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ABSTRACT

Floods are one of the major natural hazards in terms of a�ected people and economic damages. The increasing
and often uncontrolled urban sprawl together with climate change e�ects will make future floods more frequent
and impacting. An accurate flood mapping is of paramount importance in order to update hazard and risk maps
and to plan prevention measures. In this paper, we propose the use of a supervised machine learning approach for
flood delineation from satellite data. We train and evaluate the proposed algorithm using Sentinel-1 acquisition
and certified flood delineation maps produced by the Copernicus Emergency Management Service across di�erent
geographical regions in Europe, achieving increased performances against previously proposed supervised machine
learning approaches for flood mapping.
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INTRODUCTION

According to the Organization for Economic Cooperation and Development (OECD 2016), floods cause more than
$40 billion in damage worldwide every year. For instance, in the U.S., losses average close to $8 billion a year.
Death tolls have increased in recent decades to more than 5000 people a year (WMFD 2018), with extreme disasters
such as in China’s Yellow River Valley, where some of the world’s worst floods have killed millions of people.

Population growth and uncontrolled urban sprawl have led to an increase in built-up areas in flood-prone regions,
increasing the assets at risk and subsequently the potential adverse consequences of future flood events. Also, the
capacity of rain absorption in urban areas is lower compared to natural areas, due to both the higher water runo�
and the ine�ciencies of the sewage system. With the growing urbanization rate, the flood severity in urban areas is
likely to increase. Moreover, climate change is expected to exacerbate future flood risks as a result of the increased
extreme precipitation frequency, the intensity of cyclones and the rise of the sea levels (IPCC 2012).

Immediate impacts of flooding include loss of human lives, damages to property, destruction of crops, loss of
livestock, and deterioration of health conditions owing to waterborne diseases like typhoid, hepatitis A and cholera.
Damage to roads and infrastructure can also cause long-term impacts, such as disruptions of clean water supplies,
wastewater treatment, key infrastructures (electricity, transport communication), education and healthcare systems.
When floodwaters recede, a�ected areas are often blanketed in silt and mud, requiring recovery activities. The water
and landscape can be contaminated with hazardous materials such as sharp debris, pesticides, fuel, and untreated
sewage. Furthermore, floods can also traumatize victims and their families for long periods: the loss of loved
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ones, the displacement from home, the loss of property, post-traumatic illnesses and the disruption from the social
environment can produce psychological impacts that can be long-lasting.
To avoid all these tragic consequences, the adoption of countermeasures aimed at reducing the devastating e�ect
of floods is fundamental: analyzing past catastrophes dynamic and extension, tracking risk maps and applying
flood management methods or hazard risk reduction policies (as strategic retreat or resilience compliant buildings)
where needed, can save thousands of lives. Moreover, responders deployed in the field in first rescue missions or
floods following operations are exposed to potential dangers include electrical hazards, drowning, and exposure to
hazardous materials: a near real-time mapping of the flooded area can be a huge help to volunteers employed on
field, supplying an overview of the scenario in which they are moving, warning in case of dangerous situations and
sites.
Given the aforementioned reasons, the capability to timely and accurately map the extension of flooded areas is
of paramount importance for two main reasons: first, for the creation and update of flood hazard and flood risk
maps, required to plan prevention actions aimed to reduce the impacts of upcoming emergencies; second, for the
creation of a near real-time mapping service, which could be used during the emergency response phase to provide
additional information to first responders.
The best way to implement a worldwide and accurate flood mapping system is to exploit the data provided by satellite
networks. Among the most recent satellites are the one provided by the Copernicus Programme (Programme 2019),
which is the Earth Observation initiative promoted by the European Commission (EC) in partnership with the
European Space Agency (ESA). The Copernicus Programme aims to gather accurate, timely and easily accessible
information to improve the management of the environment, understand and mitigate the e�ects of climate change
and ensure civil security. It is composed of two main parts:

• The space component (Space 2019): it coordinates the delivery of satellite data generated by the Sentinel family.
For the purposes of this work, we highlight two missions: the Sentinel-1 mission (Sentinel-1 2019), that consists
of two twin satellites featuring a Synthetic Aperture Radar (SAR) instrument in order to provide all-weather, day
and night radar images, and the Sentinel-2 mission (Sentinel-2 2019), which is designed to deliver high-resolution
optical images for land services. Copernicus provides free access to all satellite data, o�ering great possibilities
to researchers and business companies likewise.

• The service component (Services 2019): it provides services for a range of di�erent applications such as air-quality
forecasting, flood warnings, early detection of drought and desertification, oil-spill detection and drift prediction,
sea-water quality, crop analysis, forest monitoring and many other services to manage and protect the environment
and its natural resources and ensure civil security. The Copernicus Emergency Management System (EMS) (EMS
2019) is the service intended to map, gather and provide information for emergency management covering several
hazards such as flood, earthquake, fire, etc.

The purpose of this work is to apply a traditional Machine Learning algorithm (Random Forest) and an adapted Deep
Learning model (U-Net) to the problem of flood delineation from satellite data and to evaluate its performances
against several validated flood maps in di�erent geographical regions. The objective of these models will be to
create automatic and near real-time mappings of the extension of floods striking worldwide, starting from data
gathered by Copernicus Sentinel-1 satellites.
This is made possible by the exploitation of Machine Learning and Deep Learning models trained to learn how
Delineation Map supplied by EMS are crafted with respect to satellite data and being able to autonomously (without
the need of human intervention) produce mappings of never seen before satellite data of regions a�ected (or not) by
floods, when triggered. These models will contribute to save time (output mappings are available few seconds
after the input of the correspondent satellite image) and workforce for the maps crafting, being very useful in the
Response and Recovery phase, providing to on-field responders precious information to operate in the first hours
post-hazard, for crisis management and reaction. Moreover, an automatic detection and delineation service could
lead to the gathering of a large, heterogeneous data-set, exploitable for risk analysis and elaboration of risk map in
the Preparedness phase, other than damage estimation in the Recovery phase.
Moreover, we compare the performances of our model with recent works that proposed supervised machine learning
approaches as well as with state-of-the-art classifiers, obtaining an improvement of the mapping accuracy of about
10% over our dataset.
This work is organized as follows: first, we review related works, highlighting the novelties of our study, then, we
describe the Data Sources exploited to obtain the dataset used for the flood mapping task. Next, we describe the
supervised machine learning model used and how they were trained and evaluated. Finally, we present the results
obtained and outline the conclusions as well as other possible future works.
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RELATED WORKS

In the last 20 years, several works have been proposed to map floods extent from satellite acquisitions. These studies
present solutions di�ering in terms of algorithms and data sources used. Among the di�erent satellite instruments,
the most convenient one for the task of flood mapping is the SAR because it operates at wavelengths not impeded
by cloud cover or lack of illumination. Hence, it can observe the Earth’s surface at any time of the day or night,
regardless of weather and environmental conditions, situations in which optical instruments, such as the Sentinel-2,
are often not very e�ective. For this reason, the majority of the flood mapping literature revolves around the use
of SAR data, where the most used satellite networks are RADARSAT, TerraSAR-X, COSMO-SkyMed and also
Sentinel-1, with Sentinel-1 being the most convenient option given the spatial resolution o�ered and the free data
availability. In general, most of these works aim to create an automatic near real-time system for flood detection,
using di�erent techniques to reach this target.

Early approaches are mainly based on data pre-processing, masking and thresholding (Voormansik et al. 2013,
Martinis, Twele, et al. 2009, Lu et al. 2014, Ali et al. 2018), while other works use a Fuzzy Logic approach (Twele
et al. 2016, Pulvirenti et al. 2011, Martinis, Kersten, et al. 2015). With the growing development of Artificial
Intelligence techniques, supervised machine learning classifiers have been used to delineate flood extent using
satellite data. In particular, previous works have proposed Support Vector Machines (Ireland et al. 2015), (Benoudjit
and Guida 2019), Bayesian Networks (D’Addabbo et al. 2016), Artificial Neural Networks (Kussul et al. 2011), as
well as deep learning techniques including Deep Belief Networks (DBN) (Bayik et al. 2018) and Fully Convolutional
Neural Networks (FCN) (Kang et al. 2018).

Our work di�ers from all the above for two main reasons: first, we focus on a supervised machine learning approach
comparing several models, including Support Vector Machines, Random Forest and one of the most recent and
e�ective Deep Neural Network architectures for semantic image segmentation, namely the U-Net model; second,
we evaluate the performances of the proposed models using a wide set of validated flood maps, which we obtained
from the Copernicus EMS.

DATA SOURCES

The dataset used to train and evaluate the machine learning models is composed of a set of satellite acquisition
gathered from the Copernicus Sentinel-1 mission and a set of binary masks, delineating the flooded areas and the
permanent water bodies (hydrography) that we obtain from Copernicus EMS. Next, we briefly discuss these two
data sources and how we created the final dataset used to train and evaluate the flood delineation machine learning
models.

Sentinel-1

As stated before, we opted for Sentinel-1 because its SAR instrument operates at microwaves that are not shielded
by clouds, avoiding the so-called ‘cloud coverage’ problem, which heavily undermines the quality and the usability
of optical acquisition such as the ones provided by Sentinel-2.

Sentinel-1 is characterized by a short revisit time, which is 3 days at the equator, less than 1 day at the Arctic and is
able to cover Europe, Canada and main routes in 1-3 days. It carries a single C-band SAR instrument operating at a
center frequency of 5.405 GHz (ObservationScenario 2019). Among the four Acquisition Mode supported we
choose the Interferometric Wide swath (IW) mode, that combines a large swath width (250 km) with a moderate
geometric resolution (5 m x 20 m), with VV-VH (transmit in Vertical polarisation, receives the returning signal in
both Vertical and Horizontal polarization) or VV polarization (transmit in V polarisation, receives the returning
signal in V polarisation), which is the pre-defined mode over land and coastal areas.

The Sentinel-1 instrument is able to gather di�erent images from the same series of pulses by using its antenna to
receive specific polarisations at the same time: C-SAR instrument supports operation in dual polarisation (HH+HV,
VV+VH). It can transmit a signal in either horizontal (H) or vertical (V) polarisation, and then receive the returning
signal in both H and V polarisations. Targets on the ground have distinctive polarisation signatures reflecting
di�erent polarisations with di�erent intensities and converting one polarisation into another: for example, volume
scatterers (e.g. forest canopy) have di�erent polarisation properties than surface scatterers (e.g. sea surface). (ESA
Sentinel Product Overview: Polarimetry 2019)

However, Sentinel-1 raw data has a very large dimension and thus is hard to manage. For this reason, we exploit
a service that provides the access to post-processed data: Sinergise Sentinel-Hub Service (Synergise Sentinel
Hub Overview 2019), an engine that allows the end-user to interface satellite data in a simple way in form of
satellite imagery, handling the complexity of management and the processing of raw data internally, thus making
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products coming from the most important satellite earth observation services accessible for fast and simple browsing,
visualization and analysis through a standard Web Service (Sentinel Hub EO Browser 2019) or API.

Copernicus EMS

Copernicus EMS is a free of charge service o�ered by the European Union that allows Authorized Users (National
Focal Points in the EU Member States and countries participating in the Copernicus program, as well as European
Commission services and the European External Action Service (EEAS)) to request a mapping activity of an Area
of Interest (AOI) by triggering an Activation that can be related to an emergency event. There are two service
modes:

• The Rapid Mapping: this service level guarantees that the first map is produced within hours or days from the
activation in support of emergency management activities immediately following a disaster;

• The Risk & Recovery Mapping: the service level support of activities not related to immediate response, such as
prevention, preparedness, disaster risk reduction and recovery phases.

The Copernicus EMS service allows downloading for free all the maps ever produced by the service in response to
EMS Activations. For each EMS Activation, a variable number of delineation maps is available, depending on the
number of AOIs and the time interval specified in the initial request. Delineation maps, providing an assessment of
the geographic extent of the events, are derived from satellite images acquired immediately after the disaster using
the first source available, through a semi-automatic approach, where human experts have to manually fine-tune and
validate the maps. (EMS Rapid Mappings Portfolio 2019)

DATASET CREATION

Sentinel-1 data extraction

Considering that the first Sentinel-1 satellite was launched on 3 April 2014, we consider only flood delineation
maps produced after this date until October 2018, when we performed this study. We download the Sentinel-1 data
over the same AOI of the selected delineation maps only if the data is gathered within a maximum period of 24
hours with respect to the date of the Copernicus maps in order to ensure that both data could be comparable.

Moreover, due to the fact that Sentinel-1 satellites acquire data in stripes while following an orbit, it can happen that
some acquisition matching the aforementioned conditions is not complete, covering only a portion of the requested
AOI: in such cases, we had to discard the data.

The Sentinel-1 data is downloaded from the Sentinel-Hub Service as images with a spatial resolution of 10x10m
using the RGB_RATIO configuration, which maps the input bands given by the di�erent polarizations of the SAR
instrument into a false RGB image, using the VV channel for red, 2 times the value of VH channel for green, and
the ratio |VV|/|VH|/100 for blue (R=VV, G=2VH, B=|VV|/|VH|/100). We use the RGB GeoTi� image format that is
georeferenced and orthorectified. Depending on the requested AOIs, the downloaded GeoTIFF has a size ranging
between 1000-2000 x 2000-3000 pixels.

We obtained a final dataset composed of images related to flood activations in 5 countries, namely Australia (AU),
Greece (GR), Ireland (IR), Italy (IT) and the United Kingdom (UK). We report in Table 1 the composition of the
dataset, displaying the country to which the maps belong, the map code, and the Activation.

Ground Truth Extraction

In order to use a supervised machine learning approach, we require ground truth masks, which we built using the
vector data provided in the EMS delineation maps shapefiles. For each map we create a raster flood mask, setting
all pixels belonging to flooded areas equal to 255 and 0 otherwise. We apply the same approach to generate a raster
hydrography mask, whose usage is described in the next section, in order to assist the models in discriminating
between flooded area and permanent water bodies.

The masks were adjusted to the size of the input images, adapting the length of latitude and longitude boundings of
the AOI to its dimensions.
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Table 1. Copernicus EMS maps considered in the study.

Group Activation Code Location Name Activation Date

AU EMSR184 JEMALONGCONDOBOLIN 2016-09-26

GR EMSR122 01STRYMONAS 2015-03-31
EMSR122 04MAVROTHALASSA 2015-03-31

IR EMSR149 05ENNIS 2015-12-04
EMSR149 08GORT 2015-12-04
EMSR149 13PORTUMNA 2015-12-04
EMSR149 02ATHLONE 2015-12-04
EMSR149 06COROFIN 2015-12-04
EMSR149 04CASTLECONNEL 2015-12-04
EMSR156 02LOUGHFUNSHINAGH 2016-03-04

IT EMSR192 04ASTI 2016-11-24
EMSR192 10CASALEMONFERRATO 2016-11-24
EMSR192 14ALESSANDRIA 2016-11-24
EMSR192 13SALE 2016-11-24

UK EMSR147 01CARLISLE 2015-12-05
EMSR147 04KENDAL 2015-12-05
EMSR150 01YORK 2015-12-27
EMSR150 02SELBY 2015-12-27
EMSR150 08LEEDS 2015-12-27

Data pre-processing

Despite the advantage given by the possibility to acquire images both at night and in bad weather conditions, a
common drawback of Synthetic Aperture Radar acquisitions is that it su�ers from speckle, which is a granular
noise inherent to acquisition systems based on waves relevation (including SAR) and is often characterized by a
smaller color distribution.

To limit these problems we apply a denoising operator called Non-Local Means (NL-means) (Buades et al. 2005),
which recomputes the value of each pixel ? as a weighted average of the square neighborhood of fixed size : = 5
centered at ? where the family of weights depends on the similarity between the pixel ? and the neighborhood
ones. NL-means filtering takes a mean of all pixels in the image, weighted by how similar these pixels are to the
target pixel in order to obtain an average value for each pixel that is the closest possible to the real value of the pixel
subtracting the noise.

Another operation performed in order to evaluate possible performance improvements is the aforementioned addition
of hydrography information in input to the model. In the subsection ‘Ground Truth Extraction’ is presented the
process of crafting binary masks pointing out whether the considered pixels represent natural water bodies or
not. Since in case of riverine or flash floods, flooded areas are really close to watercourse or bodies, we isolate
hydrography information adding it to the input of our algorithms in order to focus the model into discriminating
between a flooded area not naturally located there, and rivers, lakes or other water bodies, normally located on that
slice of land (not to be classified as flooded areas). This information is fed to the models using the hydrology masks
as layers overlaid above the input images.

A risk of this approach was the introduction of confusion given by adding this layer in a color already present: this
could lead to an o�set in the evaluation of images in which water bodies or rivers are present with respect to those
where this doesn’t happen. For this reason, for the hydrography layer to stack on the input images, an RGB color not
present in any of these images was searched empirically and identified in [178,255,255].
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(a) (b) (c) (d)

Figure 1. Pre-processing operations steps: (a) RGB Ratio, (b) RGB Ratio + Non Local Mean, (c) Hydrography Layer,
(d) RGB Ratio + Non Local Mean + Hydrography.

In order to make the input data, i.e. the Sentinel-1 RGB images, more homogeneous, each map is cropped
into 480x480 images, using a step of 480 pixels, meaning that there is no overlap between the resulting patches.
Consequently, we apply the same procedure to the corresponding flood and hydrography masks.

FLOOD DELINEATION MODELS: TRAINING AND EVALUATION

The final target of the work is to build a model able to detect flooded areas. Hence, the model not only has to classify
whether the image contains a flooded area but most importantly it has to identify the flood extension, detecting
which portions of the image are depicting a flood. This problem is a pixel-wise Classification task, for which the
algorithm has to classify, for each pixel of the image, if it’s flooded or not.
In this chapter the three models compared are explained, namely, the Stochastic Gradient Descent Classifier (SGD)
presented in (Benoudjit and Guida 2019), the Random Forest (RF) and finally the U-Net.

Cross Validation

In order to evaluate the capability of each model to obtain good results on di�erent geographical areas, we compute
the model performances using a Cross-Validation approach (Stone 1974), which we achieve using a k-Fold technique,
setting k to the number of groups, i.e. k=5. At each fold, we train the models on : � 1 groups and we computed the
F1-Score on the : C⌘ one. We apply the same evaluation approach to all models, namely SGD, RF, and U-Net to
have comparable results.
The 5 groups are composed by using a geographical criterion, dividing areas from Australia (AU), Greece and
Macedonia (GR-MD), Italy (IT), Ireland (IR) and United Kingdom (UK), in order to generalize the results and
ensure their independence with respect to di�erent morphologies.
The number of samples for each folder is limited to 8, which is the number of images composing the group with the
lowest cardinality.

Feature Construction

While U-Net takes as input an image and returns as output another picture, containing the labels for each pixel
(working at picture granularity and without needing explication of the features, being a feature extractor), both the
Stochastic Gradient Descent Classifier and the Random Forest take as input a series of rows, each one composed of
the features of the single pixel of the picture to classify. Based on these features the model will output a classification
for it, working at pixel granularity, ignoring spatial information, and needing an explicit representation of the
features for the particular pixel analyzed.
Among the possible features that could be engineered for each pixel, we experimented the RGB channels value of a
squared area of neighbor pixels, thus trying to provide a spatial contextualization, in the chance that flooded pixels
characterized by a local pattern (for instance proximity to water mirrors, or sharp color gaps passing from land to
water, or any other scheme not detectable by human eye), would be better recognized.
Taking each analyzed pixel as the center, the X parameter, representing the number of pixels considered in every
direction, is evaluated performing an iterative performance evaluation for models trained on sets characterized
by increasing X of neighboring pixels around the evaluated one. The X value which led to the best performance
appeared to be X=3 (6x6 pixels neighbor masks). Moreover, for these two models, hydrography information was
included as an additional feature when required, using a value of 0 for pixels not representing water bodies, 255
otherwise.
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Evaluation Criterion

Following our previous discussion, we can consider Flood Detection as a binary classification problem. The
standard way to evaluate the performance of models, in this case, is through the use of the confusion matrix, where,
for this work, the ‘flooded’ (value=1) class is conventionally defined as positive, whilst ‘not flooded’ (value=0) is
considered negative.

Analyzing the dataset it emerges that the number of ‘not flooded’ pixels is considerably higher than the number of
‘flooded’ pixels: precisely, the ‘not flooded’ pixels ratio with respect to the total pixel count is 80%. This translates,
in the Machine Learning domain, in a situation of class imbalance, that can often lead to an under-fit of the model
during the training phase and wrong classifications in the test phase.

For the same reason using accuracy for performance assessments is not reliable at all: considering the described
imbalance, any algorithm could reach about the 80% of accuracy by just classfying all the pixels as ‘not flooded’,
mistaking the entirety of classifications over the actual task: the detection of ‘flooded’ pixels.

Training the model based on this metric led to a high accuracy score, but resulted in mainly ‘not flooded’
classifications, definitely far from the ground truth. For this reason, the opposite of the F1-Score is adopted as the
loss function, keeping the F1-Score as the assessment metric.

The F1-Score (Dice 1945) (Sorensen 1948) is defined as the harmonic mean of precision and recall:

%A428B8>= =
)%

)% + �%

'420;; =
)%

)% + �#

�1 � (2>A4 = 2 ⇤ %A428B8>= ⇤ '420;;
%A428B8>= + '420;;

Considering our task, Precision points out how many pixels are classified right (TP) with respect to the totality of
pixels classified as flooded by the model (TP+FP), while Recall says how many pixels are classified right (TP) with
respect to the totality of flooded pixels in the satellite image (TP+FN).

In fact, since for our task the correct classification of the positive (‘flooded’) class is more important than the
negative one (‘not flooded’), and given the presence of class imbalance, while Accuracy score is inflated by a large
number of true negatives (majority of ‘not flooded’ pixels), the F1-Score takes into account, concerning the two
classes separately, how the hit classifications are relevant and how many they are with respect to the total, and is,
therefore, a better choice.

Model description

Baseline: Stochastic Gradient Descent

In 2019, a solution to automate the mapping of the flood extent on SAR images using an SGD based supervised
classifier was proposed by Benoudjit and Guida (Benoudjit and Guida 2019). Due to the similarity of the final
task and data source used, the model defined in the work just mentioned is used as a baseline for our models and
evaluated on our dataset.

The model proposed is the Stochastic Gradient Descent classifier as implemented in the Scikit-Learn library.(Classifier
2019) This estimator implements regularized linear models (by default, it fits a linear support vector machine
(SVM)), with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time
and the model is updated along the way with a decreasing strength schedule (aka learning rate). For this work, the
model is trained on 1000 iterations, using Hinge Loss function, with regularization term=L2 and alpha=0.0001.

Random Forest

The first model tested is a Random Forest Classifier[11] (RF), well known to be one of the most versatile Machine
Learning algorithms suitable for classification.

Random Forest is one of the most popular Machine Learning algorithms, based on the training of a certain number
of Decision Trees on di�erent subsets of features over the same dataset, where each Decision Tree learns to classify
new samples evaluating the feature values of some training samples which class is known. This means that the
algorithm is not extracting information from data, but just analyzing and learning to classify new samples based on
those yet seen: in few words, is not a feature extractor.
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The number of trees used in the Random Forest Classifier is empirically chosen, by testing 50 models, with a
linearly increasing number of Trees with a step of 2 between each one, starting from 2 arriving at 100 trees (the
default values in the implementation proposed by the Scikit-Learn library) on the test set. Analyzing the results,
optimal performances are already obtainable training a Random Forest composed by just 19 trees.

U-Net

The Deep Learning model applied is U-Net architecture: a particular instance of Convolutional Neural Network
(CNN, a class of Deep Neural Networks that represent the State of the Art in the image recognition field), based on
the model of Fully Convolutional Network, adapted to perform pixel-wise classification. CNNs are Deep Neural
Networks, a class of Artificial Neural Network with multiple layers between the input and output layers, trained to
progressively extract features of growing level from the input, passing for example from edges, lines to geometric
shapes to letters or human faces in the last levels: for this reason these models are called ‘Feature Extractors’. Since
classic CNNs produce as output a single class label for each input image, detecting for example if there is a flood or
not, they are not useful for our task, namely pixel-wise classification.

A possible solution to this problem is the one proposed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox
in their work ‘U-Net: Convolutional Networks for Biomedical Image Segmentation’ (Ronneberger et al. 2015),
originally introduced for Biomedical Image Segmentation tasks.

The U-Net is a particular instance of CNN based on the Fully Convolutional Networks (FCNs) model (Long et al.
2015), consisting of two subsequential paths of layers, which form a U-shaped architecture: in the contraction
path, the spatial information is reduced while feature information is increased at high-resolution level (the number
of feature channels increases and input dimensions decrease); In the expansion path, on the other hand, with
the concatenation between this features and the correspondent level of upsampling convolution results, a spatial
localization of the features is performed (dimensionality increases and number of feature channels decreases).

The U-Net architecture used for this work is composed by 10 Convolutional Layers in the Contracting path and
8 in the Expanding path, using Rectified Linear Units (ReLUs) as activation functions, with max-pooling layers
operating on a 2x2 Pool Size with Stride=2 with Batch Normalization.

The input of the network is composed of 480x480x3 images, while the output is 480x480x1 binary mask, given by a
last Convolutional Layer that uses the Sigmoid function as the activation function. We trained the model over 70
epochs with Batch Size=8 for each cross-validation fold, using a standard Adam Optimizer. The original U-Net
model exploits Weighted Cross-Entropy as Loss Function, requiring a particular focus on the discrimination of
borders. The Weighted Cross-Entropy is in fact particularly appropriated for this purpose.

The task of this paper involves instead the detection of extensive areas characterized by a wide variety of textures and
colors, in order to classify each pixel as ‘flooded’ or not. For this reason, a function focused on border discrimination
is not the right choice: as explained in ‘Evaluation Criterion’, the opposite of the F1-Score is used as Loss Function.

EVALUATION RESULTS

In this section, the performance of the defined models is evaluated on the same input dataset using the same cross-
validation process, and their results compared. Moreover, in order to analyze the e�ects of pre-processing operations
on the models performances, the models are trained and tested on the dataset in three di�erent configurations: raw
False-RGB images as taken from the Sentinel-Hub Service, raw False-RGB images processed with Non-Local Mean
operator, and, lastly, these one with the addition of the hydrographic information layer.

Table 2 reports the experimental results obtained, considering the di�erent models for each of the pre-processing
process operated on columns and the cross-validation folds on rows.

As it can be seen, both the pre-processing operations provide a performance boost: the Non-Local Mean Filter
results in little improvements for U-Net and RF, but substantial gains for SGD. On the contrary, the addition of the
hydrographic layer turns out to be a fundamental source of learning for the models proposed in this work, leading to
the gain of about 8% in F1-Score. An example of the performance improvements resulting from the addition of
hydrographic information is visible in Figure 2.
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Table 2. F1-Score score achieved by the evaluated machine learning models.

RGB Ratio

Group SGD RF U-Net
AU 68,0% 69,0% 88,0%
GR-MD 67,9% 88,2% 89,0%
IR 63,4% 73,3% 74,3%
IT 66,5% 60,0% 64,5%
UK 76,0% 77,7% 82,3%
Total 68,4% 73,6% 79,6%

False RGB + NL-means

Group SGD RF U-Net
AU 78,2% 75,3% 88,9%
GR-MD 76,2% 85,3% 88,6%
IR 71,6% 72,3% 75,3%
IT 66,1% 62,1% 65,1%
UK 80,8% 77,6% 83,0%
Total 74,6% 74,5% 80,2%

False RGB + NL-means + Hydrography

Group SGD RF U-Net
AU 70,8% 88,7% 87,2%
GR-MD 75,8% 91,9% 92,6%
IR 75,9% 85,5% 85,7%
IT 74,1% 72,3% 75,1%
UK 82,1% 88,1% 89,2%
Total 75,7% 85,3% 86,0%

(a) (b) (c)

(d) (e)

Figure 2. Example of performance improvement with the addition of hydrography layer for EMSR149 - 13PORTUMNA,
U-Net results: (a) Denoised input without hydrography, (b) Denoised input with hydrography, (c) Classification without
hydrography (F1-Score = 89,2%), (d) Classification with hydrography (F1-Score = 96,8%), (e) Ground truth.
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(a) (b) (c) (d)

Figure 3. Performances comparison on U-Net model best result (EMSR122 - STRYMONAS): (a) SGD (F1-Score =
90,7%), (b) RF (F1-Score = 98,4%), (c) U-Net (F1-Score = 98,6%), (d) Ground truth

(a) (b) (c) (d)

Figure 4. Performances comparison on U-Net model worst result (EMSR192 - 13SALE): (a) SGD (F1-Score = 40.5%),
(b) RF (F1-Score = 55,6%), (c) U-Net (F1-Score = 54,7%), (d) Ground truth

Moreover, the U-Net is the model that obtains the best overall performances considering all the three input
configurations, while RF and SGD take over on each other alternatively, depending on the cross-validation group or
type of input. On average, the U-Net first, and the RF then, overcome the performances of the baseline, registering
respectively, in the best-case scenario, an F1-Score of 86% and 85,3%. A visual comparison of some of the results
obtained from the models is visible in Figure 3 and 4.

CONCLUSION AND FUTURE WORKS

In this paper we presented a possible solution for automatic and fast detection of flooded areas based on the ESA
Copernicus Sentinel-1 mission, analyzing the State of the Art in the field, describing a methodology and two
di�erent models compared to a baseline.

Despite the fact that the purposed system could provide an important contribution in emergency management in the
Response phase, it is important to remember how the creation of near real-time mapping strongly depends on the
availability of satellite data acquired over the a�ected the areas: since Sentinel-1 mission is able to cover Europe,
Canada and main routes in 1-3 days, this is obviously not always possible.

Moreover, this service could lead to the gathering of big amount of information about floods in a far less complex
way, strongly supporting Recovery and Preparedness tasks as risk maps creation and damage estimation.

We described the data fetching and mask crafting processes starting from certified emergency annotations created
by ESA Copernicus Emergency Management System, then listed the pre-processing operations, performed and
analyzed the improvements brought by those operations, and pointed out the importance of supplying to the models
the hydrography information about the a�ected areas.

We then analyzed the performances of the proposed models with respect to the baseline, showing how both models,
U-Net in particular, reach high scores in the flood detection task, exploiting the overlay of hydrographic information
layers and overcoming the baseline presented.

It is also noteworthy how, while CNNs generally need a high number of training samples in order to perform well,
in this work the U-Net architecture reaches good performances exploiting a very limited set of samples. This is
most certainly due to the advantage of U-Net architecture, that can be trained on fewer samples, as stated in the
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work in which it is introduced, but the results reached are still beyond expectations considering the very low number
of training samples used.

For this reason, planned future work is to experiment the models on a dataset composed of a higher number of
samples, increasing the number of folds involved in Cross-Validation. This translates in increasing the number of
Earth places (and so possible di�erent morphologies) analyzed, to ensure the global extensibility of the method
proposed.

Moreover, considering the fact that Deep Neural Networks currently represents the state of the art in the field of
image recognition, the Random Forest model, indeed, showed great potential, with performances comparable to the
U-Net: possible future works could focus on a feature engineering process more complex than the one used in this
work, in order to improve Random Forest performances: a possible solution could be exploiting spatial concepts
as proximity of the analyzed pixel to water bodies (that could help to overcome problems due to noise or color
incoherence) or information coming from the Digital Elevation Model of the considered areas of interest.

The increasing number of samples to analyze and the consequential training time di�culties could be handled
through the parallelization of the training on GPUs, made possible by RAPIDS, a suite of software libraries for
executing end-to-end data science & analytics pipelines entirely on GPUs (Rapidsai 2019, cuML 2019).
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