POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Time-Frequency Interference Terms of the Green’s Function for the Harmonic Oscillator

Original

The Time-Frequency Interference Terms of the Green’s Function for the Harmonic Oscillator / Galleani, L. (TRENDS IN
MATHEMATICS). - In: Analysis of Pseudo-Differential Operators / Galleani L.. - STAMPA. - Basel : Springer International
Publishing, 2019. - ISBN 978-3-030-05167-9. - pp. 215-228 [10.1007/978-3-030-05168-6_9]

Availability:
This version is available at: 11583/2838310 since: 2020-07-06T12:52:46Z

Publisher:
Springer International Publishing

Published
DOI:10.1007/978-3-030-05168-6_9

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
Springer postprint/Author's Accepted Manuscript

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’'s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-05168-6_9

(Article begins on next page)

16 June 2024



The Time-Frequency Interference Terms of the
Green’s Function for the Harmonic Oscillator

Lorenzo Galleani

Abstract. The harmonic oscillator is a fundamental prototype for all types
of resonances, and hence plays a key role in the study of physical systems
governed by differential equations. The time-frequency representation of its
Green’s function, obtained through the Wigner distribution, reveals the time-
varying frequency structure of resonances. Unfortunately, the Wigner distri-
bution of the Green’s function is affected by strong interference terms with a
highly oscillatory structure. We characterize these interference terms by eval-
uating the ambiguity function of the Green’s function. The obtained result
shows that, in the ambiguity domain, the interference terms are localized and
separate from the resonance component, and hence they can be reduced by a
proper filtering.

Department of Electronics and Telecommunications
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy

1. Introduction

Differential equations model a wide variety of deterministic and random physical
phenomena. A common approach to study them are transformation techniques,
such as frequency analysis (the Fourier transform) [1] and the Laplace trans-
form [2]. An effective approach is also time-frequency analysis [3], [4], a body
of techniques for the characterization of signals whose frequency content changes
with time. Conversely from frequency analysis, where the Fourier transform con-
nects the time and frequency domains, in time-frequency analysis there are infi-
nite time-frequency representations, or distributions, such as the Wigner distribu-
tion [3], [5], [6]

+oo
W, (t,w) = % / o*(t —7/2)x(t +7/2)e” T dr. (1)

— 00
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In [7] we have obtained the Wigner distribution of the Green’s function for

the harmonic oscillator, a fundamental model for resonant phenomena defined as
d?z(t) dx(t) o

o e (r) = £0), @)

where f(t) is the forcing term, or input, z(¢) is the solution, also referred to as
output or response, and we consider the case u < wp, which gives rise to a resonance

at the frequency
we = \/wg — p2. (3)

The Green’s function is defined as the solution h(t) when the forcing term is a
Dirac delta function [8]. Since the delta function is the ideal impulse, the Green’s
function is also referred to as the impulse response. The advantage of the Green’s
function is that, for any forcing term, the solution of (2) can be written through
the convolution integral

—+oo
2(t) = / h(t — ) F(t')dt (1)
— 00
The convolution property holds also in the time-frequency domain [3]
+o00o
W, (t,w) = Wit =t w)We(t',w)dt'. (5)
—00

The Green’s function is a cornerstone for the analysis and design of physical sys-
tems and devices, and it can be used for any ordinary differential equation with
constant coefficients [1], as well as for partial differential equations.

The Wigner distribution of the Green’s function for the harmonic oscillator
is given by [7]

1

4w?

C

1
Wi, (t,w+we) = 55 Wh, (t,w) cos 2wct, (6)

1
Wh(t,w) = —WhL(t,w—wC)+ o

2
4w? 2

where

—out sin 2wt

Wi, (t,w) = u(t)e — (7)

is the Wigner distribution of the Green’s function hp, (¢) corresponding to the first-
order differential equation

P | pate) = 0, ¥
and u(t) is the Heaviside step function defined as u(t) =1 for ¢t > 0, and u(t) =0
for ¢ < 0. When f(t) is white Gaussian noise, (8) is the Langevin equation [9], a
fundamental model for random phenomena. The quantity p > 0 is referred to as
the damping coefficient.

Unfortunately, due to its quadratic nature, the Wigner distribution is affected
by interference terms, highly oscillatory components which make the understand-
ing and interpretation of the time-frequency structure of signals a difficult prob-
lem [10]- [12]. A common approach to reduce the interference terms is to Fourier
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transform the Wigner distribution, thus obtaining the ambiguity function [3]. Be-
cause of their oscillatory behavior, in the ambiguity domain the interference terms
are mostly located away from the origin, and they can be therefore reduced by a
proper lowpass filtering [4].

We obtain the ambiguity function of the Green’s function for the harmonic
oscillator, and we show that, similarly to the Wigner distribution W}, (¢, w), it can
be written with respect to the ambiguity function of the Langevin equation. The
time-frequency interference terms of the Green’s function have a simple structure
in the ambiguity domain, which we discuss in detail. Our results can pave the
way for the design of interference mitigation filters which take advantage of the
structure of the differential equation defining the signal x(t).

We note that an alternative approach for the time-frequency study of differ-
ential equations is to transform the differential equation in the time domain to
an equivalent differential equation in the time-frequency domain, whose structure
is often more complicated than the original equation, but whose solution is often
easier to get and more revealing than in the time-domain [13]- [16].

The article is organized as follows. In Sect. 2 we define the ambiguity function
and give some of its properties. In Sect. 3 we obtain the ambiguity function for the
Langevin equation and for the harmonic oscillator, and we use it to discuss the
structure of the interference terms of these differential equations. Finally, Sect. 4
summarizes the obtained results.

2. The Ambiguity Function

The ambiguity function of a signal x(t), also referred to as the characteristic func-
tion, is defined as [3]

“+o0

A (0,7) = / ¥ (t —7/2)x(t 4+ 7/2)e dt, (9)
— 00

and it plays a fundamental role in radars, where 6 is the Doppler frequency and

7 the time delay. This definition is known as the symmetric ambiguity function,

and it is connected through a Fourier transformation to the Wigner distribution,

“+o00 +0o0o
A (0,7) = / / W (t,w)e T dtdw. (10)

— 00 —O0

Therefore, the magnitude | A, (6, 7)| describes the oscillatory structure of the time-
frequency representation of z(t). Actually, (10) is an inverse Fourier transform, but
since the Wigner distribution is real, then |A, (6, 7)| is even with respect to 6 and
7, and therefore adopting a definition for A, (0, 7) which connects it to the Wigner
distribution through a direct Fourier transformation would not change |A, (6, 7)|.
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The cross-ambiguity function of two signals x(t) and y(t) is defined as

+o0
A y(0,7) = / x*(th/Q)y(t+7—/2)€i9tdt'

— 00

(11)

We now give some properties of the ambiguity function which are useful for
our analysis. These properties can be easily proved from the definition (9) and

from (10).
Multiplication by a constant. If
y(t) = ca(t),

then
Ay (0,7) = |c|* A.(0,7).

Multiplication by constants (cross-ambiguity function). If
yi(t) = ax(l),
y2(t) = coma(t),

then
Ay, e (0,7) = cieaAuy 2, (0, 7).

Complex frequency modulation. When
y(t) = x(t)e™ ",
it is
Ay, 1) = Az (0, T)eiwor,

Complex frequency modulation (cross-ambiguity function). When
wi(t) = a(t)e™,
zo(t) = a(t)e ™ot

it is

Aafhwz (9, T) = A;p(& - 2(4)077'),

Sum of two signals. If
y(t) = @1 (t) + 2(2),
then

Ay(9> T) = Awl (97 T) + Aﬂ:z (97 T) + Awl,ﬂiz (9’ T) + sz,ﬂil (97 T)'

Real frequency modulation. From the previous properties, if

y(t) = z(t) sinwot,

(12)

(13)

(22)

(23)
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then

1 1 1
Ay0,7) = §AI(9, T) COSwoT — zAx(Q — 2wp, T) — ZAQJ(O + 2w, 7). (25)

Sum of two Wigner distributions. If
Wy(t’w) = ClWih (t,(.d) + CQWﬂcz (t,LU), (26)

then
Ay(0,7) = 1A, (0,7) + c2Ay, (6, 7). (27)

Frequency translation of the Wigner distribution. If
Wy (t,w) = Wy(t,w — wo), (28)

then
Ay(0,7) = A0, T)eion. (29)

Complex frequency modulation of the Wigner distribution. If
W, (t,w) = Wy(t,w)e™ot, (30)

then
Ay, 1) = Az (0 + wo, 7). (31)

Real frequency modulation of the Wigner distribution. By using the previous prop-
erties, if

Wy (t,w) = Wy(t,w) coswot, (32)
then
1 1
Ay 0,7) = iAx(G—i—oJo,T)—i—iAm(H—wo,T). (33)

3. The Interference Terms of the Harmonic Oscillator

We first obtain the ambiguity function A, (6, 7) of the Green’s function for the
Langevin equation (8), and then we use it to obtain the ambiguity function Ay (6, 7)
of the Green’s function for the harmonic oscillator (2).
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3.1. The Ambiguity Function for the Langevin Equation

The Green’s function of the Langevin equation (8) is given by [1]
h(t) = u(t)e . (34)

The corresponding ambiguity function is given by

“+oo
A @r) = [ e /Db /2 ar (35)
= |
_ / w(t — 7 /2)ult + /2)e =20ty (36)
We note that
ult—7/2u(t+7/2) = w(t-r71/2), forT >0, (37)
ult—7/2ut+7/2) = wu(t+r71/2), forT<DO. (38)
Therefore
u(t —7/2)u(t +7/2) = u(t — |7| /2). (39)
Substituting,
+o0
A, (0.7) = / ult — 7] /2)e 2O gt (40)
= |
= / (=20t gy (41)
(/2
Finally,
o(—ntioy2)l7]
Ap, (0,7)= ————— (42)

2u — 10
In the Appendix we confirm this result by (inverse) Fourier transforming the
Wigner distribution Wy, (¢,w) in (7), whose oscillatory structure is described by

the magnitude
67”‘T|

[Ap2 + 02’
To illustrate our result, we show W}, (t,w) in Fig. 1, and |4y, (0, 7)| in Fig. 2,
for the case u = 5. From Fig. 1 we see that, at ¢t = 0, the delta function at the input
generates an initial spread over all frequencies, which then concentrates about the
zero frequency. Therefore, this first-order equation can be interpreted as a resonant
system whose resonance frequency is zero. The arc-shaped waves propagating from
the origin of the ambiguity plane are interference terms. As Fig. 2 shows, the
frequency spectrum of the Wigner distribution W}, (t,w) is mainly concentrated
about the origin, an expected result since |Ap, (6,7)| is made by the product of
the Cauchy-like distribution 1/4/4p2 4+ 62 and the symmetric exponential function
e HI7l The tails of the ambiguity function are mainly due to the interference terms
of Wy, (t,w), which oscillates more than the resonant component at w = 0. The
component at t = 0 contributes also to the tails of the ambiguity function.

|AhL (037” = (43)
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FI1GURE 1. Wigner distribution of the Green’s function for the
Langevin equation. The delta function at the input generates a
time-frequency response made by an initial spread over all fre-
quencies, which then concentrates about the zero frequency. This
first-order equation can be interpreted as a system with a reso-
nance at the zero frequency. The arc-shaped waves propagating
from the origin are interference terms.
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FIGURE 2. Magnitude of the ambiguity function of the Green’s
function for the Langevin equation. This function has a peak at
the origin of the ambiguity plane, and has tails on the 8 and 7
axes. These tails are mainly due to the interference terms of the
Wigner distribution W, (¢,w) in Fig. 1.
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FI1GURE 3. Wigner distribution of the Green’s function for the
harmonic oscillator. The delta function at the input generates a
time-frequency response made by an initial spread over all fre-
quencies, which then concentrates on the resonant frequency we,
as well as on its symmetric counterpart at —w.. The oscillating
components centered about the time axis are interference terms.

-6

FIGURE 4. Magnitude of the ambiguity function of the Green’s
function for the harmonic oscillator. This function is made by
three components. The first has a peak at the origin, and it rep-
resents the resonances at w. and —w., merged together in the
ambiguity domain. The other two components are located on the
7 = 0 axis, at § = 2w, and § = —2w,, and they represent the
interference terms of the Wigner distribution W3 (¢,w) in Fig. 3.
These interference terms can be filtered out by a proper masking
of the ambiguity function.
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3.2. The Ambiguity Function for the Harmonic Oscillator
The Green’s function for the harmonic oscillator can be written as [7]
1
h(t) = —hp(t) sinw,t. (44)
We
By using the properties (13) and (25) we immediately obtain
1 1 1
Ah(e, T) = T(UQA}LL (0, T) COS W, T — TuﬂAhL (9_2&)6, T) — m

c (& c

Ap, (042w, 7). (45)

An alternative way to derive this result is to apply the properties (27), (29), and
(33) to Wy(t,w) in (6), obtaining

1 . 1 )
Ap(0,7) = mAhL (0, 7)e'T + TwQAhL (0, 1)e " (46)
1 1
7@14}”1 (9+2wc,’r) - @AhL(Q - 2WC77—). (47)

Combining the first two terms returns (45).

To illustrate our result, we show W), (t,w) in Fig. 3 and |Ax(6,7)| in Fig.
4, for p = 5 and w. = 60. From Fig. (3) we see that the input delta function at
t = 0 generates an initial spread over all frequencies, which eventually concentrates
on the resonance frequency w,., and on its symmetric counterpart at —w.. The
oscillating components between these two resonances are interference terms. From
(6), aside from the constants, the resonance at frequency w,. is described by the
term Wp,, (t,w — w.) (its negative counterpart by Wp, (t,w + w.)), whereas the
interference terms between the two resonances are described by the oscillating term
Wh, (t,w) cos 2w.t. Figure (4) shows that the ambiguity function is made by three
components. The component centered about the origin represents the resonant
components at w. and —w,., which are merged in the single term Ay, (6, 7) cosw.T
in (45). In the ambiguity domain, the interference terms are instead split up in the
two terms Ay, (0 — 2w, 7) and Ap, (042w, 7) in (45), which, in Fig. 4, correspond
to the two components centered about § = 2w., 7 =0, and 0 = —2w,, 7 = 0.

The interference terms can be reduced by filtering the ambiguity function
through the product

Mh(QvT) = G(gvT)Ah(gvT)a (48)

where G(0,7) is the filter and M}, (6, 7) is the filtered ambiguity function. Since,
as previously discussed, the interference terms are located on the 7 = 0 axis and
centered about the frequencies +2w., an effective choice for the cut-off frequency
0. of the filter can be 0, < w.. Therefore, the specifications for the lowpass filter are
|G(0,7)] =1for 8 <., and |G(0,7)| = 0 for § > 6., whereas no filtering is needed
on the 7 axis. Because of (3), the parameters of the interference mitigation filter
are linked to the coefficients p and wy of the differential equation governing the
harmonic oscillator. We also note that, in the time-frequency domain, the filtering
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(48) corresponds to the smoothing [3]

—+o00 400
Ch(t,w) = / / gt —t',w— W )Wy(t' W)dt' du', (49)
—oo J—o0
where

1 +o0 +oo 0h i
o(t0) = 1 /_ |G dodr. (50)

Note that, in general, the filtering (48) does not produce a proper Wigner
distribution, because not every real function of time and frequency is a Wigner dis-
tribution. This fact is known as the representability problem [3]. Anyway, filtering
is advantageous because the resulting smoothed Wigner distribution clearly high-
lights the time-frequency spectrum of systems modeled by differential equations,
as shown in [14].

Furthermore, for an arbitrary input f(t), the Wigner distribution W, (¢, w) of
the output of the harmonic oscillator is given by the convolution (5) between the
Wigner distribution W}, (¢, w) of the impulse response and the Wigner distribution
W;(t,w) of the input. Clearly, W;(t,w) is, in general, affected by interference
terms, which can be strong, and, consequently, the resulting output W, (¢,w) can
also have strong interference terms. In general, the structure of such interference
terms depend on the type of input signal. Nevertheless, they will have a highly
oscillatory nature, therefore the common countermeasure of smoothing them can
still be applied.

4. Summary of Results

The Langevin equation defined as

dx(t
W0 4 p(t) = 1), G1)
with damping coefficient © > 0 has a Green’s function given by
hp(t) = u(t)e M, (52)

whose corresponding ambiguity function is
e(—[i+i9/2)‘7’|

A =
hL(97T> 2#7@9 (53)
The harmonic oscillator defined as
d*x(t) dz(t) 9
2+ a0 = f(), (54)
where p < wg, has a Green’s function given by
1
h(t) = —hp(t)sinw,t, (55)

We

where
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The corresponding ambiguity function is given by

22

c C

1 1 1
Ap(0,7) = —Ap, (0,7) coswcT—mAhL (9—2wC,T)—mAhL (0+2w., 7). (57)

5. Conclusions

We have obtained the ambiguity function of the Green’s function for the harmonic
oscillator. The obtained result has a simple connection to the ambiguity function
of the Green’s function for the Langevin equation. The ambiguity function for the
harmonic oscillator is made by three terms. The first, centered about the origin of
the ambiguity domain, describes the resonant behavior of the harmonic oscillator.
The second and third terms, located away from the origin of the ambiguity domain,
represent the interference terms of the Wigner distribution of the Green’s function.
These interference terms can be filtered out by masking the ambiguity function,
an operation corresponding to smoothing the Wigner distribution in the time-
frequency domain.

6. Appendix
By using the property (10), the ambiguity function of the Green’s function for the
Langevin equation can be obtained from
“+00 +o00
Ap, (0,7) = / / Wi, (t,w)et ™ dtduw. (58)

Substituting Wy, (t,w) from (1), gives

“+o00 +oo
in2wt g,
Ap (0,7) = / / u(t)e_g“tislr;ww T dtd, (59)
— 00 —O0
+00 0
oo TW |21 )
1t : »
- e(2,u,+7,(02w))tdt:| e”‘”dw, (60)
21 0
Tee 111 1 1 1 i
_ = - = ’LTUJd 61
[m w {2@'2;1—2'(9—&-260) 2i2u—i(9—2w)]e {681)
2 [T 1 ;
= 7/ — e dw, (62)
TJooo (2 —i0) + 4w?

e(—n+i0/2)|7] 63
N 2p —if (63)

which is (42).
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