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Abstract:  9 

In this work, Deep Reinforcement Learning (DRL) is implemented to control the supply 10 

water temperature setpoint to terminal units of a heating system. The experiment was carried 11 

out for an office building in an integrated simulation environment. A sensitivity analysis is 12 

carried out on relevant hyperparameters to identify their optimal configuration. Moreover, 13 

two sets of input variables were considered for assessing their impact on the adaptability 14 

capabilities of the DRL controller. In this context a static and dynamic deployment of the 15 

DRL controller is performed. The trained control agent is tested for four different scenarios 16 

to determine its adaptability to the variation of forcing variables such as weather conditions, 17 

occupant presence patterns and different indoor temperature setpoint requirements. The 18 

performance of the agent is evaluated against a reference controller that implements a 19 

combination of rule-based and climatic-based logics. As a result, when the set of variables 20 

are adequately selected a heating energy saving ranging between 5 and 12 % is obtained 21 

with an enhanced indoor temperature control with both static and dynamic deployment. 22 

Eventually the study proves that if the set of input variables are not carefully selected a 23 

dynamic deployment is strictly required for obtaining good performance.  24 

Keywords: deep reinforcement learning, building adaptive control, energy efficiency, 25 

temperature control, HVAC. 26 
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1. Introduction 28 

The last few years have seen a deep transformation in the energy system of many 29 

countries worldwide. The progressive introduction of renewable energy sources in buildings 30 

and the consequent effort for decarbonisation have changed the way to use and manage 31 

energy [1]. Important opportunities to address this task are provided by the implementation 32 

of strategies aimed at improving the building energy management and operation. In this 33 

context the increasing implementation of Internet of things (IoT) and Information and 34 

Communication Technologies (ICT) in buildings have supported an easier availability of a 35 

huge amount of building-related data [2,3] making it possible a bi-directional communication 36 

between infrastructures and operators [4,5].  37 

Energy Management and Information Systems (EMIS) enable building owners to 38 

operate their buildings more efficiently and with improved occupant comfort. According to 39 

[6] EMIS can be categorized in three main families of data analytics-based tools including 40 

Energy Information System (EIS), Fault Detection and Diagnosis systems (FDD) and 41 

Automated System Optimisation (ASO) tools. ASO tools offer the opportunity to 42 

continuously analyse and modify control settings for optimising the building system energy 43 

usage. Advanced control strategies are mainly enabled by the progressive introduction of 44 

Advanced Metering Infrastructure (AMI) which allow the collection, storage, and analysis 45 

of a vast amount of building-related data. For this reason, the information gathered, if it is 46 

properly processed through data-driven procedures, may provide crucial knowledge on the 47 

actual and future building operational status including exogenous and endogenous variables 48 

influencing control performance [7,8]. 49 

In this context, more and more researchers worldwide are focusing on the development 50 

of advanced ASO for the optimal energy management of buildings leveraging on the great 51 

opportunities provided by the current advances in applied Artificial Intelligence (AI).  52 
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The optimal management of Heating Ventilation and Air Conditioning (HVAC) systems 53 

is one of the most promising application to investigate, considering that such systems along 54 

with lighting system account for more than a half of the energy demand in any type of 55 

building [9]. The main aim of controlling such systems is to guarantee the indoor comfort 56 

level while reducing the energy consumption during operation. Such control problem needs 57 

then to handle contrasting objectives and its formulation often represents a complex task to 58 

be accomplished. Moreover, the behaviour of building’s occupants, which is extremely 59 

stochastic, and the interaction with the grid, furtherly contribute to increase the complexity 60 

of the control and optimisation process of building performance during operation. 61 

In this context, buildings energy flexibility has been recognised as a key resource to be 62 

exploited in Demand Response (DR) scenarios [10]. According to Clauß et al. [11] the 63 

flexibility is the property of a building that defines the margin in which it can be operated 64 

according to its functional requirements. A further definition introduces the flexibility has 65 

the ability to manage a building according to grid requirements, climate conditions and user 66 

needs [10]. Actually, buildings can leverage their properties such as thermal inertia, electrical 67 

and thermal storages and renewable production to provide energy flexibility by adjusting 68 

HVAC systems operations. However, HVAC systems commonly implement classical control 69 

strategies such as on-off or Proportional-Integrative-Derivative (PID) control instead of more 70 

advanced solutions. This is mainly due to the current lack of guidelines and framework in 71 

literature for a robust implementation of advanced control for building industry [12]. 72 

Classical control are based on rule-based or reactive strategies which do not take into account 73 

prediction about external disturbances influencing energy consumption and thermal comfort 74 

in buildings. Moreover they do not perform any optimisation process and are not able to 75 

handle multiple and contrasting objective functions [13,14]. PID controllers provide great 76 

stability but fails when the operating conditions vary from the tuning conditions [15]; in this 77 

case manual tuning of PID is necessary but it is an extremely time consuming activity [10].  78 
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Advanced control techniques that are not widespread in the building industry include 79 

non-linear, robust and optimal control. Non-linear control is effective in catching non-linear 80 

dynamics of HVAC systems, but it requires rather complex mathematical modelling. Optimal 81 

and robust control are able to deal with time-varying disturbances but their applicability is 82 

limited due to the dynamic operation conditions of HVAC systems [15,16].  83 

Among hard control methods [14], Model Predictive Control (MPC) aims at facing the 84 

main challenges of HVAC system control such as non-linear and time-varying dynamics and 85 

disturbances through an optimisation process performed over a receding time horizon 86 

[17,18]. The current scientific literature includes several works in which MPC was 87 

successfully applied to complex HVAC systems [19–21]. However, its application requires 88 

the definition of accurate models of the controlled environment [22,23] limiting MPC 89 

widespread adoption in the building industry. To overcome these limitations hybrid control 90 

strategies, such as adaptive control, have been successfully applied to HVAC systems [23–91 

25] . Adaptive controllers do not require a priori identification of system parameters, as 92 

unknown parameters are estimated in real time through a parameter estimator which provides 93 

to the controller enough flexibility to adapt to time-varying disturbances and to account for 94 

uncertainty. 95 

An alternative is provided by model-free control approaches such as Reinforcement 96 

Learning (RL) which can be employed, with no need of a-priori formalization of the 97 

controlled environment or process. In the RL paradigm, a control agent directly learns an 98 

optimal policy from its interactions with the environment through a delayed reward 99 

mechanism[27]. RL and in particular Deep Reinforcement Learning (DRL) was recently 100 

successfully applied to control problems previously unsolvable [28,29]. However, the 101 

exploration of this novel control approach is still in its infancy and effectiveness and 102 

limitations in energy and buildings applications need to be further explored. In the next 103 

section an overview on the existing literature related to the application of Deep 104 
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Reinforcement Learning to address HVAC systems control is reported with the aim of 105 

introducing the current knowledge gaps and the consequent contribution of the present paper. 106 

1.1. Related works to the application of Deep Reinforcement Learning control in 107 

HVAC systems 108 

Deep Reinforcement Learning (DRL) has recently gained popularity among RL 109 

algorithms due to its ability to adapt to very complex control problems characterized by a 110 

high dimensionality and contrasting objectives. DRL employs deep neural networks in the 111 

control agent due to their high capacity in describing complex and non-linear relationship of 112 

the controlled environment.  113 

The first application of RL to HVAC systems dates back to 1998[16], from this year up 114 

to 2012 the number of scientific publications about RL application to energy systems was 115 

limited to few works per year. From this period the interest of the scientific community about 116 

RL control framework has increased also due to recent advancements in deep learning. 117 

Recent studies exploited DRL for the regulation of supply water temperature setpoint [30], 118 

supply air flow-rate [31], supply air temperature[32], indoor temperature or humidity setpoint 119 

[33–35], fan speed or damper position [32,36] and tank temperature setpoint [37,38].  120 

Zhang et al. [30,39] applied Asynchronous Advantage Actor-Critic (A3C) reinforcement 121 

learning control to a novel radiant heating system in an office building. The agent controlled 122 

the supply water temperature value achieving a reduction of 16.7 % in energy demand while 123 

slightly increasing the Percentage of Person Dissatisfied (PPD). The authors highlighted the 124 

importance of introducing guidelines for practitioners for the design process of DRL applied 125 

to the built environment. Vàsquez-Canteli et al. [37,38] applied Deep Q-Learning to control 126 

a heat pump coupled with chilled water tank to minimize the energy consumption of the 127 

system. The control agent showed better performance compared to a Rule-Based Control 128 

(RBC) achieving 10% of energy saving. 129 
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Two exhaustive review work were recently published focusing on the application of RL 130 

control in buildings for demand response [40] and occupant comfort [41] respectively. In 131 

[40] were identified four major categories of energy systems where RL and DRL are applied: 132 

HVAC and Domestic Hot Water (DHW) systems, Appliances, Electric Vehicles (EV) and 133 

distributed generation coupled with storage systems. The authors identified a significant lack 134 

in real-world studies of RL controllers that may cause scepticism of building owners and 135 

managers about this technology. Moreover, the integration of RL with actual human feedback 136 

and the development of Multi-Agent Reinforcement Learning Controllers (MARL) were 137 

recognized as promising trends for future research in the energy and building sector.  138 

The second review work [41] mainly focused on the comfort aspects identifying a lack 139 

of studies dealing with comfort factors different from indoor temperature such as Indoor Air 140 

Quality (IAQ) and visual comfort parameters. The integration of occupancy schedules and 141 

human feed-back into the control loop were identified as open research challenges to be 142 

addressed for developing effective occupant-centric building control. 143 

In ideal conditions, a DRL agent should be directly implemented online in a real-world 144 

HVAC system learning, and its control policy should be refined by continuously interacting 145 

with the controlled environment through a trial and error process. However, in the initial 146 

stage of the learning process, the online implementation may lead to poor control 147 

performance since the agent could explore extreme states of the environment (e.g. poor 148 

thermal comfort conditions) in order to fully map the relation between the space of the state 149 

actions and the corresponding rewards obtained. In addition, DRL agent may take a 150 

considerable amount of time (between 20 up to 50 days) to converge to an acceptable control 151 

policy [35,37,42]. Therefore, to overcome this problem, the majority of researchers 152 

developed simulation environments combining various building energy simulation tools 153 

(EnergyPlus, CitySim) with deep learning libraries (Tensorflow, Pytorch)[30,32,33,37] to 154 

pre-train and test DRL algorithms in off-line conditions. However, the development of 155 
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accurate simulation models adds requires a considerable effort. In some cases, fully 156 

engineering models are not always capable to simulate the complexity of HVAC systems 157 

operation and the effect of occupant behaviour. An alternative is provided by black-box 158 

models built on historical data collected from Building Automation System (BAS) [36]. 159 

Despite such models proved to be able to accurately capture HVAC dynamics from collected 160 

monitored data, they could lack in generalizability, given that although they are able to easily 161 

reproduce patterns observed in the historical data set, suffer from extrapolation issues. 162 

Indeed, DRL represents a novel and promising approach research to HVAC control. 163 

However, it is still in its precocial state and further investigation are required in order to 164 

assess its performance compared to other solutions. 165 

2. Knowledge gaps and contribution of the paper 166 

Despite the advantages provided by the implementation of DRL as a control method for 167 

HVAC systems, some major drawbacks in the design and the training process of the DRL 168 

agent need to be further explored.  169 

 A DRL agent is characterized by a number of hyperparameters that need to be carefully 170 

tuned depending on the specific case study and objective functions [39]. As a consequence, 171 

despite its model-free nature, DRL requires a sort of modelling effort in its initial state to find 172 

the set of hyperparameters which may lead to the learning of a control policy close to the 173 

optimum in less time as possible and with an acceptable uncertainty [32]. In the existing 174 

literature an analysis on the effect of the hyperparameters settings on the performance of the 175 

control strategy was poorly investigated. Moreover, two opposite approaches can be followed 176 

when deploying a DRL agent previously trained offline: static deployment and dynamic 177 

deployment [30]. In the static deployment approach, the agent is implemented in the control 178 

loop as a static entity, meaning that the control policy is no longer updated, and any learning 179 

goes on. The advantages of such approach are the limited computational cost and the relative 180 
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stability provided by a static control policy. The disadvantage is that the agent is unable to 181 

automatically adapt in the case key-features of the controlled system change (e.g. revamping 182 

intervention) and may need to be retrained. Conversely, in the dynamic deployment 183 

approach, the agent continuously learns from experience constantly updating its control 184 

policy. Following this approach a DRL agent can adapt to a changing system at the expense 185 

of higher computational cost and with the risk of stability issues for the control policy [30].  186 

Moreover, in the design of the DRL a proper selection of the variable set which describe 187 

the environment is particularly important, considering it represents the environment as it is 188 

observed by the control agent. The effect of variable section on the adaptability capability of 189 

the DRL controller need to be further explored respect to the exiting literature. 190 

The present paper focuses on the development of a DRL agent to control the setpoint of 191 

supply water temperature to heating terminal units system serving a thermal zone of an office 192 

building. The whole process was developed in an integrated simulation environment 193 

combining EnergyPlus[43] and Python. The developed simulation environment makes it 194 

possible to overcome some limitations of EnergyPlus in simulating advanced contol logics. 195 

The main scope of the work is to extensively test the operation of a robust agent by exploring 196 

its adaptability to the variation of forcing variables such as weather conditions, occupant 197 

presence patterns and different indoor temperature setpoint requirements. The analyses were 198 

conducted considering both a static and dynamic deployment with the aim of underlining 199 

limitations and opportunities. Moreover, two different sets of input variables (with an 200 

adaptive and non-adaptive approach respectively) were analysed for assessing the impact of 201 

variable selection process on the adaptability capabilities of the RL controller. To the best of 202 

authors knowledge such a comprehensive study has not been reported earlier in the literature.   203 

On the basis of the literature review on DRL control in HVAC systems presented in 204 

section 1.1 the main innovative contributions that this paper intends to provide can be 205 

summarised as follows: 206 
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• The control performance of a DRL agent was analysed both in terms of indoor 207 

temperature control and energy consumption against a baseline controller implementing 208 

a climatic-based logic of supply water temperature setpoint and a rule-based control of 209 

heating system operation. 210 

• The design of a DRL agent was conducted performing a sensitivity analysis on the 211 

hyperparameters which may strongly affect the control performance of the agent.  212 

• A proper variable selection was proposed to prevent the agent from learning an overfitted 213 

control policy. When a DRL agent is developed, in most of the cases the input variables 214 

describing the controlled environment are not defined to provide information to the agent 215 

in an adaptable manner with respect to control objectives. To this purpose, the variable 216 

selection process was performed both with adaptive and non-adaptive approach in order 217 

to produce an effective comparison. 218 

• The two approaches of DRL deployment, static and dynamic, were compared in four 219 

different deployment scenarios to assess the adaptability of the agent to the variation of 220 

forcing variables such as weather conditions, occupancy patterns and different indoor 221 

temperature setpoint requirements. 222 

The rest of the present paper is organised as follows. Section 3 provides an introduction 223 

to reinforcement learning theoretical formulation. Section 4 presents the methodological 224 

framework adopted for testing the DRL controller. Section 5 briefly describes the integrated 225 

simulation environment developed for this work. Section 6 introduces the case study and 226 

defines the control problem. Section 7 presents the results obtained for the analysed case 227 

study. The last two sections discuss the results and include concluding remarks and future 228 

directions of the research. 229 

3. Reinforcement Learning: concept and formulation 230 
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In the standard reinforcement learning formulation applied to HVAC control an agent 231 

(e.g. a control module linked to building management system running in the cloud) performs 232 

an action (e.g. turning on the heating system) when the environment (e.g. a building thermal 233 

zone) is in a state (e.g. the building is occupied and the indoor temperature is below the 234 

desired setpoint) and receives a reward which represents how much the agent is performing 235 

well by taking that action in that state with respect to control objectives. The goal of the agent 236 

is to learn an optimal control policy (π) that formally is a mapping between states and the 237 

probability of each action of being selected[27]. The state-value function, represents the 238 

expected return (i.e. the cumulative sum of future rewards) of the agent when starting from 239 

state s and following policy π: 240 

𝑣𝜋(𝑠) = 𝐸[𝑟𝑡+1 +  𝛾 𝑣𝜋(𝑠′)|𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′] 241 

Equation 1 242 

Where γ [0,1] is the discount factor for future rewards [27]. An agent employing a 243 

discount factor equal to 1 will give greater importance to rewards that can be obtained in the 244 

future. Whereas, an agent implementing a discount factor of 0 will assign higher values to 245 

states that lead to high immediate rewards. Similarly, the action-value function represents the 246 

expected return of the agent when selecting action a starting from state s and following policy 247 

π: 248 

𝑞𝜋(𝑠, 𝑎) = 𝐸[𝑟𝑡+1 +  𝛾 𝑞𝜋(𝑠′, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 249 

Equation 2 250 

The values of vπ and qπ can be directly learned from experience. In this paper the most 251 

widely applied model-free reinforcement learning approach, namely Q-learning, was 252 

employed. Q-learning aims at estimating state-action values or Q-values from experience. 253 

These values are updated according to the following formula: 254 
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𝑄(𝑠𝑡, 𝑎𝑡) ⟵  𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼 [𝑟𝑡 +  𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) −  𝑄(𝑠𝑡, 𝑎𝑡)] 255 

Equation 3 256 

Where α [0,1] is the learning rate which determines with which extension new 257 

knowledge overrides old knowledge. When α is equal to 1 new knowledge completely 258 

substitutes old knowledge, instead, when, α is set equal 0 no learning happens and new 259 

knowledge is not employed to update the control policy. The higher the estimation of the Q-260 

value for a specific state-action tuple (s,a) the higher is the expected reward of the agent for 261 

taking that specific action a in the state s. 262 

One of the peculiarities that characterize reinforcement learning is the trade-off between 263 

exploration and exploitation. In order to maximize the rewards stream, an agent must select 264 

actions previously tried that have been found to be effective in obtaining high rewards 265 

(exploitation). However, to identify such actions it must select actions never tried before 266 

(exploration). Two of the most frequently used methods to select actions balancing 267 

exploration and exploitation are the ε-greedy and the soft-max methods. ε-greedy assigns 268 

equal probabilities to all non-optimal actions leading to poor results in some circumstances, 269 

while soft-max approach has shown problems on selecting the best-performing action [44]. 270 

The Max-Boltzmann exploration rules combines the two previously mentioned approaches. 271 

Following this approach, the agent acts almost deterministically when the estimations of the 272 

Q-values are not ambiguous (i.e. the Q-value associated with the best performing action 273 

significantly differs from the others), while it allows wider exploration in the region of the 274 

state-action space where the Q-values estimations are more ambiguous[44]. According to 275 

Max-Boltzmann rule the agent with probability ε selects actions with probabilities related to 276 

their Q-values: 277 
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Pr(𝑎|𝑠) =
𝑒

𝑄(𝑠,𝑎)
𝜏

∑ 𝑒
𝑄(𝑠,𝑎)

𝜏

 278 

Equation 4 279 

Where τ is the Boltzmann temperature constant. Typically, the learning process is 280 

initialized with high values of ε (e.g. ε = 1 that means that the agent selects actions always 281 

based on soft-max distribution of the Q-values) and gradually reduce this value in order to 282 

exploit obtained knowledge. 283 

3.1. Deep-Q-Learning 284 

In its classical formulation, Q-learning algorithm employs lookup tables to store and 285 

retrieve state-action values where each entry represents a state-action tuple (s,a). However, 286 

adopting a tabular representation may be unfeasible in practical problems where the state and 287 

action spaces are very large. A solution to this problem is to represent Q-values through a 288 

function approximator that allows state-action values to be represented by employing only a 289 

fixed amount of memory which depends only by the function used to approximate the 290 

problem. In particular, Deep Neural Networks (DNNs) have gained popularity due to their 291 

capacity to build an effective representation of the problem through their hidden layer 292 

structure. The first work implementing Q-learning and DNNs was developed by Minh et al. 293 

[28]. In Deep Q Networks (DQN) the Q-value function is parametrized by ϑ, where ϑ are the 294 

weights of the network. The number of neurons in the input layer of the network is equal to 295 

the number of variables from which a state is composed, while, the output layer has many 296 

neurons as the number of actions that the agent may take at each control interaction with the 297 

environment. Through this structure, the network is used to learn the relation between states 298 

and the Q-value for each action. However, in the RL paradigm, the true Q-value for each 299 

state-action pair is not known a-priori but it is learnt over successive interaction with the 300 
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controlled environment. At each control step, the Q-values are updated according to Equation 301 

3 and used as targets to retrain the deep neural network. 302 

Some improvements were introduced in literature in order to improve the DQN 303 

formulation. The first one is the introduction of the replay memory to store previous 304 

experience obtained by the agent. In the optimisation process of the network weights a 305 

random mini batch is extracted from the replay memory and used to fit DNN-regression using 306 

as targets Q-values updated according to Equation 3. This enables the re-utilization of 307 

previous experience collected by the agent and overcome the problem of correlated 308 

observations while performing the optimisation process. The second improvement involves 309 

the employment of two neural networks[45]. The first one, called online network, is 310 

constantly updated and directly used in the interaction with the environment; the second one, 311 

called target network, is updated after N iterations and used to predict target values. The 312 

target network is an exact copy of the online network and during the update the weights of 313 

the online network are simply copied into the target network. In the present work Double 314 

Deep Q-Learning with Memory Replay implementing the Max-Boltzmann exploration rule 315 

was applied to develop a DRL control to optimize both heating energy consumption and 316 

indoor thermal conditions. The whole process was trained and tested in a simulation 317 

environment developed by the authors.  318 

4. Framework of the analysis 319 

In this section the methodological framework is presented with the aim of introducing 320 

each stage of the DRL control agent development. The present framework unfolds over three 321 

different stages as shown in Figure 1. 322 
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 323 

Figure 1 - Framework of the application of DRL control. 324 

Problem formulation: the first stage of the framework was aimed at defining the main 325 

components of the reinforcement learning control problem. The action-space includes all the 326 

possible control actions that can be taken by the control agent. Considering that a Deep-Q-327 

learning was implemented, the action space is discrete. The reward is a function which 328 

describes the performance of the control agent with respect to the control objectives. Finally, 329 

the state-space is a set of variables related to the controlled environment which are fed to the 330 

agent in order to learn the optimal control policy which maximizes the reward function. The 331 

state-space was formalized following two approaches. In the first approach (Adaptive), the 332 

variables were selected in order to make them flexible to possible changes in the controlled 333 

environment (Variable Set A). In the second approach (Non-Adaptive), the selected variables 334 

are equally representative of the state of the environment but do not follow an adaptability 335 

paradigm (Variable Set B). A detailed description of the DRL problem formulation stage for 336 

the specific HVAC control case is provided in section 6.4. 337 

Training: in the second stage of the process the DRL agent was trained. As introduced in 338 

section 3 reinforcement learning agents are characterised by many hyperparameters which 339 

require appropriate tuning. In this stage, a sensitivity analysis was carried out on some of the 340 

most important hyperparameters by training the agent with different configurations, in order 341 
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to analyse the variations in the results obtained. The training process was implemented in an 342 

offline fashion using a training episode (i.e. a time period representative of the specific 343 

control problem) multiple times to constantly refine agent’s control policy. The sensitivity 344 

analysis was performed for an agent implementing the variable set A. The best configuration 345 

of hyperparameters resulting from the analysis was successively employed to train the agent 346 

with variable set B. Details on the DRL training stage are provided in section 6.5. 347 

Deployment: the resulting agents, one trained on adaptive approach (using variable set A) 348 

and the other one trained with non-adaptive approach (using variable set B), were tested in 349 

the last stage. Both agents were tested through a static and dynamic deployment in one 350 

episode which includes a different period (i.e. weather conditions) from the training episode. 351 

Moreover, the deployment was performed in four different scenarios including different 352 

occupant presence patterns and indoor temperature requirements from the training stage. 353 

Eventually, a comparison of the performance obtained with the different approaches was 354 

proposed. Details on the deployment phase are provided in section 6.6. 355 

5. Description of the simulation environment 356 

As discussed in Section 3 the DRL agent aims at learning an optimal control policy by 357 

interacting with the controlled environment. In this work, the interaction between the control 358 

agent and the building was simulated within a surrogate environment which integrates 359 

EnergyPlus and Python. In particular, a EnergyPlus model of the building was wrapped in 360 

Python interface based on OpenAI Gym [46]. Through this approach a DRL agent, developed 361 

in python using existing libraries such as Tensorflow[47] and Keras[48], is able to virtually 362 

interact with a simulated building in order to learn the optimal control policy. The whole 363 

environment relies on Building Control Virtual Test Bed (BCVTB) and the ExternalInterface 364 

function of EnergyPlus.  365 
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The interaction between the two software is dynamic, and during a simulation a 366 

continuous exchange of data take place. The data flow is characterised by the following 367 

temporal features: 368 

• Control time step: it represents the time step during which the action is taken by the 369 

agent. In this application the control time step was set equal to 15 minutes. 370 

• Simulation time step: it is defined in the EnergyPlus environment and it is not directly 371 

linked to control time step. In this work the simulation time step was set equal to 5 372 

minutes, as a result, a control action occurs every 3 simulation time steps. 373 

• Episode: it is a simulation time period performed by EnergyPlus. One episode (or one 374 

simulation) is repeated multiple times during the training phase of the agent in order to 375 

allow the exploration of different trajectories. Conversely, an episode in the deployment 376 

phase is performed once in order to simulate the deployment of a trained control agent 377 

in a real building. Training and deployment episodes may differ, for example an agent 378 

can be trained on a heating season relative to one year and deployed in the heating season 379 

of the successive year. In this application a training episode lasts 2 months and a 380 

deployment episode lasts 3 months. Details about training and deployment episodes are 381 

provided in section 6. 382 

Figure 2 shows the information flow that occurs during a simulation of DRL control 383 

interacting with the EnergyPlus simulation model. The dynamic simulation starts with the 384 

initialization (init() function) of the OpenAI Gym environment which is formalized as a 385 

Python class. The reset() function is called at the beginning of each episode. This function 386 

re-initializes the EnergyPlus simulation process performing the simulation warm-up and 387 

returning the first state of the environment (e.g. the initial state of the building at the 388 

beginning of the simulation process). The state returned by EnergyPlus is defined as physical 389 

quantities and must be processed before they are provided to the DNN of the DRL agent. 390 
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Details about the selection of the variables included in the state for the specific case study 391 

are presented in section 6.4.3. 392 

On the basis of the processed state the DRL agent selects one of the possible actions and 393 

passes it to the step(a) function which translate the encoded value into a physical control 394 

action. This latter value is passed to EnergyPlus as a schedule value through 395 

ExternalInterface function in order to simulate the next control step. From the second 396 

interaction with the environment the DRL agent receives also the reward which is used as a 397 

feedback signal to constantly improve its control policy as illustrated in section 3. This 398 

process continues until the end of an episode is reached. It is worth remembering that the 399 

length of an episode can be arbitrarily chosen, and it is defined within EnergyPlus model. 400 

The green lines in the figure highlight the flow of data exchanged between Python and 401 

EnergyPlus that is handled through BCVTB. 402 
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 403 

Figure 2 – Architecture of simulation environment for RL control in HVAC systems 404 

 405 
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6. Case study 406 

The DRL algorithm described in the previous section was implemented to control the 407 

water supply temperature of a heating system for a simulated office building. In the following 408 

sub-sections, a description of the case study together with the formulation of the control 409 

problem are provided. 410 

6.1. Building description 411 

The simulated building is representative of a huge portion of the Italian building stock 412 

in terms of both heating system configuration and building construction features. It is a six-413 

level mixed-use building with a net heated surface of 9300 m2 located in Turin, Italy. The 414 

indoor environment is heated through water terminal units (i.e., radiators). The building is 415 

composed of three thermal zones served by different hot-water circuits and was built between 416 

1930 and 1960. The average transmittance values of the opaque and transparent envelope 417 

components are respectively 1.084 and 2.921 W/m2K. The ratio between heat transfer surface 418 

and gross volume (i.e, aspect ratio) is equal to 0.25 m-1. The implementation of the DRL 419 

controller is tested for one thermal zone which includes only office rooms. This zone is 420 

composed of four-levels with a net heated surface of 7000 m2 and a net heated volume of 421 

33000 m3. The remaining zones are occupied by the local police department and the warden 422 

of the whole building. Figure 3 shows a picture of the real building and highlights the thermal 423 

zone modelled in this work. 424 
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 425 

Figure 3 - Office case study located in Torino, Italy. Detail of the office zone modelled in this work. 426 

6.2. Heating system and control objectives 427 

The heating system installed in the real building is quite complex. It is composed by two 428 

hot water loops connected by a heat exchanger. The primary loop includes four gas-fired 429 

boilers with a total nominal capacity of 1300 kW. The secondary loop includes three zone-430 

loops served by different pumping systems. The three zone-loops withdraw hot water from 431 

the same water collector. The control of the supply water temperature is achieved through 432 

three-way mixing valves. However, EnergyPlus does not reach this level of complexity in 433 

the definition of the HVAC system and some simplifications were introduced to model the 434 

building.  435 

In the present case study, the control problem focuses on the regulation the supply water 436 

temperature (TSUPP) to heating terminal units of a single thermal zone. The heating system 437 

was modelled in EnergyPlus with a single hot water loop. The supply side includes a single 438 

gas fired boiler (Boiler:HotWater) and a constant speed pump (Pump:ConstantSpeed). The 439 

supply water temperature setpoint (SPTSUPP) was managed through a 440 

SetPointManager:Scheduled which directly receives inputs from Python through the 441 

ExternalInterface. The demand side includes one thermal zone and its relative bypass branch. 442 
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The goal of the control policy is to reduce the amount of thermal energy provided to the 443 

supply water while maintaining indoor air temperature within an acceptability range during 444 

occupied periods. This application, even being developed in a simulation environment in 445 

which every thermal comfort-based parameter can be easily evaluated, considers only the 446 

zone air temperature (TZONE). In fact, other comfort related-variables are not monitored in the 447 

real building. Moreover, the water terminal units can control only the sensible part of the 448 

thermal load. If the zone air temperature value falls between upper and lower threshold of a 449 

pre-defined acceptability range, then indoor temperature requirements are satisfied. In this 450 

application the acceptability range was defined in the interval [-1,1] °C from the desired 451 

indoor temperature setpoint (SPT,ZONE). The work focuses on the energy supplied for heating 452 

the carrier fluid (QSUPP) regardless the type of the generation system serving the building. 453 

Technically, in real life implementations, the regulation of supply water temperature can be 454 

achieved through different solutions such as three-way mixing valves or by modulating boiler 455 

or heat pumps. The control policy developed through the presented approach could be then 456 

employed independently by the actual generation system installed. Figure 4 provides a 457 

simplified scheme of the heating system and of the control problem formulation.  458 

 459 

Figure 4 - Schematic of the heating system analysed. 460 
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6.3. Baseline control logic 461 

The performance of the DRL control was evaluated against a baseline control logic 462 

implementing a combination of rule-based and climatic-based logics for the control of the 463 

supply water temperature. The starting time of the heating system was determined according 464 

to the value of indoor temperature and the amount of time before the occupant’s arrival. The 465 

controller is enabled to turn on the heating system up to four hours before the arrival of the 466 

occupants if the difference between the actual indoor temperature and the low threshold of 467 

the acceptability range is higher than 3°C, or up to three hours before if that difference is 468 

higher than 2°C. In any other case the controller turns on the heating two hours before 469 

occupant’s arrival if the zone temperature is lower that the low threshold of the acceptability 470 

range. When the zone reaches the upper threshold of the acceptability range the heating 471 

system is turned off. If the zone temperature falls below the lower threshold the heating 472 

system is turned on again. This control strategy is operated until two hours before occupants 473 

leave the building, when the heating system is turned off to exploit thermal inertia until the 474 

next day. The supply temperature value is linearly interpolated between a maximum value of 475 

70 °C when the outdoor air temperature falls below -5 °C and a minimum value of 40 °C 476 

when the outdoor air temperature is over 12 °C. These values were selected according to the 477 

control logic of the supply temperature actually implemented in the Energy Management 478 

System of the real building. 479 

6.4. Design of DRL control problem 480 

The Deep Reinforcement Learning control algorithm described in section 3 was trained 481 

and tested in a developed simulation environment. In the next sub-sections, the design of the 482 

action space and of the reward function are discussed along with the configuration of the 483 

training and deployment phases.  484 

6.4.1. Design of the action-space  485 
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At each control time step the agent selects a value of supply temperature setpoint 486 

(SPT,SUPP). Considering that the DQN was chosen as control agent the action-space is 487 

expressed in a discrete space. The space includes the following actions related to the supply 488 

water temperature in °C: 489 

𝐴𝑡 = [20, 40, 50, 60, 70] 490 

 491 

These values where selected in order to provide to the DRL agent the same range of supply 492 

water temperature setpoint as the baseline controller. At the same time, the values were 493 

selected to limit the actions to only five values in order to not over-complicate the control 494 

problem formulation. Given the inertia of the water-based heating system intermediate values 495 

of supply water temperature can be reached by the agent switching between available control 496 

actions during system operation. The introduction of intermediate values of setpoint supply 497 

water temperature in the present action-space (e.g. 45 °C, 55 °C, 65 °C) would have only 498 

increased the complexity of the calculations performed by the neural network model [49] 499 

without effectively producing an improvement on the learned control policy. The simulation 500 

environment was set in order to shut down circulation pump when the supply water 501 

temperature value falls below 20 °C. 502 

6.4.2. Design of the reward function 503 

The reward that the agent receives after taking an action at each control time step depends 504 

by two competing terms: the energy and temperature-related terms. The energy-related term 505 

is proportional to the energy provided to supply water to reach the desired setpoint. Unlike 506 

other applications where the energy-related term is purely intensive [36,39], in this study this 507 

term was normalized with respect to the temperature difference between zone temperature 508 

setpoint and outdoor air temperature. This formulation was introduced for not penalizing the 509 
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agent in taking energy-intensive actions when the outdoor temperature is very low and vice-510 

versa.  511 

The temperature-related term is quadratically proportional to the distance between zone 512 

air temperature setpoint and its actual value. This formulation was found to be effective in 513 

speeding up the learning process, making the agent able to easily avoid the exploration of 514 

states characterised by unacceptable conditions of the indoor environment from the very 515 

beginning of the training phase. The formulation of the reward function is expressed by the 516 

following equation: 517 

𝑅 =  −𝛽 ∗  
𝑄𝑠𝑢𝑝𝑝

𝑆𝑃𝑇,𝑍𝑂𝑁𝐸 −  𝑇𝐸𝑋𝑇  
−  𝜌 ∗ |(𝑆𝑃𝑇,𝑍𝑂𝑁𝐸 −  𝑇𝑧𝑜𝑛𝑒)

2
|

𝑂𝐶𝐶=1
 518 

Equation 5 519 

The coefficients ρ and β were introduced to weight the importance of the two terms of 520 

the reward function.  521 

6.4.3. Design of the state-space  522 

The state represents the environment as it is observed by the control agent. The agent, at 523 

each control time step, choses among the available actions according to the values assumed 524 

by the state. In this work, two different state-space were designed as introduced in section 4. 525 

The first one includes a set of input variables (variable set A) selected in order to guarantee 526 

the maximum adaptability of the learned control policy. The second state-space, instead, is 527 

composed by a set of input variables (variable set B) which do not follow an adaptive 528 

approach. In both cases the variables were selected according to the following criteria: 529 

• The variables must provide to the agent all the necessary information to predict 530 

immediate future rewards. 531 

• The variables must be feasible to be collected in a real-world implementation. 532 
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The two variable sets are reported in Table 1 and Table 2 respectively. Overall, the 533 

adaptive set (variable set A) includes 11 variables while the not-adaptive set includes 13 534 

variables (variable set B). 535 

Table 1 – Variables included in the variable set A conceived with an adaptive approach. 536 

Table 2 - Variables included in the variable set B conceived with a non-adaptive approach. 537 

 538 

External Air Temperature and Direct Solar Radiation were both included in variable set 539 

B, as they are the most influencing ambient variables affecting building heating energy 540 

consumption and indoor temperature. On the contrary, in the feature set A, External Air 541 

Temperature was substituted by the variable ΔT Indoor Setpoint – External Air since it is 542 

directly related to the formulated reward function (Equation 5). This formulation was found 543 

Variable Min Value 
Max 

Value 
Unit 

ΔT Indoor Setpoint – External Air  6 31 °C 

Direct Solar Radiation 0 720 W/m2 

Supplied Heating Energy  0 125 kWh 

Supply Water Temperature 10 80 °C 

Return Water Temperature 10 80 °C 

Time to Occupancy Start 0 36 h 

Time to Occupancy End 0 12 h 

ΔT Indoor Setpoint – Indoor Air -3 10 °C 

ΔT Indoor Setpoint – Indoor Air, 15 min lag   -3 10 °C 

ΔT Indoor Setpoint – Indoor Air, 30 min lag -3 10 °C 

ΔT Indoor Setpoint – Indoor Air, 45 min lag   -3 10 °C 

Variable Min Value 
Max 

Value 
Unit 

Time of the day 0 24 h 

Day of the week 1 7 - 

External Air Temperature -12 26 °C 

Direct Solar Radiation 0 720 W/m2 

Supplied Heating Energy  0 125 kWh 

Supply Water Temperature 10 80 °C 

Return Water Temperature 10 80 °C 

Occupants’ Presence Status 0 1 - 

Indoor Set Point 13 25 °C 

Indoor Air Temperature 13 25 °C 

Indoor Air Temperature, 15 min lag 13 25 °C 

Indoor Air Temperature, 30 min lag 13 25 °C 

Indoor Air Temperature, 45 min lag 13 25 °C 
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to be effective in removing the dependency of the learnt control policy from a fixed value of 544 

indoor temperature setpoint which could limit agent adaptability. 545 

The supplied Heating Energy was selected considering that it is proportional to the 546 

energy-related term in the reward function and it represents a key information that has to be 547 

provided to the agent. Moreover, the heat supplied to the water depends by the Supply Water 548 

Temperature and by the Return Water Temperature. These variables, which represent the 549 

main operational parameters of heating system, were included in both the variable sets. 550 

Information about the presence of occupants in the zone, from which depends the 551 

temperature-related term in the reward function, is provided through three different variables. 552 

The Occupants’ Presence Status, added in the set built following not-adaptive approach, 553 

indicates if, in a certain control time step, the zone is occupied or not (it depends only by the 554 

occupancy schedule) and it is expressed in the range [0,1]. However, this information alone 555 

is not comprehensive. It would be desirable for the agent to learn when it is convenient to 556 

pre-heat the zone so as to ensure an adequate indoor air temperature during occupancy period. 557 

A common approach to this problem in the literature, implemented in the non-adaptive set, 558 

is to select as variables time-of-the-day and day-of-the-week. However, following this 559 

procedure, the agent may learn to fit only to a specific occupancy-schedule provided during 560 

the training process. To overcome this issue, the variables time to occupancy start and time 561 

to occupancy end were introduced in the variable set A to define the time left for the 562 

subsequent change in the occupancy pattern. When the building is not occupied, time to 563 

occupancy start represent the number of hours left before occupants’ arrival time, during 564 

occupancy periods this variable is equal to 0. Conversely, when the building is occupied, time 565 

to occupancy end represent the number of hours to occupants’ leaving time, during off-566 

occupancy periods this variable is equal to 0. 567 

Eventually, the agent needs information about the zone air temperature which is directly 568 

connected with the temperature-related term of the reward function. This information was 569 
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straightforwardly added to the variable set B along with its 3 lagged values in the past (15, 570 

30 and 45 minutes lag respectively) and the Indoor Setpoint. Contrarily, in variable set A, 571 

this information was provided indirectly introducing as variable the difference between the 572 

Zone Air Temperature and Indoor Setpoint along with its 3 lagged values in the past (15, 30 573 

and 45 minutes lag respectively). 574 

The Relative Humidity was not included in the two set of variables considering that the 575 

heating system based on water radiators is capable to control only the sensible part of the 576 

heating load.  577 

In order to feed the variables to the neural network, they were scaled in the (0, 1) range 578 

according to a min-max normalization. 579 

6.5. Setting of training phase 580 

The Reinforcement Learning framework is characterised by a number of 581 

hyperparameters that strongly affect the behaviour of the control agent. In order to analyse 582 

their impact on the performance of the control agent, different configurations of the most 583 

interesting hyperparameters were tested and compared in this study (Table 4). The 584 

configurations implemented for the training of the DRL agent are described in the following 585 

tables.  586 

This sensitivity analysis was performed only with the agent implementing the state space 587 

built following adaptive approach (variable set A). In Table 3 are listed the values of the 588 

hyperparameters kept unchanged during the training.  589 

Table 3 – Fixed Hyperparameters of the DRL Agent training 590 

 Variable Value 

1 DNN architecture 4 Layers 

2 Neurons per hidden layer 512 

3 DNN Optimizer RMSprop[50] 

4 Optimizer Learning Rate 0.0001 

5 DQN batch size 32 Control Steps 

6 Episode Length 5856 Control Steps (61 days) 

7 Sequential Memory Size  5 Episodes 
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 591 

Table 4 reports the details of each hyperparameter configuration implemented for the 592 

sensitivity analysis. The two hyperparameters involved in the sensitivity analysis are the 593 

discount factor and the weight factor of the temperature-related term (ρ). As explained in 594 

section 3, the discount factor determines the importance of future rewards over immediate 595 

rewards and directly affects the magnitude of Q-values. The weight factor of the temperature-596 

related term of the reward function (ρ) defines the relative importance of indoor temperature 597 

requirements with respect to energy consumption. Lower values may result in a control policy 598 

which guarantees higher energy saving at the expense of higher temperature violations and 599 

vice-versa.  600 

 601 

Table 4 – Different hyperparameter configurations implemented in the training phase. 602 

The performance of Deep Reinforcement Learning is affected by the stochastic 603 

behaviour that is intrinsic in both deep neural networks and controlled environments. In order 604 

to account for this aspect, each configuration has been ran three times employing multiple 605 

random seeds in order to ensure consistency according to [51]. Successively, the 606 

8 Target Model Update 672 Control Steps (7 days) 

9 Training Episodes 50 

10 τ Boltzmann Temperature 1 

11 ε Start 1 

12 ε End 0.1 

13 Energy-related term weight factor (β) 1 

run Discount Factor γ Weight Factor ρ 

1,2,3 0.9 10 

4,5,6 0.95 10 

7,8,9 0.99 10 

10,11,12 0.9 20 

13,14,15 0.95 20 

16,17,18 0.99 20 

19,20,21 0.9 1 

22,23,24 0.95 1 

25,26,27 0.99 1 
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hyperparameters of the run leading to the best performance in terms of both energy savings 607 

and temperature control were selected to train also the agent implementing variable set B. 608 

As stated in section 4, a training episode includes 2 months, from 1st of November to 31st 609 

of December (5856 control steps, one every 15 minutes). The weather file used in this work 610 

is the reference weather file (ITA_TORINO-CASELLE_IGDG.epw) available in EnergyPlus 611 

for Torino, Italy. The same weather file from the 1st of January to 31st of March was used for 612 

the deployment phase. As reported in Table 3 each training episode was repeated 50 times 613 

for each hyperparameter configuration in order to let the agent explore several control 614 

strategies. On average one episode took 3 minutes to be simulated on a machine with an 615 

Intel® Core™ i7-8550 CPU @ 1.80GHz processor and 16,0 GB RAM. An entire training 616 

period (including 50 episodes) for each hyperparameter configuration took on average 150 617 

minutes to be simulated.  618 

Figure 5 shows the patterns of outdoor air temperature and direct solar radiation in the 619 

two periods (i.e. training and deployment period). For the sake of legibility, the solar radiation 620 

values include only daylight period. The training period was selected for its wide range of 621 

temperature values spanning between -8 °C and 17 °C while the direct solar radiation is 622 

higher during the deployment period. However, this latter aspect allows to test the 623 

adaptability of DRL agent different climatic patterns from those used for the training. In the 624 

training phase occupancy was simulated between 07:00 and 19:00 from Monday to Saturday. 625 

The required indoor setpoint was set equal to 21 °C and the temperature acceptability range 626 

between 20 °C and 22 °C. 627 
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 628 

Figure 5 – Outdoor Air Temperature patterns during training and deployment periods. 629 

6.6. Deployment phase 630 

In the last phase of the process the two agents were deployed in four different scenarios 631 

in order to assess the adaptability capabilities of the learned control policy to different 632 

configurations related to the controlled environment. Each agent was deployed for one 633 

episode including the period between 1st January and 31st March. The four different scenarios 634 

are: 635 

• Scenario S1: this is the base case where no changes in the controlled environment were 636 

implemented. The goal is to test the adaptability of the RL controller only to patterns of 637 

outdoor conditions (i.e. air temperature and solar radiation) never observed during the 638 

training phase. 639 

• Scenario S2 & S3: in these scenarios the zone temperature setpoint was increased to 22 640 

°C and decreased to 20 °C respectively in order to assess the performance of the agent 641 

in satisfying temperature requirements that differ from the ones assumed in the training. 642 

• Scenario S4: in this case the zone occupancy schedule was modified as shown in Figure 643 

6 maintaining unchanged the zone temperature setpoint respect to the training 644 
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conditions. The lighting and electric appliances schedules were also changed according 645 

to the new occupancy schedule.  646 

 647 

Figure 6 – Occupancy schedules and indoor setpoint in different design conditions. 648 

The trained control agents were deployed in each testing scenario in both static and 649 

dynamic configuration. In the static configuration the control policy was not updated during 650 

the deployment of the agent. Contrarily, dynamically deployed agents constantly leverage 651 

new experience obtained interacting with the environment to adjust their control policy. The 652 

second solution, despite providing greater adaptability, requires additional computational 653 

cost and may cause instabilities in the learned control policy [39].  654 

7.  Results 655 

The framework presented in section 3 was implemented in the integrated simulation 656 

environment. The results are presented in this section in order to compare the performance 657 

of different DRL control agents (trained with different input variable sets and deployed 658 

following different approaches) and the baseline control of supply water temperature to 659 

terminal units of a heating system. 660 

7.1. Results of the training process 661 

As introduced in section 3, in the first step of the training process a sensitivity analysis 662 

was carried out on two DRL hyperparameters to highlight their influence on the performance 663 
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of the control algorithm. The variable set based on adaptive approach introduced in section 664 

6.4.3 was implemented for this sensitivity analysis.  665 

A useful indicator to assess the goodness of the learning process of a DRL agent is 666 

represented by the evolution of the cumulative reward per episode. The reward, which has 667 

not a direct physical meaning, takes into consideration both the energy consumption and 668 

indoor temperature values and combines them in a single value. Higher values of the reward 669 

correspond to a better performance obtained by the control agent. It is important to supervise 670 

if the reward converges to a stable value. A non-convergent trend in the reward may be caused 671 

by an agent that failed in achieving an optimal control policy. To this purpose, the 672 

convergence of the different configurations of the agent were analysed in the episode-reward 673 

plot showed in Figure 7. The figure is split into two main panels representing the evolution 674 

of the energy-related term and temperature-related term respectively. Each main panel is 675 

furtherly organized in a grid in which each sub-panel represents a specific configuration of 676 

the hyperparameters. Each sub-panel shows the evolution of the relative term of the reward 677 

function during the training episode. The solid line shows the average value per episode of 678 

the three different runs performed for each configuration, while the grey area was drawn 679 

between maximum and minimum value per episode. In all the configurations the agent starts 680 

exploring high values of the energy-related term and extremely low values of the 681 

temperature-related term. Across the different runs, the agent firstly learns how to correctly 682 

maintain indoor temperature during the first 20 episodes; this fact can be observed by 683 

analysing the increase of the temperature-related term values and the relative decrease of the 684 

energy-related term. From this stage (i.e. 20th episode) the agent begins to learn how to 685 

reduce energy consumption while keeping indoor temperature in the range it previously 686 

learned. In fact, the values of the temperature-related term are quite stable while the values 687 

of the energy-related term increase. Agents that were initialized with a discount factor γ equal 688 

to 0.99 represent an exception, showing highest variance in terms of temperature control 689 
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performance. The training runs performed with this specific configuration (γ=0.99) seek to 690 

obtain higher rewards in a longer time horizon compared to other agents generating an 691 

instability in the objective function. This aspect is particularly clear observing the evolution 692 

of the temperature-related term of the agent implementing a discount factor of 0.99 and a 693 

weight of the temperature-related term equal to 20. On the other hand, agents applying a 694 

discount factor equal to 0.9 shows the higher stability among all the training configurations 695 

due to the shorter time horizon considered.  696 

 697 

Figure 7 - Evolution of energy-related and temperature-related term of the reward function during 698 
training phase. 699 

In this application the reward function is the weighted sum of supplied heating energy to 700 

water and temperature control performance (see equation..). Therefore, the reward value 701 

alone cannot directly provide a straightforward metric to evaluate the overall performance of 702 

DRL control.  703 
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While the energy performance can be straightforwardly evaluated comparing the amount 704 

of heating energy supplied to the water, the temperature control performance requires the 705 

definition of an appropriate metric. In the present work, the indoor temperature control 706 

performance was evaluated by calculating the cumulative sum of temperature violations 707 

during occupancy hours. A temperature violation occurs when the building is occupied, and 708 

the indoor temperature falls outside the acceptability range. The magnitude of the 709 

temperature violation is then calculated as the absolute difference between actual indoor 710 

temperature and desired set point value at each simulation step. The cumulative value of this 711 

quantity over an entire episode returns the performance of the control algorithm expressed in 712 

°C. 713 

Figure 8 shows, in a four-quadrant visualization, the cumulative sum of temperature 714 

violations during occupancy periods, as a function of the heating energy saving with respect 715 

to climatic-based control baseline for the different hyperparameter configurations reported in 716 

Table 4. The figure reports the results obtained in the last episode (50th) of the training 717 

process. For the sake of legibility of the plot the y-axis was defined on a logarithmic scale. 718 

The black-dashed lines indicate the performance achieved by the baseline controller. The 719 

left-bottom quadrant includes all the solutions that have performed better than the baseline 720 

both in terms of indoor temperature control and energy consumption. Worst solutions, 721 

corresponding to higher energy consumption and temperature violations than the baseline, 722 

should be displaced in the right-top quadrant. None of the training runs produced results that 723 

fall within this latter region. In particular, solutions with a discount factor (γ) of 0.99 and a 724 

weight of temperature-related term (ρ) of 10 (runs 7, 8 and 9) and 20 (runs 16, 17 and 18) 725 

show the highest variability. Agents trained with discount factors (γ) of 0.9 and 0.95 and a 726 

weight (ρ) of 10 or 20 lead to the best trade-off solution achieving, at the same time, energy 727 

saving and temperature control improvement. In particular, the setting of the discount factor 728 

equal to 0.9 (run 1, 2 and 3) produced the less scattered solutions. This aspect can be 729 
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interpreted as an indicator of the consistency of the control policy learned by such agents. As 730 

can be expected, agents implementing a weight factor of the temperature-related term equal 731 

to 1 achieved greater energy savings at the cost of worse temperature control. Following these 732 

considerations, the agent number 2, with a discount factor of 0.9 and a weight factor ρ of 10, 733 

was selected as best solution among configurations explored in the sensitivity analysis 734 

process. 735 

 736 

Figure 8 – DRL control performance in the last episode of the training phase. Each point refers to a 737 
different training runs as reported in Table 4. 738 

In order to furtherly characterise the results of the training phase, the performance of the 739 

different solutions was analysed on daily scale.  740 

In Figure 9 are compared three agents implementing different values of the discount 741 

factor γ. The comparison is proposed for the same working day of the training episode. The 742 

figure shows the behaviour of the agent when the discount factor changes while the weight 743 

factor is kept constant (ρ = 10) for the same day of the training period. Overall, in the three 744 

training runs, the agent has learnt to maintain the indoor temperature between lower and 745 

upper thresholds of the temperature acceptability range as can be observed from the central 746 
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panels of the figure. However, in the solution obtained considering a discount factor equal to 747 

0.9, the agent learnt to better maintain the indoor temperature across lower threshold of the 748 

acceptability range. As can be observed from the left figure, the run performed with a 749 

discount factor of 0.99 considerably anticipated the start-up phase resulting in higher energy 750 

consumption compared to other solutions. Given the higher discount factor, this agent learnt 751 

how to optimise the rewards stream in a longer horizon causing higher instability. The agent 752 

implementing a discount factor of 0.9 selected higher values of the supply water temperature 753 

during the first hours of the morning. As a result, the zone air temperature reached exactly 754 

the lower threshold of the acceptability range (20°C) at the beginning of the occupied period 755 

(07:00). This agent led to a heating energy saving of about 100 kWh in comparison with the 756 

agent implementing a discount factor of 0.95 that shows a similar pattern of indoor air 757 

temperature.  758 

 759 

Figure 9 – Comparison between agents implementing different discount factors during a training day. 760 
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Figure 10 reports the performance of the trained agents considering different values of 761 

the weight factor ρ and a constant discount factor (γ = 0.9). It is possible to notice the relative 762 

importance given to temperature violations obtained in the three different solutions.  763 

In detail, the agent trained with a weight factor equal to 1 sacrificed indoor temperature 764 

control at the beginning and ending of the occupancy period. However, this agent obtained a 765 

further daily energy saving of about 100 kWh, respect to the previously discussed solution 766 

(ρ = 10, γ = 0.9), at the cost of keeping indoor air temperature 1°C below the lower threshold 767 

of the acceptability range at 07:00 and 19:00. 768 

 769 

Figure 10 – Comparison between agents implementing different weight factors of the temperature-770 
related term during a training day. 771 

At the end of the training phase, the same hyperparameter configurations of the best 772 

solution resulting from sensitivity analysis (i.e., discount factor γ = 0.9 and weight factor ρ = 773 

10) were employed to train a second agent with the variables of the state-space selected 774 

following the non-adaptive approach (variable set B). Table 5 report the performances of the 775 
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two agents relative to the last (50th) training episode which lasts for 2 months between the 1st 776 

of November and 31st December. 777 

Table 5 – Performance comparison at the end of the training phase between agents implementing 778 
adaptive and non-adaptive variable set in the definition of the state-space (γ=0.9, ρ=10). 779 

As can be observed the two agents show similar performance in terms of energy saving 780 

obtained compared to baseline. The temperature violations during occupancy were expressed 781 

both in terms of cumulative value of violations (°C) and occurrence rate (%). As a reference, 782 

a temperature violation with an occurrence rate of 5% means that the indoor temperature is 783 

out of range for the 5% of the total simulation steps included in the occupied periods of the 784 

building. Despite both agents improved the indoor temperature control and reduced heating 785 

energy consumption respect to the baseline, the agent trained with variable set A performed 786 

slightly better especially in terms of indoor temperature control. This aspect suggest that this 787 

agent was capable to better exploit internal and external heat gains, improving temperature 788 

control and, at the same time, increasing energy saving. 789 

7.2. Results of the deployment phase 790 

In this last section are analysed the results of the deployment of the two agents (trained 791 

with variable set A and B and considering ρ=10 and γ=0.9) in the four different scenarios 792 

introduced in section 6.6. The deployment of each agent was simulated both in a static and 793 

dynamic way for one episode. As previously introduced, the deployment episode is 3 months 794 

long, including January, February and March, and the climatic data employed in the 795 

simulation are gathered from the reference weather file referred to Torino (ITA_TORINO-796 

CASELLE_IGDG.epw). Figure 11 summarises the performance of the agents in terms of 797 

Variable 

Set 

DRL Control Climatic-Based Control 
Energy 

Saving 

[%] 

Consumption 

[MWh] 

Temperature Violations 
Consumption 

[MWh] 

Temperature Violations 

Cumulative 

[°C] 

Occurrence-

rate [%] 

Cumulative 

[°C] 

Occurrence-

rate [%] 

A 101 37  2.8 

113 112 3.3 

-10.0 

B  102 96  5.7 -9.92 
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supplied heating energy and cumulative sum of temperature violations. The performance of 798 

the agent trained with the variable set A did not produce always with dynamic deployment 799 

configuration an improvement with respect to static deployment across the four scenarios 800 

(azure and blue bars in the figure). In particular, in scenarios S2 and S3 the dynamically 801 

deployed agent achieved a lower energy saving compared to its statically deployed 802 

counterpart. In scenario S2 this led to a slight improvement of temperature control 803 

performance while in scenario S3 the temperature control was performed with less accuracy 804 

compared to statically deployed agent. Even without updating its control policy the agent 805 

trained with the variable set A is capable to adapt to the different requirements in the different 806 

scenarios achieving better performance than the baseline controller. The agent based on 807 

variable set B, instead, shows opposite behaviour and the effect of dynamic deployment over 808 

static deployment is particularly significant (yellow and orange bars in the figure). For 809 

example, in the scenario S2, which considers an increased temperature setpoint compared to 810 

training condition, the statically deployed agent obtained the lowest consumption (yellow bar 811 

in the first panel of the bottom figure) but an extremely high value of the cumulative sum of 812 

temperature violations (yellow bar in the second panel of the bottom figure) meaning that the 813 

control policy was not able to adapt to the new indoor temperature requirements. On the 814 

contrary, the dynamically deployed agent in the same scenario achieved an overall 815 

performance comparable with agent implementing the variable set A conceived with an 816 

adaptive approach.  817 

A similar condition occurred also for the fourth scenario, which considers the presence 818 

of the occupants during Sunday (contrarily the training period) where the dynamic 819 

deployment drastically improved the indoor temperature control performances of the agent 820 

trained with variable set B. The same agent (trained with variable set B) shows a different 821 

pattern in the third scenario. In this case, in which the desired indoor setpoint was reduced 822 

from 21 °C to 20°C, the statically deployed solution was capable to achieve satisfying 823 
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temperature control performance (yellow bar in the third panel of the bottom figure), but it 824 

obtained lower energy saving. On the contrary, the dynamically deployed solution achieved 825 

almost the same temperature control performance (orange bar in the third panel of the bottom 826 

figure) but increased the energy savings obtained from 1.9% to 6.4%. Also in this case the 827 

dynamic deployment was found to be effective in improving performance of the agent by 828 

means of continuous refinement of the control policy during the deployment episode. 829 

However, as the Figure 11 clearly shows, even in the dynamic deployment configuration the 830 

agent trained with variable set B was not able to achieve the performance of the agent trained 831 

with variable set A across all the four scenarios. 832 

 833 

Figure 11 – Heating energy supplied and cumulative sum of temperature violations for agents trained 834 
with both variable sets in four different scenarios under static and dynamic deployment 835 
configuration. In the upper part of the figure are reported on the bars the heating energy saving 836 
respect to the baseline. 837 

Figure 12 shows a comparison between statically deployed agent trained with variable 838 

set A and the baseline controller during a week of the deployment period. The plot shows the 839 

indoor air temperature patterns generated by the two controllers along with supply water 840 
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temperature, outdoor air temperature and direct solar radiation profiles. The DRL agent was 841 

able to exploit solar heat gains reducing supply water temperature and, consequently, save 842 

energy. This aspect is particularly relevant during the third and sixth day when solar radiation 843 

is higher. 844 

 845 

Figure 12 - Comparison between statically deployed agent trained with variable set A and baseline 846 
controller during a week of the deployment period. 847 

Figure 13 highlights a comparison between agent trained with variable set A (red lines) 848 

and agent trained variable set B (blue lines). The plot shows for different weeks and the same 849 

working day (Tuesday), the daily indoor temperature profiles in the scenario S2, which 850 

implements an increased indoor setpoint (22 °C) compared to the training phase (21 °C). As 851 

can be observed the agent based on adaptive variables (variable set A) was promptly able to 852 

adapt to the change of indoor temperature requirements maintaining satisfying conditions 853 

within the zone despite any learning goes on during static deployment. On the other hand, 854 

the agent trained with non-adaptive variables (variable set B) was not capable to adapt 855 

without relying on dynamic deployment. 856 
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 857 

Figure 13 - Comparison between statically deployed agents trained with variable set A and variable set 858 
B in terms of daily indoor temperature profiles during Tuesdays in the scenario S2. 859 

A similar comparison is presented in Figure 14 between static and dynamic deployment 860 

for the agent trained with variables selected according to the non-adaptive approach (variable 861 

set B). The figure shows the results obtained during the first 6 Sundays in deployment 862 

scenario S4. This scenario is particularly interesting because, differently from the training 863 

conditions, implements the presence of occupants during Sundays. The plot shows, for the 864 

first 6 weeks, the daily indoor temperature profiles generated by the two agents. It is 865 

interesting to notice that the divergence between the profiles increases over time suggesting 866 

that the two agents have different adaptability capabilities. During the first week the two 867 

agents generated almost the same pattern which clearly do not satisfy the indoor temperature 868 

requirements. The larger temperature violation is localized during the first hours of the day 869 

since both the agents were not able to anticipate occupants’ arrival. A second temperature 870 

violation region is localized in the middle part of the day, when, during training, the agent 871 

correctly learnt to exploit solar heat gains in order to reduce supply water temperature. 872 

However, the reduction of supply water temperature caused the occurrence of temperature 873 

violation condition since the agent did not performed a sufficient pre-heating of the zone in 874 

order to reach the acceptability range of the indoor temperature. This pattern was replicated 875 

by the statically deployed agent among the six weeks demonstrating its lack in adapting to 876 
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the modified occupancy schedule. On the contrary, the dynamically deployed agent was 877 

capable to learn from experience and it was able to achieve satisfying temperature conditions 878 

starting from the third week of deployment. 879 

 880 

Figure 14 – Comparison between dynamically and statically deployed agent trained with variable set 881 
B in terms of daily indoor temperature profiles during Sundays in scenario S4. 882 

8. Discussion  883 

The present paper focuses on the development of a DRL controller of supply water 884 

temperature setpoint to terminal units of a heating system. The developed controller was 885 

trained and deployed in a simulation environment which combines EnergyPlus and Python. 886 

The controller aims at optimising both energy consumption and indoor temperature control 887 

trying to identify the best trade-off between the two contrasting functions. The control 888 

problem analysed in this work was relatively simple, not involving elements such as 889 

renewable energy sources or storages which may effectively require an optimised controller 890 

to be fully exploited. Although the only two features of the building that could be exploited 891 

in the considered optimisation process were the building thermal mass and the temperature 892 

acceptability range, the DRL controller led to good performance improvements in 893 

comparison to the baseline controller. 894 

In DRL algorithms hyperparameters tuning and reward design play a key role in 895 

identifying the optimal configuration of DRL controller. In this work, a sensitivity analysis 896 
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was carried out on some of the main hyperparameters to highlight their influence on the final 897 

performance of the developed controller. Given this strong dependence it seems necessary 898 

for reinforcement learning applications in HVAC systems to rely on simulated environments, 899 

at least in the initial stage of training. As a consequence, despite the model-free nature of 900 

reinforcement learning control, a modelling effort needs to be accounted. 901 

The effect of adaptive variables defining the state-space was analysed. A variable set 902 

designed to enhance adaptability and flexibility of a DRL agent with respect to variable 903 

requirements of the indoor environment (i.e. indoor temperature setpoint and occupancy 904 

schedule) was introduced. A DRL agent based on adaptive variables was compared with an 905 

agent trained with more classic non-adaptive variables. The comparison was performed by 906 

simulating the deployment of the two agents in four different scenarios. Moreover, the 907 

agents’ deployment was simulated both in static and dynamic configuration. The agent 908 

trained with adaptive variable set was capable to adapt to each scenario performing better 909 

than the baseline controller even if statically deployed. The dynamic deployment of the same 910 

agent did not produce significant improvements on the overall performance, showing slight 911 

poorer performance compared to static deployment case.  912 

On the contrary when the variables were selected with a non-adaptive approach the 913 

dynamic deployment performed better that the static deployment in all the scenarios 914 

analysed. These results proved that the proposed variable selection process was useful in 915 

providing to the agent the capability to adapt itself to changes that may occur in the controlled 916 

environment. This analysis suggests that a DRL controller with a carefully designed state-917 

space is capable to provide the necessary flexibility and adaptability to changing indoor 918 

requirements even in a static deployment configuration. Through this approach is possible to 919 

leverage the advantages provided by static deployment (i.e. lower computational costs and 920 

higher stability) without sacrificing adaptability. However, the adoption of an adaptive 921 

approach in the design of the state space may not be enough to guarantee a good control 922 
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performance in the case of retrofit on the HVAC system or other building components. In 923 

such cases thermal dynamics of the controlled environment may change requiring DRL 924 

controller to update its policy through a dynamic deployment.  925 

The implementation of the proposed controller in a real-world testbed requires the 926 

monitoring of a few variables that can be easily collected through low-cost solution already 927 

available in the market. An outdoor ambient sensor is required to monitor outdoor air 928 

temperature and solar radiation. Alternatively, those data can be easily obtained by an 929 

external weather data provider. Many of those services requires no fees for a limited number 930 

of data requests and already implement Application Program Interfaces (APIs) which enable 931 

the streaming of data. Low-cost solutions are available also for what concerns indoor Air 932 

temperature monitoring. Supply and return water temperature are usually collected by the 933 

Building Management System (BMS) and thermocouples must be installed in the relative 934 

pipes. The most challenging quantity to be monitored is the supplied heating energy. This 935 

variable can be indirectly calculated from supply and return water temperature if the water 936 

mass flow rate through the system is known and collected through an appropriate sensor or 937 

directly by installing a non-invasive heat meter. Since the considered case study is an office 938 

building the variables time to occupancy start and time to occupancy end included in the 939 

variable set based on adaptive approach can be easily obtained through working timetables. 940 

The most challenging aspect is to design an infrastructure capable to manage the stream of 941 

data from different sources in order to provide to the controller the required input 942 

information. The static or dynamic deployment can be achieved in situ if the BEMS allows 943 

the running python scripts otherwise all the operations can be performed in a cloud server. 944 

9. Conclusions and future works 945 

In the present paper, the application of DRL control in a water-based heating system was 946 

developed and analysed in a simulation environment. The flexibility and adaptability of the 947 
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control agent to different occupancy schedules and indoor temperature requirements was 948 

tested in different scenarios showing the potentialities of the proposed solution. A proper 949 

selection of variables defining the state-space was proposed with the aim of developing a 950 

controller capable to adapt to dynamic changes of the environment. The importance of 951 

hyperparameters selection was highlighted by analysing the sensibility of the results for 952 

different configurations of their values. The DRL control agent with variables selected 953 

according to adaptive approach led to savings between 5% and 12% of heating energy 954 

depending by the analysed scenario. This agent was able to achieve these performances in a 955 

static deployment configuration suggesting that a careful design of the state space may be 956 

sufficient in providing to an agent the capability to adapt to changes in the controlled 957 

environment without scarifying its stability with a dynamic deployment configuration. At the 958 

same time, the controller achieved satisfying performance in controlling indoor air 959 

temperature. 960 

Future works will be focused on the following aspects: 961 

• Exploring the capabilities of Multi-Agent Reinforcement Learning (MARL) framework. 962 

The present work focuses on only one zone of an office building characterized by a 963 

complex HVAC system. MARL could provide a solution to coordinate multiple 964 

actuators that are present in an HVAC system in order to reach a global optimum 965 

solution. 966 

• Comparing the performance of DRL with model-based control solution such as MPC. 967 

Due to its model-free formulation, Reinforcement Learning is diametrically opposed to 968 

Model Predictive Control. A robust comparison between these two techniques in terms 969 

of control performance, computational cost and modelling effort could provide useful 970 

insights on the strength and weakness of DRL controllers. 971 

• Applying DRL to novel HVAC systems. Given the ability of DRL to handle multi-972 

objective function, HVAC systems characterized by higher level of complexity (e.g. 973 
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including RES generation and storage) could provide an excellent testbed to prove the 974 

effectiveness of DRL control over classical control methods. 975 

• Introducing comfort parameters in the objective function. Even if the monitoring of 976 

many comfort parameters (e.g. air velocity, mean radiant temperature) is a non-trivial 977 

task in real world applications, in a simulative context the evaluation of thermal comfort 978 

performance achieved by a DRL agent could be explored in future works. 979 

• Implementing the developed controller in a real-world testbed. Moving from simulation 980 

to real-world implementation is extremely complicated and present some major 981 

challenges related to the required infrastructure to effectively deploy the controller. 982 

Future works will be focused on investigating these aspects and on the evaluation of the 983 

performance of DRL control agent once deployed in-field.  984 

• Exploring furtherly the paradigm of dynamic deployment of DRL agents. Despite the 985 

disadvantage of possible instabilities in the learned control policy, dynamic deployment 986 

might be necessary to obtain a fully-flexible agent which is capable to adapt even when 987 

the thermal dynamics of the controlled environment changes (e.g. retrofit intervention). 988 

In the future works dynamic deployment will be analysed in order to enhance its 989 

robustness and stability.  990 

A major effort to build upon this research work will be then focused on fully addressing all 991 

the mentioned challenges that are behind the next generation of “intelligent” buildings.  992 
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