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The Time-Frequency Interference Terms of the
Green’s Function for the Harmonic Oscillator

Lorenzo Galleani

Abstract. The harmonic oscillator is a fundamental prototype for all types
of resonances, and hence plays a key role in the study of physical systems
governed by differential equations. The time-frequency representation of its
Green’s function, obtained through the Wigner distribution, reveals the time-
varying frequency structure of resonances. Unfortunately, the Wigner distri-
bution of the Green’s function is affected by strong interference terms with a
highly oscillatory structure. We characterize these interference terms by eval-
uating the ambiguity function of the Green’s function. The obtained result
shows that, in the ambiguity domain, the interference terms are localized and
separate from the resonance component, and hence they can be reduced by a
proper filtering.

Department of Electronics and Telecommunications
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy

1. Introduction

Differential equations model a wide variety of deterministic and random physical
phenomena. A common approach to study them are transformation techniques,
such as frequency analysis (the Fourier transform) [1] and the Laplace trans-
form [2]. An effective approach is also time-frequency analysis [3], [4], a body
of techniques for the characterization of signals whose frequency content changes
with time. Conversely from frequency analysis, where the Fourier transform con-
nects the time and frequency domains, in time-frequency analysis there are infi-
nite time-frequency representations, or distributions, such as the Wigner distribu-
tion [3], [5], [6]

Wx(t, ω) =
1

2π

∫ +∞

−∞
x∗(t− τ/2)x(t+ τ/2)e−iτωdτ. (1)
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In [7] we have obtained the Wigner distribution of the Green’s function for
the harmonic oscillator, a fundamental model for resonant phenomena defined as

d2x(t)

dt2
+ 2µ

dx(t)

dt
+ ω2

0x(t) = f(t), (2)

where f(t) is the forcing term, or input, x(t) is the solution, also referred to as
output or response, and we consider the case µ < ω0, which gives rise to a resonance
at the frequency

ωc =
√
ω2
0 − µ2. (3)

The Green’s function is defined as the solution h(t) when the forcing term is a
Dirac delta function [8]. Since the delta function is the ideal impulse, the Green’s
function is also referred to as the impulse response. The advantage of the Green’s
function is that, for any forcing term, the solution of (2) can be written through
the convolution integral

x(t) =

∫ +∞

−∞
h(t− t′)f(t′)dt′. (4)

The convolution property holds also in the time-frequency domain [3]

Wx(t, ω) =

∫ +∞

−∞
Wh(t− t′, ω)Wf (t′, ω)dt′. (5)

The Green’s function is a cornerstone for the analysis and design of physical sys-
tems and devices, and it can be used for any ordinary differential equation with
constant coefficients [1], as well as for partial differential equations.

The Wigner distribution of the Green’s function for the harmonic oscillator
is given by [7]

Wh(t, ω) =
1

4ω2
c

WhL
(t, ω−ωc)+

1

4ω2
c

WhL
(t, ω+ωc)−

1

2ω2
c

WhL
(t, ω) cos 2ωct, (6)

where

WhL
(t, ω) = u(t)e−2µt

sin 2ωt

πω
(7)

is the Wigner distribution of the Green’s function hL(t) corresponding to the first-
order differential equation

dx(t)

dt
+ µx(t) = f(t), (8)

and u(t) is the Heaviside step function defined as u(t) = 1 for t ≥ 0, and u(t) = 0
for t < 0. When f(t) is white Gaussian noise, (8) is the Langevin equation [9], a
fundamental model for random phenomena. The quantity µ > 0 is referred to as
the damping coefficient.

Unfortunately, due to its quadratic nature, the Wigner distribution is affected
by interference terms, highly oscillatory components which make the understand-
ing and interpretation of the time-frequency structure of signals a difficult prob-
lem [10]- [12]. A common approach to reduce the interference terms is to Fourier
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transform the Wigner distribution, thus obtaining the ambiguity function [3]. Be-
cause of their oscillatory behavior, in the ambiguity domain the interference terms
are mostly located away from the origin, and they can be therefore reduced by a
proper lowpass filtering [4].

We obtain the ambiguity function of the Green’s function for the harmonic
oscillator, and we show that, similarly to the Wigner distribution Wh(t, ω), it can
be written with respect to the ambiguity function of the Langevin equation. The
time-frequency interference terms of the Green’s function have a simple structure
in the ambiguity domain, which we discuss in detail. Our results can pave the
way for the design of interference mitigation filters which take advantage of the
structure of the differential equation defining the signal x(t).

We note that an alternative approach for the time-frequency study of differ-
ential equations is to transform the differential equation in the time domain to
an equivalent differential equation in the time-frequency domain, whose structure
is often more complicated than the original equation, but whose solution is often
easier to get and more revealing than in the time-domain [13]- [16].

The article is organized as follows. In Sect. 2 we define the ambiguity function
and give some of its properties. In Sect. 3 we obtain the ambiguity function for the
Langevin equation and for the harmonic oscillator, and we use it to discuss the
structure of the interference terms of these differential equations. Finally, Sect. 4
summarizes the obtained results.

2. The Ambiguity Function

The ambiguity function of a signal x(t), also referred to as the characteristic func-
tion, is defined as [3]

Ax(θ, τ) =

∫ +∞

−∞
x∗(t− τ/2)x(t+ τ/2)eiθtdt, (9)

and it plays a fundamental role in radars, where θ is the Doppler frequency and
τ the time delay. This definition is known as the symmetric ambiguity function,
and it is connected through a Fourier transformation to the Wigner distribution,

Ax(θ, τ) =

+∞∫
−∞

+∞∫
−∞

W (t, ω)eiθt+iτωdtdω. (10)

Therefore, the magnitude |Ax(θ, τ)| describes the oscillatory structure of the time-
frequency representation of x(t). Actually, (10) is an inverse Fourier transform, but
since the Wigner distribution is real, then |Ax(θ, τ)| is even with respect to θ and
τ , and therefore adopting a definition for Ax(θ, τ) which connects it to the Wigner
distribution through a direct Fourier transformation would not change |Ax(θ, τ)|.
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The cross-ambiguity function of two signals x(t) and y(t) is defined as

Ax,y(θ, τ) =

∫ +∞

−∞
x∗(t− τ/2)y(t+ τ/2)eiθtdt. (11)

We now give some properties of the ambiguity function which are useful for
our analysis. These properties can be easily proved from the definition (9) and
from (10).

Multiplication by a constant. If

y(t) = cx(t), (12)

then

Ay(θ, τ) = |c|2Ax(θ, τ). (13)

Multiplication by constants (cross-ambiguity function). If

y1(t) = c1x1(t), (14)

y2(t) = c2x2(t), (15)

then

Ay1,y2(θ, τ) = c∗1c2Ax1,x2
(θ, τ). (16)

Complex frequency modulation. When

y(t) = x(t)eiω0t, (17)

it is

Ay(θ, τ) = Ax(θ, τ)eiω0τ . (18)

Complex frequency modulation (cross-ambiguity function). When

x1(t) = x(t)eiω0t, (19)

x2(t) = x(t)e−iω0t, (20)

it is

Ax1,x2
(θ, τ) = Ax(θ − 2ω0, τ). (21)

Sum of two signals. If

y(t) = x1(t) + x2(t), (22)

then

Ay(θ, τ) = Ax1
(θ, τ) +Ax2

(θ, τ) +Ax1,x2
(θ, τ) +Ax2,x1

(θ, τ). (23)

Real frequency modulation. From the previous properties, if

y(t) = x(t) sinω0t, (24)



Interference Terms of the Time-Frequency Green’s Function 5

then

Ay(θ, τ) =
1

2
Ax(θ, τ) cosω0τ −

1

4
Ax(θ − 2ω0, τ)− 1

4
Ax(θ + 2ω0, τ). (25)

Sum of two Wigner distributions. If

Wy(t, ω) = c1Wx1
(t, ω) + c2Wx2

(t, ω), (26)

then

Ay(θ, τ) = c1Ax1(θ, τ) + c2Ax2(θ, τ). (27)

Frequency translation of the Wigner distribution. If

Wy(t, ω) = Wx(t, ω − ω0), (28)

then

Ay(θ, τ) = Ax(θ, τ)eiω0τ . (29)

Complex frequency modulation of the Wigner distribution. If

Wy(t, ω) = Wx(t, ω)eiω0t, (30)

then

Ay(θ, τ) = Ax(θ + ω0, τ). (31)

Real frequency modulation of the Wigner distribution. By using the previous prop-
erties, if

Wy(t, ω) = Wx(t, ω) cosω0t, (32)

then

Ay(θ, τ) =
1

2
Ax(θ + ω0, τ) +

1

2
Ax(θ − ω0, τ). (33)

3. The Interference Terms of the Harmonic Oscillator

We first obtain the ambiguity function AhL
(θ, τ) of the Green’s function for the

Langevin equation (8), and then we use it to obtain the ambiguity function Ah(θ, τ)
of the Green’s function for the harmonic oscillator (2).
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3.1. The Ambiguity Function for the Langevin Equation

The Green’s function of the Langevin equation (8) is given by [1]

hL(t) = u(t)e−µt. (34)

The corresponding ambiguity function is given by

AhL
(θ, τ) =

∫ +∞

−∞
h∗L(t− τ/2)hL(t+ τ/2)eiθtdt, (35)

=

∫ +∞

−∞
u(t− τ/2)u(t+ τ/2)e(−2µ+iθ)tdt. (36)

We note that

u(t− τ/2)u(t+ τ/2) = u(t− τ/2), for τ ≥ 0, (37)

u(t− τ/2)u(t+ τ/2) = u(t+ τ/2), for τ < 0. (38)

Therefore

u(t− τ/2)u(t+ τ/2) = u(t− |τ | /2). (39)

Substituting,

AhL
(θ, τ) =

∫ +∞

−∞
u(t− |τ | /2)e(−2µ+iθ)tdt, (40)

=

∫ +∞

|τ |/2
e(−2µ+iθ)tdt. (41)

Finally,

AhL
(θ, τ) =

e(−µ+iθ/2)|τ |

2µ− iθ
. (42)

In the Appendix we confirm this result by (inverse) Fourier transforming the
Wigner distribution WhL

(t, ω) in (7), whose oscillatory structure is described by
the magnitude

|AhL
(θ, τ)| = e−µ|τ |√

4µ2 + θ2
. (43)

To illustrate our result, we show WhL
(t, ω) in Fig. 1, and |AhL

(θ, τ)| in Fig. 2,
for the case µ = 5. From Fig. 1 we see that, at t = 0, the delta function at the input
generates an initial spread over all frequencies, which then concentrates about the
zero frequency. Therefore, this first-order equation can be interpreted as a resonant
system whose resonance frequency is zero. The arc-shaped waves propagating from
the origin of the ambiguity plane are interference terms. As Fig. 2 shows, the
frequency spectrum of the Wigner distribution WhL

(t, ω) is mainly concentrated
about the origin, an expected result since |AhL

(θ, τ)| is made by the product of

the Cauchy-like distribution 1/
√

4µ2 + θ2 and the symmetric exponential function

e−µ|τ |. The tails of the ambiguity function are mainly due to the interference terms
of WhL

(t, ω), which oscillates more than the resonant component at ω = 0. The
component at t = 0 contributes also to the tails of the ambiguity function.
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Figure 1. Wigner distribution of the Green’s function for the
Langevin equation. The delta function at the input generates a
time-frequency response made by an initial spread over all fre-
quencies, which then concentrates about the zero frequency. This
first-order equation can be interpreted as a system with a reso-
nance at the zero frequency. The arc-shaped waves propagating
from the origin are interference terms.
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Figure 2. Magnitude of the ambiguity function of the Green’s
function for the Langevin equation. This function has a peak at
the origin of the ambiguity plane, and has tails on the θ and τ
axes. These tails are mainly due to the interference terms of the
Wigner distribution WhL

(t, ω) in Fig. 1.
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Figure 3. Wigner distribution of the Green’s function for the
harmonic oscillator. The delta function at the input generates a
time-frequency response made by an initial spread over all fre-
quencies, which then concentrates on the resonant frequency ωc,
as well as on its symmetric counterpart at −ωc. The oscillating
components centered about the time axis are interference terms.
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Figure 4. Magnitude of the ambiguity function of the Green’s
function for the harmonic oscillator. This function is made by
three components. The first has a peak at the origin, and it rep-
resents the resonances at ωc and −ωc, merged together in the
ambiguity domain. The other two components are located on the
τ = 0 axis, at θ = 2ωc and θ = −2ωc, and they represent the
interference terms of the Wigner distribution Wh(t, ω) in Fig. 3.
These interference terms can be filtered out by a proper masking
of the ambiguity function.
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3.2. The Ambiguity Function for the Harmonic Oscillator

The Green’s function for the harmonic oscillator can be written as [7]

h(t) =
1

ωc
hL(t) sinωct. (44)

By using the properties (13) and (25) we immediately obtain

Ah(θ, τ) =
1

2ω2
c

AhL
(θ, τ) cosωcτ−

1

4ω2
c

AhL
(θ−2ωc, τ)− 1

4ω2
c

AhL
(θ+2ωc, τ). (45)

An alternative way to derive this result is to apply the properties (27), (29), and
(33) to Wh(t, ω) in (6), obtaining

Ah(θ, τ) =
1

4ω2
c

AhL
(θ, τ)eiωcτ +

1

4ω2
c

AhL
(θ, τ)e−iωcτ (46)

− 1

4ω2
c

AhL
(θ + 2ωc, τ)− 1

4ω2
c

AhL
(θ − 2ωc, τ). (47)

Combining the first two terms returns (45).

To illustrate our result, we show Wh(t, ω) in Fig. 3 and |Ah(θ, τ)| in Fig.
4, for µ = 5 and ωc = 60. From Fig. (3) we see that the input delta function at
t = 0 generates an initial spread over all frequencies, which eventually concentrates
on the resonance frequency ωc, and on its symmetric counterpart at −ωc. The
oscillating components between these two resonances are interference terms. From
(6), aside from the constants, the resonance at frequency ωc is described by the
term WhL

(t, ω − ωc) (its negative counterpart by WhL
(t, ω + ωc)), whereas the

interference terms between the two resonances are described by the oscillating term
WhL

(t, ω) cos 2ωct. Figure (4) shows that the ambiguity function is made by three
components. The component centered about the origin represents the resonant
components at ωc and −ωc, which are merged in the single term AhL

(θ, τ) cosωcτ
in (45). In the ambiguity domain, the interference terms are instead split up in the
two terms AhL

(θ−2ωc, τ) and AhL
(θ+2ωc, τ) in (45), which, in Fig. 4, correspond

to the two components centered about θ = 2ωc, τ = 0, and θ = −2ωc, τ = 0.

The interference terms can be reduced by filtering the ambiguity function
through the product

Mh(θ, τ) = G(θ, τ)Ah(θ, τ), (48)

where G(θ, τ) is the filter and Mh(θ, τ) is the filtered ambiguity function. Since,
as previously discussed, the interference terms are located on the τ = 0 axis and
centered about the frequencies ±2ωc, an effective choice for the cut-off frequency
θc of the filter can be θc < ωc. Therefore, the specifications for the lowpass filter are
|G(θ, τ)| = 1 for θ ≤ θc, and |G(θ, τ)| = 0 for θ > θc, whereas no filtering is needed
on the τ axis. Because of (3), the parameters of the interference mitigation filter
are linked to the coefficients µ and ω0 of the differential equation governing the
harmonic oscillator. We also note that, in the time-frequency domain, the filtering
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(48) corresponds to the smoothing [3]

Ch(t, ω) =

∫ +∞

−∞

∫ +∞

−∞
g(t− t′, ω − ω′)Wh(t′, ω′)dt′dω′, (49)

where

g(t, ω) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
G(θ, τ)e−iθt−iτωdθdτ. (50)

Note that, in general, the filtering (48) does not produce a proper Wigner
distribution, because not every real function of time and frequency is a Wigner dis-
tribution. This fact is known as the representability problem [3]. Anyway, filtering
is advantageous because the resulting smoothed Wigner distribution clearly high-
lights the time-frequency spectrum of systems modeled by differential equations,
as shown in [14].

Furthermore, for an arbitrary input f(t), the Wigner distribution Wx(t, ω) of
the output of the harmonic oscillator is given by the convolution (5) between the
Wigner distribution Wh(t, ω) of the impulse response and the Wigner distribution
Wf (t, ω) of the input. Clearly, Wf (t, ω) is, in general, affected by interference
terms, which can be strong, and, consequently, the resulting output Wx(t, ω) can
also have strong interference terms. In general, the structure of such interference
terms depend on the type of input signal. Nevertheless, they will have a highly
oscillatory nature, therefore the common countermeasure of smoothing them can
still be applied.

4. Summary of Results

The Langevin equation defined as

dx(t)

dt
+ µx(t) = f(t), (51)

with damping coefficient µ > 0 has a Green’s function given by

hL(t) = u(t)e−µt, (52)

whose corresponding ambiguity function is

AhL
(θ, τ) =

e(−µ+iθ/2)|τ |

2µ− iθ
. (53)

The harmonic oscillator defined as

d2x(t)

dt2
+ 2µ

dx(t)

dt
+ ω2

0x(t) = f(t), (54)

where µ < ω0, has a Green’s function given by

h(t) =
1

ωc
hL(t) sinωct, (55)

where

ωc =
√
ω2
0 − µ2. (56)
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The corresponding ambiguity function is given by

Ah(θ, τ) =
1

2ω2
c

AhL
(θ, τ) cosωcτ−

1

4ω2
c

AhL
(θ−2ωc, τ)− 1

4ω2
c

AhL
(θ+2ωc, τ). (57)

5. Conclusions

We have obtained the ambiguity function of the Green’s function for the harmonic
oscillator. The obtained result has a simple connection to the ambiguity function
of the Green’s function for the Langevin equation. The ambiguity function for the
harmonic oscillator is made by three terms. The first, centered about the origin of
the ambiguity domain, describes the resonant behavior of the harmonic oscillator.
The second and third terms, located away from the origin of the ambiguity domain,
represent the interference terms of the Wigner distribution of the Green’s function.
These interference terms can be filtered out by masking the ambiguity function,
an operation corresponding to smoothing the Wigner distribution in the time-
frequency domain.

6. Appendix

By using the property (10), the ambiguity function of the Green’s function for the
Langevin equation can be obtained from

AhL
(θ, τ) =

+∞∫
−∞

+∞∫
−∞

WhL
(t, ω)eiθt+iτωdtdω. (58)

Substituting WhL
(t, ω) from (1), gives

AhL
(θ, τ) =

+∞∫
−∞

+∞∫
−∞

u(t)e−2µt
sin 2ωt

πω
eiθt+iτωdtdω, (59)

=

∫ +∞

−∞

1

πω

[
1

2i

∫ +∞

0

e(−2µ+i(θ+2ω))tdt

− 1

2i

∫ +∞

0

e(−2µ+i(θ−2ω))tdt

]
eiτωdω, (60)

=

∫ +∞

−∞

1

πω

[
1

2i

1

2µ− i(θ + 2ω)
− 1

2i

1

2µ− i(θ − 2ω)

]
eiτωdω,(61)

=
2

π

∫ +∞

−∞

1

(2µ− iθ)2 + 4ω2
eiτωdω, (62)

=
e(−µ+iθ/2)|τ |

2µ− iθ
. (63)

which is (42).
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