POLITECNICO DI TORINO
Repository ISTITUZIONALE

Determined-Safe Faults Identification: A step towards 1ISO26262 hardware compliant designs

Original

Determined-Safe Faults Identification: A step towards 1SO26262 hardware compliant designs / da Silva, Felipe Augusto;
Bagbaba, Ahmet Cagri; Sartoni, Sandro; Cantoro, Riccardo; Reorda, Matteo Sonza; Hamdioui, Said; Sauer, Christian. -
ELETTRONICO. - (2020), pp- 1-6. (Intervento presentato al convegno 2020 IEEE European Test Symposium (ETS)
tenutosi a Tallinn, Estonia nel 25-29 May 2020) [10.1109/ETS48528.2020.9131568].

Availability:
This version is available at: 11583/2838375 since: 2020-07-06T15:41:59Z

Publisher:
IEEE

Published
DOI:10.1109/ETS48528.2020.9131568

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Determined-Safe Faults Identification: A step towards
ISO26262 hardware compliant designs

Felipe Augusto da Silva*f, Ahmet Cagri Bagbaba*, Sandro Sartoni*, Riccardo Cantoro?,
Matteo Sonza Reorda*, Said Hamdioui’ and Christian Sauer*

*Cadence Design Systems
Munich, Germany

Abstract—The development of Integrated Circuits for the
Automotive sector imposes on major challenges. 1ISO26262 com-
pliance, as part of this process, entails complex analysis for
the evaluation of potential random hardware faults. This paper
proposes a systematic approach to identify faults that do not
disrupt safety-critical functionalities and consequently can be
considered Safe. By deploying code coverage and Formal ver-
ification techniques, our methodology enables the classification
of faults that are unclassified by other technologies, improving
1S026262 compliance. Our results, in combination with Fault
Simulation, achieved a Diagnostic Coverage of 93% in a CAN
Controller. These figures allow an initial assessment for an ASIL
B configuration of the IP.

Keywords - 1S0O26262; Safe Faults; Fault Injection; Formal
Methods; Simulation; Functional Safety; Verification.

I. INTRODUCTION

The increasing complexity in automotive applications is
causing a shift in the traditional design flow. An Integrated
Circuit (IC) that implements safety-critical applications, such
as autonomous driving, must incorporate mechanisms to re-
duce the risk of failures resulting in life-threatening situ-
ations. For such applications, the system must be able to
detect an extremely high percentage of potential faults while
already deployed in the field. In the most advanced automotive
ICs, where millions of design components are susceptible to
random hardware faults, this process becomes challenging.
Also, the demands for fault detection during the operational
life of the design requires the deployment of suitable test
mechanisms, as Self Test Libraries (STL). In operational
mode, Design for Testability (DfT) often is not an option, as it
could disturb the intended functionalities. Today, the approach
based on STLs is widely adopted in the automotive industry
[11121[3].

Usually, Fault Injection (FI) Simulations are deployed for
evaluation of the fault effects in the operational mode. How-
ever, FI Simulation alone is not enough to fully classify
all faults. For those which are not detected we must rely
on alternative analysis methods that can prove whether they
could disturb safety-critical functionalities or not (Safe Faults).
Previous works [4] showed that the number of Safe Faults
can be significant in real applications. In complicated designs,
manual analysis of fault effects is an arduous task that requires
extensive knowledge of the design functionalities. Therefore,
there is a high demand for a systematic approach for the
identification of Safe Faults, allowing the reduction of manual

TDelft University of Technology
Delft, The Netherlands

Politecnico di Torino
Turin, Italy

efforts and improving compliance with Functional Safety
standards.

Fault Injection (FI) Simulation is a state-of-the-art method
for Functional Safety Verification, being recommended by
1S0O26262. As such, several researchers explored the optimiza-
tion of FI campaigns [5][6][7][8]. The main purpose is to
show that fault effects are observable on safety-related outputs
of the design. In case an injected fault is not observable, it
must be re-analyzed. Nonetheless, observation or detection of
all design faults is usually not possible. Therefore, alternate
methods are necessary for the classification of residual faults.
Formal Methods can be employed to leverage the classification
of faults. The ability of formal techniques in analyzing the
design behavior for all possible combinations of inputs can
help to identify Safe Faults [9][10][11]. These faults cannot be
tested by ANY valid test stimuli. Faults that are untestable can
also be described as Structural-Safe Faults. The combination
of FI Simulation and Formal techniques was also examined
[12][13][14][15]. The mixed technologies approach is usually
deployed to improve the classification of faults. However, even
with the identification of Detected and Structural-Safe Faults,
there are still residual faults that require further classification.
To avoid manual analysis of fault effects and still fulfill
1SO26262 requirements, a different methodology is needed.

Our work tackles the classification of residual faults. We
propose a methodology that identifies design elements where
a fault cannot disturb the safety-critical outputs of the design.
In case the effect of a fault does not affect safety-related
functionalities, there is no chance of Safety Goal violations.
Therefore, these faults can be classified as Determined-Safe.
Different from Structural-Safe Faults which cannot be tested
by any functional test stimuli, Determined-Safe Faults may
affect the output of the design. However, they cannot af-
fect safety-critical functionalities. Initially, we deploy code
coverage techniques to identify design elements that are not
exercised during functional verification. The candidates are
examined by code inspection and simulation. If confirmed that
the candidates are not safety-related, they are translated into
formal rules. Finally, we configure all the rules in a Formal
analysis tool for the identification of Determined-Safe Faults.
The main contributions of this work are:

o A systematic approach for classification of Faults that
cannot affect safety-critical functionalities;

o Demonstration of the proposed methodology using an
automotive CAN Controller IP;

o Improving the fault classification to 93% of Diagnostic
Coverage, achieving ASIL B requirements out of the box.

The rest of the paper is organized as follows: Formal
techniques for identification of Safe Faults are introduced in
Section II. Section III describes the proposed methodology.
Section IV explains the validation process and discusses our
results. Section V concludes.

II. FAULT CLASSIFICATION BY FORMAL TOOLS

Fault classification is a strenuous task. A fault can only
be labeled as Safe if one can prove that it cannot be tested
by ANY functional test stimuli. The formal analysis appears
as a good alternative for this purpose since it is not limited
to a specific time or state. Instead, the scope is global, and
every evaluation context and test stimuli is considered [9].
Consequently, formal analysis can exhaustively prove that a
fault can never produce any failure. This class of untestable
faults can be classified as Structural-Safe.

Different EDA vendors explore fault analysis capabilities
in their formal solutions. Generally speaking, these solutions
automatically generate properties, not requiring knowledge of
formal languages. In addition, they allow integration with
FI Simulators providing fault lists optimization and reducing
simulation campaigns. Tools used for formal analysis usually
apply two main fault analysis techniques, Structural Analysis
and Formal Analysis.

A. Structural Analysis

The Structural Analysis aims to determine the testability of
faults. The testability of the faults is determined by verifying
the physical characteristics of the design. Figure 1 illustrates
the examination applied by the Structural Analysis.

Figure 1 represents a circuit with combinational logic (g),
inputs (in), outputs (out) and fault targets (f). Considering this
circuit, it is possible to define the following fault behaviors by
applying Structural Analysis:

1) As the only Observation Point (strobe) configured for
the fault analysis is ’outO’, any fault that is outside of
its Cone of Influence is considered Untestable. For that
reason, any fault in *f1° is Structural-Safe as there is no

Cone of Influence

—
DD

ina ;ﬂ g3

ins

Considered Strobe

—

oute

g4 outy

Fig. 1. Structural Analysis Example.

physical connection between the fault location and the
strobe.

2) Depending on the characteristics of 'gl’ drivers, it is
possible to define the activatability of *f2’. For example,
if g1’ always output the logic value one, 'f2° would
not be activatable for Stuck-at-1 faults. Consequently, a
Stuck-at-1 fault in *f2° would be Structural-Safe.

3) Characteristics of the combinational logic g2’ could
block propagation of a fault in ’f3’. If, for example,
’g2’ is an AND gate, with one of the inputs always set
with the logic value zero, the effect of a fault in '3’
would never propagate to outQ’. Therefore, 'f3° would
be Structural-Safe for Stuck-at-1 and Stuck-at-0 faults.

B. Formal Analysis

The Formal Analysis deploys formal techniques to investi-
gate the behavior of a design under fault. The fundamental
theory consists in creating a representation of the boolean
function implemented by the design under test, where formal
proves can be deployed. Modern Formal tools employ different
formal techniques to achieve better performance. Although
details of implementation are not disclosed, common forms of
design representation are Binary Decision Diagrams (BDDs)
[16] and Multiway Decision Graphs (MDGs) [17].

Two copies of the design model are built for formal analysis:
the Good Machine and the Bad Machine. The same inputs
and constraints are deployed on both models. Fault effects
are applied in the Bad Machine only and the Strobe point of
both copies are monitored. A difference in the Strobe Points
indicate the propagation of the fault.

The Formal Analysis deploys formal methods to determine
the Activation and Propagation of faults. Activation Analysis
indicates whether the fault can be functionally activated by any
combination of inputs. Propagation Analysis verifies if there is
a combination of inputs that provoke fault propagation. Formal
Analysis will classify the faults, which were not previously
classified by the Structural Analysis, in three groups:

o Safe: Faults that cannot be activated or propagated.

« Dangerous: The tool identified at least one combination

of test inputs that results in fault propagation.

o Unknown: All the others.

Formal properties to perform the analysis are automatically
generated and verified with respect to all possible input
stimuli. The Formal Analysis relies on formal properties and
verification to prove the properties to be true.

Formal verification techniques are resource hungry and
limited due to the state explosion problem. For that reason, the
analysis of formal properties cannot find results for all fault
targets. Therefore, the residual faults still require an alternative
classification methodology.

I1I. DETERMINED-SAFE FAULTS
The 1SO26262 Hardware Architectural Metrics determines
the effectiveness of designs to cope with random hardware
failures [18]. The failures addressed by these metrics are
limited to elements that can contribute to the violation of safety

goals. Safety goals define the required mitigation of hazardous
events to avoid unreasonable risks caused by malfunctions.
During the system development phase, safety goals will be
decomposed into a Functional Safety Concept that defines
the requirements for the hardware architecture. However,
the development of a hardware design demands additional
components that are not related to the safety concept. These
components will decrease the compliance to Hardware Archi-
tectural Metrics, even though in case of faults, they may not
violate safety goals. For that reason, these components can
be identified by their potential to disrupt safety goals and, if
applicable, determined safe.

Determined-Safe Faults cannot disturb safety goals. Dif-
ferent from Structural-Safe Faults that cannot be tested by
ANY functional test stimuli, Determined-Safe Faults may
affect the output of the design. However, they cannot affect
safety-critical functionalities. Common Determined-Safe fault
targets are design parts not used in operational mode. The
identification of these faults usually requires the judgment of
hardware design experts.

A. Determined-Safe Candidates

In this section, we define a methodology to support the
identification of Determined-Safe Faults. Our methodology
deploys code coverage techniques to identify design elements
that are not fully used during the design simulation. Code
coverage is a method of assessing to what extent test cases
exercise the design. Since this analysis relies on the simulation
results, it is critical to employ representative test cases. In
general, Functional Safety Verification is performed at later
stages of the design life-cycle, after functional verification
is completed. Therefore, we can assume that the design is
available in RT and Gate level, and also comprehensive test
cases are available for the identification of Determined-Safe
Faults.

The initial step is to simulate the design under test, with
all the available test cases, collect code coverage data, and
generate the coverage reports. Our methodology does not
depend on a specific tool. However, the selected tool-set
should include code coverage analysis. Next, we analyze the
reports to check the results for block and toggle coverage.
Block coverage determines whether test scenarios exercise
the statements in a block. A block is a series of sequential
statements without delays or control flow statements (if, case,
wait, while, among others). In other words, a block is a
specific state in a state machine. Toggle coverage measures
the activity of the signals in the design during the simulation.
It provides information on untoggled signals or signals that
remain constant during the simulation.

The metrics from the code coverage provide candidates for
Determined-Safe Faults. For instance, by recognizing states
that are never activated, as a result of block coverage, we
can identify design modes that are not related to safety func-
tionalities. Similarly, signals that are untoggled can highlight
important details of the design, like invalid configurations,
not utilized functions, status monitors, among others. The

a) always @ (posedge clk or posedge rst)
begin
if (rst)
error_irg <= 1'b0;
else if{error_status A error_status_q)
error_irg <=#Tp 1'b1;
else if (read _irq_req)
error_irgq <=#Tp 1'b0;

end
b) Mame @
Y read irg_reg 0 0
P4 error_irg 1 0

Fig. 2. a) Block Coverage example - b) Toggle Coverage example.

combination of toggle and block coverage usually provides
further information about specific functionalities. For example,
the missing toggle in a control signal may be responsible
for never activating a block in a state machine. Also, by
bypassing a specific state, another signal may not be toggled.
Figure 2 illustrates an example of the correlation between the
toggle and the block coverage. The block coverage (Figure
2-a) shows a block that was never activated. Since the last
“else if” statement is always false, the ’error_irq’ is not set to
zero. In Figure 2-b, the result of toggle coverage shows that
the control signal 'read_irq_reg’ never toggles, validating the
block coverage. Additionally, the coverage confirms that the
signal “error_irq’ has one rising toggle but never toggles back
to zero.

In this example, the coverage results trigger an investigation,
where we can determine that the interrupt requests (IRQ) error
register is never read by the application. Next, we need to
verify if this behavior is expected, and then we can decide
if a fault that affects the value of the IRQ error register can
be considered safe. Each candidate identified during the code
coverage requires an investigation over simulation and source
code. The coverage result by itself is not enough to identify
the potential Determined-Safe Faults. Nonetheless, it indicates
candidates that can facilitate the manual classification of such
faults. After the determination of the candidates, we need to
translate their behavior into a set of formal rules, allowing
identification of the actual Determined-Safe Faults by Formal
methods.

B. Formal Identification of Determined-Safe Faults

The identification of Determined-Safe Faults will deploy the
same techniques described in Section II for the identification
of Structural-Safe Faults. The difference is that the formal
environment will incorporate the formal rules retrieved from
the code coverage analysis. By constraining the environment,
we enable the tool to evaluate the design in a well-specified
configuration, increasing the potential for identification of Safe
Faults. Additional Safe Faults will be classified as Determined-
Safe, as they are Safe considering the functional constraints
included in the environment.

The design elements identified during the code coverage
must be translated into assume statements or fault-propagation
barriers. Assume statements enable constraints configuration
for formal analysis. When an expression is assumed, the for-
mal verification tool constrains the design inputs accordingly.
The role of the assume construct is useful in the confirmation
of the design functional configuration. Also, by configuring
the expected behavior of the design, we increase the capacity
of Safe Faults identification by limiting the test stimuli space.
Fault-propagation barriers are design elements that can block
the propagation of a fault. Faults that propagate only to certain
elements may not affect safety-critical functionalities. Conse-
quently, these faults can be Determined-Safe. For example,
a counter that monitors the number of transmissions is not
read by the transmission controller. In that case, a failure in
the monitor does not alter the design functionality. For that
reason, this counter can be configured as a fault-propagation
barrier, and all faults that can only affect its value can be
Determined-Safe.

In most cases, the Determined-Safe Candidates translation
into formal environment constraints will consider the element
type. Input ports of the design instances are suitable candi-
dates to assume statements. Output ports, on the other hand,
are better candidates for fault-propagation barriers. Internal
signals like °‘regs’ and ’wires’ need further analysis of the
Gate-Level representation of the hardware, as they may be
modified by synthesis. Nevertheless, for each environment
constraint, we must confirm the assumptions by analysis of
the RTL code, simulation of the design, and understanding
of the expected design functionalities. An over-constrained
formal environment would cause false-positives, invalidating
the results.

After confirmation of the environmental constraints, we
generate a file for the set-up of the Formal Analysis Tool.
The set-up file must include all assume statements and fault-
propagation barriers. With the set-up file in place, we repeat
the formal analysis to identify the Determined-Safe Faults.

IV. RESULTS
A. Test Case

To validate the proposed methodology, we targeted a design
that is representative of the challenges of the automotive indus-
try. For that reason, the adopted peripheral is an open hardware
implementation of the SJA1000 CAN Controller, developed by
Philips in the early 2000s. The selected controller implements
the BasiCAN and the PeliCAN Modes. The BasiCAN Mode
supports communication in Normal Mode with a second CAN
node. The PeliCAN Mode supports CAN 2.0B protocol, which
includes functionalities as Self-Test and Listen-Only Modes.

The test of the CAN Controller considered for this work
employs a Software-Based Self-Test (SBST) approach, leading
to the creation of a Software Test Library (STL). To enable
the execution of the STL and emulate a realistic configuration,
the CAN Controller is integrated into an OpenRISC OR1200
SoC. By deploying a full SoC, we can store the test program
in a memory and control the execution of the STL during

TABLE I
FAULT INJECTION RESULTS.
SA(1/0) Undetected Detected Diagnostic
Fault Target Faults Faults Faults Coverage
CAN Controller 38,012 5,005 33,007 86.83%

idle intervals. The complete test environment comprises two
OR1200 SoCs. Each SoC is configured with a different test
program and connected through a simplified version of the
CAN bus avoiding the implementation of the transceiver.
Instead, the resulting bus consists of the two Tx signals
connected into an AND gate whose output is then connected
to each Rx pin. The environment can be configured with RT
or Gate level representations of the CAN Controller.

The STL was developed as a collection of tasks that can
either operate independently or collectively, depending on the
self-test time slot [19]. The following tasks are available as
part of the STL:

e Bitrate Test: aims to test the timing related modules by
employing different bitrates;

e Normal Mode Test: tests the BasiCAN and PeliCAN
Normal Modes by transmitting and receiving messages
with a fixed bitrate;

o Self-Test Mode and Listen-Only Mode Tests: while one
node is in Self-Test mode the other one must be in Listen-
Only Mode and vice versa;

o FIFO Test: tests the FIFO module by filling it and
emptying it while receiving several messages;

e Errors Test: tests error conditions due to bitrate mis-
matches;

o Arbitration Loss Test: tests arbitration loss conditions,
achieved when one node stops transmitting a message
due to a higher priority message being transmitted on the
bus;

o Acceptance Filter Test: tests the acceptance filter logic
that decides whether a message has to be stored in the
internal memory or not.

To validate the ability of the design to cope with random
hardware faults, a Fault Injection campaign was executed.
We used the Cadence® Xcelium™ Fault Simulator (XFS)
to manage the fault campaign execution. The XFS was con-
figured to inject SAQO and SA1 faults at every cell port of
the Gate-Level representation of the CAN Controller. Table I
shows the Fault Injection results. Even though the deployed
STL achieves a good fault coverage (86.83%), there are still
over 5,000 undetected faults. These faults must be classified
to allow compliance with the requirements of ISO26262.

B. Classification of Determined-Safe Faults

During the analysis of the CAN Controller, the candi-
dates for Determined-Safe Faults revealed some similarities.
According to the intended functions, we could classify the
candidates. First, several signals were constant during the
simulation of the design. From those, nine are responsible
for the configuration of the CAN Controller to operational

TABLE II
FORMAL ANALYSIS RESULTS.
Formal Analvsi SA(1/0) Structural Determined Total
orma alysis Faults Safe Safe Safe
CAN Controller 38,012 539 1,996 2,535

mode. These signals were translated into assume statements
in the constraints environment file. The combination of toggle
and block coverage also revealed not used functionalities.
The simulated workload does not enable modes like single-
shot transmission, overload requests, and early transmission.
Each of these cases must be individually analyzed. We need
to define, based on the development requirements and safety
goals, if these functionalities should be available in operational
mode. As previously stated, our initial assumption is that the
functional verification environment is available. Therefore, we
can conclude that these modes are not intended in the current
version of the CAN Controller. This assumption is reflected
in the constraints environment file by the assume statements
and fault-propagation barriers. Finally, the CAN Controller
contains registers that monitor several statuses. Some of those
are never read by the CPU. A misleading value in a monitor
or counter that is never read by the application may not
affect the expected functionality. Once again, safety goals
should be verified to confirm that the CPU is not supposed to
monitor these statuses. We have selected five status registers
to be translated as fault-propagation barriers in the constraints
environment file.

The constraints environment for the identification of
Determined-Safe Faults on the CAN controller consisted of
10 assume statements and 18 fault-propagation barriers. We
have examined the function of each included item by RTL
code investigation and monitoring of the signals during the
simulation. Also, some of the RTL internal signals needed
to be traced to wires in the Gate level representation of the
hardware to be included in the constraints environment.

Our work applies Cadence® Integrated Metrics Center
(IMC) for code coverage and Cadence® JasperGold (JG)
Formal Verification Platform Functional Safety Verification
(FSV) for Formal Analysis. The identification of Safe Faults
consisted of two steps. First, we deploy JG FSV formal
analysis for the identification of Structural-Safe Faults. Next,
we load the final constraints environment into the Formal
Analysis tool and repeat step one. The additional Safe Faults
identified in step two will be listed as Determined-Safe. The
summary of the formal analysis results is illustrated in Table
II. The computational time required for each Formal campaign
was of a couple of days. As many of the properties are
never proven, the total execution time depends on the timeout
configured for each formal property.

C. Combined Results

The results of the Fault Injection and Formal Analysis
can be combined to improve the Diagnostic Coverage. Faults
that cannot disturb safety-critical functionalities, Structural

and Determined-Safe, can be removed from the fault list.
Each possible fault target in a design must be analyzed
and classified. The annotation of the faults usually starts
with Formal Analysis to identify Structural-Safe Faults. The
remaining faults are simulated and, when applicable, annotated
as Detected. If the desired Diagnostic Coverage is achieved,
the process ends. Otherwise, the residual Undetected faults
must be re-analyzed. The Determined-Safe classification is an
alternative to annotate the remaining Undetected faults and
increase the overall Diagnostic Coverage of the design. The
Diagnostic Coverage is calculated by the formula:

DC = (Detected)/(Total — Safe) (1)

where DC is the Diagnostic Coverage, Detected are faults
annotated as detected by FI Simulation, Total is the number of
faults, and Safe represents the Structural and Determined-Safe
Faults annotated by the Formal tool.

Figure 3 details the results of the various analysis steps. The
graph illustrates the faults classification contribution achieved
during Fault Injection, Structural-Safe, and Determined-Safe
analysis. The process is incremental, always focusing on faults
that were not previously classified. Also, Figure 3 displays
the calculated Diagnostic Coverage at each step. Finally, the
last column illustrates the results when all fault analyses
are combined. As previously explained, we apply Formal
methods to decrease the number of not classified faults. As
additional Safe Faults decrease the denominator in (1), the
results from the Formal analysis cause an increase in the
Diagnostic Coverage.

Even with the increased fault classification, there are still
Undetected faults that require further analysis. The classifi-
cation of the residual faults could be achieved by improving
the STL coverage, or by creating additional formal rules to
increase the number of Determined-Safe Faults. The next
step of our work is to propose automation techniques that
can facilitate the analysis and improve even further the fault
classification.

The proposed methodology appears as a promising alter-
native for the classification of residual faults. We define a
systematic approach that allows the identification of Safe
Faults based on two well-established techniques. The iden-
tification of these faults usually relies on reliability experts
and requires deep knowledge over the system functionalities.
This manual analysis process is strenuous and prone to er-
rors. Our methodology is a step towards the automation of
the identification of Safe Faults. By deploying the proposed
methodology, we were able to classify 2,535 additional faults,
resulting in a DC improvement of around 6%. With a final DC
of 93.04%, the CAN Controller achieves the requirements for
an automotive ASIL B hardware component as-is, i.e., without
design modifications.

V. CONCLUSIONS

Functional Safety Verification is one of the most challenging
steps for Integrated Circuit (IC) compliance with 1SO26262.
The severe demands for tolerance to random faults are a hurdle

38012 94,00%
539 |
93,04% 93,00%
37012 1996 /,-'"
heE S 92,00%
%91,55%
36012 01.00%
£ o 4166 &
l:_:u 35012 90,00% g
g 3009 S5 89,00% é [Safe Faults
£ 34012 Y
= -
S / s,00% § E=Undetected
o 88,080 ¢ | TDetected
§ 33012 87,00% B
= 26,23% o B |=e=Diagnostic Coverage
32012 86,00
33007 33007 33007 23007 85,00%
31012
84,00%
30012 83,00%

Fault Injection Fault Injection +

Structural Safe

Fig. 3.

for ICs targeting safety-critical applications. Fault analysis, as
part of this process, becomes an extensive procedure that is
usually repeated numerous times and requires manual inputs
from specialists to achieve safety metrics. We propose a
methodology that deploys code coverage and Formal analysis,
as a step towards automation in Safe Faults identification.
First, we identify design elements where a fault cannot dis-
turb safety-critical functionalities. Next, those elements are
translated into formal rules that are configured in a Formal
analysis tool for the identification of Determined-Safe Faults.
The additional classification of residual faults is necessary for
compliance with 1S026262. Our methodology, in combination
with Fault Simulation, was applied to a CAN Controller IP,
resulting in a Diagnostic Coverage of 93%. The proposed
methodology appears as a promising alternative for residual
faults classification without relying solely on manual analysis.

ACKNOWLEDGMENT

This research was supported by project RESCUE funded
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sklodowaska-Curie grant
agreement No 722325.

REFERENCES

[1] ARM, “Development tools and software - Software Test Libraries,”
https://www.arm.com/products/development-tools/embedded-and-
software/software-test-libraries, 2019.

Cypress, AN204377 FM3 and FM4 Family, IEC61508 SIL2 Self-Test
Library, 2017.

Microchip, DS52076A 16-bit CPU Self-Test Library User’s Guide, 2012.
R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda,
and J.-G. Mess, “An analysis of test solutions for COTS-based systems
in space applications,” in 2018 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC). IEEE, oct 2018.

A. Nardi and A. Armato, “Functional safety methodologies for auto-
motive applications,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, nov 2017.

S. Pateras and T.-P. Tai, “Automotive semiconductor test,” in 2017
International Symposium on VLSI Design, Automation and Test (VLSI-
DAT). 1IEEE, apr 2017.

(2]

(3]
[4]

(5]

(6]

Fault Injection +
Determined Safe

[7

—

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

Fault Injection +
Total safe

Combined Results

D. Alexandrescu, A. Evans, M. Glorieux, and I. Nofal, “EDA support
for functional safety — How static and dynamic failure analysis can
improve productivity in the assessment of functional safety,” in 2017
IEEE 23rd International Symposium on On-Line Testing and Robust
System Design (IOLTS). 1EEE, jul 2017.

Y.-C. Chang, L.-R. Huang, H.-C. Liu, C.-J. Yang, and C.-T. Chiu,
“Assessing automotive functional safety microprocessor with ISO 26262
hardware requirements,” in Technical Papers of 2014 International
Symposium on VLSI Design, Automation and Test. 1EEE, 2014.

J. Raik, H. Fujiwara, R. Ubar, and A. Krivenko, “Untestable fault
identification in sequential circuits using model-checking,” in 2008 17th
Asian Test Symposium. 1EEE, nov 2008.

M. Syal and M. Hsiao, “New techniques for untestable fault identi-
fication in sequential circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 1117-1131,
jun 2006.

H.-C. Liang, C. L. Lee, and J. Chen, “Identifying untestable faults in
sequential circuits,” IEEE Design & Test of Computers, vol. 12, no. 3,
pp. 14-23, 1995.

F. Augusto da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer,
“Combining fault analysis technologies for ISO26262 functional safety
verification,” in 2019 IEEE 28th Asian Test Symposium (ATS). 1EEE,
dec 2019.

F. Augusto da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer,
“Efficient methodology for ISO26262 functional safety verification,”
in 2019 IEEE 25th International Symposium on On-Line Testing and
Robust System Design (IOLTS). 1EEE, jul 2019.

S. Marchese and J. Grosse, “Formal fault propagation analysis that scales
to modern automotive socs,” in 2017 Design and Verification Conference
and Exhibition (DVCon) Europe, 2017.

A. Bernardini, W. Ecker, and U. Schlichtmann, “Where formal verifica-
tion can help in functional safety analysis,” in Proceedings of the 35th
International Conference on Computer-Aided Design - ICCAD. ACM
Press, 2016.

G. Cabodi and M. Murciano, “BDD-based hardware verification,” in
Formal Methods for Hardware Verification. Springer Berlin Heidelberg,
2006, pp. 78-107.

F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, “Multiway
decision graphs for automated hardware verification,” Formal Methods
in System Design, vol. 10, no. 1, pp. 7-46, 1997.

ISO, ISO 26262 Road Vehicles - Function Safety - Part 5: Product devel-
opment at the hardware level, International Standardization Organization
Std., Dec. 2018.

R. Cantoro, S. Sartoni, and M. Sonza Reorda, “In-field functional test
of CAN bus controllers,” in 2020 IEEE VLSI Test Symposium (VTS) -
(to appear). IEEE, 2020.

