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Fully automated quantitative assessment of hepatic 

steatosis in liver transplants

Abstract

Background : The presence of macro- and microvesicular steatosis is one of the major risk factors 

for liver transplantation. An accurate assessment of the steatosis percentage is crucial for determining 

liver graft transplantability, which is currently based on the pathologists’ visual evaluations on liver 

histology specimens.

Method : The aim of this study was to develop and validate a fully automated algorithm, called 

HEPASS (HEPatic Adaptive Steatosis Segmentation), for both micro- and macro-steatosis detection 

in digital liver histological images. The proposed method employs a hybrid deep learning framework, 

combining the accuracy of an adaptive threshold with the semantic segmentation of a deep 

convolutional neural network. Starting from all white regions, the HEPASS algorithm was able to 

detect lipid droplets and classify them into micro- or macrosteatosis.

Results : The proposed method was developed and tested on 385 hematoxylin and eosin (H&E) 

stained images coming from 77 liver donors. Automated results were compared with manual 

annotations and nine state-of-the-art techniques designed for steatosis segmentation. In the TEST set, 

the algorithm was characterized by 97.27% accuracy in steatosis quantification (average error 1.07%, 

maximum average error 5.62%) and outperformed all the compared methods.

Conclusions : To the best of our knowledge, the proposed algorithm is the first fully automated 

algorithm for the assessment of both micro- and macrosteatosis in H&E stained liver tissue images. 

Being very fast (average computational time 0.72  s), this algorithm paves the way for automated, 

quantitative and real-time liver graft assessments.
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1 Introduction

Liver transplantation (LT) is a standard treatment in patients with end-stage liver disease (ESLD) and 

hepatocellular carcinoma [1]. In the United States, nearly 7000 liver transplants are performed each year [2]. LT 

procedure entails multidisciplinary teamwork of different healthcare professionals including the pathologist, who 

plays a key role during pre- and post-transplantation liver graft assessment. Liver biopsy is still considered the 

gold standard for pre- and post-transplant graft evaluation [3,4]. In the donor setting, accurate evaluation of 

histological prognostic parameters, such as necrosis, macro- and microvesicular steatosis has an important role in 

assessing the suitability for transplant of a particular graft and in stratifying the risk associated with its utilization.

In organ transplantation, one major challenge is trying to close the ever-increasing gap between increasing 

demand and organ availability. This has pushed transplant clinicians to several attempts at expanding donor pool, 

including the utilization of grafts from extended criteria donors (ECD) [5–9]. Although definition of what is a 

suboptimal graft is still arbitrary, it is well known that graft steatosis is associated with postoperative graft 

dysfunction and reduced patient and graft survival [10–13]. There are two forms of steatosis diagnosed in liver 

grafts: macrovesicular steatosis, in which lipids are stored in a single large vesicle occupying almost the entire 

hepatocyte cytoplasm, is generally associated with excessive alcohol intake, obesity, hyperlipidemia and 

diabetes; microvesicular steatosis, which is characterized by smaller vacuoles, is commonly observed in 

pathological conditions related to mitochondrial injury, such as acute viral or drug induced injury, sepsis and 

some metabolic disorders [14,15]. Moderate (>30%) macrovesicular steatosis has been frequently associated 

with inferior outcomes after LT [16], whereas even marked microvesicular steatosis has not been associated with 

poorer graft function [17], highlighting that accurate distinction of macro- and microvesicular steatosis is of 

paramount importance during graft assessment. However, also outcome of utilization of grafts with moderate or 

severe (>60%) macrovesicular steatosis varies widely in the literature. For example, the rate of 1-year graft 

failure in presence of severe macrovesicular steatosis ranges from 5.3% to 75% [14,16,18,19].

These extremely variable findings are at least partially explained by the inherent limitations of steatosis 

assessment. The traditional evaluation of hepatic steatosis involves significantly subjective, complex and time-

consuming microscopic evaluation, with low concordance levels among observers. Histological assessment is 

typically qualitative, including a description of the size of fat droplets and their location within the lobule, or 

semiquantitative, with a subjective multigrade scale based on the proportion of hepatocytes with steatotic 

droplets [20]. Thus, this score is subjected to inter-observer and intra-observer variability and is prone to 

inaccuracy [21,22].

The necessity to overcome these limitations has prompted the development of digital image analysis methods for 

unbiased and reproducible steatosis assessments of Hematoxylin and Eosin (H&E) stained liver slides. 

Considering the above-mentioned data and complex background, a digital image analysis method was developed 

for unbiased and reproducible steatosis assessments of H&E-stained liver slides.

Current research focuses on the development of fully automated methods for quantitative histological analysis, in 

order to create accurate tools with high reproducibility [23–25]. These approaches can provide a continuous 

measure for analysis and reduce inter- and intra-observer variability in the measurement of cellular structures, 

increasing the reproducibility of the results [26]. In the last few years, several automated methods were proposed 



for quantitative assessment of liver steatosis [27–29]. Different approaches have been used to automatically 

detect steatosis from the histological tissue, ranging from tools using simply thresholding [30,31] to algorithms 

incorporating several features, with predetermined cut-offs [32,33] and recently more advanced approaches such 

as supervised machine learning [34,35]. Catta-Preta et al. [29] proposed white thresholding without any post-

processing step. Turlin et al. [30] and Liquori et al. [31] employed a fixed threshold followed by morphological 

filters to detect liver steatosis. Nativ et al. [33] applied an iterative active contour to obtain the boundaries of liver 

droplets. Batool et al. [27] and Vanderbeck et al. [28] took advantage of the green channel of RGB image to 

apply global thresholding. Then, non-circular binary shapes were deleted from the final mask. Tsiplakidou et al. [

32] proposed two-stage processing. In the first stage, histogram equalization and image binarization were applied 

while the second stage consisted of eccentricity and roundness criteria. Recent methods combined iterative 

morphological operators with shape and texture features to classify regions in steatosis and non-steatosis [35]. 

Munsterman et al. [34] applied two thresholds in the saturation channel of the HSB color representation and 

employed a logistic regression analysis to detect all the fat droplets. Nonetheless, these algorithms apply simple 

fixed threshold, do not discriminate between micro- and macro-vesicular steatosis (fundamental for a correct 

prognosis estimate) and they still include some manual interventions (e.g. visual examination to exclude false-

positive shapes). In addition, datasets, manual annotations and source codes of previously published methods are 

not publicly available.

In this paper, a novel steatosis segmentation strategy for histopathological images is presented. The proposed 

method employs a hybrid deep learning framework, combining the accuracy of an adaptive threshold with the 

semantic segmentation of a deep convolutional neural network. The aim of the present study was to (i) develop a 

fully automated steatosis quantification algorithm for both micro- and macro steatosis; (ii) compare the automatic 

results with manual pathologist evaluation and (iii) compare the performance of our method with the current 

state-of-art techniques.

2 Materials and methods

In this paper, an automated method called HEPASS (HEPatic Adaptive Steatosis Segmentation) is presented. 

The HEPASS algorithm is an automatic and adaptive method for liver steatosis quantification in H&E stained 

images. The flowchart of the proposed method is shown in Fig. 1. The algorithm consists of four modules: 

histological tissue detection, raw steatosis segmentation, extended steatosis detection and cleaning steps. In the 

following sections, a detailed description of the algorithm is provided.

alt-text: Fig. 1
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2.1 Human liver histology

Schematic representation of the HEPASS algorithm. Starting from the RGB image, the histological tissue contours are 

automatically detected. A first segmentation of liver steatosis is obtained by the ‘Raw Steatosis Segmentation’ step. Then, the 

algorithm detects all the candidate steatosis (‘Extended Steatosis Detection’). Finally, several cleaning steps are applied to 

obtain the final segmentation of the hepatic steatoses within the image.



The consecutive liver biopsy specimens of 77 patients (males 55, females 23; median age 54.5 years, range 1–68 

years) obtained from January 1st to December 31st, 2017 were collected. Liver biopsies were obtained during 

organ retrieval or at the end of transplant operation at Città della Salute e della Scienza Hospital in Turin, Italy. 

The tissues were collected by core needle biopsy, formalin-fixed and paraffin-embedded, serially sectioned to 

5 μm, mounted onto adhesive slides, and stained with conventional H&E coloration. Routine H&E staining was 

performed, following standard procedures (Leica ASP 300 processor and automated Leica ST5020 Multistainer, 

Leica Microsystems, Wetzlar, Germany). All biopsy samples were collected at the Division of Pathology, AOU 

Città della Salute e della Scienza Hospital, Turin, Italy and were anonymized by a pathology staff member not 

involved in the study, before any further analysis was started. Digital images were obtained with a Hamamatsu 

NanoZoomer S210 Digital slide scanner providing a magnification of ×200 (conversion factor: 0.467 μm/pixel). 

Five images with a fixed dimension of 416 × 416 pixels were randomly extracted from each biopsy, for a total of 

385 images. After consensus, manual annotations of hepatic steatosis contours were generated by two of us (LM 

and JM), for a total of 12929 shapes. The overall dataset composition is shown in Table 1. The image dataset, 

along with the manual annotations used in this work, are available at

https://data.mendeley.com/datasets/4mcc9rg4k5/[Instruction: To DC: We published our repository. The updated 

link is:

https://data.mendeley.com/datasets/4mcc9rg4k5/1

Kindly link]1.

https://data.mendeley.com/datasets/4mcc9rg4k5/draft?a=bcff0dba-6534-4475-9849-

1b25422f38a1.https://data.mendeley.com/datasets/4mcc9rg4k5/1

2.2 Histological tissue detection

Starting from the original RGB image of the specimen (Fig. 2a), the HEPASS algorithm performed the 

discrimination between the histological tissue and the background. The aim of this step was to process only the 

cellular structures within the image. The tissue recognition occurred thanks to the application of an RGB high-

pass filter [36] where the RGB color of each pixel was treated as a 3D vector, and the strength of the edge was 

the magnitude of the maximum gradient. Then, Otsu thresholding [37] was applied to extract a raw binary mask 

of the tissue and a morphological opening with a disk of 3-pixel radius (equal to 1.40 μm) is carried out to obtain 

smoother tissue contours (Fig. 2b).

alt-text: Table 1

Table 1

Dataset composition.

Dataset #Patients #Images #Annotations

TRAIN 70 350 11567

TEST 7 35 1362
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2.3 Raw steatosis segmentation

Once obtained the tissue boundary, the algorithm performed a first steatosis segmentation. Simple thresholding 

may be ineffective to segment liver steatosis, since they often have different intensity and uniformity depending 

on their size, shape, and the presence of artefacts. Therefore, in order to properly segment the steatosis, a series 

of Gabor kernels were applied to the original grayscale image. The kernels were defined as follows:

where , , γ is the spatial aspect ratio that specifies the ellipticity of the 

Gabor function, ψ represents the phase offset, λ is the wavelength of the sinusoidal factor, θ denotes the 

orientation of the normal to the parallel stripes of a Gabor function and σ is the standard deviation of the 

Gaussian envelope. For this application, we imposed γ = 1.2, ψ = 0, λ = 10, σ = 1 and eight directions (θ) were 

considered to make the algorithm faster and to still reduce the noise level. The obtained eight filtered images 

alt-text: Fig. 2
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Initial steatosis detection of the HEPASS algorithm. (a) Original image, (b) histological tissue segmentation, (c) raw steatosis 

segmentation, (d) extended steatosis detection.
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were summed and normalized; then a threshold equal to 90% of the image maximum was applied. Finally, the 

proposed method applied an active contour model to improve the detection of steatosis borders [38], as shown in 

Fig. 2c.

2.4 Extended steatosis detection

Since some small or not completely white structures may not be identified using a fixed threshold, an adaptive 

two-step refining process was applied to better define all the liver steatosis:

1. Optimized thresholding: histological slides are often affected by stain intensity variability, 

therefore a fixed threshold could not guarantee optimal performance. An adaptive color 

deconvolution developed in our previous work [39] was applied to obtain the separation between 

Hematoxylin and Eosin channels. Then, the estimated RGB color of the Eosin was converted in 

grayscale and an optimal threshold equal to  was applied. In this way, it was possible 

to adapt the threshold based on the stroma intensity.

2. Active contour model: starting from the binary mask obtained at the previous step, the Chan-Vese 

region-based energy model [40] was applied to detect microsteatosis. Thanks to this model, it was 

possible to detect objects whose boundaries are not necessarily defined by gradients.

At the end of these steps, the steatosis binary mask was merged with the one of the previous section (‘Raw 

Steatosis Segmentation’), obtaining the result shown in Fig. 2d.

2.5 Cleaning steps

At this point, the proposed method was able to extract a set of potential steatotic hepatocytes within the image. 

However, the resulting binary mask contained erroneous white regions due to pathological cell ballooning, 

anatomical tracts, tissue damage, and empty slide background as well in addition to liver steatosis. For this 

reason, the HEPASS algorithm applied a series of cleaning steps to distinguish steatosis from not-of-interest 

objects (e.g. bile ducts, sinusoid, blood vessels and tissue tearing) based on size and roundness features. 

Preliminarily, detected objects with area less than 10 μm
2
 were deleted because they were too small to be 

considered as steatosis. Then, the blobs corresponding to lipids were divided into macro steatosis (area 

>175 μm
2
) and micro steatosis (area ≤175 μm

2
) according to Liquori et al. [31]. Finally, the algorithm applied 

two different cleaning criteria for macro- and microsteatosis, as follows.

In order to distinguish between macro steatosis and other white structures, we integrated a deep convolutional 

neural network (CNN) within our pipeline. A U-Net network with ResNet34 backbone was implemented to 

perform semantic segmentation (Fig. 3). This network consisted of an encoder and a decoder structure. The 

encoder network, based on the ResNet34 architecture, was designed to extract high-level features from the input 

image. The decoder network aimed to semantically project the discriminating characteristics (lower resolution) 

learned by the encoder on the pixel space (higher resolution) to obtain a dense classification [41]. Our deep 

convolutional network was based on residual blocks, which consisted of a sequence of layers with skip 

connections between input and output of each block [41]. The encoding part of our network was pre-trained on 

the 2012 ILSVRC imageNet Dataset [42]. Then, the entire network was trained using the 350 RGB images of 

the TRAIN dataset.
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Starting from the original image, the deep network was employed to detect liver steatosis (Fig. 4a). We adopted 

the semantic segmentation to reject false positive shapes from the candidate macro steatosis mask (Fig. 2d). In 

particular, all the regions not detected by CNN were removed from the extended steatosis mask, thus obtaining 

the result shown in Fig. 4b. However, as can be seen from Fig. 4b, the steatosis segmentation was not accurate 

as lipid droplets were merged together. For this reason, the HEPASS algorithm performed a separation of the 

detected regions using an active deformable model. This step was necessary to correct the over-segmentation of 

the previous step since too large structures may consist of a fusion of several steatosis vacuoles. The distance 

transform of the binary mask was computed, and its local maxima were extracted to initialize the deformable 

model. In each local maximum, a ‘balloon’ active contour [43] was then initialized with the following energy 

function (E):

where v(s) was the parametric form of the curve, α regulated the radial expansion,  was the normal unity 

vector of the curve, β was the coefficient related to the elasticity of the curve, while γ and  were the external 

energy's coefficient and the Sobel gradient of the grayscale image, respectively. For this application, we set 

α = 0.15, β = 0.05 and γ = 1.2. A number of points equal to 100 was used for each active contour. The result 

obtained by the active deformable model is shown in Fig. 4c.

articles are available online and in print for many years, whereas telephone/fax numbers are changeable and therefore 

not reliable in the long term.Fig. 3

Fig. 3
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Architecture of the deep network employed to perform macro-steatosis segmentation. A U-Net with ResNet34 backbone was 

implemented using Keras framework.

(3)
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To perform the separation between true microsteatosis (area ≤175 μm
2
) and the other objects with the same size, 

the statistical classifier based on logistic regression analysis proposed by Munsterman et al. [34] was 

implemented. Briefly, this classifier used measures expressing the roundness of objects, using quantitative 

features as size (μm
2

), circularity, roundness and solidity. These four features were used to detect 

microsteatosis since they ensure the best performance compared to other morphological and chromatic 

characteristics [34]. For each detected microstructure (Fig. 4d), the following classifier was employed:

where logit (.) was the result of the logistic regression analysis:

All the microstructures that achieved a probability (Pr) lower than 95% were deleted. The result obtained after 

applying this cleaning step is illustrated in Fig. 4e.

At the end of the processing, the summed surface area of all detected steatosis as well as the total tissue area was 

calculated. The automatic result provided by the HEPASS algorithm is shown in Fig. 4f. Finally, the algorithm 

Fig. 4

Figure Replacement Requested

Cleaning steps of the HEPASS algorithm. (a) Output of the CNN designed for steatosis segmentation, (b) initial macro 

steatosis mask (orange), (c) active contour model for structure separation, (d) initial micro steatosis mask (cyan), (e) cleaning 

of micro steatosis using logistic regression, (f) final result of the proposed algorithm. (For interpretation of the references to 

color in this figure legend, the reader is referred to the Web version of this article.)
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computed the SPA (steatosis proportionate area) as:

2.6 Performance measure

A comparison between masks drawn by a manual operator and those provided by our method was carried out to 

assess the algorithm performance in the segmentation of histological tissue and hepatic steatosis. Firstly, the 

segmentation accuracy was computed as:

where TP: true positive, TN: true negative, FN: false negative and FP: false positive. Besides pixel-based results, 

the absolute error (AE) between manual and automatic steatosis percentage (SPA) was also evaluated. In order 

to perform a quantitative assessment of the histological image, we compared the mean area of manually detected 

regions with automatic ones. For each image, the error between manual and automatic estimation was calculated 

as:

where N and M are the number of regions manually and automatically detected, respectively. Finally, the 

classification accuracy of the automated method in steatosis quantification (SQ) was evaluated.

3 Results

The automatic results provided by the HEPASS algorithm were compared both with manual steatosis 

annotations and previously published works. For the implementation of each published algorithm, we followed 

the pipeline described within the respective ‘Materials and Methods' section. For all the state-of-art methods, a 

quantitative comparison was carried out by evaluating the accuracy in the segmentation of the histological tissue 

(accuracy
TISSUE

) and liver steatosis (accuracy
STEATOSIS

). Table 2 shows the comparison between the proposed 

algorithm and the current state-of-art methods. The HEPASS algorithm exhibited excellent performances in 

segmenting hepatic steatosis; the very high average accuracy coupled to low standard deviation values 

demonstrated the robustness of the method. In both TRAIN and TEST datasets, the proposed strategy 

outperformed compared methods, obtaining an average accuracy
STEATOSIS

 of 97.53% and 97.27%, respectively. 

Correspondingly, the visual performances of the compared methods are reported in Fig. 5. The HEPASS 

algorithm was able to correctly detect and separate the macro-steatosis fused together (Fig. 5 – Sample #1). 

Thanks to the semantic segmentation of the deep network, our method was also capable to avoid the detection of 

false-positive shapes in images with a high concentration of sinusoids (Sample #3).

(6)

(7)

(8)
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Table 2

Comparison between the proposed algorithm and the state-of-art methods during histological tissue and liver steatosis 

segmentation. Accuracy TISSUE and accuracy STEATOSIS  indicates the accuracy in tissue and steatosis detection, 

respectively.

Method

TRAIN TEST

accuracy TISSUE  

(%)

accuracy STEATOSIS  

(%)

accuracy TISSUE  

(%)

accuracy STEATOSIS  

(%)

Turlin et al. 83.10 ± 26.64 96.94 ± 6.49 82.59 ± 27.61 96.00 ± 7.76

Liquori et al. 83.10 ± 26.64 96.05 ± 6.67 82.59 ± 27.61 95.01 ± 9.10

Catta-Preta et al. 98.40 ± 3.50 91.60 ± 8.61 97.83 ± 4.12 91.33 ± 8.51

Nativ et al. 83.10 ± 26.64 95.77 ± 4.91 82.59 ± 27.61 95.47 ± 5.17

Vanderbeck et al. 97.54 ± 6.33 96.51 ± 3.71 96.73 ± 5.95 96.04 ± 5.14

Batool et al. 95.22 ± 11.97 96.49 ± 5.10 94.45 ± 12.31 95.97 ± 6.90

Tsiplakidou et al. 83.10 ± 26.64 97.02 ± 5.23 82.59 ± 27.61 95.76 ± 8.03

Arjmand et al. 87.34 ± 25.72 96.37 ± 5.76 86.81 ± 27.62 94.93 ± 8.62

Munsterman et al. 95.50 ± 10.89 96.66 ± 4.79 97.70 ± 4.54 95.68 ± 7.71

HEPASS 

algorithm

99.08 ± 1.34 97.53 ± 2.37 99.30 ± 0.93 97.27 ± 2.71

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please view 

the Proof.
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Once obtained the tissue and steatosis contours, we also evaluated the absolute errors between manual and 

automatic SPA (steatosis proportionate area). Table 3 illustrates the absolute errors (AE) between manual and 

automatic steatosis percentage. In both TRAIN and TEST datasets, the HEPASS algorithm achieved the lowest 

average AE (0.95% and 1.07%), with a maximum AE of 5.55% and 5.62%, respectively. Specifically, the 

maximum AE obtained by the algorithm was 4–10 times lower compared to state-of-art techniques. Fig. 6 shows 

the absolute errors during SPA evaluation for all the hepatic steatosis and for the macrovesicular and 

microvesicular ones. Our algorithm obtained the best performance in SPA evaluation for both micro- and 

macrosteatosis, with a mean value of 0.51% and 0.66%, respectively. In addition to being accurate, the proposed 

method is also fast, with an average computational time of 0.72 s.

Visual performance between the best three published methods for steatosis detection and the proposed algorithm. Sub-images 

from different samples are shown in rows while segmentation results are illustrated in columns. First column displays the 

original image while manual annotations generated after consensus of two expert pathologists are illustrated in the second 

column. Compared methods are presented from the third column while the result of the HEPASS algorithm is shown in the last 

one.

alt-text: Table 3
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Minimum, average and maximum absolute errors (AEMIN , AEMEAN , AEMAX ) between manual and automatic steatosis 

percentage for both TRAIN and TEST datasets.

Method

TRAIN TEST

AEMIN  (%) AEMEAN  (%) AEMAX  (%) AEMIN  (%) AEMEAN  (%) AEMAX  (%)

Turlin et al. 0 3.37 88.72 0 4.34 41.68

Liquori et al. 0 4.51 52.78 0 5.48 42.75

Catta-Preta et al. 0.03 4.74 40.51 0.05 5.71 32.82

Nativ et al. 0 3.58 33.05 0.04 3.68 16.91

Vanderbeck et al. 0.01 2.55 18.42 0.03 3.23 16.28

Batool et al. 0 2.93 39.86 0.01 3.39 32.29

Tsiplakidou et al. 0 3.16 49.61 0 4.33 39.43

Arjmand et al. 0 2.63 46.45 0.07 3.87 35.80

Munsterman et al. 0 1.85 42.41 0 2.64 36.35

HEPASS algorithm 0 0.95 5.55 0 1.07 5.62

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please view 

the Proof.
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Quantitative comparison between the HEPASS algorithm and the state-of-art methods during SPA calculation for the TEST 

dataset. AEGLOBAL indicates the absolute error for all the hepatic steatosis while AEMACRO  and AEMICRO  represent the 

absolute errors for the macrovesicular and microvesicular steatosis, respectively.
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Finally, we computed the average error between manual and automatic steatosis area (error
REGIONS

) and the 

classification accuracy of the automated methods using SQ system (Table 4). Also in this case, the proposed 

technique outperformed the compared methods, obtaining the lowest error
REGIONS

 (3.65 μm
2
) and the highest 

classification accuracy using SQ system (97.14%) in the TEST set.

4 Discussion and conclusion

The diagnostic workload of transplant pathology, which includes donor graft evaluation, transplant follow-up 

and post-mortem organ assessment can possibly be decreased by implementation of digital algorithms, also 

known as computer-aided diagnosis.

In this study, we presented a fully automated method for quantitative steatosis assessment in histological images 

from liver biopsies. Steatotic hepatocytes detection in histological images is a challenging task because of 

steatosis variability in shape, intensity, and dimension. Our technique did not require any user interaction and it 

alt-text: Table 4

Table 4

Average error between the area of manually annotated steatosis and automatically detected ones (errorREGIONS ) and 

classification accuracy of the automated methods using SQ system.

Method

TRAIN TEST

errorREGIONS  (μm
2

) SQACCURACY  (%) errorREGIONS  (μm
2

) SQACCURACY  (%)

Turlin et al. −170.40 78.57 −43.94 82.86

Liquori et al. 36.07 71.14 49.46 71.43

Catta-Preta et al. −27.77 51.43 4.31 45.71

Nativ et al. −74.75 73.43 −47.47 68.57

Vanderbeck et al. −263.00 80.57 −515.20 80.00

Batool et al. 25.53 79.14 34.66 82.86

Tsiplakidou et al. −23.08 80.00 −5.68 82.86

Arjmand et al. −26.60 82.86 −4.56 77.14

Munsterman et al. 18.19 91.71 34.41 97.14

HEPASS algorithm 4.52 94.86 3.65 97.14

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please view 

the Proof.



was capable of automatically detecting steatosis in images with different staining intensity. The proposed method 

was developed and tested on 385 H&E stained images of liver tissue and automatic results were compared with 

manual annotations of two expert pathologists. The algorithm showed a very high accuracy during the 

discrimination between steatosis and non-steatotic tissue (Table 2). Compared with the current state-of-art 

techniques, our approach achieved the lowest absolute error (around 1%) in the estimation of steatosis 

percentage (Table 3). In the TEST set, the maximum absolute error of the algorithm was only 5.62%, about 4 

times lower respect to compared methods. Finally, the HEPASS algorithm also allowed an improvement of the 

SQ
ACCURACY

 up to 51.43% compared to previously published methods (Table 4).

The high performances of the HEPASS algorithm were mainly due to the combination of accurate object 

detection (raw and extended steatosis detection) with semantic segmentation of a deep neural network (cleaning 

steps). This hybrid approach had the advantage of providing well-defined steatosis contours, with a better 

delimitation of even small-size macrovesicles. Most of the current state-of-art methods used low-magnification 

images (x10 or worse) to assess the steatotic hepatocytes, completely neglecting microsteatosis evaluation, which 

is exceedingly important during liver graft assessment [44]. In addition, our method considered only shape 

features for selecting the areas of lipid infiltration, avoiding all the error that may occur when chromatic 

characteristics are used. The main limitation of the HEPASS algorithm is related to the quantification of micro-

steatosis. As can be seen from Fig. 6, the absolute error (AE) for micro-steatosis is higher respect to the one 

related to macro-steatosis. The detection of micro-lipids is even more challenging compared to macro-steatosis as 

they can have different shapes and intensities. For this reason, we are planning to develop a deep network 

specifically designed for the detection of micro fat droplets.

To the best of our knowledge, the proposed method is the first fully automated algorithm for the assessment of 

both micro- and macrosteatosis in H&E stained liver tissue images. The HEPASS algorithm can also be applied 

to other staining methods (e.g. PAS, trichrome, etc.) as long as steatosis appears as uncolored regions.

The algorithm can be also employed in other fields of hepatic pathology, like discrimination of non-alcoholic 

steatohepatitis (NASH) versus non-alcoholic fatty liver disease (NAFLD), which present similar morphological 

features and require the use of dedicated check-list for steatosis quantification and grading [23]. Fig. 7 shows the 

application of the HEPASS algorithm on a whole-slide image (WSI). The use of automated algorithms may 

provide more consistent case evaluation guaranteeing quality control, potentially reducing the requirement for 

high number of expert pathologists. Moreover, digital dataset being uploaded and available on centralized 

platform may be of use of educational and training purposes, overcoming logistical obstacles.
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In conclusion, we have developed a novel algorithm that enables a fully automated steatosis proportionate area 

(SPA) assessment, which could be used in human liver grafts evaluation, and it may help to standardize the SQ 

among pathologists and different centers, and possibly decrease the workload in the routine practice. Being very 

fast (average computational time: 0.72 s), this method has also the potential to be incorporated into real-time liver 

graft assessments with frozen liver slides to ensure optimal utilization of the liver graft pool. Our group is 

currently working on an extension of this algorithm for the processing of entire liver biopsies, with the aim to 

extract morphological/spatial parameters and find the clinicopathological correlations between the severity of 

steatosis and patient outcomes.
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Abbreviations

HEPASS HEPatic Adaptive Steatosis Segmentation

H&E Hematoxylin and Eosin

LT Liver transplantation

EDC Extended donor criteria

SPA Steatosis proportionate area

TP True positive

TN True negative

FN False negative

FP False positive

AE Absolute error

SQ Steatosis quantification
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Highlights

• Liver steatosis has an important role in assessing the suitability for transplant.

• Histological assessment is subjected to inter- and intra-observer variability.

• An automated method is presented to detect both the micro- and macrosteatosis.

• An accuracy of 97.53% and 97.27% was achieved in train and test set, respectively.

• The algorithm paves the way for quantitative and real-time liver graft assessments.


