
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Posing 3D characters in virtual reality through in-the-air sketches / Cannavo', Alberto; Zhang, Congyi; Wang, Wenping;
Lamberti, Fabrizio. - STAMPA. - 1300:(2020), pp. 51-61. (Intervento presentato al convegno 33rd International
Conference on Computer Animation and Social Agents (CASA 2020) tenutosi a Bournemouth, United Kingdom nel
October 13-15, 2020) [10.1007/978-3-030-63426-1_6].

Original

Posing 3D characters in virtual reality through in-the-air sketches

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-030-63426-1_6

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-63426-1_6

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2837971 since: 2020-12-23T18:09:06Z

Springer

Posing 3D Characters in Virtual Reality
through In-the-Air Sketches

Alberto Cannavò
Politecnico di Torino

alberto.cannavo@polito.it

Congyi Zhang
The University of Hong Kong

cyzh@hku.hk

Wenping Wang
The University of Hong Kong

wenping@cs.hku.hk

Fabrizio Lamberti
Politecnico di Torino

fabrizio.lamberti@polito.it

Abstract
Generating computer animations is a very
labor-intensive task, which requires animators
to operate with sophisticated interfaces. Hence,
researchers continuously experiment with alter-
native interaction paradigms that could possibly
ease the above task. Among others, sketching
represents a valid alternative to traditional
interfaces since it can make interactions more
expressive and intuitive; however, although the
literature proposes several solutions leveraging
sketch-based interfaces to solve different com-
puter graphics challenges, generally they are
not fully integrated in the computer animation
pipeline. At the same time, Virtual Reality
(VR), is becoming commonplace in many
domains, and recently started to be recognized
as capable to make it easier also the animators’
job, by improving their spatial understanding
of the animated scene and providing them with
interfaces characterized by higher usability and
effectiveness. Based on all of the above, this
paper presents an add-on for a well-known
animation suite that combines the advantages
offered by a sketch-based interface and VR to let
animators define poses and create virtual char-
acter animations in an immersive environment.

Keywords: 3D Animation Sketch-based
interfaces Virtual Reality

1 Introduction

Nowadays, the generation of virtual charac-
ter animations is becoming fundamental for a
number of applications, from the production of
movies and video-games to the creation of a va-
riety of virtual environments (VEs) used, e.g.,
in education, cultural heritage, product design,
and social networking scenarios, to name a few
[1, 2]. However, animating 3D characters still
represents a very labor-intensive task and is gen-
erally characterized by the involvement of ex-
pert users with significant skills in the field of
computer animation [3, 4].

According to [5], the complexity underlying
the creation of animated characters lays in the
posing step. In this step, animators are often re-
quested to select and manipulate a large number
of on-screen 3D “handles” for articulating the
character’s virtual skeleton. This set of handles
is often referred to as an “armature” or a “rig”,
constituted by rigid elements named “bones”.
Handles/Bones can be used by the animators
to directly or indirectly manipulate the degrees
of freedom (DOFs) of all the individual charac-
ter’s parts/joints [6]. Unfortunately, many an-
imation systems still leverage traditional inter-
faces for system input and output, like mouse
and keyboard or 2D displays, which represent
sub-optimal means to handle interactions en-
compassing a larger number of DOFs [3, 7].

Considering the user input, among the ap-

https://orcid.org/0000-0002-6884-9268
https://orcid.org/0000-0002-4259-2863
https://orcid.org/0000-0002-2284-3952
https://orcid.org/0000-0001-7703-1372

proaches proposed in the literature to tackle the
above issues a promising means is represented
by sketch-based interfaces. It is worth mention-
ing that sketching is already exploited in oth-
ers steps of the creative process, e.g., for build-
ing up shapes, exploring motion with rough key
poses, drawing storyboards, etc. [8]. In fact,
the literature shows that sketch-based interfaces
have been successfully investigated by the re-
search community to cope with limitations faced
in various computer graphics applications, since
they enable an expressive, simple and intuitive
interaction that is close to the functioning of
many cognitive processes [9]. Applications of
sketch-based interfaces for character animation
encompass modeling [10], rigging [11], posing
[6], crowd simulation [12], etc. However, ar-
ticulated characters may have a relatively high
number of DOFs to control, and taking into ac-
count the complexity of operating with 3D el-
ements through 2D devices or of interpreting
2D line drawings in 3D, it is not surprising that
sketch-based animation of articulated characters
remains an open problem [7, 13].

For what it concerns system output, it is pos-
sible to notice that, similarly to the the user in-
put, it can be affected by the limited dimen-
sionality of the visualization methods. With
2D displays, animators are requested to contin-
uously change the position of the virtual cam-
era or simultaneously look at multiple views of
the scene been animated in order to visualize the
contents of interest from the required viewpoint
[14]. Both these solutions could led to an in-
creased complexity in the usage of the animation
tools, especially for novice users [3]. Given such
limitations, an increasing number of users with
different skills like, e.g., digital artists, film-
makers and storytellers, among others, recently
started to pose their attention to the opportuni-
ties offered by Virtual Reality (VR) not only as
a means to visualize character animations, but
also to create them [15]. Although various com-
mercial products and research prototypes are al-
ready available in the main VR stores, most of
them provide a limited integration with common
animation suites [3, 16]. More specifically, in
order to apply changes or reuse the animations
generated within immersive environments, ani-
mators are generally requested to continuously
perform import/export operations. These ad-

ditional operations may slow down the whole
animation process, and could be perceived as
highly distracting by the animators.

By moving from the above considerations,
this paper presents a system for character posing
able to combine the benefits offered by sketch-
based interfaces and VR technology. With this
system, animators can manipulate a rigged vir-
tual character by sketching lines into an immer-
sive VE. To this aim, relevant works in the litera-
ture have been considered in order to extend the
capabilities of existing 2D solutions to 3D im-
mersive VEs. Moreover, the sketch-based inter-
face is integrated in the well-know Blender mod-
eling and animation suite1, with the aim to let
animators reuse articulated characters without
the need for import/export operations. Lastly,
since in the devised system the traditional and
the sketch-based VR interfaces can be used at
the same time, multiple users can observe and
possibly work on the scene in a collaborative
way.

2 Related works

Researchers have long acknowledged the ben-
efits brought by the use of sketch-based inter-
faces to execute a broad range of tasks in the
computer animation field. For example, the au-
thors of [17] presented a mathematical definition
of the Line of Action (LOA), a conceptual tool
used by cartoonists and illustrators to make the
animated characters more consistent and dra-
matic. The system provides animators with an
automatic procedure (based on an optimization
problem) to align a 3D virtual character with a
user-specified LOA. By considering this simple
abstraction, the animator can easily adjust and
refine the overall character’s pose from a fixed
viewpoint. The work proposes an automatic al-
gorithm to define the correspondences between
the LOA and a subset of the character’s bones;
the well-known depth ambiguities problem of
2D sketches [17] is addressed by constraining
the transformations to the viewing plane.

In [6], a sketch-based posing system for 3D
rigged characters was proposed letting anima-
tors create a custom sketch abstraction, i.e., a set
of rigged curves that constitute an iconographic

1https://www.blender.org/

2D representation of the character from a par-
ticular viewpoint, on top of a character’s shape.
When the animator provides a new input sketch,
the system automatically tries to determine the
rigging parameters that best align the character’s
sketch abstraction to the input sketch by mini-
mizing the nonlinear iterative closest point en-
ergy. The distinguishing feature of the method
presented in [6] is that it does not require any
specific sketch representation a priori, but rather
allows the animator to encode the sketch ab-
stractions that are the most appropriate for the
character to be deformed.

The work in [13] introduced a sketch-based
character posing system which is more flexi-
ble than those introduced above. In fact, the
sketches provided as input for character defor-
mation may depict the skeleton of the character,
its outline, or even a combination of the two ele-
ments. An optimization problem is formulated
to determine the match between the subset of
vertices of the character’s mesh and the points
obtained by sampling the input sketch.

The method that was presented in [18] is
able to reconstruct the character’s pose by us-
ing 2D “gesture drawings” and a 3D character
rigged model as input. The benefit coming from
the use of gesture drawings over other 2D in-
puts is the lack of perceptual ambiguities. Un-
like stick-figures, LOA, and outer silhouettes,
gesture drawings allow animators to unambigu-
ously convey poses to human observers. By
recognizing and leveraging the perceptual pose
cues provided when creating these drawings, the
system is able to automatically reconstruct char-
acter’s poses that are consistent with the ani-
mator’s intent. The system is able to manage
complex poses with varying and significant part
foreshortening, occlusions, and drawing inaccu-
racies.

The work in [8] described a method to in-
fer a 3D character’s pose from a monocular 2D
sketch. Since the devised method does not as-
sume any specific characteristics of the model,
it can be exploited with different types of char-
acters. The 3D pose estimation is expressed as
an optimization problem. In particular, a paral-
lel variation of a Particle Swarm Optimization
(PSO) algorithm [19] is used to manipulate the
pose of a preexisting 3D model until a suitable
pose is found. The pose is determined by au-

tomatically comparing the 3D rendering of the
model and the input drawing. During the pro-
cess, user’s input is still needed to pinpoint the
joints on the drawing.

3 Proposed system

From the analysis of the literature, it can be no-
ticed that existing systems for posing 3D charac-
ters using sketches are still based on 2D devices.
As a result, the viewpoint from which the sketch
is drawn represents a key factor in the creation
of the pose, since it influences the accuracy of
the final 3D result.

The basic idea behind the system presented
in this paper is to turn the existing methodology
from 2D to 3D, letting animators draw sketches
directly in an immersive VE. Fig. 1 shows the
expected usage of the proposed system. Given
a 3D rigged character and some sketches drawn
by the animator into the VE, the system is able
to automatically align them by minimizing their
distance. The system assumes that a skeleton is
already defined for the character: hence rigging
and skinning are not considered (both immer-
sive and non-immersive methods reported, e.g.,
in [4] could be used to those purposes).

Another disadvantage of the solutions pro-
posed in the literature is the fact that they gen-
erally come as standalone applications. Hence,
integration with common animation suites like
Blender, Autodesk Maya, etc. can take place
only in a separate step of the animation work-
flow, thus making the process more tricky. The
design reported in this paper considered the as-
pect above, and devised the system as an add-on
for Blender. The aim of the proposed sketch-
based system is not to replace Blender, but rather
to offer an alternative interaction means that

Figure 1: Expected use of the proposed system.

combines the affordances of posing characters
via in-the-air sketches and the advanced func-
tionalities targeted to character animation pro-
vided by traditional software, with the ultimate
goal to speed up the overall process.

The steps followed in the development of the
proposed system and the challenges to be solved
can be summarized as follows:

• creating an immersive environment where
the user can draw sketches;

• designing a methodology to find the best
mapping between the sketches provided as
input and the skeleton of the character to be
deformed;

• developing a methodology to find the trans-
formations to be applied to the bones in the
character’s skeleton in order to align them
with the sketches;

• integrating the devised solution into a well-
know animation suite.

These requirements were considered in the
design and implementation of the two main
components of the system, i.e., a VR-based en-
vironment integrated in Blender letting anima-
tors draw 3D sketches, and a matching & align-
ing algorithm in charge of articulating the char-
acter’s skeleton to make it assume the poses rep-
resented by the given sketches. In the follow-
ing, more details about the VR-based environ-
ment as well as the functioning of the algorithm
will be given. Current development state of the
proposed system will be provided too.

3.1 VR-based environment for 3D
sketching

The devised system was developed as an add-on
for Blender by leveraging two existing libraries:
the Virtual Reality Viewport library2 and the Py-
openvr SDK3.

The Virtual Reality Viewport library lets
Blender’s users visualize a 3D scene (con-
taining the characters to be animated and the

2VR Viewport: https://github.com/
dfelinto/virtual_reality_viewport

3Pyopenvr: https://github.com/cmbruns/
pyopenvr

Figure 2: Blender’s interface and the new add-
on for sketching in VR.

sketches being created) into an immersive en-
vironment through a Head-Mounted Display
(HMD). Pyopenvr is a binding for the Valve’s
OpenVR SDK designed to made the status of the
HTC Vive’s controllers (and HMD) available in
Python; it can be exploited to implement spe-
cific functionalities when the user interacts with
the controllers.

Fig. 2 shows the main Blender’s interface and
the new add-on. On the left side, the window
of 3D View editor is shown, which contains the
3D objects, i.e., the virtual character (in gray),
its skeleton (in green), the virtual representa-
tion of the two controllers (in black), and the
sketches drawn by the user (in blue). The con-
tent of this window is visualized in VR through
the HMD. The remaining panels are those of the
traditional, mouse & keyboard-based, Blender’s
interface.

The developed tool’s functionalities can be
accessed in the immersive environment by act-
ing on the controllers. Currently, the tool allows
the user to:

• draw a stroke (right controller’s Trigger);

• select the character to pose (right/left con-
troller’s Gripper);

• apply translation and rotation transforma-
tions to the selected character (left con-
troller’s Trigger)

• launch the algorithm (right controller’s
Trackpad Up);

• reset the transformations applied to the
skeleton by setting the rest pose for it (right
controller’s Trackpad Right);

https://github.com/dfelinto/virtual_reality_viewport
https://github.com/dfelinto/virtual_reality_viewport
https://github.com/cmbruns/pyopenvr
https://github.com/cmbruns/pyopenvr

• delete all the strokes drawn by the user
(right controller’s Trackpad Down);

• delete the last stroke drawn by the user
(right controller’s Trackpad Left);

• activate the playback of the animation (left
controller’s Trackpad Up);

• navigate the timeline by increas-
ing/decreasing the current frame (left
controller’s Trackpad Right/Left);

• insert a keyframe to record the orientation
of all the bones in the character’s skele-
ton for the current frame (left controller’s
Trackpad Down).

Controllers’ buttons functionalities are illus-
trated in Fig. 3. Visual feedback was introduced
to simplify interaction with the system. In par-
ticular, on the right controller, a label indicates
the current system’s status, i.e., Idle (waiting
for a new command) or Selection (functionali-
ties for changing the skeleton to be manipulated
available), and the currently skeleton selected.
On the left controller, a label shows the cur-
rent frame and the presence of a keyframe for
the selected skeleton; if a keyframe has been set
for the current frame, the text is colored yellow,
otherwise it remains gray (convention used in
Blender).

3.2 Matching & aligning algorithm

The devised algorithm represents a revised ver-
sion of the method proposed in [13], where the
problem of identifying the mapping between the
pose of a virtual character and an input sketch
was expressed as an optimization problem. The
problem can be summarized as follows: given
two sets of points, the sampled input sketch Y =
(y1, y2, ..., yM) and a subset of points belonging
to the character model V = (v1, v2, ..., vK), find
the correspondence, or match matrix, ω, and the
amount of deformations in p that minimize the
energy E3D(ω, p) expressed as:

min(ω, p)
M∑
i=1

K∑
k=1

ωki ‖yi − vk(p)‖22 +

+Φ(p)− ζ
M∑
i=1

K∑
k=1

ωki

(1)

Figure 3: Functionalities available through the
controllers.

subject to the following constraints:

M+1∑
i=1

ωki = 1;
K+1∑
k=1

ωki = 1;ωki ∈ {0, 1} (2)

where ω = {ωk,i}(K+1)×(M+1)is the correspon-
dence matrix consisting of two parts: the upper-
left K × M part defines the correspondence,
whereas the extra K + 1-th row and M + 1-th
column are introduced to handle the outliers; the
points in V and Y having no correspondences
are considered as outliers; p is a vector contain-
ing the character posing parameters on the joints
which deform points in V to Y in order to ob-
tain a new pose V (p) as close as possible to Y ;
Φ(p) is a regularization term, used to add further
constraints for searching candidate solutions in
a limited space; ζ is a scalar factor to weight the
contribution of the last term of the equation, in-
troduced to prevent treating too many points as
outliers.

In order to solve equation (1), the method-
ology presented in [13] proposes an alternating
strategy to find the correspondence parameter ω
and the deformation parameters p. Going back
and forth between the correspondence and pose
in an iterative way can help to solve the prob-
lem, since the knowledge of one element rela-
tively makes it easier the determination of the
other one.

By fixing p, it is possible to determine the
sub-optimal values for ω by using two tech-
niques: softassign [20] and deterministic an-
nealing [21]. Unfortunately, in [13], no tech-
nical details were provided on how to use these
two methods for the given problem. Hence, to
implement them, the original paper presenting
the use of these techniques for 2D and 3D point
matching was considered [21]. The idea of the

softassign algorithm is to relax the binary corre-
spondence variable ω to be a continuous-valued
matrix in the interval [0, 1]. The continuous
nature of the matrix basically allows for fuzzy,
partial matches between the two sets of points
[21]. From an optimization point of view, this
fuzziness makes the resulting energy function
behave better, because the correspondences are
able to improve gradually and continuously dur-
ing the optimization, without jumping around in
the space of binary permutation matrices (and
outliers) [20]. The row and column constraints
in equation (2) can be enforced via iterative
row and column normalization of ω [22]. De-
terministic annealing can be applied to directly
control the fuzziness introduced with the soft-
assign algorithm by adding an entropy term to
the original assignment energy function in equa-
tion (1) [21]. The newly introduced parameter β
is called the temperature parameter. The name
comes from the fact that, as one gradually re-
duces β, the energy function is minimized by a
process similar to physical annealing. At higher
temperatures, the entropy term forces the corre-
spondence to be fuzzier. The values achieved
at each temperature are adopted as initial con-
ditions for the next stage as the temperature is
lowered. According to the above techniques, the
correspondence matrix is updated at each iter-
ation using the expression ωki = exp(βQki),
where Qki = −∂E3D

∂ωjk
. At each iteration, the

value of β is incremented by a fixed amount
which is defined at the beginning of the process.

Once the correspondence is found, it is possi-
ble to fix ω to obtain the parameters in p which
minimize the energy function in equation (1).
Blender’s functionalities were used to get the
transformation values that best aligns the char-
acter’s skeleton to the corresponding points in
the sketch.

The algorithm is executed until the correspon-
dence matrix converges or the maximum num-
ber of iterations is reached.

3.3 Current development state

At present, the system supports multiple strokes
and multiple skeletons; if the scene contains
more than one character, all of them can be
manipulated using the above approach (one at
a time) by drawing a stroke for each of their

bones. Fig. 4 shows several characters (whose
geometry was kept intentionally simple) char-
acterized by armatures with a different topol-
ogy. Fig. 4a, 4e, and 4g shows the armatures
in rest pose and the drawn sketches, whereas
Fig. 4b, 4f, and 4h illustrate automatically com-
puted poses. Fig. 4c and Fig. 4d show a set of
alternative keyframes that have been obtained
for the armature in rest pose of the charac-
ter in Fig. 4a by drawing the sketches repre-
sented in the figures. In order to show the cur-
rent development state and the effect that drawn
sketches have on the characters’ poses, a video
was recorded: the video, which is available for
download4, shows a user animating two differ-
ent characters. The source code of the project is
available too5.

Currently, the system presents the limitations
reported below.

• The proposed algorithm assumes that
strokes are provided for all the bones in
the character’s armature. If some strokes
are not drawn, possible splits in the arma-
ture (e.g., the arms of the human charac-
ter in Fig. 4a) will be mapped on the same
stroke, by overlapping the two chains. A
mechanism could be implemented to let the
users specify the set of bones to be actu-
ally aligned, making the algorithm disre-
gard some parts of the armature.

• Labels on the controllers representing
available functionalities could be difficult
to read in VR due to the limited resolu-
tion of the HMD. More meaningful graph-
ics (e.g., 3D icons) could be used to im-
prove the user experience.

• Users may find it difficult to accurately
draw strokes in VR with the controllers,
since visual feedback representing the ac-
tual position in which the strokes will be
drawn is missing. Possible solutions could
consider the integration of ad-hoc interac-
tion devices (like, e.g., Logitech’s VR Ink6)
as well as methods to snap the strokes on
given points.

4Video: https://bit.ly/35GdKqO
5Source code: https://bit.ly/3eQPHK0
6VR Ink: https://bit.ly/3ghpfcI

https://bit.ly/35GdKqO
https://bit.ly/3eQPHK0
https://bit.ly/3ghpfcI

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Examples of armatures articulated through 3D sketches.

• The high sampling rate of the controller
movements could generate noisy sketches.
Mechanisms could be introduced for sketch
beautification.

4 Conclusions and future work

The proposal described above represents the
baseline for a system able to perform a challeng-
ing computer graphics task, i.e., virtual char-
acter posing, by combining advantages brought
by the use of sketch-based interfaces and VR
technology. Besides tackling limitations men-
tioned above, experiments with end-users could
be performed in the future to assess the effec-
tiveness/intuitiveness of the proposed interac-
tion method and to estimate the actual contri-
bution of VR by collecting, e.g., the time re-
quired for posing different types of characters,
data about users’ tiredness, etc., possibly com-
paring it with traditional approaches. Moreover,
effort could be devoted to integrating machine
learning algorithms for making the system able
to reconstruct the entire character pose or the
overall animation by sketching only a few lines
of the pose.

Acknowledgements

Work has been supported by VR@POLITO ini-
tiative.

References

[1] Paul C DiLorenzo. Premo: Dreamworks
animation’s new approach to animation.
IEEE Computer Graphics and Applica-
tions, 35(4):14–21, 2015.

[2] Juncong Lin, Takeo Igarashi, Jun Mitani,
Minghong Liao, and Ying He. A sketch-
ing interface for sitting pose design in the
virtual environment. IEEE Transactions
on Visualization and Computer Graphics,
18(11):1979–1991, 2012.

[3] Daniel Vogel, Paul Lubos, and Frank
Steinicke. AnimationVR – Interactive
controller-based animating in virtual real-
ity. In Proc. 1st Workshop on Animation
in Virtual and Augmented Environments,
pages 1–6. IEEE, 2018.

[4] Alberto Cannavò, Claudio Demartini, Lia
Morra, and Fabrizio Lamberti. Immersive
virtual reality-based interfaces for charac-
ter animation. IEEE Access, 7:125463–
125480, 2019.

[5] Mikko Kytö, Krupakar Dhinakaran, Aki
Martikainen, and Perttu Hämäläinen. Im-
proving 3D character posing with a ges-
tural interface. IEEE Computer Graphics
and Applications, 37(1):70–78, 2015.

[6] Fabian Hahn, Frederik Mutzel, Stelian
Coros, Bernhard Thomaszewski, Maurizio
Nitti, Markus Gross, and Robert W. Sum-
ner. Sketch abstractions for character pos-
ing. In Proc. 14th ACM SIGGRAPH / Eu-
rographics Symposium on Computer Ani-
mation, pages 185–191, 2015.

[7] Byungkuk Choi, Roger B Ribera, J. P.
Lewis, Yeongho Seol, Seokpyo Hong,
Haegwang Eom, Sunjin Jung, and Junyong
Noh. Sketchimo: Sketch-based motion
editing for articulated characters. ACM
Transactions on Graphics, 35(4):146:1–
146:12, 2016.

[8] Alexandros Gouvatsos, Zhidong Xiao,
Neil Marsden, and Jian J. Zhang. Posing
3D models from drawings. Computer in
Entertainment, 15(2):2:1–2:14, 2017.

[9] Michelle Annett, Fraser Anderson, Wal-
ter F Bischof, and Anoop Gupta. The
pen is mightier: Understanding stylus be-
haviour while inking on tablets. In Proc. of
Graphics Interface 2014, pages 193–200.
Canadian Information Processing Society,
2014.

[10] Changjian Li, Hao Pan, Yang Liu, Xin
Tong, Alla Sheffer, and Wenping Wang.
Robust flow-guided neural prediction for
sketch-based freeform surface modeling.
In Proc. SIGGRAPH Asia 2018, page 238.
ACM, 2018.

[11] Péter Borosán, Ming Jin, Doug DeCarlo,
Yotam Gingold, and Andrew Nealen.
Rigmesh: Automatic rigging for part-
based shape modeling and deformation.
ACM Transactions on Graphics, 31(6):1–
9, 2012.

[12] Chen Mao, Sheng Feng Qin, and David
Wright. Sketch-based virtual human mod-
elling and animation. In Proc. 8th Inter-
national Symposium on Smart Graphics,
pages 220–223, 2007.

[13] Simone Barbieri, Nicola Garau, Wenyu
Hu, Zhidong Xiao, and Xiaosong Yang.
Enhancing character posing by a sketch-
based interaction. In Proc. SIGGRAPH
2016 Posters, pages 56:1–56:2, 2016.

[14] Michael F Deering. Holosketch: A vir-
tual reality sketching/animation tool. ACM
Transactions on Computer-Human Inter-
action, 2(3):220–238, 1995.

[15] Jeff Gipson, Lauren Brown, Ed Robbins,
Jose Gomez, Mike Anderson, Jose Ve-
lasquez, Jorge Ruiz, and Dan Cooper. VR
Story production on Disney animation’s
cycles. In ACM SIGGRAPH 2018 Talks,
pages 1–2, 2018.

[16] Natapon Pantuwong. A tangible inter-
face for 3D character animation using aug-
mented reality technology. In Proc. 8th
International Conference on Information
Technology and Electrical Engineering,
pages 1–6. IEEE, 2016.

[17] Martin Guay, Marie-Paule Cani, and Rémi
Ronfard. The line of action: An intuitive
interface for expressive character posing.
ACM Transactions on Graphics, 32:1–8,
2013.

[18] Mikhail Bessmeltsev, Nicholas Vining,
and Alla Sheffer. Gesture3d: Pos-
ing 3D characters via gesture draw-
ings. ACM Transactions on Graphics,
35:165:1–165:13, 2016.

[19] James Kennedy and Russell Eberhart. Par-
ticle swarm optimization. In Proc. Inter-
national Conference on Neural Networks,
pages 1942–1948. IEEE, 1995.

[20] Alan L Yuille and JJ Kosowsky. Statistical
physics algorithms that converge. Neural
computation, 6(3):341–356, 1994.

[21] Steven Gold, Anand Rangarajan, Chien-
Ping Lu, Suguna Pappu, and Eric Mjol-
sness. New algorithms for 2D and 3D point
matching: Pose estimation and correspon-
dence. Pattern Recognition, 31(8):1019–
1031, 1998.

[22] Richard Sinkhorn. A relationship be-
tween arbitrary positive matrices and dou-
bly stochastic matrices. The Annals of
Mathematical Statistics, 35(2):876–879,
1964.

	Introduction
	Related works
	Proposed system
	VR-based environment for 3D sketching
	Matching & aligning algorithm
	Current development state

	Conclusions and future work

