator, the Instruction Substitution Module (ISM) and the Control Signals

Substitution Module (CSSM). The LSMU is directly connected to the system bus and

it exclusively intercepts all the instructions that the checker core receives as input. At

each clock cycle, it monitors whether a particular instruction (hereinafter target 285

instruction) is going to be fed to the checker core. If and only if the instruction going

to be fed to the checker core is the target instruction, the ISM replaces such

instruction with a so-called substituted instruction. Similarly, the LSMU receives as

input the output control signals of both the checker and main cores. When the CSSM

is active and the target instruction is fed to the cores, the value of the control signals 290

is substituted with a specific test pattern intended for testing the control comparators.

As it is demonstrated later in this section, while for address and data comparators the

ISM is enough for generating the required test patterns, the CSSM is required for

control comparators since controlling the value of control signals is not always

feasible via software. Relying exclusively on the ISM would yield a lower fault 295

coverage, since the control comparators would not be correctly addressed. Moreover,

the reader should note that the output control signals are substituted right before being

fed to the comparators. Thus, the SoC is transparent to this substitution, since the real

output directed to the system (namely the main core outputs) are left unchanged.

 300

Instructions, test patterns and other functionalities can be programmed by the main

core via a set of registers at runtime, as a standard memory-mapped peripheral. As

mentioned before, testing the comparators requires to create a difference in just one of

the bits fed to the DCLS comparators. This is not always possible since normally the

comparators are grouped into a single cluster and the execution of different 305

instructions by the two cores could lead to different control signals activated

contemporary. More than one comparator active at the same time may cause masking

problems, since their outputs are OR-ed together. For this reason, during the test

phase, the main core can program the LSMU to disable the comparators that should

not be tested (VALID signals in Figure 3) during the current test session so that they 310

will not influence the targeted comparator. For example, let us assume that both the

main and the checker cores execute a store byte but accessing to different addresses.

As a consequence, a different byte should be selected which means that different

control signals are activated, hence two different comparators are fired (CTRL CMP

and ADDR RAM CMP in Figure 1). 315

For implementing the behavior described above, three registers are required:

• COMPARE REGISTER (CMP REG): containing the target instruction.

The instruction written in this register must be encoded as in the program

memory;

• SUBSTITUTE REGISTER (SUB REG): containing the substituted 320

instruction or the test pattern to be applied to the control comparators;

• CONTROL REGISTER (CTRL REG): this register drives the behavior of

the FSM and DCLS comparators to be disabled.

The bit-width of the first register depends on the considered processor architecture 325

(i.e., 32/64-bit architecture), the second one should have a bit-width at least equal to

the CMP REG (for fitting the substituted instruction). Possibly, if the number of

control signals is higher, additional bits should be comprised in this register. The

CTRL REG depends on the number of comparators. The first three bits of CTRL REG

are dedicated to the substitution mode. To provide as much flexibility as possible, 330

without bounding the test programs to any particular implementation, two substitution

modes are provided:

• ONE-SHOT SUBSTITUTION: it substitutes the target instruction only

once, and then the LSMU disables itself;

• CONTINUOS SUBSTITUTION: the ISM continuously substitutes the 335

target instruction, until the LSMU is disabled by the main core.

The remaining bits are dedicated to the TEST MODE, which allows disabling the

comparators. The fourth bit specifies whether TEST MODE should be entered or not,

while there are as many bits as the number of comparators to be disabled. During the 340

normal operational phase, all the comparators are enabled. If the TEST MODE bit is

set, then only those comparators for which the corresponding bit is set are enabled.

Finally, one bit should be reserved for enabling the ISM or the CSSM. As an example,

let us consider again the architecture of Figure 1. Given such architecture (once again,

all the control signals are grouped in a single comparator), the CTRL REG has the 345

structure shown in Figure 4. In the aforementioned figure, it is assumed that the

ADDRESS FLASH comparators are enabled when the test mode is entered. Thus, it is

not necessary to have a further dedicated bit within the CTRL REG.

Figure 4: Control register (CTRL REG) description. The ADDRESS FLASH 350

CMP are automatically enabled when the TEST MODE bit is set.

5.2 On-line testing flow

In order to test the DCLS comparators, it is necessary to execute a suitable test

program while enabling the LSMU, providing in this way, the desired stimuli to the 355

targeted hardware. Let us consider first the case in which the test of DATA RAM

comparator (each input is 32-bit wide) is performed. The test program structure is the

one reported in Figure 5. For sake of compactness, it was assumed that the mov

instructions support the sign-extension (as it happens with many modern RISC-based

processors). 360

Figure 5: A possible SBST program that leverages the ISM for testing the

DATA RAM CMP. Before ISM activation, both cores execute the same

instructions. After its activation, the instructions underlined in red are those

substituted in the checker core. 365

Testing that comparator can be achieved by the execution of a sequence of store

operations to a fixed address, each of these providing one of the 2m patterns. The first

two store operations (lines 1 to 4 in Figure 5) correspond to apply the hexadecimal

patterns 0xFFFFFFFF, 0x00000000. Since the same values should be applied to both

inputs, the ISM is not active. 370

In the next step, since it is required to apply a difference to the comparator, the

ISM must be activated.

Clearly, the reader should note that the three registers are programmed depending

on how the test patterns are generated by the test program. Assuming that the 375

continuous substitution mode is enabled, the CTRL REG is programmed with the

value 001001011. Considering the example, the CMP and SUB registers are

programmed to replace the store operation with the store of a different value (i.e.,

register R7 instead of R6 as in line 7, 10, 13, 16). Then, the patterns are generated

with a loop that implements the walking 0 followed by a store operation of the newly 380

generated pattern (lines 5 to 10). It is worth noting that one input must vary while the

other one must be maintained unchanged; thus, the generation loop must be applied

twice: first on R6, then on R7 (lines 11 to 16). Given the presence of the ISM, the

final effect is to have the main core producing the first m patterns (walking 0 on the

first input) and then the checker core producing the remaining m patterns (walking 0 385

on the second input). Once all the patterns are applied, the module is disabled, and the

test routine terminates.

The same reasoning applies to the ADDRESS RAM comparators. The test program

structure is similar to the one discussed before, but the value stored is fixed while the

addresses are generated resorting to a walking 0 strategy. In most of the cases, the two 390

patterns 0xFFFFFFFF, 0x00000000 cannot be applied as the accessibility to these

addresses depends on the particular memory map of the system under analysis.

Indeed, normally RAM addresses are restricted to a particular range. Thus, to

maximize the fault coverage, the two patterns correspond to storing data at the lowest

possible address (with as many 0 as possible) and at the highest possible address (with 395

as many 1 as possible). Then, starting from the highest address, walking 0 is applied.

The same strategy pertains also for ADDRESS FLASH, but instead of a sequence of

store operations, function calls are required. As depicted in Figure 6, each jump forces

a different address (at each generated address, a valid function or piece of code must

be present) so that all the required patterns are generated (clearly, within the address 400

range of the program memory).

Figure 6: Fragment of SBST program testing the ADDRESS FLASH CMP.

It is important to note that forcing the main and the checker cores to jump at two

different addresses in the program memory is totally safe, since in a DCLS system 405

(Figure 1), the checker outputs are directed to the comparators only, while its inputs

are driven by the main core. Therefore, it is always the main core that drives the

execution flow in both cores.

When dealing with the control comparators (CTRL CMP in Figure 1), the CSSM is

required to be active. In this case, the self-test routine should: 1) setup the LSMU so 410

that CSSM is active and all the other comparators but the CTRL CMP disabled; 2)

configure the CMP REG with the target instruction; 3) configure SUB REG with the

test pattern to be applied; 4) Execute the target instruction, which in this case behaves

as a trigger for the substitution. If the CONTINUOUS SUBSTITUTION mode is used,

step 3 and 4 are repeated until all test patterns are applied. The LSMU allows for any 415

test pattern to be applied, without any particular restriction. For obtaining a short and

efficient test, they can be generated internally to the self-test routine following the

walking bit strategy presented so far (e.g., as in Figure 5). Clearly, patterns can be

stored in the memory Flash as constants. However, this would require additional

space for the testing routine. 420

Finally, the adoption of the LSMU requires the insertion of the VALID signal

(which acts as an enable) within the comparators. To achieve a complete fault

coverage, it is required to test the hardware introduced for implementing such signals.

For each comparator, the self-test routine should maintain the other comparators

disabled and: 1) enable the target comparator and force the inputs such that they differ 425

and then correspond; 2) disable the target comparator and force the inputs such that

they differ and then correspond once again. In the fault-free scenario, the outcome of

step 2 should be independent from the value of the inputs. Step 1 is intrinsically

implemented in the self-test algorithms presented in this section. Step 2 would instead

require a custom routine. 430

5.3 Observation mechanism

Alarms raised by DCLS comparators are normally handled by a specific module

integrated within the SoC, that reacts depending on the application requirements.

Clearly, in order to adopt the strategy described above, such module must include a 435

configuration setup that keeps track of the DCLS alarms raised during the on-line

testing procedure and report any unexpected misbehavior.

6. Experimental Results

The following section is organized as follows: initially, the description of the case 440

study is provided. Successively, the gathered experimental results for both pure

software and hardware self-test methods are discussed. Finally, the effectiveness and

overhead of the proposed hybrid approach is reported, along with a detailed FMEDA

process.

 445

6.1 Case Study

Experiments were conducted on an in-house modified version of the OpenRISC

1200 (OR1200) soft-core processor. It consists of a 32-bit pipelined RISC

microarchitecture, with MMU and basic DSP functionalities. It includes also data and

instruction caches. For the purpose of this work, caches and MMU were not included 450

in the final synthesized version. The RTL source files are described in Verilog and are

available from GitHub [33], [34]. Finally, the system includes also a behavioral

description of a Flash and RAM memory. All the logic simulations were performed

using Synopsys VCS, whereas Synopsys Design Compiler as logic synthesis tool. The

effectiveness was assessed by means of fault simulation campaigns, using Z01X by 455

Synopsys. Z01X is used widely for functional safety verification, providing an

extremely flexible environment for the fault simulation. All the experiments were

performed on a workstation with an Intel Xeon CPU running at 2.5 GHz, equipped

with 12 cores, and 256 GB of RAM.

A delayed DCLS configuration was implemented at the CPU level (i.e., all the 460

logic within the CPU was duplicated), with a temporal diversity of two clock cycles

between the two cores. A further bank of flip-flops was added for main and checker

outputs to isolate any critical path from the comparators.

Concerning the fault simulation campaigns, stuck-at faults were exclusively

considered (1,374 faults), being the most commonly used fault model for this kind of 465

analyses. Nevertheless, the reader should note that the method is easily extensible to

other fault models. Although the set of considered faults is relatively small, from the

safety viewpoint they are extremely relevant. Indeed, the processor core is one of the

main components of modern SoC and any failure of this unit is likely to affect the

main application. 470

6.2 Evaluation of pure software self-test

In the following, the fault coverage results of a set of software programs are

analyzed. The programs used during the experiments fall into two categories:

• Application programs; 475

• Test programs targeting stuck-at faults within the CPU core only.

For sake of conciseness, stuck-at faults located within DATA RAM, ADDRESS

RAM and ADDRESS FLASH comparators were considered. These three modules

account for 936 stuck-at faults. In order to show the ineffectiveness of a software 480

approach when addressing the type of faults mentioned above, four application

programs were initially considered (Table 3). They implement simple applications:

vector sorting (bubble_sor}, quick_sort), minimum path identification in a graph

(dijk) and random number generation (lfsr_32).

 485

Table 3: Characteristics of applications programs

Programs Duration [c.c.] Size [Bytes] FC [%]

dijk 5,170 604 71.34

bubble_sort 1,184 192 70.84

quick_sort 3,278 932 71.34

lfsr_32 3,304 388 71.09

Table 4: Stuck-at oriented SBST Programs

Test Programs Duration [c.c.] Size [Bytes] FC [%]

rf_test 1,502 3,508 71.84

cu_test 538 808 71.34

opmux_test 308 484 71.09

alu_test 10,820 3,448 71.84

mac_test 3,248 2,596 71.84

lsu_test 2,108 4,216 72.08

genpc_test 24,914 2,690 71.84

wbmux_test 538 808 71.34

 490

The DCLS modules are hard to be tested even when targeting the on-line testing of

the CPU core via SBST programs. Indeed, it was considered also a set of eight

handcrafted test programs (Table 4), each test program was developed to test a

specific part of the processor core. The fault coverage of the entire test suite against

the whole processor stuck-at faults is 80.79%. For each program in Table 4 and 3 the 495

duration (in clock cycles, C.C.), the size (expressed in bytes) and the achievable fault

coverage (FC) are reported.

By comparing Table 3 and 4, one could immediately observe that for both sets, the

fault coverage saturates at around 71%. The only test program that reaches a fault

coverage of 72% is the one addressing processor Load Store Unit (LSU). Such test 500

program generates a considerable activity on the memory interface; thus, it is

reasonable that the fault coverage is higher than any other program in the two sets.

6.3 Evaluation of pure hardware self-test

As hardware self-test mechanism for the test of the comparators, the architecture 505

described in [32] was selected. For sake of a fair comparison, the hardware module

was designed in order to generate the whole set of test patterns described in [31]. It is

important to notice that the architecture described in [32] does not specify any test

sequence to be used. The post-synthesis results are shown in Table 5. When applying

patterns generated with this method, the overall fault coverage is 99.7% (obtained in 510

about 500 clock cycles). The major drawback of this approach stems from the fact

that the area overhead is directly proportional to the bit-width of the lockstep

comparators (i.e., number of signals to be compared). The remaining faults not

covered by this approach are related to the reset circuitry and as further explained in

the next sub-section, they never produce a failure when in mission mode. 515

Table 5: Hardware Self-Test [32] Synthesis - Area Breakdown

Module Area [µm2] Total Area [%]

DCLS CPU 140,891.39 100.0

Self-test module [32] 6,293.6 4.47

6.4 Evaluation of the proposed hybrid self-test architecture

The LSMU was designed in Verilog and included in the final RTL version. The

overall system architecture is the same described in the previous section in Figure 3 520

and Figure 1, with all the control signals grouped in a single comparator. The entire

system was synthesized and mapped to a 65nm CMOS technology library. The post-

synthesis results are shown in Table 6.

Table 6: LSMU Synthesis - Area Breakdown

Module Area [µm2] Total Area [%]

DCLS CPU 140,891.39 100.0

LSMU (ISM) 335.40 0.2

LSMU (CSSM) 204.36 0.1

LSMU (CU) 2,107.55 1.5

 525

As it can be noticed, the LSMU accounts for the 1.88% of the of the entire DCLS

CPU. The controller (CU) contains the CMP, SUB, CTRL registers and the finite-state

machine (FSM). The latter accounts for the 0.2%. It includes also the system bus

interface, which represents the most expensive part (in terms of logic gates) of the

block. It is worth noting that the ISM includes also the comparator for the target 530

instruction shown in Figure 3. For avoiding performance degradation, the ISM was

placed in between the two banks of flip-flops that delay the checker inputs.

In the following, the effectiveness of test programs leveraging the LSMU are

analyzed. Four self-test programs were developed, each of them targets a specific

comparator (including the test of the VALID signal). Table 7 summarizes the achieved 535

fault coverage. While the data_ram achieves quite high fault coverage, the remaining

programs were not so effective. Indeed, they are mainly limited from the fact that

some fault locations are not accessible due system memory map. Therefore, an

analysis of the fault list was performed in order to identify possible Safe Faults. As

specified in the ISO 26262, these are faults whose occurrence do not cause any 540

failure. Following the guidelines presented in [35], it was possible to remove faults

due to the system memory map. It is important to notice that these are on-line

functionally untestable faults, which are application independent and therefore they

can be individuated in any device. In the system under analysis, the following valid

addresses exist: 545

• RAM from 0x0000_2000 to 0x001F_FFFF;

• Flash from 0x0400_0000 to 0x0400_FFFC.

The reasoning behind this procedure stems from the fact that the processor is able

to access only a portion of the available address space. As an example, according to 550

the specifications mentioned above, when dealing with flash addresses the upper part

of the address holds exclusively the value 0x0400. This causes having logic gates

stuck to fixed value during the whole in-field behavior: as a consequence, it is not

possible to change the value of some bits by executing any software. Such faults were

identified resorting to TetraMax by Synopsys. The comparators inputs were 555

connected to Vdd or ground and then, given these constraints, the tool was instructed

to perform a structural untestability analysis on the modified netlist.

After this process, it was possible to remove about 20% of faults from ADDRESS

RAM and ADDRESS FLASH comparators fault list. Then, further analyses were

conducted on the remaining faults. Specifically, by using Inspect by Synopsys, it was 560

possible to link the remaining faults to the reset signal of the comparators (that

include flip-flops for breaking critical paths). Such faults would prevent the flip-flops

from being initialized during the reset phase. However, when designing lockstep

systems, it is common practice to invalidate comparators outputs for a certain number

of clock cycles after the system leaves the power-on reset. This prevents receiving 565

bogus data from both checker and main. As a consequence, those faults never provoke

a failure (thus can be considered as safe) of the lockstep because when the

comparators become active, they receive initialized data. The total percentage of safe

faults removed is around 13% of the initial fault list. The final fault coverage after this

pruning process is shown in the fifth column of Table 7. 570

Using the hybrid test strategy described in previous section it was possible to

achieve an overall fault coverage of 99.5% for all the cluster, with reasonable test

duration and program size. Considering a clock period of 40ns (as in the performed

experiments), the test programs were executed in 198.8µs, while their overall memory

footprint is about 4KB. Lastly, it is noteworthy that the test program address_flash 575

has a memory footprint almost double with respect to the other two test programs due

to the additional portions of code needed by the test strategy for testing those

comparators.

Table 7: Characteristics of the ad-hoc test programs exploiting the LSMU

Test Program Duration [c.c.] Size [Bytes] FC [%] Safe FC [%]

data_ram 1,392 818 99.03 100.0

addr_ram 1,626 1,308 91.35 100.0

addr_flash 1,132 1,738 75.32 99.12

ctrl_cmp 1,820 706 91.22 100.0

 580

6.5 LSMU Failure Mode Effects and Diagnostic Analysis

Normally, a complete FMEDA analysis involves also the computation of the

failure rate. However, this depend on the technology used for the final 585

implementation. Clearly, since the goal of the paper is to introduce a new architecture,

these data are missing. For this reason, the focus of this analysis is mainly centered in

determining the possible failure modes of the LSMU (and the related critical faults

causing the failure), assessing their impact (i.e., whether they lead to a critical failure)

and possible countermeasures against these faults. 590

The possible failure modes (denoted as FM) affecting the LSMU (and its

submodules) due to permanent faults are:

• FM1: the ISM is active, but is not able to correctly substitute the target

instruction with the substituted instruction;

• FM2: The ISM is active, but is not able to recognize the target instruction 595

(namely it does not perform the substitution at all);

• FM3: The CSSM is active, but is not able to substitute the control signals

with the test pattern at all;

• FM4: The CSSM is active, but is not able to correctly substitute the

control signals with the test pattern; 600

• FM5: The LSMU is not active, but the CU disables the lockstep

comparators;

• FM6: The ISM is not active, but it performs a substitution of the

instruction;

• FM7: The CSSM is not active, but it performs a substitution of the 605

control signals.

Failure modes FM1-4 do not impact the safety of the application, since they

become relevant during the test mode only. Thus, the only inconvenient is a lower

fault coverage. FM7 is likely to be detected by the lockstep comparators and do not 610

cause any critical failure since CSSM outputs are directly connected to those

comparators. To further eases the detection of these faults, the reset value of the SUB

REG could be set to a value such that only 1 bit differ (e.g., all zeros and a bit at one

only). By doing so, it is possible to immediately detect the occurrence of faults

causing this specific failure mode. 615

Failure modes FM5 and FM6 are quite critical instead, since directly impact the

normal execution of any user application. For identifying critical faults that cause

these failures, it was built a functional safety verification environment with Z01X. For

increasing the truthfulness of the experiments, functional fault simulations (that is 620

fault simulation of the entire SoC including the memories) were performed. The

chosen fault model was still the single stuck-at, and fault were injected in the LSMU

logic only (3,286 faults). When performing these evaluations, it is important to

specify observation points and diagnostic points. The former are points of the design

(namely, ports or internal wires) where to observe the effect of the faults. The latter 625

instead are points of the design where to observe the reaction of the safety

mechanism. Faults detected in both observation and diagnostic points can be labeled

as dangerous detected. All the faults detected in an observation point but not in a

diagnostic one are labeled as dangerous undetected. The remaining faults can be

considered as safe faults. 630

For both failure modes, the same application programs used for the experiments in

[17] were executed during the fault simulations. For FM6, using as reference Figure 3,

the observation point was placed on the checker inputs. The FM6 causes a wrong

instruction to be fed to checker, thus by observing its inputs, it is possible to identify

faults leading to that failure mode. After running the fault simulations, the 5.17% of 635

the total faults cause a wrong instruction to be fed to the checker. As safety

mechanism (i.e., countermeasure) for these faults, it is possible to use the already

existing comparators of the DCLS configuration. This can be done since it is assumed

a single stuck-at fault only. The fault simulations were repeated, and the diagnostic

point was placed on the ALARM signal. At the end of this campaign, all the 5.17% 640

critical faults were detected also at the diagnostic point. Thus, they can be labeled as

dangerous detected whereas the remaining 94.83% as safe since they do not cause this

specific failure.

The same procedure was performed for FM5 as well. Since this failure mode

causes lockstep comparators to be disabled, the observation point was situated on the 645

VALID signal, output of the LSMU. In this case, 5.42% of the total faults lead to this

failure and they all belong to the FSM within the CU. As countermeasures, two

options are possible: leverage the self-test routines of Table 7 or use a Triple Module

Redundancy (TMR) configuration for the FSM within the LSMU.

 650

Considering the first option, by placing the diagnostic point on ALARM (namely

the same when testing the lockstep comparators) 97.25% of the critical faults results

being detected. This means that most of the faults are actually detected during the test

of the DCLS comparators.

Concerning the second option, using FSM in a TMR configuration on one hand 655

increases the fault coverage, the detection time, but also silicon area of the LSMU. As

already shown at the beginning of this section, the FSM accounts for the 0.2% of the

total design. By using a lockstep variant, the overhead of this module increases up to

the 0.66%. Although a TMR configuration is adopted, it is important to notice that

few faults in the majority voter logic might still lead to a failure. However, such faults 660

are less than the 0.2% and thus there is still compliance with the ISO 26262 standard.

Table 8 summarizes the possible failure modes and the countermeasures, along with

the achievable Diagnostic Coverage (indicated with DC, being the number of critical

faults detected by the safety mechanism).

Table 8: FMEDA LSMU - Failure Modes and Countermeasures 665

Sub-module Failure Mode Critical Safety

Mechanism

DC [%]

ISM FM1 NO NONE -

ISM FM2 NO NONE -

CSSM FM3 NO NONE -

CSSM FM4 NO NONE -

CU FM5 YES Self-Test

Programs

97.25

CU FM5 YES TMR-FSM 99.99

ISSM FM6 YES DCLS 100.0

CSSM FM7 YES DCLS + SUB

reg safe reset

100.0

6.6 Discussion of the three possible approaches

Table 9 summarizes the three self-test alternatives described in this section. The

first important observation is that the STL solely does not detect all the possible faults 670

within this specific safety mechanism. Therefore, the STL must be necessarily

complemented with either a pure hardware self-test module (e.g., [32]) or the

proposed hybrid architecture. The former yields a complete fault coverage with a

short test application time. Instead, the proposed one is still able to generate the

required test stimuli, while mitigating the area overhead introduced by a pure 675

hardware self-test approach (halving the area overhead). On the other hand, since now

part of the stimuli are generated via software, the test duration is higher.

Unlike pure hardware strategies, in which the test patterns are hardwired, the test

performed with the proposed approach is much more flexible: test patterns are not

anymore fixed and can be updated on-the-fly. Finally, it is worth mentioning that the 680

area reported in Table 9 for the proposed approach includes also the additional

circuitry that mitigates the critical failures.

Table 9: Area, Fault Coverage and Test Duration for the three considered

approaches.

Self-test

Approach

Area w.r.t DCLS

[%]

FC [%] Duration [c.c.]

Hardware [32] 4.47 99.7 500

STL 0.00 72.0 43,976

LSMU 2.10 99.5 5,970

 685

7. Conclusions

This paper reports a detailed analysis of the possible self-test mechanisms to be

used for the on-line testing of the comparators required for implementing a DCLS

configuration. It was proven through the experiments the inadequacy of an STL to 690

address all the possible permanent faults within the comparators. At the same time, it

was shown the overhead in terms of area of a pure hardware self-test module. An

alternative self-test approach is then introduced: it is based on the insertion into the

system of a hardware module (LSMU) that assists test programs for the generation the

required test stimuli. Therefore, the proposed strategy is hybrid, since it is based on 695

both software and hardware.

The proposed strategy provides several advantages:

1. Low hardware overhead compared to a pure hardware approach: part of

the test patterns generator is implemented in software;

2. Flexibility: as it is partially based on software, it inherits its flexibility: the 700

test can be split in different test sessions to fit the test time budget when

on-line. Moreover, the test patterns are not fixed anymore and can be

updated as required;

3. Promotes IP re-usability: the hardware module is the least intrusive as

possible. Indeed, it is not required any modification nor a detailed 705

knowledge of the processor core. The system designer oversees the

integration of the module in the final SoC, as it happens with a standard

IP;

4. Scalability: the hardware overhead minimally depends on the complexity

of the considered processor. The ISM depends only on the considered 710

architecture (e.g. 32 or 64-bit), while the CSSM depends on the number of

control signals of the processor core.

The paper provides also a set of countermeasures to be used against single-point

faults that could arise within the LSMU, in order to improve the safety of the module. 715

Latent faults within the LSMU can be addressed following the same approach of a

pure hardware module (i.e., LBIST-based approaches).

Although the single stuck-at fault model was used as fault model, the applicability

of the concepts presented in this work are easily extensible to other fault models.

 720

References

[1] Road vehicles – functional safety, in: ISO 26262, 2011.

[2] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical

Application, Wiley-Interscience, New York, NY, USA, 2006. 725

[3] C. L. Chen, M. Y. Hsiao, Error-correcting codes for semiconductor memory

applications: A state-of-the-art review, IBM Journal of Research and Development

28 (2) (1984) 124–134.doi:10.1147/rd.282.0124.

[4] R. Mariani, F. Colucci, P. Fuhrmann, Safety integrity of memory sub-systems in

automotive microcontrollers, SAE Transactions 116 (2007) 486–730

496.URLhttp://www.jstor.org/stable/44719916

[5] X. Iturbe, B. Venu, E. Ozer, S. Das, A triple core lock-step (tcls)

armR©cortexR©-r5 processor for safety-critical and ultra-reliable applications, in:

2016 46th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks Workshop (DSN-W), 2016, pp. 246–249.doi:10.1109/DSN-735

W.2016.57.

[6] Application Note - Cortex-M33 Dual Core Lockstep, in: ARM InfoCenter, 2017.

[7] G. Tshagharyan, G. Harutyunyan, Y. Zorian, An effective functional safety

solution for automotive systems-on-chip, in: 2017 IEEE International Test

Conference (ITC), 2017, pp. 1–10.doi:10.1109/TEST.2017.8242075. 740

[8] T. McLaurin, Periodic online lbist considerations for a multicore processor, in:

2018 IEEE International Test Conference in Asia (ITC-Asia), 2018, pp. 37–

42.doi:10.1109/ITC-Asia.2018.00017.

[9] M. Nicolaidis, Theory of transparent bist for rams, IEEE Transactions on

Computers 45 (10) (1996)1141–1156.doi:10.1109/12.543708. 745

[10](2019)ARM:[Online].Available:https://www.arm.com/products/development-

tools/embedded-and-software/software-test-libraries.

[11](2019)Infineon:[Online].Available:https://www.hitex.com/tools-

components/software-components/selftest-libraries-safety-libs/pro-sil-safetcore-

safetlib/. 750

[12](2019)Renesas:[Online].Available:https://www.renesas.com/en-

eu/products/synergy/software/add-ons.html#read.

[13](2019)Cypress:[Online].Available:http://www.cypress.com/file/249196/download

[14](2019)Microchip:[Online].Available:http://ww1.microchip.com/downloads/en/De

viceDoc/52076a.pdf. 755

[15] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, A. Sansonetti,

Development flow for on-line core self-test of automotive microcontrollers, IEEE

Transactions on Computers 65 (3) (2016) 744–754.doi:10.1109/TC.2015.2498546.

[16] P. C. Maxwell, R. C. Aitken, V. Johansen, Inshen Chiang, The effect of different

test sets on quality level prediction: When is 80% better than 90%?, in: 1991, 760

Proceedings. International Test Conference,1991, pp. 358–

.doi:10.1109/TEST.1991.519695.

[17] A. Floridia, E. Sanchez, Hybrid on-line self-test strategy for dual-core

lockstep processors, in: 2018IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems(DFT), 2018, pp. 1–765

6.doi:10.1109/DFT.2018.8602982.

[18] P. Bernardi, L. M. Ciganda, E. Sanchez, M. S. Reorda, Mihst: A hardware

technique for embedded microprocessor functional on-line self-test, IEEE

Transactions on Computers 63 (11) (2014) 2760–2771.doi:10.1109/TC.2013.165.

[19] T. Hsieh, J. Li, K. Wu, J. Lai, C. Lo, D. Kwai, Y. Chou, Software-hardware-770

cooperated built-in self-test scheme for channel-based drams, in: 2017 International

Test Conference in Asia (ITC-Asia), 2017, pp.107–111.doi:10.1109/ITC-

ASIA.2017.8097122.

[20] P. Bernardi, R. Cantoro, L. Gianotto, M. Restifo, E. Sanchez, F. Venini, D.

Appello, A dma and cache-based stress schema for burn-in of automotive 775

microcontroller, in: 2017 18th IEEE Latin American Test Symposium (LATS),

2017, pp. 1–6.doi:10.1109/LATW.2017.7906767.

[21] S. Campagna, M. Violante, An hybrid architecture to detect transient faults in

microprocessors: An experimental validation, in: 2012 Design, Automation Test in

Europe Conference Exhibition (DATE),2012, pp. 1433–780

1438.doi:10.1109/DATE.2012.6176590.

[22] P. Bernardi, L. M. V. Bolzani, M. Rebaudengo, M. S. Reorda, F. L.

Vargas, M. Violante, A new hybrid fault detection technique for systems-on-a-chip,

IEEE Transactions on Computers 55 (2) (2006)185–198.doi:10.1109/TC.2006.15.

[23] Wei-Cheng Lai, Kwang-Ting Cheng, Instruction-level dft for testing processor 785

and ip cores in system-on-a-chip, in: Proceedings of the 38th Design Automation

Conference (IEEE Cat. No.01CH37232),2001, pp. 59–

64.doi:10.1109/DAC.2001.156108.

[24] M. Nakazato, S. Ohtake, M. Inoue, H. Fujiwara, Design for testability of

software-based self-test for processors, in: 2006 15th Asian Test Symposium, 2006, 790

pp. 375–380.doi:10.1109/ATS.2006.260958.

[25] R. Mariani, T. Kuschel, A flexible microcontroller architecture for fail-safe and

fail-operational systems,2010.

[26] A. Floridia, G. Mongano, D. Piumatti, E. Sanchez, Hybrid on-line self-test

architecture for computational units on embedded processor cores, in: 2019 IEEE 795

22nd International Symposium on Design and Diagnostics of Electronic Circuits

Systems (DDECS), 2019, pp. 1–6.doi:10.1109/DDECS.2019.8724647.

[27] R. Mariani, G. Boschi, F. Colucci, Using an innovative soc-level fmea

methodology to design in compliance with iec61508, in: 2007 Design, Automation

Test in Europe Conference Exhibition, 2007, pp.1–800

6.doi:10.1109/DATE.2007.364641.

[28] A. Floridia, E. Sanchez, M. Sonza Reorda, Fault grading techniques of software

test libraries for safety-critical applications, IEEE Access 7 (2019) 63578–

63587.doi:10.1109/ACCESS.2019.2917036.

[29] A. Nardi, A. Armato, Functional safety methodologies for automotive 805

applications, in:2017IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), 2017, pp. 970–975.doi:21

10.1109/ICCAD.2017.8203886.

[30] X. Iturbe, B. Venu, E. Ozer, J.-L. Poupat, G. Gimenez, H.-U. Zurek, The

arm triple core lockstep(tcls) processor, ACM Trans. Comput. Syst. 36 (3) (2019) 810

7:1–7:30.doi:10.1145/3323917.URLhttp://doi.acm.org/10.1145/3323917

[31] H. Grigoryan, G. Harutyunyan, S. Shoukourian, V. Vardanian, Y. Zorian,

Generic bist architecture for testing of content addressable memories, in: 2011 IEEE

17th International On-Line Testing Symposium,2011, pp. 86–

91.doi:10.1109/IOLTS.2011.5993816. 815

[32] Rangachari, S., Jalan, S.: Self test for safety logic. United States Patent

US9964597B2, 8 May 2018.

[33]https://openrisc.io/.

[34]https://github.com/openrisc/or1200.

[35] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, O. Ballan, On-line 820

functionally untestable fault identification in embedded processor cores, in: 2013

Design, Automation Test in Europe Conference Exhibition (DATE), 2013, pp. 1462–

1467.doi:10.7873/DATE.2013.298.22

https://openrisc.io/
https://github.com/openrisc/or1200

