
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CFI: control flow integrity or control flow interruption? / Maunero, N.; Prinetto, P.; Roascio, G.. - ELETTRONICO. -
(2019), pp. 1-6. (Intervento presentato al  convegno 2019 IEEE East-West Design and Test Symposium, EWDTS 2019
tenutosi a Batumi (GE) nel 2019) [10.1109/EWDTS.2019.8884464].

Original

CFI: control flow integrity or control flow interruption?

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EWDTS.2019.8884464

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2838935 since: 2021-11-12T10:45:52Z

Institute of Electrical and Electronics Engineers Inc.



CFI: Control Flow Integrity or Control Flow
Interruption?

Nicolò Maunero
CINI Cybersecurity National Lab.

Turin, Italy
nicolo.maunero@consorzio-cini.it

Paolo Prinetto
DAUIN - Politecnico di Torino

CINI Cybersecurity National Lab.
Turin, Italy

paolo.prinetto@polito.it

Gianluca Roascio
CINI Cybersecurity National Lab.

Turin, Italy
gianluca.roascio@consorzio-cini.it

Abstract—Runtime memory vulnerabilities, especially present
in widely used languages as C and C++, are exploited by attackers
to corrupt code pointers and hijack the execution flow of a
program running on a target system to force it to behave
abnormally. This is the principle of modern Code Reuse Attacks
(CRAs) and of famous attack paradigms as Return-Oriented
Programming (ROP) and Jump-Oriented Programming (JOP),
which have defeated the previous defenses against malicious code
injection such as Data Execution Prevention (DEP). Control-
Flow Integrity (CFI) is a promising approach to protect against
such runtime attacks. Recently, many CFI solutions have been
proposed, with both hardware and software implementations.
But how can a defense based on complying with a graph
calculated a priori efficiently deal with something unpredictable
as exceptions and interrupt requests? The present paper focuses
on this dichotomy by analysing some of the CFI-based defenses
and showing how the unexpected trigger of an interrupt and
the sudden execution of an Interrupt Service Routine (ISR) can
circumvent them.

I. INTRODUCTION

Computing devices are nowadays a corner stone of our daily
life. Almost all services have now been translated into digital,
and even the objects that surround us are computer-controlled
and mutually connected, in what is usually referred to as the
Internet of Everything. In such a scenario, ensuring security
of data and privacy has become increasingly important.

Securing this new global network concerns not only the
integrity and the trustworthiness of links and interconnections,
but also relates to aspects strictly bound to embedded systems,
such as the adopted programming languages. Most lines of
code are still written in C and C++ [2], since these languages
permit a good degree of low-level control without losing the
advantages of high-level statements. Although, the possibility
of operating at low level can turns into a disadvantage when
dealing with security issues, since the direct management
of memory pointers opens the door to a wide range of
vulnerabilities. These include, among others, dangling pointers
[4], i.e., pointers to live objects which are mistakenly freed and
can be corrupted during the execution, and buffer overflows
[36], i.e., out-of-bounds writes of a memory buffer which
corrupts adjacent data on stack or heap.

Some of these vulnerabilities may also enable corruption
of code pointers, used as argument of indirect control-flow
transfer instructions. Malicious attackers, by tampering with

them, succeed in taking full control over the program execution
path. In such attacks, rather than by injecting code, a malware
is executed by redirecting the flow of the program to portions
of code that already exist in memory but are not meant to be
executed in that order. This is the fundamental aspect of code-
reuse attacks and famous exploit paradigms such as Return-
Oriented Programming (ROP) [41] [12] [14] [37] and Jump-
Oriented Programming (JOP) [9] [17]. Attackers individuate,
within the code, short sequences of instructions (typically
from 2 to 5) called gadgets. A gadget always ends with an
indirect control-flow transfer instruction which can be used
as a trampoline for the next gadget. By opportunely selecting
gadgets and chaining them together, it is possible to force
very dangerous behaviours, with Turing-complete compute
capabilities [41] [46].

In [3], the enforcement of the Control-Flow Integrity (CFI)
as basic defense was formalized. CFI dictates that, during
program execution, whenever a control-flow transfer occurs,
it must target a valid destination, as determined by a Control-
Flow Graph (CFG) created at compile time. Several solutions
for the CFI have been proposed [8] [22] [48] [35] [50] [30]
[23] [42] [19] [21] [49]. Commonly, two phases are distin-
guished: during the offline phase, the intended flow transfers of
the program are computed, and in the online phase it is verified
whether these transfers are respected by the running program
without divergencies. The offline phase is usually performed
resorting to a static analysis of the program binary, finding its
basic blocks. As in [32], a basic block is defined as a linear
sequence of program instructions having one entry (the first
instruction executed) and no branches out except at the exit (a
control-flow transfer instruction). All statements within a basic
block are executed before transferring the control to the next
basic block. Transfers and basic blocks assume the identity of
edges and vertices within the Control-Flow Graph, and if an
online monitor (software or hardware) is able to guarantee
that the program does not take paths different from those
established in such a graph, then the program is considered
secure and immune to redirection attacks.

The CFG represents the intended behaviour of the program,
but actually can not deal with unpredictable events that may
happen at runtime. In real cases, interrupt requests can be sent
to the processor at any time. Serving a request is an exceptional



flow transfer, not triggered by any instruction, which preempts
the execution even in the middle of a basic block, and forces
the control to move to the Interrupt Service Routine (ISR)
location. Such routines: (a) save the context of the current
execution (i.e., the instruction pointer and the status word, as
well as the used registers) on the stack, (b) acknowledge the
request, (c) at their completion, they restore the context and
return the control to the application. It worth pointing out that
they contain normal code as any other function, including,
for instance, possible local buffers that can corrupt the stack
if overflowed or any other memory vulnerability. ISRs could
thus be used to start a control-flow-hijacking attack, with the
significant difference that, in these cases, all the static defense
techniques that rely on the CFG enforcement, fail. During the
offline analysis phase, both the locations from which ISRs are
activated and, consequently, the return locations, are unknown.
As a consequence, there is no way to monitor and protect them
resorting to CFGs.

When the application runs on top of an Operating System
(OS), the response to an interrupt request is demanded to the
kernel. Programmers that intend to adopt a CFI enforcement
solution for their programs are forced to rely on the OS capa-
bilities to prevent possible problems related to interruptions.
When instead no OS is present (bare-metal), the Interrupt
Vector Table (IVT) and the ISRs are totally part of the
program, so the above mentioned issues must be carefully
addressed.

The present paper aims at showing how some of the classic
examples of CFI enforcement, either hardware-assisted or
purely software-implemented, fail in their protection purposes
under the presence of hardware interrupts and vulnerable ISRs.
The rest of the paper is organised as follows: Section II
provides some technical background on code-reuse attacks and
common solutions, while Section III analyses in details some
CFI solutions and explains why and how they are vulnerable
in presence of interrupts. Section IV concludes the paper.

II. BACKGROUND

In computer security, the term Arbitrary Code Execution
(ACE) is commonly used to describe the ability to execute
arbitrary commands or code on an attacked machine. ACE
is achieved through tampering with the instruction pointer
(in some architecture referred to as Program Counter) of a
running program. The instruction pointer points to the next
instruction to be executed, therefore by controlling its value
an attacker can control the instruction to be executed next.
To execute arbitrary code, attackers exploit possible memory
vulnerabilities [36] [4] [44] present in a program to redirect
the instruction pointer to malicious code, often referred to as
payload.

Traditionally, the payload was injected together with the
corrupted instruction pointer in the memory of the program
(Code Injection) thank to vulnerabilities typically present in
the stack [33]. Such exploits were made impossible after the
wide adoption of Data Execution Prevention (DEP) [43] and
Write XOR Execute policy [45], for which no memory location

can be both writable (W) and executable (X). Attackers then
reacted by devising a new attack paradigm, in which the
payload is composed of code already present in the memory
image of the application under attack. This was the born of
the so called Code Reuse Attacks (CRA). The standard C
library, libc, is the usual target, since it is loaded in nearly
every program. By carefully arranging values on the stack, an
attacker can cause a sequence of functions to be invoked, one
after the other, with arbitrary arguments (Return-into-libc, [1]).
DEP-based defences are thus circumvented, but still with some
limitation, since fully arbitrary execution cannot be reached.

In [41], the authors stated that ”in any sufficiently large
body of executable code there will exist sufficiently many useful
code sequences that an attacker who controls the stack will
be able [...] to cause the exploited program to undertake
arbitrary computation”. This is the idea behind the exploit
known as Return-Oriented Programming (ROP). ROP is based
on the assumption that return addresses on the stack can point
anywhere, not just to the beginning of functions. Therefore,
the control flow can be hijacked through a series of small
sequences of instructions, each ending with a ret, known
as gadgets. In a large enough codebase (such as libc), there
is a massive selection of gadgets to choose from, and the
attackers achieve the maximum of expressiveness [46]. On
the x86 platform, the attack is made stronger by the fact that,
since there is no fixed instruction length, any sequence of raw
bytes can be interpreted as an instruction, and the rogue return
address can point even in the middle of an opcode transforming
it into another.

Fig. 1. Return address corruption, start point of Return-into-libc and ROP
attacks.

The concept of ROP was first generalised to other archi-
tectures [12] [25] [15] [14] [31] and then extended to non-
ret-ended gadgets: ret is useful in gadgets as it transfers
the control flow using a program value (the return address on
top of stack), not precalculated at compile time. As a result,
indirect formats of jmp and call can as well be used to reach
a desired instruction sequence. The concepts of Jump-Oriented
Programming (JOP) [9] [17], Call-Oriented Programming
(COP) [39], and others [40] [29] were introduced.

In the last years, research community and companies started
elaborating and adopting different types of solution to counter



CRAs. Address Space Layout Randomisation (ASLR) [7] is
a countermeasure taken at link-time which randomises the
memory layout of the application, making it harder for an
attacker to know the exact address of libraries code. Actually,
in 32-bit architecture the introduced entropy is too low, and
brute-force attacks can easily break the defense. Furthermore,
it suffers of information disclosure, since just the base address
of each segment is randomised, and therefore gaining the
knowledge of a single address leads to compute the library
segment base address in a straightforward manner [38].

In [20], the concept of stack canary or stack cookie was
introduced: when a function is called, an additional word with
a known value can be pushed on top of the stack, which
is placed between the return address and the local variables.
When the function returns, the value of the canary is checked,
and, if it is found changed, the program is considered under
attack and terminated. The canary can have a random value
difficult to guess or can be composed of terminator characters,
making it difficult to manipulate using input function (such as
gets()), since terminator character breaks the input streams
when recognised. However, canaries have been shown to be
circumventable with more targeted stack-smashing attacks [5].

In order to address the stack smashing problem as-a-whole,
a Shadow Call Stack (SCS) can be used [47] [26] [19] [11]
[10]. Basically, at call-time, the return address is both saved
on top of the normal stack and on top of an additional shadow
one, accessible only by the processor in a private manner. At
return time, the instruction pointer is poped from both stacks,
and the values compared. If a mismatch is found, an exception
is raised. Even if this solution protects the stack, it is not
sufficient to fully protect an application, as it only blocks stack
smashing and does not address memory vulnerability present
in other segments (heap, bss, data, etc), with the consequence
that exploits such as JOP can be easily performed.

Heuristic-based approaches claim to detect CRAs by typi-
cally monitoring the number of branches of the program and
block it when suspicious behaviour is sensed. The assumption
is that gadgets for ROP and JOP attacks usually consist of
no more than 5 instructions. DROP [16], kBouncer [34] and
ROPecker [18] are examples of heuristic-based defenders.
However, it has been demonstrated that the heuristic can be
easily thwarted by executing, between malicious jumps, longer
sequences of non-jumping instructions or branches considered
as secure [28].

Solutions presented so far can still be valid mitigation
techniques, relatively simple to implement, but each of them
addresses the problem of code redirection attacks just with
respect to one of the vulnerabilities that lead to the exploit,
without an all-encompassing vision. The paper [3] first tried
to change perspective by introducing the concept of Control-
Flow Integrity (CFI) as basic defense against CRAs, regardless
of the vulnerability that may cause them. The concept behind
CFI is monitoring the program at runtime to detect abnormal
diversion from what is stated in its Control-Flow Graph.
Each node in the CFG represents a basic block, which is
a group of non-jumping instructions executed sequentially.

Edges represent branches in the control flow, caused by jump,
call, or return instructions. The CFG is defined before the
execution, through a static analysis of the source code or of
the binary, or by execution profiling, a test run which creates
the possible paths. Then, at runtime, the dynamic control flow
changes are restricted to the static CFG. Typically, just indirect
formats of branching instructions are monitored, as it is usually
assumed that the code is immutable, not self-modifying and
not generated just-in time.

CFI policies are clustered into coarse-grained if the moni-
toring is not done by strictly enforcing the CFG, but based on
simple rules, such as ensuring that ret targets are preceded
by a call, or indirect calls only target prologues of functions,
and similar. Fine-grained policies, instead, check that the
execution traverses valid edges of the pre-computed CFG,
only. However, coarse-grained solutions are not so different
from heuristics, as both aim at distinguishing the rogue be-
haviours from those that most probably are benevolent. But
most probably does not mean certainly, especially when we
are dealing with clever attackers. Recent works [24] [27] show
how it is possible to induce such security policies to believe
that actions are within the rules when they are not. In [13] the
authors showed that just 70 KB of binary code retrieved in 10
different executables within /usr/bin of Linux have been
sufficient for mounting fully call-preceded ROP attacks.

Therefore, fine-grained CFI solutions are the only CFI poli-
cies ensuring that all control flow transfers within a program
are only the ones intended by the design. In the next Section,
we will compare the fine-grained CFI strategy and its most
well-known implementations with the problem of unplanned
interrupts, and we will show how defences can be bypassed.

III. MAIN ISSUES OF COMMON SOLUTIONS

A. Control-Flow Graph

As defined in [6], the Control-Flow Graph (CFG) is a
directed graph in which the nodes represent the basic blocks
(see Section I) of a program and the edges represent the
control-flow transfers. The CFG is a good instrument for
outlining the behaviour of a program, but it is not sufficient
to completely describe the runtime execution of a program, in
particular considering interrupts, that can occur at any time
and are thus absolutely unpredictable.

When an interrupt is triggered, a pair of “phantom” edges
are created, outside the CFG: the former one connects the
just-executed instruction to the initial basic block of the ISR,
while the latter one connects the exit point of the ISR to the
instruction following the interruption site. At offline analysis
time, it is not possible to know where these “phantom”
edges will be located. Moreover, their occurrence is not just
untraceable, but against the definition of CFG, too, as they
can start from (and arrive to) an instruction internal to a basic
block.

The processor, before serving an interrupt request, saves
the context of the currently executed program in order to
be able to restore it when the execution is resumed. The
problem is that the code of the ISR is a just another piece of



code, not immune to vulnerabilities from which an attack can
start. In particular, if the routine contains one of the memory
vulnerabilities presented above, the return address may be
corrupted and an attacker may gain control over the program
execution redirecting it to potentially dangerous code.

Given the intrinsic asynchronous nature of interrupts, no
static analysis can provide a valid mean to monitor this type
of transfers at runtime.

B. Binary Instrumentation

The presence of interrupts is an issue not just for its
non-traceability, but also for the fact that it can break the
defences based on fine-grained CFI. To achieve it, several
binary instrumentation approaches have been proposed.

One of these is the label-based binary instrumentation, first
introduced by Abadi et al. [3] in their milestone paper. The
label-based approach relies on modifying the compiled binary
to insert unique IDs at the beginning of each basic block.
Before each indirect branch, few instructions are inserted to
check if the destination basic block’s ID is in fact targeted by
the instruction. Control flow tampering causes the check to
fail, since the destination label ID will not match the label ID
stored inside the program. Anyway, attacks are still possible
if an interrupt request is served in the middle of the code used
to instrument the jump.

The following code

cmp [ecx], 12345678h
jne violation
lea ecx, [ecx+4]
jmp ecx

is used to ensure that the jmp ecx at the bottom reaches the
code starting with that ID, such as

.data 12345678h
mov eax, [esp+4]
...

Anyway, let us suppose that, thank to a memory vulnerability,
an attacker has already tampered with the content of ecx to
exploit that indirect jump. If an interrupt request is served
between the cmp and the jne that triggers the violation, the
processor status word (PSW) is pushed with the return address
on top of the stack. The ISR may contain a vulnerability, and
the PSW may be maliciously overwritten, such that the ZF
flips and, when returning, the violation is bypassed and the
desired piece of code is reached by the attacker.

The following instructions

mov eax, 12345677h
inc eax
cmp [ecx+4], eax
jne violation
jmp ecx

represents an alternative way to instrument the code if the
destination is instrumented as follows

prefetchnta [12345678h]
mov eax, [esp+4]
...

using a side-effect-free x86 prefetch instruction. This version
is even more exposed to interrupt issues: the previous exploita-
tion is still possible if a vulnerable ISR is executed between the
cmp and the jne, but another attack is possible. The cmp with
the ID resorts to a register instead of an immediate. Therefore,
let us suppose that a vulnerable ISR is triggered after the mov
and before the cmp. If the ISR makes use of the eax register
for its operations, it has to push it, and a stack corruption may
permit to modify the content of eax with the desired label or
even with the binary target of the attack. This is not unlikely:
eax is a general-purpose register which may be used by the
ISR.

An additional defense based on binary instrumentation is
Control-Flow Locking (CFL) [8], which consists in inserting
“lock” code before indirect transfer instructions and “unlock”
code at each of their valid target. The lock code sets a lock
variable to a value, while the unlock code, before proceeding
with the execution, verifies whether the value is the lock
one. The lock code also verifies if the just-executed code
was unlocked and thus allowed to run, otherwise it notifies
a violation. The two codes are specular:

L_lock: cmp lck, 0
jne violation
mov lck, key
ret
...

L_unlock : call <function>
cmp lck, key
jne violation
mov lck, 0

As in the label-based approach, problems may stem by the
fact that the flags are possibly altered during the execution of
a vulnerable ISR, so the violation can be skipped. In addition,
even if the author claims that value of lck is stored in a
protected memory, it is likely that the one seen above is not the
real set of added instructions, and that lck is first transferred
into a register. This is definitely true when this solution is to
be implemented in a RISC machine, where comparisons with
memory locations are not allowed. In such a situation, if an
interrupt arrives during the manipulation of the lock value, and
the register used is pushed because the ISR needs it, then it is
possible that it may be restored as corrupted, with consequent
defeat of the defense.

C. Hardware-assisted CFI

CFI solutions based on code instrumentation lacks sufficient
isolation of the variables and data structures that provide
security, as we have shown, as well as they suffer of large
overhead. Hardware-based CFI solutions try to overcome these
limits. The respect of the CFG is checked at runtime via a
hardware monitor, which in most cases is directly inserted



Fig. 2. Tracking of CFG in Sullivan et al. solution [42].

into the processor’s pipeline stages [23] [42] [19] [49] but can
be also attached externally to the debug interface [30].

Sullivan et al. [42] presented a solution in which they
modified the soft processor SPARC LEON3 introducing two
security-based private data structures, the “Label State Reg-
ister” (LSR) and the “Label State Stack” (LSS), and five
additional instructions to control them. When an indirect call
is to be performed, cfibr lbl is executed first, which
pushes a unique label on top of LSS, indicating the call site.
cfiprc lbl then saves into the LSR a unique label for
the function location. The first instruction of each function
is always cfichk lbl, which verifies that the content of
LSR is lbl. At return time, the processor enters in a state
which only accepts cfiret lbl, otherwise it is blocked. So
all the instructions following an indirect call are cfiret in
such an architecture. Indirect jumps are instead instrumented
with cfiprj lbl, which store lbl in the LSR, and at all
possible destinations, cfichk lbl verifies that the content
of LSR is in fact lbl.

However, the hardware implementation of the CFI enforce-
ment does not make it immune to possible breaks due to inter-
rupts. Referring to Figure 2, let us assume that an interrupt is
triggered after cfibr A1. The ISR reached cannot obviously
verify the caller identity with a cfichk, because it accepts a
static label, unknown at code writing time. The ISR may be
vulnerable, and the return address may be tampered with, and
again the return site cannot be instrumented. The attacker can
thus enter into the middle of any function body, and execute
any wondered piece of code. At a certain time, when the ret
is executed, the top of the LSS is written with A1, so the
function returns back to the original call site, and no violation
is sensed, as the cfiret performs a valid check.

IV. CONCLUSIONS

The present paper analysed the threat of Code Reuse Attacks
(CRA) and some of its countermeasures based on complying
with the Control-Flow Graph (CFG) with the unpredictability
of hardware interrupts. These, in fact, naturally conflict with
the static nature of any pre-execution instrument and can
open breaches in the defences proposed so far, independently
of their actual implementation in software or in hardware.
Although exploiting these vulnerabilities to successfully carry
out an attack is not trivial, their presence is evident, and it
is therefore advisable to try to lock the door better before
someone could learn how to open it. Nobody can exclude

that somewhere, hidden within the code, there is a sequence
of even few but very dangerous instructions, such as setting
a password or a key with a default value, or overwriting
important memory areas, or that may be exploited to activate
additional vulnerabilities to exploit later.

Fine-grained CFI solutions remain today the only effective
way to defend against this type of attacks. However, especially
when interrupts are frequent, such as microcontroller applica-
tions in embedded systems, this particular weakness cannot be
ignored, and additional solutions must be adopted.

V. ACKNOWLEDGMENTS

This paper is supported in part by European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 830892, project SPARTA.

REFERENCES

[1] The advanced return-into-lib(c) exploits: PaX case study. http://www.
phrack.org/archives/issues/58/4.txt, 2001. [Online; accessed 17-June-
2019].

[2] TIOBE Index of May 2019. https://www.tiobe.com/tiobe-index/, 2019.
[Online; accessed 08-June-2019].

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM conference on Computer
and communications security, pages 340–353. ACM, 2005.

[4] J. Afek and A. Sharabani. Dangling pointer: Smashing the pointer for
fun and profit, 2007.

[5] S. Alexander. Defeating compiler-level buffer overflow protection. The
USENIX Magazine; login, 2005.

[6] F. E. Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,
pages 1–19. ACM, 1970.

[7] S. Bhatkar, D. DuVarney C, and R. Sekar. Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.
In USENIX Security Symposium, volume 12, pages 291–301, 2003.

[8] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 353–362. ACM, 2011.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, pages 30–40. ACM, 2011.

[10] C. Bresch, D. Hély, A. Papadimitriou, A. Michelet-Gignoux, L. Amato,
and T. Meyer. Stack redundancy to thwart return oriented programming
in embedded systems. IEEE Embedded Systems Letters, 10(3):87–90,
Sep. 2018.

[11] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. A red team
blue team approach towards a secure processor design with hardware
shadow stack. In 2017 IEEE 2nd International Verification and Security
Workshop (IVSW), pages 57–62, July 2017.

[12] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good
instructions go bad: Generalizing return-oriented programming to risc.
In Proceedings of the 15th ACM conference on Computer and commu-
nications security, pages 27–38. ACM, 2008.

http://www.phrack.org/archives/issues/58/4.txt
http://www.phrack.org/archives/issues/58/4.txt
https://www.tiobe.com/tiobe-index/


[13] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern
defenses. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 385–399, 2014.

[14] S. Checkoway, L. Davi, A. Dmitrienko, A.R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In Pro-
ceedings of the 17th ACM conference on Computer and communications
security, pages 559–572. ACM, 2010.

[15] S. Checkoway, A. J. Feldman, B. Kantor, J.A. Halderman, E. W. Felten,
and H. Shacham. Can dres provide long-lasting security? the case of
return-oriented programming and the avc advantage. EVT/WOTE, 2009,
2009.

[16] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting
return-oriented programming malicious code. In A. Prakash and I. Sen
Gupta, editors, Information Systems Security, pages 163–177, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[17] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin. Automatic
construction of jump-oriented programming shellcode (on the x86). In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, pages 20–29. ACM, 2011.

[18] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng. Ropecker: A
generic and practical approach for defending against rop attack. 2014.

[19] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. Hcfi:
Hardware-enforced control-flow integrity. In Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, pages
38–49. ACM, 2016.

[20] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, , and H. Hinton. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. 98:5–5, 01 1998.

[21] S. Das, W. Zhang, and Y. Liu. A fine-grained control flow in-
tegrity approach against runtime memory attacks for embedded systems.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(11):3193–3207, Nov 2016.

[22] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.R. Sadeghi. Mocfi: A framework to mitigate
control-flow attacks on smartphones. In NDSS, volume 26, pages 27–40,
2012.

[23] L. Davi, M. Hanreich, D. Paul, A.R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin. Hafix: hardware-assisted flow integrity extension.
In Proceedings of the 52nd Annual Design Automation Conference,
page 74. ACM, 2015.

[24] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 401–416, 2014.

[25] A. Francillon and C. Castelluccia. Code injection attacks on harvard-
architecture devices. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 15–26. ACM, 2008.

[26] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending
embedded systems against control flow attacks. In Proceedings of the
first ACM workshop on Secure execution of untrusted code, pages 19–26.
ACM, 2009.

[27] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming control-flow integrity. In 2014 IEEE Symposium
on Security and Privacy, pages 575–589, May 2014.

[28] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis. Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 417–432, 2014.

[29] Y. Guo, L. Chen, and G. Shi. Function-oriented programming: A new
class of code reuse attack in c applications. In 2018 IEEE Conference
on Communications and Network Security (CNS), pages 1–9, May 2018.

[30] Z. Guo, R. Bhakta, and I. G. Harris. Control-flow checking for
intrusion detection via a real-time debug interface. In 2014 International
Conference on Smart Computing Workshops, pages 87–92, Nov 2014.

[31] T. Kornau et al. Return oriented programming for the ARM architecture.
PhD thesis, Master’s thesis, Ruhr-Universität Bochum, 2010.

[32] K. S. Kumar and D. Malathi. A novel method to find time complexity
of an algorithm by using control flow graph. In 2017 International Con-
ference on Technical Advancements in Computers and Communications
(ICTACC), pages 66–68, April 2017.

[33] A. One. Smashing the stack for fun and profit. Phrack magazine,
7(49):14–16, 1996.

[34] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent rop
exploit mitigation using indirect branch tracing. In Presented as part

of the 22nd USENIX Security Symposium (USENIX Security 13), pages
447–462, 2013.

[35] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lachmund, and
T. Walter. Cpm: Masking code pointers to prevent code injection at-
tacks. ACM Transactions on Information and System Security (TISSEC),
16(1):1, 2013.

[36] J. Pincus and B. Baker. Beyond stack smashing: recent advances in
exploiting buffer overruns. IEEE Security Privacy, 2(4):20–27, July
2004.

[37] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC), 15(1):2, 2012.

[38] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically
returning to randomized lib(c). In 2009 Annual Computer Security
Applications Conference, pages 60–69, Dec 2009.

[39] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-
call oriented programming (pcop): chaining the gadgets using call
instructions. Journal of Computer Virology and Hacking Techniques,
14(2):139–156, May 2018.

[40] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and T. Holz.
Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in c++ applications. In 2015 IEEE Symposium on
Security and Privacy, pages 745–762, May 2015.

[41] H. Shacham et al. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In ACM conference on
Computer and communications security, pages 552–561. New York,,
2007.

[42] D. Sullivan, O. Arias, L. Davi, P. Larsen, A. Sadeghi, and Y. Jin.
Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2016.

[43] Microsoft Support. A detailed description of the Data Execution
Prevention (DEP). https://support.microsoft.com/en-us/help/875352/
a-detailed-description-of-the-data-execution-prevention-dep-feature-in.
[Online; accessed 18-June-2019].

[44] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory.
In 2013 IEEE Symposium on Security and Privacy, pages 48–62, May
2013.

[45] PaX Team. PaX Non-Executable Pages Design and Implementation.
https://pax.grsecurity.net/docs/noexec.txt, 2003. [Online; accessed 17-
June-2019].

[46] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On
the expressiveness of return-into-libc attacks. In International Workshop
on Recent Advances in Intrusion Detection, pages 121–141. Springer,
2011.

[47] Tzi-Cker Chiueh and Fu-Hau Hsu. Rad: a compile-time solution to
buffer overflow attacks. In Proceedings 21st International Conference
on Distributed Computing Systems, pages 409–417, April 2001.

[48] Yubin Xia, Yutao Liu, H. Chen, and B. Zang. Cfimon: Detecting viola-
tion of control flow integrity using performance counters. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012), pages 1–12, June 2012.

[49] J. Zhang, B. Qi, Z. Qin, and G. Qu. Hcic: Hardware-assisted control-
flow integrity checking. IEEE Internet of Things Journal, 6(1):458–471,
Feb 2019.

[50] Mingwei Zhang and R Sekar. Control flow integrity for cots binaries. In
Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), pages 337–352, 2013.

https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://pax.grsecurity.net/docs/noexec.txt

	Introduction
	Background
	Main Issues of Common Solutions
	Control-Flow Graph
	Binary Instrumentation
	Hardware-assisted CFI

	Conclusions
	Acknowledgments
	References

