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Abstract 

Hybrid electric vehicle (HEV) powertrains are characterized by a 

complex design environment as a result of both the large number of 

possible layouts and the need for dedicated energy management 

strategies. When selecting the most suitable hybrid powertrain 

architecture at an early design stage of HEVs, engineers usually focus 

solely on fuel economy (directly linked to tailpipe emissions) and 

vehicle drivability performance. However, high voltage batteries are 

a crucial component of HEVs as well in terms of performance and 

cost. This paper introduces a multitarget assessment framework for 

HEV powertrain architectures which considers both fuel economy 

and battery lifetime. A multi-objective formulation of dynamic 

programming is initially presented as an off-line optimal HEV energy 

management strategy capable of predicting both fuel economy 

performance and battery lifetime of HEV powertrain layout options. 

Subsequently, three different HEV powertrain architectures are 

considered as test cases for the developed HEV assessment 

methodology including parallel P2, series-parallel P1P2 and power-

split layouts. A comparison of numerical results for the three HEV 

powertrain test cases is then performed in terms of optimal fuel 

economy capabilities while ensuring a specific battery lifetime over 

several defined driving missions. Engineers could thus adopt the 

developed methodology to enhance the evaluation of HEV design 

options by considering fuel economy and battery lifetime at the same 

time. 

Introduction 

Hybrid electric vehicles (HEVs) represent a promising technology 

from the perspective of automotive OEMs as they enable compliance 

with fuel consumption and tailpipe emission regulations over the next 

few years [1]. On the other hand, designing HEVs is more 

complicated compared to both battery electric vehicles (BEVs) that 

are powered by electric motors solely, and conventional vehicles that 

are powered by internal combustion engines (ICEs) solely [2]. 

Difficulties in HEV powertrain design and sizing relate both to the 

number of power components (i.e. one ICE, one or multiple electric 

motor/generators (MGs), a high-voltage battery, dedicated power 

electronics) and the necessity of a suitable complementary energy 

management strategy  (EMS) [3]. In general, several different 

categories of HEV powertrain architectures can be defined including 

series, parallel, series-parallel, power-split and multimode power-

split as an example [4]. 

When selecting the hybrid powertrain architecture and component 

sizes at early HEV design stages, numerical simulations are usually 

performed which consider design candidates controlled by off-line 

EMSs over pre-selected driving missions. Off-line EMSs utilize 

future knowledge (i.e. the speed, terrain, and other environmental 

conditions) of drive cycles of interest to optimize the overall hybrid 

powertrain operation [5]. Examples of off-line EMSs for HEV 

powertrains include dynamic programming (DP) [6], Pontryagin’s 

minimum principle (PMP) [7], power-weighted efficiency analysis 

for rapid sizing (PEARS) [8], slope-weighted energy-based rapid 

control analysis (SERCA) [9] and convex optimization [10]. Among 

them, DP is currently the most adopted off-line EMS for HEVs due 

to its ability to effectively return a global optimal solution for the 

considered control problem. Moreover, DP algorithms can be quite 

easily adapted to different HEV powertrain architectures and 

component sizes [11]. Off-line EMSs for HEVs are usually employed 

to solve an optimization problem considering fuel economy (FE) 

solely over retained driving missions [12]. Nevertheless, an urgent 

need can be identified in accounting for further criteria (e.g. noise 

vibration harshness, thermal management, after-treatment system) 

when optimizing the hybrid powertrain operation through off-line 

EMSs [13].  

Among the components of an HEV powertrain, high-voltage batteries 

are crucial both from operational and cost points of view. A key 

requirement for the battery is that it must provide the electrical power 

demanded from electric motor/generators (MGs) over its entire 

lifetime. Moreover, the battery lifetime (BL) should be guaranteed to 

equal or exceed the overall vehicle lifetime in favor of overall vehicle 

ease of maintenance, cost of ownership and limitation in emitted CO2 

due to the production of a replacement battery. Literature about 

lifetime of high-voltage batteries for HEVs has usually concentrated 

on empirical ageing tests [14] or on-board estimation of battery 

ageing effects as example [15]. Moreover, few examples can be 

found regarding the development of EMSs for HEV powertrains 

including BL consideration. In 2012, a battery state-of-health 

perceptive EMS for a P2 HEV powertrain architecture based on the 

PMP was first presented [16]. A similar study was performed in 2015 

for the same HEV powertrain architecture while replacing the 

automated gearbox with a continuously variable transmission [17]. In 

2016, a two-point optimization problem was solved using DP for a 

plug-in HEV while retaining an application-specific target battery life 

as the objective of the HEV EMS [18]. A parallel P2 HEV 

architecture was investigated in 2018 as well, where results for a 

PMP-based and a DP-based multi-objective EMS considering both 
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FE and battery ageing were presented [19]. Recently, the 

effectiveness of convex optimization has been suggested when 

considering battery state-of-health (SOH) as an additional control 

target for a plug-in series hybrid electric city bus [20]. Nevertheless, 

all the mentioned research works considered a single HEV 

powertrain architecture (usually of parallel P2 type). This paper 

therefore aims at assessing different full hybrid powertrain 

architectures considering both FE and BL as optimization targets. A 

DP formulation is firstly developed that can return a global optimal 

solution for the operation of the considered HEV powertrain 

architectures considering a weighted average of FE and BL targets. 

Then, different HEV powertrain architectures are analyzed 

considering the proposed DP approach, i.e. parallel, series-parallel 

and power-split. The remainder of the paper is organized as follows: 

the analyzed HEV powertrain architectures are firstly illustrated and 

modeled. Then, the numerical approach adopted to model the high-

voltage battery ageing is illustrated. The multi-target HEV off-line 

control problem considering FE and BL is consequently developed 

and the performance using the developed DP approach is discussed. 

Finally, results and conclusions are given. 

Hybrid powertrain architectures 

The considered hybrid powertrain architectures including parallel, 

series-parallel and power-split layouts are defined and discussed in 

this section.  

Parallel P2 

Among the different hybrid architectures, parallel HEVs have been 

selected by many car manufacturers as their first step into vehicle 

electrification [21]. In a parallel HEV, the tractive power is 

combined: both the ICE and the MGs can contribute to the vehicle 

propulsion, i.e. their corresponding torques are additive. When the 

MG is large enough, it can drive the HEV by itself or simultaneously 

with the ICE. The MG, by motoring or generating, can also be used 

to shift the ICE to higher-efficiency operating points. For the P2 

architecture, where one MG is placed between the ICE and the 

gearbox input, a clutch connection also allows the ICE crankshaft to 

be disengaged from the MG and the rest of the vehicle drivetrain. The 

parallel P2 HEV layout utilized in this paper is illustrated in Figure 1. 

 

Figure 1. Parallel P2 hybrid powertrain architecture 

Series-parallel P1P2 

Series-parallel HEV powertrain architectures utilize two MGs. For 

the P1P2 layout, one MG is located in the P2 position and an 

additional MG is mounted directly on the ICE crankshaft as shown in 

Figure 2. When the clutch is engaged, the ICE, MG1 and MG2 

exhibits the same angular speed and the propelling torque can be 

arbitrarily distributed among these three power components. On the 

other hand, when the clutch is disengaged, the HEV powertrain can 

either operate in pure electric mode (i.e. ICE and MG1 are not 

activated) or in series mode (i.e. the ICE is turned on and MG1 serves 

as a generator, providing electrical energy to the battery and MG2). 

 

Figure 2. Series-parallel P1P2 hybrid powertrain architecture 

Power-split 

Power-split HEV architectures have been commercially successful 

and represent a large portion of the current population of vehicles 

with full HEV powertrains. They consist of one or multiple planetary 

gear (PG) sets, which are very compact and function as a 

continuously variable transmission. PG sets embed a ring gear, a sun 

gear and a carrier, and they constitute the power-split device, which 

is responsible for directing the power flow between the components 

of the hybrid powertrain [22]. Thanks to the PG kinematics, in a 

power-split HEV the rotating speed of the ICE can be decoupled 

from the speed of the vehicle, thus enhancing FE potential and 

flexibility of operation. The power-split HEV layout used in this 

paper is illustrated in Figure 3 and is the same as that used in the 

well-known Toyota Hybrid System® [23]. In this HEV 

configuration, the ICE, MG1 and output shaft to the differential are 

respectively linked to the carrier, sun gear and ring gear of a PG set, 

while the MG2 is directly linked to the output shaft through a 

reduction gearset. 

 

Figure 3. Power-split hybrid powertrain architecture 

Vehicle and Powertrain Modeling 

In this section, data and parameter values for the modeled vehicle are 

firstly presented. The adopted HEV powertrain modeling approach is 

then described. The HEV powertrain architectures are modeled with 

MATLAB® software. 

Vehicle data 

Table 1 lists the vehicle and powertrain data used in this paper. The 

vehicle chassis data, including the mass, tire radius, and road load 
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coefficients, is for an A-segment passenger car from the US 

Environmental Protection Agency (EPA) database [24]. The ICE data 

is for a 3 cylinder in-line naturally aspired spark-ignition engine, and 

data including an efficiency map is generated by means of the 

methodology implemented in Amesim® software and described in 

[25]. Lookup tables for MG efficiency have been derived from [26] 

and scaled appropriately in order to get a hybridization factor (i.e. the 

ratio between the total power of the MGs and the overall power 

available from both ICE and MGs) of around 0.45 for all three of the 

considered HEV architectures [27]. The battery pack has been 

modeled as consisting of quantity 200 A123 26650 cells in 100S 2P 

configuration, thus achieving a nominal capacity of 1.52 kWh. 

Battery SOC dependent parameters are directly derived from the 

constant power discharge characteristics for a similar cell in the cell 

manufacturer’s catalogue [28]. Finally, a constant auxiliary loss 

power of 200 W is assumed which accounts for fluid pumps, lighting, 

and other auxiliary power requirements. 

HEV modeling  

In general, a backward quasi-static approach (QSA) is used when 

modeling the HEV powertrain for solving the off-line optimal control 

problem which will be detailed later. QSA considers constant time 

intervals (usually of 1 second) and works back-ward to derive the 

value of the required propelling torque from vehicle speed values in 

adjacent time points [29]. This leads to an increase in the 

computational efficiency in exploring the possible control actions for 

the HEV powertrain architectures while neglecting transient 

phenomena in powertrain dynamics. Particularly, the value of 

required torque at the input shaft of the differential 𝑇𝐼𝑁 can be 

determined at each time instant of the driving mission as:  

𝑇𝐼𝑁 =
(𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑚𝑖𝑠𝑐 + 𝐹𝑎𝑒𝑟𝑜 +𝑚𝑣𝑒ℎ ∙ �̈�) ∙ 𝑟𝑑𝑦𝑛

𝑖𝐹𝐷
=  

 
(𝑅𝐿𝐴+𝑅𝐿𝐵∙�̇�+𝑅𝐿𝑐∙�̇�

2+𝑚𝑣𝑒ℎ∙�̈�)∙𝑟𝑑𝑦𝑛

𝑖𝐹𝐷
    (1) 

where 𝑚𝑣𝑒ℎ, �̈�, 𝑟𝑑𝑦𝑛 and 𝑖𝐹𝐷 respectively represent the vehicle mass, 

the vehicle acceleration (as evaluated from values of vehicle speed in 

adjacent time instants), the wheel dynamic radius and the final drive 

ratio. 𝐹𝑟𝑜𝑙𝑙, 𝐹𝑚𝑖𝑠𝑐  and 𝐹𝑎𝑒𝑟𝑜 are resistive load terms provided by the 

rolling resistance, some miscellaneous terms (e.g. transmission 

losses, side forces, road slope) and aerodynamic drag, respectively. 

As common practice, equation (1) can be consequently rephrased 

featuring the vehicle speed �̇� and three road load coefficients (namely 

𝑅𝐿𝐴, 𝑅𝐿𝐵 and 𝑅𝐿𝐶) that can be experimentally determined based on 

vehicle coast down tests.  

After 𝑇𝐼𝑁 is known, the torque acting on each power component is 

determined by means of torque balance relationships. Following the 

backward QSA, equations (2), (3) and (4) can be respectively 

considered for the P2, the P1P2 and the power-split HEV 

architectures at the generic time instant j. 

𝑇𝐼𝐶𝐸 + 𝑇𝑀𝐺 =
𝑇𝐼𝑁

𝑖𝑔𝑒𝑎𝑟(𝑗) ∙ 𝜂𝑇𝑅
𝑠𝑖𝑔𝑛(𝑇𝐼𝑁)      (2) 

𝑇𝐼𝐶𝐸 + 𝑇𝑀𝐺1 + 𝑇𝑀𝐺2 =
𝑇𝐼𝑁

𝑖𝑔𝑒𝑎𝑟(𝑗) ∙ 𝜂𝑇𝑅
𝑠𝑖𝑔𝑛(𝑇𝐼𝑁)     (3) 

[
𝑇𝑀𝐺1

𝑇𝑀𝐺2
] = [

0 −
1

𝑖𝑃𝐺+1

𝑖𝑇𝐺 −(
𝑖𝑃𝐺

𝑖𝑃𝐺+1
) ∙ 𝑖𝑇𝐺

] [

𝑇𝐼𝑁

𝜂𝑇𝑅
𝑠𝑖𝑔𝑛(𝑇𝐼𝑁) 

𝑇𝐼𝐶𝐸

]                  (4) 

𝑇𝐼𝐶𝐸, 𝑇𝑀𝐺1 and 𝑇𝑀𝐺2 relate to the values of torque provided by the 

ICE, the MG1 and the MG2 respectively. It should be noted that the 

efficiency of the transmission system (𝜂𝑇𝑅) at the denominator of the 

torque at the input shaft of the differential taken to the power of the 

sign of 𝑇𝐼𝑁 in order to account for both motoring and braking 

operations. 𝜂𝑇𝑅 is assumed having a constant value here. For the P2 

and the P1P2 layout, ICE and MGs torques are additive and 𝑖𝑔𝑒𝑎𝑟 is 

retained as the transmission ratio corresponding to the gear engaged 

at time instant j. For the P1P2 HEV, equation (3) considers the clutch 

engaged and all the three power components transferring torque to 

the gearbox. When the clutch is disengaged, only 𝑇𝑀𝐺2 is considered 

in the torque balance, while  𝑇𝑀𝐺1 can be determined by reversing the 

sign of 𝑇𝐼𝐶𝐸, which represents a control variable. On the other hand, 

for the power-split hybrid powertrain architecture modeled in 

equation (4), torque values for the MGs can be determined from 𝑇𝐼𝑁  

and 𝑇𝐼𝐶𝐸 following the constraints for standard epicyclic gearing. In 

this case, 𝑖𝑃𝐺  and 𝑖𝑇𝐺  respectively represent gear ratios for the PG 

(i.e. ratio between the number of teeth of the ring gear and the 

number of teeth of the sun gear) and the transfer gearset between 

MG2 and differential input shaft. 

For the electrical energy path, the amount of power that the battery is 

requested to either deliver or absorb (𝑃𝑏𝑎𝑡𝑡) is calculated as: 

𝑃𝑏𝑎𝑡𝑡 = (∑
𝑃𝑀𝐺𝑖

[𝜂𝑀𝐺𝑖(𝜔𝑀𝐺𝑖,𝑇𝑀𝐺𝑖 )]
𝑠𝑖𝑔𝑛(𝑃𝑀𝐺𝑖)

 2
𝑖=1 ) + 𝑃𝑎𝑢𝑥   (5) 

where 𝑃𝑀𝐺 and 𝜂𝑀𝐺  respectively represent the mechanical power and 

the overall efficiency of a MG, which is evaluated by means of 

empirical lookup tables with speed and torque as independent 

variables. Taking 𝜂𝑀𝐺  to the power of the sign of 𝑃𝑀𝐺 allows 

capturing both depleting and charging battery conditions within this 

formula. Both MGs are considered in equation (5) for the P1P2 and 

the power-split HEV layouts, while a single MG is used for the 

parallel P2 architecture. Finally, 𝑃𝑎𝑢𝑥 is the auxiliary loss power. The 

rate of battery SOC change can then be evaluated by considering an 

equivalent open circuit model as in equation (6): 

𝑆𝑂𝐶̇ =
𝑉𝑂𝐶(𝑆𝑂𝐶)−√[𝑉𝑂𝐶(𝑆𝑂𝐶)]

2−4∙𝑅𝐼𝑁(𝑆𝑂𝐶)∙𝑃𝑏𝑎𝑡𝑡

2∙𝑅𝐼𝑁(𝑆𝑂𝐶)
∙

𝑛𝑝

𝐴ℎ𝑏𝑎𝑡𝑡∙3600
      (6) 

where 𝑅𝐼𝑁 and 𝑉𝑂𝐶 are the internal resistance and the open-circuit 

voltage (OCV) of the battery pack, as obtained by interpolating in 1D 

lookup tables with SOC as an independent variable. 𝐴ℎ𝑏𝑎𝑡𝑡 is the 

battery pack capacity in amp-hours, while 𝑛𝑃 stands for the number 

of cells in parallel as given by the battery pack configuration. 

Concerning the ICE, the instantaneous rate of fuel consumption can 

be finally evaluated using an empirical steady-state lookup table with 

torque and speed as independent variables. 

Table 1. Vehicle and hybrid powertrain architectures data. 

Component Parameter Value 

Vehicle 

Mass (𝑚𝑣𝑒ℎ) 1248 kg 

Wheel dynamic radius (𝑟𝑑𝑦𝑛) 0.273 m 

Road Load coefficient A (𝑅𝐿𝐴) 143 N 

Road Load coefficient B (𝑅𝐿𝐵) 0.90 N/(m/s) 

Road Load coefficient C (𝑅𝐿𝐶) 0.44 N/(m/s)2 

ICE 

Capacity 1.0 l 

Configuration 3 cylinders, in-line 

Type 
Spark ignition, 

naturally aspired 
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Maximum power 88 kW @ 5750 rpm 

Maximum torque 190 Nm @ 1750 rpm 

Transmission  

(P2 and P1P2) 

Gear ratios (𝑖𝑔𝑒𝑎𝑟) 
[3.57 ; 1.92 ; 1.25 ; 

0.93 ; 0.75] 

Final drive ratio (𝑖𝐹𝐷) 2.92 

Efficiency (𝜂𝑇𝑅) 0.9 

Transmission 

(power-split) 

PG ratio (ring/sun) (𝑖𝑃𝐺) 2.6 

MG2 to output shaft ratio (𝑖𝑇𝐺) 1.26 

Final drive ratio (𝑖𝐹𝐷) 3.27 

Efficiency (𝜂𝑇𝑅) 0.85 

MG (P2) 
Maximum power 72 kW 

Maximum torque 240 Nm 

MG1 (P1P2 and 

power-split) 

Maximum power 22 kW 

Maximum torque 74 Nm 

MG2 (P1P2 and 
power-split) 

Maximum power 50 kW 

Maximum torque 167 Nm 

Battery pack 

Configuration 100S 2P 

Nominal capacity (𝑄𝑏𝑎𝑡𝑡) 1.52 kWh 

Cell type & capacity A123 26650, 2.2Ah 

 

Battery ageing model 

In this paper, a throughput-based macroscale battery capacity fade 

model from [16] is employed. This numerical model supposes that a 

specific amount of charge throughput, which is a function of the 

current magnitude and temperature of the charge / discharge cycles, 

can be provided by the battery under steady operating conditions 

before reaching its end-of-life. Compared to more complex battery 

ageing models (e.g. electrochemical models and event-based models), 

throughput-based ageing models exhibit significantly improved 

computational efficiency [30]. For this reason, they seem to be the 

most suitable battery ageing models to be implemented in 

optimization based off-line HEV EMSs as these usually are 

computationally demanding. The SOH of the high-voltage battery at 

the generic time instant ti is defined according to equation (7): 

 𝑆𝑂𝐻(𝑡𝑖) = 𝑆𝑂𝐻0 −
1

∫
𝑁(𝑐, 𝑇)

𝑐
𝑡𝑖
0

𝑑𝑡
  (7) 

where 𝑆𝑂𝐻0 denotes the initial SOH (equal to 1). c represents the 

instantaneous battery C-rate, which is defined as the ratio between 

the current in amps and the battery capacity in amp-hours. 𝑁 is the 

number of roundtrip cycles before the battery reaches its end-of-life 

and it is not a constant value, rather it depends on the battery 

operating conditions (i.e. C-rate, temperature 𝑇). In general, the 

battery reaches its end-of-life as SOH approaches zero and the battery 

has no remaining capacity, or when it can no longer perform the 

function it is intended for. In order to determine 𝑁, the percentage of 

battery capacity loss 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% needs to be characterized by 

following the approach proposed by Bloom et al. in 2001 [31]. This 

takes inspiration from the Arrhenius equation describing the behavior 

of ideal gases. However, the general equation has been modified as 

follows in order to apply it to battery ageing:   

 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% = 𝐵(𝑐) ∙ 𝑒−
𝐴𝑓(𝑐)

𝑅∙𝑇  ∙ 𝐴ℎ𝑡𝑝
𝑧
 (8) 

Following equation (8), 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% depends on an empirical pre-

exponential factor 𝐵, the ageing factor 𝐴𝑓, the lumped cell 

temperature 𝑇, a power-law factor 𝑧 and the total lifetime throughput 

𝐴ℎ𝑡𝑝 in ampere-hour. Here, both 𝐵 and 𝐴𝑓 are a function of the 

instantaneous battery C-rate 𝑐. The numerical values for parameters 

of an A123 26650 cell are obtained from [16], where the authors 

declared that the numerical model was in turn tuned according to data 

published in [32]. Table 2 reports parameter values considered here, 

including the pre-exponential factor 𝐵 tabulated with respect to 𝑐. 

The lumped cell temperature is assumed to be a constant value of 

25°C (i.e. the battery conditioning system maintains this 

temperature). 

Table 2. Battery ageing parameters for a A123 ANR26650 cell. 

Parameter Symbol Value Units of measure 

Ageing factor Af 3814.7 – 44.6∙c K 

Power law factor z 0.55 - 

Temperature T 298 K 

Empirical pre-

exponential factor, 
function of current 

C-rate 

B (c=1) 28314 - 

B (c=2) 21681 - 

B (c=6) 12934 - 

B (c=10) 15512 - 

 

The battery ageing model utilized here considers that the end of the 

HEV BL corresponds to a loss of 20 % of the battery initial capacity, 

so a value of 20% is used for 𝛥𝐴ℎ𝑏𝑎𝑡𝑡%. By using this information 

and solving equation (8) for 𝐴ℎ𝑡𝑝, it becomes possible to calculate 

the total number of roundtrip cycles allowed for the BL as function of 

the c-rate in equation (9).  

 𝑁(𝑐, 𝑇) =
𝐴ℎ𝑡𝑝(𝑐, 𝑇)

2 ∙ 𝐴ℎ𝑏𝑎𝑡𝑡  
 (9) 

The factor of two in the denominator allows the model to account for 

both charging and discharging phases in the battery roundtrip cycles. 

As an additional hypothesis, the battery ageing model is assumed 

here to be independent from the battery SOC value. This is likely the 

case for this application because the HEV powertrains are controlled 

to operate in charge-sustaining mode, where the battery SOC 

undertakes a narrow span of values. Predicting the residual BL 

becomes thus possible using the described model. 

Multitarget HEV off-line control problem 

This section details the multitarget HEV off-line control problem 

considering both FE and BL for each of the considered hybrid 

powertrain architectures. The optimal off-line control problem for an 

HEV aims here to minimize a multi-objective cost function 𝐽 that 

considers estimated fuel consumption, number of ICE activations and 

BL consumption over a certain period. The resulting mathematical 

formulation is stated in equation (10): 

min { 𝐽 = ∫ L(𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0

 } 

subject to: 

𝑆𝑂𝐶(𝑡0) = 𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) 

𝑆𝑂𝐶̇ = 𝑓(𝑆𝑂𝐶,𝜔𝑀𝐺1, 𝑇𝑀𝐺1, 𝜔𝑀𝐺2, 𝑇𝑀𝐺2) 

𝜔𝐼𝐶𝐸𝑚𝑖𝑛 ≤ 𝜔𝐼𝐶𝐸 ≤ 𝜔𝐼𝐶𝐸𝑀𝐴𝑋 

𝜔𝑀𝐺1𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺1 ≤ 𝜔𝑀𝐺1𝑀𝐴𝑋 

𝜔𝑀𝐺2𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺2 ≤ 𝜔𝑀𝐺2𝑀𝐴𝑋 

(10) 
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𝑇𝐼𝐶𝐸𝑚𝑖𝑛 ≤ 𝑇𝐼𝐶𝐸 ≤ 𝑇𝐼𝐶𝐸𝑀𝐴𝑋 

𝑇𝑀𝐺1𝑚𝑖𝑛 ≤ 𝑇𝑀𝐺1 ≤ 𝑇𝑀𝐺1𝑀𝐴𝑋 

𝑇𝑀𝐺2𝑚𝑖𝑛 ≤ 𝑇𝑀𝐺2 ≤ 𝑇𝑀𝐺2𝑀𝐴𝑋 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶𝑀𝐴𝑋 

𝑆𝑜𝐻0 = 1 

Where 𝐿(𝑡) represents the instantaneous cost function. The 

sustenance of the battery SOC is defined by imposing equivalent 

battery SOC values at the beginning and the end of the considered 

time period. Both battery SOC, speeds 𝜔 and torques 𝑇 of power 

components are restricted within the corresponding actual operating 

regions. The initial battery SOH is set to 1 in order to consider non-

aged battery conditions. The instantaneous cost function 𝐿(𝑡) can 

then be stated in equation (11). 

𝐿(𝑡) = [�̇�𝑓𝑢𝑒𝑙 +𝑚𝑓𝑢𝑒𝑙𝑠𝑡𝑎𝑟𝑡 ∙ (𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸 > 0)] ∙ $𝑓𝑢𝑒𝑙
+ 𝛼𝑏𝑎𝑡𝑡 ∙ $𝑏𝑎𝑡𝑡 ∙ 𝑆𝑜𝐻̇ ]  

(11) 

�̇�𝑓𝑢𝑒𝑙  and 𝑚𝑓𝑢𝑒𝑙𝑠𝑡𝑎𝑟𝑡 represent the fuel mass rate at each time instant 

in which the ICE operates and the amount of fuel mass needed to 

crank the ICE throughout starting events, respectively. 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸  

defines a binary variable detecting ICE start occurrence. The 

variables $𝑓𝑢𝑒𝑙  and $𝑏𝑎𝑡𝑡 represent cost values for fuel and for the 

battery, respectively. The variable $𝑓𝑢𝑒𝑙  is based on the January 2020 

averaged US gasoline price of 2.62 $/gallon [33], while a value of 

$3000 is used for $𝑏𝑎𝑡𝑡 from [34]. 𝑆𝑜𝐻̇  is the instantaneous rate of 

battery SOH, while 𝛼𝑏𝑎𝑡𝑡 denotes a reliability coefficient for the 

illustrated battery ageing model. The higher the 𝛼𝑏𝑎𝑡𝑡 value, the less 

trust is given to the illustrated ageing model and the more the battery 

ageing effect is constrained at the expense of FE.  

In the follow-up of this section, DP will be illustrated as a numerical 

approach to solve the illustrated control problem. 

Dynamic programming 

DP is by far the most adopted approach for solving HEV optimal 

control problems. It involves generating a globally optimal solution 

backward along a time horizon by searching through all feasible 

discrete control actions for all the state grid points [35][36]. While 

DP is demonstrated achieving global optimality under a wide range 

of operating conditions, its major drawback is the computational 

power and time needed to solve the grid of solutions and search for 

the optimal path through the solution space [6]. The DP state variable 

set 𝑋 considered here is reported in equation (12). 

𝑋 = {
𝑆𝑂𝐶

𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓
}          (12) 

The battery SOC is used as a state variable in order to achieve 

charge-sustained operation, while a binary term defining the ICE 

state (i.e. on/off) is considered in order to account for comfort and 

smooth HEV operation. ICE cranking events are detected thanks to 

changes in the state term for the ICE state. A third state variable term 

could theoretically be considered here for the battery SOH. However, 

since DP dimensionality increases exponentially with additional state 

variable terms, this would result in a dramatic increase of both 

computational time, computational power and storage memory 

required. To avoid this drawback, as it will be described later, a 

sweep of the coefficient 𝛼𝑏𝑎𝑡𝑡 is performed instead. The control 

variables will be detailed below for each of the investigated HEV 

powertrain architectures. 

Parallel P2 

When controlling a parallel P2 HEV, three levels of decisions need to 

be made at each time instant: 

1 Which gear is to be engaged in the gearbox;  

2 Whether to propel the HEV in pure electric mode (MG 

only) or in hybrid operation (both ICE and MG operating);  

3 In case the hybrid mode is selected, how is the required 

torque split between the ICE and MG.  

This leads to the use of two terms, as illustrated in equation (13), for 

the control variable 𝑈𝑃2, including the gear number 𝑛𝑔𝑒𝑎𝑟 and the 

value of ICE torque 𝑇𝐼𝐶𝐸. 

𝑈𝑃2 = {
𝑛𝑔𝑒𝑎𝑟
𝑇𝐼𝐶𝐸

}      (13) 

In a backward HEV modelling approach, pure electric or hybrid 

operation are distinguished by ICE torque being zero or positive, 

respectively.  

Series-parallel P1P2 

The required control decisions for a series-parallel P1P2 layout are 

similar to the ones for the parallel P2 HEV architecture, yet a few 

additions need to be made. The decisions necessary are as follows:  

1 Which gear is to be engaged in the gearbox;  

2 Whether to keep the clutch engaged or disengaged;  

3 In case the clutch is engaged, how to split the required 

torque between ICE, MG1 and MG2;  

4 In case the clutch is disengaged, whether to operate in pure 

electric mode (i.e. only MG2 is activated) or in series mode 

(ICE and MG1 are activated as well);  

5 When series hybrid operation is selected, which values of 

speed and torque to assign to the ICE and MG1.  

As a result, the corresponding control variable 𝑈𝑃1𝑃2 requires 

additional terms to handle the increased control complexity for this 

HEV layout, namely the MG1 torque 𝑇𝑀𝐺1, the ICE speed 𝜔𝐼𝐶𝐸  and 

the binary clutch status 𝐶𝑙𝑒𝑛𝑔/𝑑𝑖𝑠 (i.e. engaged or disengaged) as in 

equation (14). 

𝑈𝑃1𝑃2 =

{
 
 

 
 

n𝑔𝑒𝑎𝑟
𝑇𝐼𝐶𝐸
𝑇𝑀𝐺1

𝜔𝐼𝐶𝐸

𝐶𝑙𝑒𝑛𝑔/𝑑𝑖𝑠}
 
 

 
 

                                             (14)  

Power-split 

Power-split HEV powertrain architectures exhibit different terms in 

their control variables compared to parallel and series-parallel 

layouts. The control variable 𝑈𝑃𝑆 considered in this paper for the 

power-split HEV layout thus contains speed and torque values for the 

ICE as formulated in equation (15). 

𝑈𝑃𝑆 = {
𝜔𝐼𝐶𝐸

𝑇𝐼𝐶𝐸
}                                          (15) 
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In a backward modeling approach, values of speed and torques for 

both the MGs can indeed be evaluated starting from the control 

variable terms following the planetary gear kinematics and dynamics 

[22]. In the considered power-split HEV layout, a gearbox is not 

strictly necessary in the hybrid transmission because the PG sets 

operate as an electrically variable transmission (eVT). 

Results 

In this section, results are discussed for the simulated HEV 

powertrain architectures which are controlled off-line following the 

multitarget DP approach introduced in the last section. Seven driving 

missions are simulated here including standard drive cycles 

consisting of the urban dynamometer driving schedule (UDDS), the 

highway federal test procedure (HWFET), the new European driving 

cycle (NEDC), the worldwide harmonized light vehicle test 

procedure (WLTP) and the US06 Supplemental Federal Test 

Procedure (US06), and real-world driving missions recorded by the 

authors  in Langhe, a hilly area in Piedmont, northern Italy, including 

extra-urban uphill (RWC_uphill) and extra-urban downhill driving 

conditions (RWC_downhill) respectively [36]. Recorded vehicle 

speed and GPS altitude profiles for these two real-world driving 

missions are illustrated in Figure 4. 

 

Figure 4. Retained real-world driving missions. 

All the listed driving missions have been simulated for all the three of 

the considered hybrid powertrain architectures while being controlled 

off-line by the multi-objective DP approach. The grid for each 

control variable term related to speed or torque of components has 

been created with 30 elements, while the grid for the state variable 

term related to SOC has been created with 1000 elements. Following 

the detailed DP control approach, the required computational times to 

simulate a driving mission on a desktop computer with an Intel Core 

i7-8700 (3.2 GHz) processor and 32 GB of RAM amounts to 

approximately 30, 60 and 120 minutes for the parallel P2, the power-

split and the series-parallel P1P2 HEV architectures, respectively. 

Initially, a simulation considering only FE maximization is 

performed by setting the value of 𝛼𝑏𝑎𝑡𝑡 to 0.  An example of time 

domain results obtained for a selected portion of the WLTP cycle is 

shown in Figure 5 for each of the analyzed hybrid powertrain layouts 

including ICE power, MGs power, battery power and total 

transmission mechanical power. Then, the coefficient 𝛼𝑏𝑎𝑡𝑡 is tuned 

to gradually increase the estimated BL up to around 300 thousand 

km. The battery lifetime in kilometers is evaluated here by 

considering the corresponding driving mission as steadily repeated 

over the entire vehicle lifetime. In this case, an example of time 

domain battery power and SOC results obtained for US06 

considering different optimization goals (OGs) is displayed in Figure 

6 including FE only, BL of 200 thousand km and BL of 300 thousand 

km for all the HEV configurations under analysis. 

The fuel economy of each HEV architecture for the FE  

 

(a) Parallel P2 HEV layout 

 

(b) Series-parallel P1P2 HEV layout 

 

(c) Power-split HEV layout 

Figure 5. Optimal HEV operation predicted by DP for selected portion of 
WLTP. 
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Figure 7. Fuel economy for selected driving missions considering FE only and 
300 thousand km BL optimization goals. 

 
Figure 8. Motor generator loss, ICE efficiency, and regenerative braking 
energy captured for fuel economy only case and selected driving missions. 

and 300k km BL cases is shown in Figure 7 for selected drive cycles.  

This shows that the P1P2 system has the best fuel economy, followed 

by the P2 and power-split case. While the power-split case does allow 

for the engine speed to be decoupled from the wheels thus enhancing 

its efficiency, this results in higher motor generator loss due to power 

circulating through the system, as is illustrated in Figure 8 along with 

ICE efficiency and captured regenerative braking energy for each 

case. When the system control is optimized for a BL of 300k km, fuel 

economy does not change for the HWFET case, increases a few 

percent for the more aggressive WLTP and US06 cases, and 

increases as much as 17% for the UDDS city driving case where 

many starts and stops are performed.  When controlling for 300k km 

BL, each HEV architecture loses more than 4.9% fuel economy for at 

least one drive cycle, making it unclear if any of the investigated 

architectures have advantages regarding battery lifetime.    

Pareto frontiers for obtained simulation results considering FE and 

BL are illustrated in Figure 9, where the three HEV powertrain 

architectures are compared in each considered driving mission. In 

Appendix 1, Table 3, Table 4 and Table 5 report numerical results for 

breakpoints corresponding to OGs of FE solely, estimated BL of 200 

thousand km and estimated BL of 300 thousand km for parallel P2, 

series-parallel P1P2 and power-split hybrid powertrain architectures, 

respectively. For 200k km BL and 300k km BL cases, variations in 

FE (Δ FE) and BL (Δ BL) are reported and compared with the FE 

only optimization case. Particularly, differences in FE are reported in 

percentage points, while variations in BL are expressed in multiples 

of FE battery lifetime.  

Overall, obtained results suggest that achieving a satisfactory BL is 

generally not possible when optimizing for fuel economy only for the 

modeled hybrid powertrain component size values. When setting the 

value of 𝛼𝑏𝑎𝑡𝑡 to 0, BL ranges from 14 thousand km to 128 thousand 

km for the parallel P2, from 11.3 thousand km to 164.3 thousand km 

for the series-parallel P1P2 and from 15 thousand km to 182 

thousand km for the power-split HEV powertrain architectures, 

respectively. A remarkable increase in the BL can be achieved with a 

small reduction of FE depending on the driving mission and the 

hybrid powertrain configuration. For example Table 3 in the 

appendix shows that for the P2 HEV, the multitarget DP control 

extends BL 3.0 times for HWFET and 2.7 times for NEDC with only 

a 1.2% and 0.6 % reduction in fuel economy. For the series-parallel 

P1P2 layout performing the WLTP and HWFET cycles, the BL is 
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(a) Parallel P2 HEV layout 

 

(b) Series-parallel P1P2 HEV layout 

 

(c) Power-split HEV layout 

Figure 6. Battery power and SOC as predicted by the multi-objective DP 
in US06 for different optimization goals. 



Page 8 of 16 

10/19/2016 

doubled while worsening the corresponding FE respectively by only 

1% and 0.5% for the 300 thousand km BL target. Finally, the 

developed multi-target control approach for the power-split HEV, as 

shown in Table 5 in the appendix, appears remarkably effective in 

NEDC and HWFET as for the P2 HEV since the BL can be extended 

respectively 2.6 times and 1.7 times while worsening the 

corresponding FE by only 0.3 % for the 300 thousand km BL target.  

To give further insight into each hybrid powertrain’s performance, 

several additional operational statistics for the modeled cases are 

listed in Table 6, Table 7 and Table 8 in the appendix. In general, a 

gradual decrease in the percentage of time spent in pure electric 

operation can be observed for all the HEV layouts and driving 

missions when the controller is tuned to increase BL. Moreover, 

consistent reductions are achieved both in terms of SOC window 

utilization (i.e. the difference between the highest and the lowest 

values of SOC observed throughout the retained driving missions) 

and root mean square (RMS) battery cell current. Furthermore, a 

remarkable increase can be observed for braking energy dissipated by 

the friction brakes, correlating with a decrease in the kinetic energy 

converted into electrical energy and stored in the battery during 

braking. This suggests a need for dedicated regenerative braking 

control strategies capable of coordinating electrical braking and 

friction braking in order to find the best trade-off between electrical 

energy recovery and BL preservation. From a component loss 

perspective, observed electrical loss for the MGs usually decreases 

when gradually increasing the estimated BL. This correlates well 

with the reduction in the SOC window, which in turn implies a 

decrease in the cumulative battery charge/discharge power.  

Conclusions 

This work investigates the optimal performance of different HEV 

powertrain architectures when considering both FE and BL as 

optimization targets. A multiobjective DP formulation is developed 

as an off-line optimal HEV control approach. Then, its application is 

extended to parallel P2, series-parallel P1P2 and power-split hybrid 

powertrain layouts. 

Obtained results suggest that the developed multitarget optimal 

control approach can effectively extend the predicted BL by several 

times over a wide range of driving conditions while limiting the 

overall increase in predicted fuel consumption. From an OEM 

perspective, a dedicated hybrid powertrain control approach could be 

preferred in this way rather than upsizing the HV battery to achieve 

the desired BL target. Significant benefits could be achieved in this 

way both in terms of overall HEV cost and performance. 

Among the investigated HEV powertrain architectures, the P1P2 

exhibits the highest performance in terms of FE for almost all of the 

cases investigated.  Nevertheless, it should be noted that this 

statement might change if component sizing was considered as well 

in the analysis. In general, when considering BL targets as well, 

control actions performed by DP tend to reduce the depth of 

discharge of the battery over the driving missions. Moreover, the 

percentage of time spent in pure electric operation is reduced in favor 

of hybrid electric operation (either power assist or battery charging 

based). Furthermore, the amount of braking energy dissipated by 

means of friction brakes is increased when extending BL. Finally, 

 

Figure 9. Pareto frontiers for FE and BL as obtained by the multi-objective DP over considered driving missions. 
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ranking of HEV powertrain layout options has been made possible by 

considering both FE and BL as parameters for the analysis. 

Future work could consider the implementation of the proposed 

multitarget DP approach in sizing procedures for HEV powertrain 

architectures. Moreover, on-line battery sensitive supervisory 

controllers for HEV powertrains could be developed and calibrated 

based on the proposed optimal off-line control approach. Finally, 

attention should be paid to integrate BL consideration in the 

development of dedicated control strategies for regenerative braking 

in electrified vehicles. 
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BEV Battery electric vehicle 

BL Battery lifetime 

BSFC Brake specific fuel 

consumption 

DP Dynamic programming 

ECMS Equivalent fuel consumption 

minimization strategy 

EMS Energy management strategy 

eVT Electrically variable 

transmission 

FE Fuel economy 

HEV Hybrid electric vehicle 

HWFET Highway fuel economy test 

ICE Internal combustion engine 

MG Motor/generator 

OCV Open circuit voltage 

OG Optimization goal 

PEARS Power-weighted efficiency 

analysis for rapid sizing 

PG Planetary gear 

PMP Pontryagin’s minimum 

principle 

QSA Quasi-static approach 

SERCA Slope-weighted energy-

based rapid control analysis 

SOC State-of-charge 

SOH State-of-health 

UDDS Urban dynamometer driving 

schedule 

WLTP Worldwide-harmonized 

Light-vehicle Test Procedure 

Appendix 1  

Table 3. Numerical results for fuel economy and battery lifetime – P2 HEV. 

 OG : fuel economy only 

(𝛼𝑏𝑎𝑡𝑡 = 0) 

OG : battery lifetime of around 200k km (𝛼𝑏𝑎𝑡𝑡 = 

0.03 to 0.5) 

OG : battery lifetime of around 300k km (𝛼𝑏𝑎𝑡𝑡 = 

0.25 to 1.25) 

Driving 

mission 

FE    

[l/100 km] 

BL     

[10^3 km] 

FE    

[l/100 km] 

BL     

[10^3 km] 

Δ FE (FE 

only) [%] 

Δ BL (FE 

only) [x] 

FE    

[l/100 km] 

BL     

[10^3 km] 

Δ FE (FE 

only) [%] 

Δ BL (FE 

only) [x] 

WLTP 3.9 121 3.9 212  + 1.3%  x 1.8 4.0 310  + 3.9%  x 2.6 

NEDC 3.3 101 3.3 210  + 1.1%  x 2.1 3.3 307  + 1.2%  x 3.0 

https://www.energy.gov/maps/egallon
mailto:pier.anselma@polito.it
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UDDS 2.7 128 2.7 213  + 0.9%  x 1.7 3.0 303  + 11.9%  x 2.4 

HWFET 3.7 113 3.7 200  + 0.6%  x 1.8 3.7 304  + 0.6%  x 2.7 

US06 4.6 17 4.9 201  + 6.1%  x 11.8 5.0 300  + 7.8%  x 17.6 

RWC_downhill 3.2 21 3.6 204  + 14.7%  x 9.6 3.7 305  + 16.1%  x 14.3 

RWC_uphill 3.8 15 4.1 202  + 7.3%  x 13.4 4.2 308  + 9.9%  x 20.4 

 

Table 4. Numerical results for fuel economy and battery lifetime – P1P2 HEV. 

 OG : fuel economy only 

(𝛼𝑏𝑎𝑡𝑡 = 0) 
OG : battery lifetime of around 200k km (𝛼𝑏𝑎𝑡𝑡 = 

0.01 to 0.2) 

OG : battery lifetime of around 300k km (𝛼𝑏𝑎𝑡𝑡 = 

0.05 to 0.5) 

Driving 

mission 

FE   

[l/100 km] 

BL    

[10^3 km] 

FE    

[l/100 km] 

BL     

[10^3 km] 

Δ FE (FE 

only) [%] 

Δ BL (FE 

only) [x] 

FE    

[l/100 km] 

BL     

[10^3 km] 

Δ FE (FE 

only) [%] 

Δ BL (FE 

only) [x] 

WLTP 3.8 148 3.8 207  + 0.2%  x 1.4 3.9 306  + 1.0%  x 2.1 

NEDC 3.2 168 3.2 224  + 0.9%  x 1.3 3.3 307  + 3.4%  x 1.8 

UDDS 2.6 129 2.7 213  + 2.0%  x 1.7 3.0 303  + 13.1%  x 2.3 

HWFET 3.7 137 3.7 205  + 0.0%  x 1.5 3.7 303  + 0.5%  x 2.2 

US06 4.6 20 4.8 178  + 4.7%  x 9.1 4.9 299  + 6.7%  x 15.2 

RWC_downhill 2.6 14 3.0 215  + 13.9%  x 15.8 3.2 301  + 19.4%  x 22.1 

RWC_uphill 5.4 18 5.6 200  + 4.1%  x 11.4 5.7 308  + 6.1%  x 17.5 

 

Table 5. Numerical results for fuel economy and battery lifetime – Power-split HEV. 

 OG : fuel economy only 

(𝛼𝑏𝑎𝑡𝑡 = 0) 

OG : battery lifetime of around 200k km (𝛼𝑏𝑎𝑡𝑡 = 

0.02 to 0.2) 

OG : battery lifetime of around 300k km (𝛼𝑏𝑎𝑡𝑡 = 0.2 

to 2) 

Driving 

mission 

FE    

[l/100 km] 

BL     

[10^3 km] 

FE    

[l/100 km] 

BL     

[10^3 km] 

Δ FE (FE 

only) [%] 

Δ BL (FE 

only) [x] 

FE    

[l/100 km] 

BL     

[10^3 km] 

Δ FE (FE 

only) [%] 

Δ BL (FE 

only) [x] 

WLTP 4.2 138 4.2 205  + 2.2%  x 1.5 4.2 307  + 2.2%  x 2.2 

NEDC 3.6 119 3.6 200  + 0.3%  x 1.7 3.6 308  + 0.3%  x 2.6 

UDDS 3.0 154 3.0 207  + 0.1%  x 1.3 3.1 304  + 4.3%  x 2.0 

HWFET 3.9 182 3.9 188  + 0.0%  x 1.0 3.9 303  + 0.3%  x 1.7 

US06 5.0 55 5.2 198  + 4.3%  x 3.6 5.5 298  + 10.8%  x 5.4 

RWC_downhill 2.9 15 3.3 208  + 12.6%  x 13.9 3.7 302  + 27.5%  x 20.2 

RWC_uphill 5.6 21 5.8 188  + 2.9%  x 9.0 6.4 307  + 12.7%  x 14.7 
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Appendix 2  

Table 6. Operational statistics for simulated driving missions – P2 HEV. 

 Driving 
mission 

  Fuel economy only  
Battery lifetime of 
200 thousand km 

Battery lifetime of 
300 thousand km 

WLTP 
  

  

  
  

  

  
  

Operating mode selection 

  
  

Pure electric [%] 65.2 55.7 44.9 

Hybrid power assist [%] 7.2 10.4 52.1 

Hybrid battery charging [%] 27.6 33.9 3.0 

SOC window [%]  22.5 8.7 8.4 

Cell current RMS [A]  8.8 5.9 4.4 

Friction brake energy [kJ]  8 59 182 

Regenerative energy [kJ]  2042 1991 1868 

MG electrical loss [kJ]  466 391 349 

ICE averaged BSFC [g/kWh]  206.1 211.7 216.6 

NEDC 

  

  
  

  

  
  

  

Operating mode selection 

  
  

Pure electric [%] 73.2 63.0 60.8 

Hybrid power assist [%] 1.8 6.2 6.2 

Hybrid battery charging [%] 25.0 30.8 33.0 

SOC window [%]  15.9 10.5 9.2 

Cell current RMS [A]  6.9 4.7 4.3 

Friction brake energy [kJ]  8 25 48 

Regenerative energy [kJ]  976 959 936 

MG electrical loss [kJ]  256 199 193 

ICE averaged BSFC [g/kWh]  206.3 213.1 214.1 

UDDS 

  

  
  

  

  

  

  

Operating mode selection 
  

  

Pure electric [%] 76.0 65.1 39.4 

Hybrid power assist [%] 5.2 11.3 55.5 

Hybrid battery charging [%] 18.8 23.6 5.1 

SOC window [%]  14.3 6.8 3.8 

Cell current RMS [A]  8.0 5.9 3.7 

Friction brake energy [kJ]  12 26 381 

Regenerative energy [kJ]  1680 1665 1311 

MG electrical loss [kJ]  316 271 284 

ICE averaged BSFC [g/kWh]  204.8 211.7 227.2 

HWFET 

  
  

  

  
  

  

  

Operating mode selection 

  

  

Pure electric [%] 51.0 36.9 36.3 

Hybrid power assist [%] 1.3 1.7 1.7 

Hybrid battery charging [%] 47.7 61.4 62.0 

SOC window [%]  19.8 11.3 11.2 

Cell current RMS [A]  13.0 8.3 7.9 

Friction brake energy [kJ]  1 8 17 

Regenerative energy [kJ]  421 413 404 

MG electrical loss [kJ]  323 228 224 

ICE averaged BSFC [g/kWh]  206.1 213.2 213.4 

US06 
  

  

  
  

  

  
  

Operating mode selection 

  
  

Pure electric [%] 49.2 28.9 24.1 

Hybrid power assist [%] 14.1 64.7 67.6 

Hybrid battery charging [%] 36.7 6.4 8.4 

SOC window [%]  17.1 9.6 9.6 

Cell current RMS [A]  16.6 9.1 8.1 

Friction brake energy [kJ]  16 393 494 

Regenerative energy [kJ]  1707 1330 1229 

MG electrical loss [kJ]  245 220 212 

ICE averaged BSFC [g/kWh]  208.1 216.5 217.8 

RWC_uphill 

  
  

Operating mode selection 

  
  

Pure electric [%] 55.7 40.3 34.9 

Hybrid power assist [%] 11.6 21.5 45.9 

Hybrid battery charging [%] 32.6 38.2 19.2 
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SOC window [%]  13.3 3.7 4.5 

Cell current RMS [A]  14.8 9.1 7.7 

Friction brake energy [kJ]  153 709 872 

Regenerative energy [kJ]  2405 1848 1685 

MG electrical loss [kJ]  358 295 277 

ICE averaged BSFC [g/kWh]  208.2 216.1 218.5 

RWC_downhill 

  

  
  

  

  
  

  

Operating mode selection 
  

  

Pure electric [%] 67.5 33.2 31.4 

Hybrid power assist [%] 8.4 56.5 58.0 

Hybrid battery charging [%] 24.1 10.3 10.5 

SOC window [%]  10.5 5.4 4.9 

Cell current RMS [A]  12.1 6.0 5.7 

Friction brake energy [kJ]  166 931 938 

Regenerative energy [kJ]  2451 1687 1679 

MG electrical loss [kJ]  366 272 268 

ICE averaged BSFC [g/kWh]  205.9 222.9 223.7 

 

Table 7. Operational statistics for simulated driving missions – P1P2 HEV. 

 Driving 
mission 

  Fuel economy only  
Battery lifetime of 
200 thousand km 

Battery lifetime of 
300 thousand km 

WLTP 
  

  

  
  

  

  
  

Operating mode selection 
  

  

Pure electric [%] 65.8 62.5 57.1 

Series [%] 0.2 1.5 1.8 

Hybrid power assist [%] 6.8 9.3 11.6 

Hybrid battery charging [%] 27.3 26.7 29.4 

SOC window [%]  23.6 16.4 8.8 

Cell current RMS [A]  8.9 7.5 6.0 

Friction brake energy [kJ]  8 8 77 

Regenerative energy [kJ]  2042 2042 1973 

MG1 electrical loss [kJ]  2 14 21 

MG2 electrical loss [kJ]  373 337 306 

ICE averaged BSFC [g/kWh]  206.1 208.1 210.3 

NEDC 
  

  

  
  

  

  
  

Operating mode selection 
  

  

Pure electric [%] 74.7 66.8 59.0 

Series [%] 0.0 0.0 0.0 

Hybrid power assist [%] 1.8 4.8 7.7 

Hybrid battery charging [%] 23.6 28.4 33.3 

SOC window [%]  18.1 13.7 7.1 

Cell current RMS [A]  7.1 5.3 4.1 

Friction brake energy [kJ]  10 24 83 

Regenerative energy [kJ]  974 960 901 

MG1 electrical loss [kJ]  1 7 14 

MG2 electrical loss [kJ]  208 172 154 

ICE averaged BSFC [g/kWh]  205.8 210.4 214.9 

UDDS 

  
  

  

  
  

  

  

Operating mode selection 

  

  

Pure electric [%] 76.6 65.2 47.1 

Series [%] 0.2 2.4 4.2 

Hybrid power assist [%] 4.8 11.0 45.7 

Hybrid battery charging [%] 18.4 21.5 3.1 

SOC window [%]  15.6 7.6 4.6 

Cell current RMS [A]  8.0 5.8 4.0 

Friction brake energy [kJ]  12 71 342 

Regenerative energy [kJ]  1680 1620 1350 

MG1 electrical loss [kJ]  2 16 44 

MG2 electrical loss [kJ]  267 222 220 

ICE averaged BSFC [g/kWh]  205.0 211.1 220.8 
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HWFET 
  

  

  
  

  

  
  

Operating mode selection 
  

  

Pure electric [%] 50.5 43.8 38.2 

Series [%] 1.4 2.2 3.4 

Hybrid power assist [%] 0.8 1.2 1.6 

Hybrid battery charging [%] 47.3 52.8 56.8 

SOC window [%]  17.9 16.5 11.1 

Cell current RMS [A]  13.2 10.5 8.6 

Friction brake energy [kJ]  1 5 21 

Regenerative energy [kJ]  421 416 401 

MG1 electrical loss [kJ]  7 10 15 

MG2 electrical loss [kJ]  260 207 175 

ICE averaged BSFC [g/kWh]  205.8 209.3 211.8 

US06 

  

  

  

  
  

  

  

Operating mode selection 

  
  

Pure electric [%] 43.0 30.5 29.4 

Series [%] 10.5 17.6 15.9 

Hybrid power assist [%] 13.9 29.1 38.1 

Hybrid battery charging [%] 32.6 22.8 16.6 

SOC window [%]  11.2 10.9 10.1 

Cell current RMS [A]  15.6 9.8 8.3 

Friction brake energy [kJ]  15 385 551 

Regenerative energy [k]  1707 1338 1172 

MG1 electrical loss [kJ]  29 49 46 

MG2 electrical loss [kJ]  186 178 170 

ICE averaged BSFC [g/kWh]  208.4 211.4 212.0 

RWC_uphill 

  
  

  

  
  

  

  

Operating mode selection 

  

  

Pure electric [%] 43.1 35.6 29.2 

Series [%] 5.6 6.7 9.2 

Hybrid power assist [%] 19.2 22.8 37.9 

Hybrid battery charging [%] 32.1 34.9 23.8 

SOC window [%]  10.4 8.1 7.1 

Cell current RMS [A]  14.5 9.3 7.6 

Friction brake energy [kJ]  147 661 875 

Regenerative energy [kJ]  2283 1769 1555 

MG1 electrical loss [kJ]  18 29 43 

MG2 electrical loss [kJ]  237 212 203 

ICE averaged BSFC [g/kWh]  207.3 210.6 212.8 

RWC_downhill 

  

  
  

  

  
  

  

Operating mode selection 

  

  

Pure electric [%] 73.4 58.6 54.7 

Series [%] 1.8 7.3 7.7 

Hybrid power assist [%] 10.2 33.0 35.9 

Hybrid battery charging [%] 14.6 1.2 1.7 

SOC window [%]  22.0 19.6 17.0 

Cell current RMS [A]  14.4 8.7 7.5 

Friction brake energy [kJ]  367 1257 1557 

Regenerative energy [kJ]  3659 2769 2469 

MG1 electrical loss [kJ]  8 38 41 

MG2 electrical loss [kJ]  363 294 278 

ICE averaged BSFC [g/kWh]  205.7 211.2 213.0 

 

 

 

 



Page 15 of 16 

10/19/2016 

Table 8. Operational statistics for simulated driving missions – Power Split HEV. 

 Driving 

mission 
  Fuel economy only  

Battery lifetime of 

200 thousand km 

Battery lifetime of 

300 thousand km 

WLTP 

  
  

  

  
  

  

  

Operating mode selection 

  
  

Pure electric [%] 58.4 41.9 41.7 

Hybrid power assist [%] 14.5 52.5 52.4 

Hybrid battery charging [%] 27.1 5.6 5.9 

SOC window [%]  14.2 8.0 7.7 

Cell current RMS [A]  7.5 4.1 3.9 

Friction brake energy [kJ]  409 575 581 

Regenerative energy [kJ]  1921 1712 1705 

MG1 electrical loss [kJ]  243 263 264 

MG2 electrical loss [kJ]  545 486 484 

ICE averaged BSFC [g/kWh]  202.8 206.7 206.7 

NEDC 

  

  
  

  

  
  

  

Operating mode selection 

  

  

Pure electric [%] 65.8 58.9 58.3 

Hybrid power assist [%] 6.8 9.0 8.9 

Hybrid battery charging [%] 27.4 32.1 32.8 

SOC window [%]  13.8 7.6 7.3 

Cell current RMS [A]  6.3 4.5 4.3 

Friction brake energy [kJ]  211 245 245 

Regenerative energy [kJ]  903 860 860 

MG1 electrical loss [kJ]  102 101 102 

MG2 electrical loss [kJ]  267 253 252 

ICE averaged BSFC [g/kWh]  203.1 205.8 205.5 

UDDS 

  
  

  

  

  

  

  

Operating mode selection 

  
  

Pure electric [%] 72.0 63.1 45.6 

Hybrid power assist [%] 5.3 16.9 52.5 

Hybrid battery charging [%] 22.7 19.9 2.0 

SOC window [%]  12.3 8.7 5.2 

Cell current RMS [A]  7.4 5.8 4.1 

Friction brake energy [kJ]  353 378 495 

Regenerative energy [kJ]  1565 1534 1387 

MG1 electrical loss [kJ]  105 110 118 

MG2 electrical loss [kJ]  377 352 323 

ICE averaged BSFC [g/kWh]  202.9 205.2 211.6 

HWFET 

  

  
  

  

  
  

  

Operating mode selection 

  

  

Pure electric [%] 23.7 15.5 14.6 

Hybrid power assist [%] 34.2 47.3 47.6 

Hybrid battery charging [%] 42.2 37.2 37.8 

SOC window [%]  8.0 4.0 2.9 

Cell current RMS [A]  6.8 4.9 3.9 

Friction brake energy [kJ]  83 103 115 

Regenerative energy [kJ]  396 372 357 

MG1 electrical loss [kJ]  207 219 217 

MG2 electrical loss [kJ]  324 311 308 

ICE averaged BSFC [g/kWh]  203.1 204.0 204.4 

US06 

  
  

  

  
  

  

  

Operating mode selection 

  
  

Pure electric [%] 33.3 28.5 26.0 

Hybrid power assist [%] 48.0 67.4 71.3 

Hybrid battery charging [%] 18.7 4.1 2.7 

SOC window [%]  14.7 10.2 6.4 

Cell current RMS [A]  12.8 7.9 4.2 

Friction brake energy [kJ]  350 723 1148 

Regenerative energy [kJ]  1606 1137 603 

MG1 electrical loss [kJ]  164 172 180 

MG2 electrical loss [kJ]  337 311 284 

ICE averaged BSFC [g/kWh]  202.8 204.5 206.2 
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RWC_uphill 

  

  
  

  

  
  

  

Operating mode selection 

  

  

Pure electric [%] 40.7 36.6 28.1 

Hybrid power assist [%] 24.7 37.6 53.6 

Hybrid battery charging [%] 34.6 25.8 18.3 

SOC window [%]  16.9 9.5 3.1 

Cell current RMS [A]  13.9 8.8 2.8 

Friction brake energy [kJ]  594 949 1847 

Regenerative energy [kJ]  2141 1694 564 

MG1 electrical loss [kJ]  209 237 277 

MG2 electrical loss [kJ]  435 398 347 

ICE averaged BSFC [g/kWh]  203.3 205.2 211.2 

RWC_downhill 
  

  

  

  

  

  
  

Operating mode selection 
  

  

Pure electric [%] 68.1 56.5 47.3 

Hybrid power assist [%] 17.2 42.8 52.6 

Hybrid battery charging [%] 14.7 0.7 0.1 

SOC window [%]  22.5 17.1 8.6 

Cell current RMS [A]  13.7 7.8 4.5 

Friction brake energy [kJ]  1130 1931 2715 

Regenerative energy [kJ]  3461 2454 1468 

MG1 electrical loss [kJ]  118 145 166 

MG2 electrical loss [kJ]  470 380 326 

ICE averaged BSFC [g/kWh]  203.0 205.4 207.2 

 

 

 


