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Abstract 

In this paper, a tool for the detection and diagnosis of anomalous electrical daily 

energy patterns relative to a transformer substation of a university campus was developed 

and tested. Through an innovative pattern recognition analysis consisting in a multi-step 

clustering process, six clusters of anomalous daily load profiles were identified and 

isolated in two-year historical data of total electrical energy consumption.  The infrequent 

electrical load profiles were found to be strongly affected, in terms of both shape and 

magnitude, by the energy consumption behaviour related to the heating/cooling 

mechanical room. Then, a fault-free predictive model, which uses Artificial Neural 

Network (ANN) in combination with a Regression Tree, was developed to detect 

anomalous trends of the electrical energy consumption. The model was able to detect the 

93.7% of the anomalous profiles and only the 5% of fault-free days were wrongly 

predicted as anomalous. Eventually, a diagnosis phase was conceived and validated with 

a testing data set. A number of daily abnormal load profiles were detected and compared 

with the centroids of the anomalous clusters identified in the pattern-recognition stage.  

The work led to the development of a flexible intelligent tool useful for operating a 

continuous commissioning of the campus facilities.
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1. Introduction 

The importance of enhancing energy management in buildings has been 

recognised as a crucial aspect for optimising their energy performance during operation. 

The attention given to the automation, control and monitoring systems is growing also at 

European level, since the Energy Performance of Building Directive (EPBD) 2010/31/EU 

encourages the installation of intelligent metering systems to achieve significant energy 

savings. In this context the process of Fault Detection and Diagnosis (FDD) allows energy 

inefficiencies to be promptly detected during building operation. 

The growing penetration of Building Management Systems (BMS) in buildings 

offers the opportunity to exploit analytical methods (Yu et al., 2013) to determine whether 

a fault occurs under specific boundary conditions and identify the most probable cause.  

In the last few years, the data-driven approach gained more and more interest, thanks to 

its applicability even in the case where engineering models of the building and systems 

are inadequate or difficult to develop. In this context, particularly promising is the 

application of data mining techniques which include both supervised and unsupervised 

algorithms. In literature many examples are reported on the application of data analytics 

procedures for performing FDD at different scales of investigation, from whole building 

to component level (Katipamula et al., 2017).   

The FDD approach, based on the analysis of historical monitoring data, generally 

consists in extracting typical patterns representative of the relation between disturbances 

and energy demand and then detecting deficiencies when those energy use patterns are 

violated over time (Capozzoli et al. 2018). The implementation of prediction models of 

different nature or their combination makes it possible to compare the expected and the 



 

actual energy consumption over time and to detect abnormal energy patterns in 

quasi real-time (Ku & Jeong, 2018; Fan et al., 2018). Data analytics-based methodologies 

proved to be particularly effective for the automatic detection and identification of 

operation strategies (Qui et al. 2018) and faults in building systems (Miller et al., 2018).  

Most of the FDD frameworks conceived at system/component level focused on 

the operation of Heating Ventilation and Air Conditioning (HVAC) systems. The optimal 

management and the on-line Automated Fault Detection and Diagnosis (AFDD) of 

HVAC systems are promising applications to investigate (Ahmad et al. 2016), 

considering that such systems account for 50% of the energy demand in commercial 

buildings (DOE, 2012). Li et al. (2016) investigated the performance of a tree-structured 

learning method of a building cooling system, with the aim of detecting both fault type 

and its severity. In (Du et al., 2014) an effective diagnostics tool was introduced to 

improve the energy efficiency and thermal comfort of buildings by detecting faults. 

Clustering analysis was used to create a library of faults, while Back Propagation Neural 

Networks were exploited to determine if a fault was occurring by measuring the relative 

error with respect to the predicted data. Liang et al. (2007) proposed a hybrid method that 

merges a model-based approach with SVM (Support Vector Machine), to exploit the 

accuracy of the system model and the classification capability of faults through SVM. 

During the on-line phase a number of faults were detected by means of the residual 

analysis (i.e., comparing residuals with pre-set thresholds). The selection of thresholds 

represents an issue to face, with the aim of searching a trade-off between the increase of 

the probability to detect faults and the occurrence of false alarms. 

In (Han et al., 2011a, Han et al., 2011b) an AFDD methodology for a centrifugal 

chiller was proposed. In detail five types of faults at different levels were considered. An 

Artificial Neural Network (ANN) was employed for estimating the system reference 



 

behaviour. The faults were diagnosed with a multi-layer SVM classifier based on residual 

rules by comparing actual data of the chiller system with the reference model estimations. 

Data-driven based fault detection was also extensively addressed to detect AHU 

faults (Yan et al., 2016). Dehestani et al. proposed a methodology to detect faults related 

to the failure of fans and the air dampers of an Air Handling Unit (AHU). The 

methodology used a Multi-Class Support Vector Machine (MC-SVM) for detecting both 

pre-labelled and new anomalies during system operation (Dehestani et al., 2013).  In 

(Zhao et al., 2015; Zhao et al., 2017) a Bayesian Network (BN) was adopted for the 

diagnosis of faults related to the positions of air dampers, cooling coil valve and the 

failure of the return fan. The BN diagnoses faults using as input the residuals obtained 

from a set of regression models capable to estimating air temperature, water flow rate, air 

flow rate and fan power energy consumption.  

Despite most of the FDD literature is focused on system/component level, 

research activities were also conducted at a larger scale following a top-down approach 

(e.g., analysis of whole building energy consumption to discover component or system 

faults). 

 In fact, in most of real cases, just few and aggregate variables related to energy 

consumption of a building are monitored and collected (i.e., high level metering). 

Improving the building energy performance by analysing aggregate data is challenging, 

especially if several factors such as occupant behaviour, comfort levels, and operation 

schedules of systems can generate the existence of different energy consumption patterns, 

not always easily inferable.  

The automated detection of anomalous energy patterns is currently a topic of great 

importance. In fact, the development of a predictive-based management analysis 

methodology considering a daily time scale is particularly desirable (Capozzoli et al. 



 

2017). The development of innovative robust FDD methodologies at whole building level 

to automatically detect anomalous energy consumption (profiles with shape/magnitude 

significantly different from the typical operation patterns) (Capozzoli et al., 2015) makes 

a sort of continuous commissioning of the building possible, also supporting the 

definition of easy and interpretable recommendations to be considered in the optimisation 

of high-level control logic.  

The definition of a robust framework, based on pattern recognition techniques to 

handle inconsistent, infrequent, abnormal energy use in buildings/systems is a crucial aim 

to pursue (Piscitelli et al. 2018).  In this perspective, (Capozzoli et al. 2018) introduced a 

novel framework based on an effective transformation process of whole building energy 

consumption time series. Data reduction, transformation and machine learning methods 

(i.e. decision trees, symbolic aggregate approximation) were coupled and applied to 

discover unexpected patterns in electrical energy consumption data. The identification of 

infrequent/anomalous patterns was performed by comparing the expected and the actual 

daily energy consumption profile. The prediction task was accomplished for five sub-

daily time windows, considering as input parameters the indoor/outdoor climatic 

conditions, occupants’ presence and temporal variables.  

Miller et al. (2015) proposed a process based on Simbolic Aggragate 

approXimation (SAX) of time series to reduce and transform daily load profiles of 

buildings. SAX was used for discovering motifs and a clustering analysis was carried out 

to group together infrequent load profiles (i.e., discords). Also Fan et al. (2015) used SAX 

for conducting analyses on load profiles. In that case, the motif discovery was coupled 

with the extraction of Temporal Association Rules in order to mine temporal relations in 

energy consumption time series. The extracted knowledge, supported by domain 

expertise, was helpful in detecting typical patterns and at the same time anomalies, 



 

making the identification of effective energy conservation opportunities possible. Such 

advisory tools can be easily translated in a set of decision rules and embedded in a DSS 

(Decision Support System), helping thus stakeholders in the early detection of anomalous 

energy patterns and in the avoidance of further energy waste over time. 

In this paper an FDD methodology at whole building level is introduced by 

analysing the energy consumption of an electrical substation of Politecnico di Torino, a 

university campus located in the northern Italy. A tool capable to detect anomalies and 

rare events was developed to improve the energy management and to increase users’ 

awareness about the behaviour of the campus. The proposed methodology relies on the 

application of data mining-based algorithms for a robust estimation of the expected whole 

building energy consumption, and the consequent detection of anomalous load profiles 

and diagnosis of the most probable associated causes during operation. 

On the basis of the literature concerning the detection and diagnosis of anomalous 

energy daily patterns at whole-building level, the main innovative aspects introduced by 

the present paper are the following:  

• An innovative and scalable process for the identification of fault-free dataset 

was employed to robustly develop a reference estimation model. A multi-step clustering 

process was implemented on three different portions of each daily load profile in order to 

perform an advanced temporal abstraction of the time series and to enable an effective 

identification of infrequent patterns. The adopted unsupervised algorithm for grouping 

similar load profiles belongs to the family of partitional clustering techniques, but it 

requires as input parameter a distance threshold, instead of the number K of desired 

clusters. The methodology introduced in this paper sets the optimal value of this threshold 

by minimising a validity metric, ensuring a very flexible and automatic clustering process.  

Moreover, differently from other papers, the anomalous load profiles were identified by 



 

analysing the frequency of text string obtained by concatenating the three cluster labels 

of the sub-profiles which belong to the same day.  

• A fault-free reference estimation model consisting in an ANN combined with a 

regression tree was tested and validated.  The model uses easy-to-collect variables that 

can be gathered from external web services (i.e., weather data) and high-level sensors. 

More in detail, one of the inputs of an ANN was provided as response of a regression tree 

model that can be translated in a set of interpretable patterns in form of IF-THEN rules. 

Such approach made the output of the reference model more understandable by increasing 

the interpretability of the building energy behaviour. 

• The tuning of the parameters of the anomaly-detection tool was completely 

automatic and conceived for minimising the rate of potential false alarms.  A process 

aimed at searching the optimal number of hourly anomalies per day was introduced in 

order to alert the detection of an anomalous daily energy trend, minimising the occurrence 

of false-positive values. In addition, a sensitivity analysis was performed for searching 

the optimal hyperparameter configuration of ANN model. This analysis allows the 

configuration with the minimum Mean Absolute Percentage Error (MAPE) to be 

identified automatically. 

• The diagnosis process was conceived to be open and upgradable over time. In 

particular, when a new anomalous event is detected, the historical-based fault library is 

automatically updated. This opportunity allows the developed tool to evolve during 

building operation significantly increasing its generalizability.  

In that perspective, this paper proposes and discusses an anomaly detection and 

diagnosis framework conceived for whole-building level applications. 

The rest of the paper is organised as follows. Section 2 presents the case study under 

analysis. Section 3 describes the methodology adopted. Section 4 presents a brief 



 

theoretical description of the methods used to perform the analysis. The last two sections 

present and discuss the results obtained. 

2. Case study  

The analysed dataset refers to the energy consumption of a part of the main campus of 

Politecnico di Torino (PoliTo), an Italian university located in the Piedmont region 

(Figure 2 (a)). The headquarter of Politecnico di Torino has about 200.000 m2 of floor 

area available for lectures, research activities and services. The campus is equipped with 

an electrical power station that is composed by a loop of ten transformer substations. In 

this paper, the electrical energy consumption data related to one substation (i.e., 

substation C) is considered for the analysis. Anomalous daily energy patterns were 

detected by analysing the total energy consumption of the whole substation also exploring 

the relation between unexpected trends of the total electrical load and the energy 

behaviour of the services served by the substation.  

Figure 1(a) shows the hourly boxplots of the electrical load of the substation C across 

different day types (i.e., Weekdays, Saturdays, Sundays and Holidays) for the period 

included between 1 January 2016 and 31 December 2018. As expected, the boxplots 

referred to unoccupied hours (i.e., night hours, Sundays and holidays) are smaller than 

the boxplots of working hours, suggesting the presence of building systems that have 

different energy patterns during the year. In particular, Figure 1(b) shows the daily load 

profiles of weekdays, Saturdays, Sundays and holidays (with their average profiles) for 3 

months belonging to winter, summer and mid-season respectively. From Figure 1(b) it 

can be inferred that the shape of the daily load profiles of the substation C does not 

significantly change during the year, while its magnitude is affected by a seasonal effect 

with an increase during the summer season. This behaviour is typically due to thermal 



 

sensitive electrical loads that in this case study are related to the operation of a 

heating/cooling mechanical room served by the Substation C.   

 

Figure 1. Hourly boxplots of the electrical load of the substation C across different day types (i.e., 

Weekdays, Saturdays, Sundays and Holidays) (a) Daily load profiles of weekdays, Saturdays, Sundays 

and holidays (with their average profiles) for 3 months belonging to winter, summer and mid-season 

respectively (b) 

In more detail, the analysed dataset includes the electrical power demand of the whole 

substation and part of its main services such as heating/cooling mechanical room, a 

canteen, the department of mathematics, the data centre and the administration building. 

However, the energy consumption related to some of these sub-loads (e.g., canteen, data 

centre) show flat or very repetitive patterns over the year and are not thermal sensitive. 



 

On the other hand,  particular attention was paid on the heating/cooling mechanical room, 

considering that it accounts on average for about the 14% of the annual electrical energy 

demand of the substation (Figure 2 (b)) and it is characterised by an energy consumption 

patterns with strong seasonality (justifying the trend of daily load profiles in Figure 1 (b)). 

The equipment located in the mechanical room include parts of the hot and chilled water 

circuits of the campus with the corresponding auxiliary pumping systems. The hot water 

is provided through a district-heating heat exchanger located in a separate area of the 

campus. The chilled water, instead, is produced by two chillers with nominal electrical 

power of 220 kW and a rated cooling capacity of 1120 kW, and a reversible water-water 

heat pump, with nominal power and cooling capacity of 165 kW and 590 kW, 

respectively. 

 

Figure 2. Geospatial identification of the buildings served by the substation under analysis (a) breakdown 

of the annual energy consumption of the substation C (b) 

The electrical energy consumption data of the substation are available with a 

timestamp of 15 minutes from January 1, 2016 to July 25, 2019. In addition, also data 

referred outdoor air temperature measurements were analysed for better explaining the 

variation of the energy consumption patterns due to the presence of thermal sensitive 

electrical loads (i.e., energy consumption of chillers).  



 

3. Methodology 

The process is primarily aimed at developing a robust fault-free estimation model of the 

hourly energy consumption of the substation C. The FDD process was performed by 

analysing the hourly difference between the energy consumption estimated by a fault-free 

inverse model and the actual energy consumption during building operation. The 

methodology process was conceived as multistep data analytics procedure and unfolds 

over different stages, as shown in Figure 3. 

 

 

Figure 3. Methodological framework of the analysis 

 

The stage 1 of the process is aimed at improving the quality of the data and at obtaining 

a dataset free of infrequent and anomalous load profiles.  To this purpose, a pre-

processing task was preliminary accomplished for detecting and replacing punctual 



 

inconsistencies (e.g., outliers, missing values).  Missing values in time series were 

replaced by means of a linear interpolation; moreover, when more than 3 consecutive 

hours included missing values, the entire load profile of the day was filtered out. The 

detection of outliers and their replacement were performed by means of the Hampel filter 

method (Pearson 1999).  For each data point in the time series, the algorithm computes 

the median of a window that includes the considered data point and its k surrounding 

samples. If a data point differs from the median by more than a standard deviation, it is 

tagged as a statistical outlier and, for that case study, replaced through a linear 

interpolation. Successively, a pattern recognition process was developed for isolating the 

anomalous daily profiles of energy consumption in the dataset. To this purpose, the daily 

load profiles included in the training period (between 01-01-2016 and 31-12-2018), were 

analysed. Firstly, the 15-minutes measurements were aggregated in order to obtain an 

hourly dataset; successively data were chunked in hourly daily electrical load profiles. 

Then a pattern recognition analysis was performed for the identification of infrequent 

daily load profiles. To that purpose, a clustering analysis was performed by using a 

partitive algorithm based on the “Follow the Leader” approach (Chicco et al. 2006). The 

pattern recognition stage was carried out for three representative time periods of a day.  

For each period, a clustering analysis was performed separately. At the end of this 

process, for each load profile, three cluster labels (one for each period) were available. In 

order to identify the infrequent load profiles, a frequency analysis was performed among 

the sequences of cluster labels during each day.  All the load profiles filtered out from the 

database were further analysed with the aim of creating a library of labelled anomalous 

events, to be used in the successive diagnostic phase.  The identification of the causes 

related to the anomalies detected at whole substation level are associated to the sub-load 



 

that has been found as the major contributor to the occurrence of infrequent energy 

patterns. 

In the second stage, a prediction model was trained on the fault-free dataset obtained in 

the first stage. The model consists in a non-autoregressive Multi-Layer Perceptron ANN, 

combined with a regression tree.  

In the last stage of the process an anomaly detection strategy was developed. The anomaly 

detection is enabled by comparing the predicted and the actual hourly electrical energy 

consumption of the substation, in order to identify the presence of anomalous events. A 

punctual anomaly is detected if the hourly difference between the estimated and actual 

energy consumption is higher than three times the standard deviation (Chou et al. 2014). 

At the end of each day, if at least a certain number of hours (Nan.-per-day) have been 

identified as punctual anomalies the entire day is supposed to have an anomalous energy 

trend. A sensitivity analysis to evaluate the optimal value of Nan.-per-day per day was 

performed. 

Furthermore, the entire procedure was applied on an independent set of data (days 

from 01-01-2019 to 25-07-2019) for evaluating its capability in diagnosing fault causes. 

In the diagnosis phase, the actual load profiles detected as abnormal were compared with 

the centroids of the anomalous clusters previously identified in the pre-processing stage 

(i.e., first stage of the framework). The detected anomalous daily load profiles were then 

assigned to clusters with the closest centroids and the corresponding anomalous events 

(a-priori labelled) were assumed as their most probable causes.  

In order to make the process as flexible as possible, the profile assignment to a 

pre-identified cluster was performed considering a proximity distance threshold. 

Specifically, the detected anomalous profile is assigned to the cluster of its closest 

centroid only if the distance between these two profiles is lower than a fixed threshold 



 

otherwise a new cluster is generated. In the latter case, the new cluster is labelled by the 

analyst and represents a new possible fault cause, to be included in the diagnosis library.  

4. Methods of the analysis 

In this section, a brief theoretical description is given for the aforementioned methods 

(e.g., FTL clustering algorithm, classification and regression tree, multilayer perceptron 

neural network), used to perform the anomaly detection process. The analytics methods 

are also discussed with the aim of better specifying the advantages they offer in relation 

to the objectives of this work and for introducing the main hyperparameters which were 

set during the training phase.  

4.1 The “Follow the leader” clustering algorithm 

In this study an automatic clustering procedure based on the “Follow The Leader” 

(FTL) approach was employed for grouping similar profiles during the pattern 

recognition stage (Chicco et al. 2005; Piscitelli et al. 2019). Differently from other 

partitive clustering algorithms (e.g., K-means) the FTL does not require the a-priori 

definition of the number of clusters K, but it is initialized selecting a maximum distance 

threshold ρ* between the cluster centroid and the objects in the same cluster. The 

algorithm consists in a sequential scan of object database (i.e., daily load profiles) over a 

number n of iterations, large enough to ensure the stabilization of the clustering results. 

In the first iteration, the FTL approach defines, as a first attempt, the total number of 

clusters K and the number of load profiles that are assigned to each cluster. The process 

is then iterated and if the distance between a load profile and the cluster centres computed 

until that iteration is lower than the threshold ρ* the load profile is assigned to the cluster 

of the closest centroid, otherwise a new cluster composed by a single element is 



 

generated. As a consequence, during the n iterations the number of clusters and the load 

profiles belonging to them may change until a stable configuration is reached.  

The algorithm was implemented from scratch in the statistical software R (R core 

team, 2017). 

Given that the parameter ρ is a-priori set by the analyst, a sensitivity analysis is 

required for supervising its tuning. In this study, the identification of the optimal value of 

ρ is conducted though a “trial-and-error” process: different values of ρ were tested and 

the results in terms of number of clusters, separation between clusters and cohesion within 

clusters were computed by analysing the Davies-Bouldin index was (Panapakidis et al. 

2018). The Davies-Bouldin Index (DBI) (Davies & Bouldin, 1979) is a cluster validity 

metric based on the concept that for a good partition, inter cluster separation as well as 

intra cluster cohesion should be as high as possible. For each value of ρ the clustering 

results were assessed by calculating the DBI as follows (eq. 1): 

𝐷𝐵𝐼(𝜌) =  
1

𝑁
 ∑ 𝑚𝑎𝑥

𝑛 ≠𝑚
(

𝜎𝑛+ 𝜎𝑚

𝑑𝑛,𝑚
)𝑁

𝑛=1                                      (1) 

Where: 

• N is the number of clusters obtained by fixing a certain value of ρ. 

• dn,m is the Euclidean distance between centroids of the clusters Cn and Cm. 

• σn, σm are the standard deviations of the distances of objects in clusters Cn and 

Cm. 

The value of ρ* which minimises DBI was considered as the optimal value of the distance 

threshold for initialising the FTL algorithm. 

4.2 Classification and Regression Tree 

Classification and regression trees are machine-learning algorithms that are used 

to develop descriptive and/or predictive models from a collection of records. Each record 



 

can be expressed as a tuple (x,y), where x represents the input attribute set while y is the 

target variable (Tan et al., 2006). The type of target variable distinguishes classification 

from regression trees (i.e. categorical in the first case, while numerical in the second). In 

this work, the CART algorithm has been used to conduct a regressive modelling task, 

using as explanatory attributes both numerical and categorical variables.  

The learning approach of the CART algorithm is based on a recursive binary 

splitting of the records into purer subsets called nodes (Breiman et al., 1984).  

The decision trees can be then represented by a hierarchical structure composed 

by nodes and directed edges (i.e., branches). In particular, for regression trees, the 

terminal nodes represent the predicted numerical values of the target attribute, while the 

branches represent the conjunctions of the input attributes that lead to those predictions. 

The development of a regression tree unfolds over two steps: training and testing of the 

model. The k-fold cross-validation procedure is used for that purpose. In the present work, 

a regression tree was developed for providing a robust and interpretable estimation of the 

daily energy consumption for the day ahead of the substation. The output of the regression 

tree was then used as input attribute of the neural network for predicting the hourly energy 

consumption of the substation. 

4.3 Multilayer perceptron neural network 

Artificial Neural Networks (ANN) are a class of nested mathematical functions 

that belong to supervised learning algorithms. The main advantage of ANN, also for 

energy consumption forecasting, consists in their ability of modeling multivariate 

problems by capturing complex and non-linear relationships between the variables 

(Gonzales & Zamarreno 2005). Neuron, also referenced as node or unit, is the core 

computational element of an ANN. It receives a series of inputs (x) from other neurons 

or from external sources and calculates an output. To each input is associated a weight 



 

(w) and the weighted sum of the inputs is fed into an activation function (g), the output 

of which correspond to the output of the neuron. In addition, another unitary input called 

bias with an associated weight (b) is fed into the neuron. The output value of each neuron 

can be consequently calculated as follows (eq. 2): 

𝑧 = 𝑔(𝑤𝑥 + 𝑏)                                                      (2) 

The role of the activation function is to introduce a non-linear mapping between 

inputs and output of the neuron. Several functions have been introduced in the literature 

(e.g., hyperbolic tangent, sigmoid). In the present study the REctified Linear Unit (RELU) 

(Nair & Hinton, 2010) was used as activation function of a feedforward neural network 

model.  In such kind of network, the neurons are grouped into connected layers. All 

outputs of one layer are connected to each input of the succeeding layer. This architecture 

is called fully connected. There are three type of layers in a feedforward neural networks: 

input layer (i), hidden layers (ii) and output layer (iii). The configuration of the output 

layer distinguishes network models for conducting regression or classification analysis. 

The learning process aims at finding a set of neuron weights capable to map the 

target variable in an accurate way as possible. The performances of the network are 

evaluated through a loss function. The loss function computes the distance between the 

output of the network and the actual target output providing a distance score. This score 

is used as a feedback signal to the network in order to adjust neuron weights. This process 

was carried out through an optimizer implementing the back-propagation algorithm. In 

the present study, the RMSProp optimizer was employed (Hinton et al., 2012).  

Backpropagation is a well-known procedure, and in this paper the tuning of 

hyperparameters of the Neural Network (i.e. batch size, number of epochs, number of 

neurons and learning rate) was performed assessing the prediction performances for a set 



 

of their combinations. The combination of parameters leading to the best solution in terms 

of accuracy for the validation set was used as the configuration of the final model.  

5. Results 

Following the methodological framework discussed in section 3, which makes use of the 

methods discussed in section 4, the results of the analyses performed for each stage of the 

FDD process are presented in this section. 

5.1 Stage 1: Pattern recognition 

The first stage of the analysis aims at recognising infrequent daily load profiles in the 

available data set depurated from inconsistencies (i.e., missing values and outliers).  

The detection of infrequent daily load profile was performed through an iterative 

clustering analysis using data from 01-01-2016 to 31-12-2018. In more detail, the “Follow 

The Leader” algorithm was implemented for three sub-profiles of each daily pattern 

according to the following time periods selected through the domain experience: 

• Period 1: unoccupied period from 00:00 to 05:59 a.m. during which the building 

energy systems are started up; 

• Period 2: occupied period from 06:00 a.m. to 07:59 p.m. during which the building 

energy systems are operated; 

• Period 3: unoccupied period from 08:00 p.m. to 11:59 p.m. during which building 

energy systems are turned OFF. 

For each period, the optimal number of clusters was identified by performing a 

sensitivity analysis on the distance threshold ρ. In particular, for each period and for each 

value of ρ, the quality of clustering process was assessed by calculating the DBI index. 

Considering that the sub-profiles were not normalised, the threshold distance ρ is 

expressed in terms of kWh. As a consequence, the searching space of ρ can be identified 



 

in an easier and feasible way by the analyst. For this case study the sensitivity analysis 

was performed considering the minimum value of ρ equal to 20 kWh per hour and the 

maximum value equal to 100kWh per hour. As a reference, for a sub-profile of four hours 

the searching space of ρ is included between 80 kWh (i.e., 20 kWh ∙  4) and 400 kWh (i.e. 

100 kWh ∙ 4).  

 

Figure 4.  Identification of the optimal number of clusters for each period 

 

The identified searching spaces were mapped incrementing ρ with a constant step 

of 10 kWh. A further constraint was considered for setting the minimum number of 

clusters in each period. For period 1 and 3 (i.e., night periods) the minimum number of 

clusters was set to 2, while for period 2 (i.e., period with occupancy) the minimum 

number of clusters was set to 3. This choice was driven by the a-priori knowledge on the 

existence of at least one dominant pattern for Sundays, one pattern for Saturdays and one 



 

pattern for weekdays. The results of the sensitivity analysis for the three periods 

considered are shown in Figure 4. 

 Figure 4 shows the optimal values ρ* of the parameter ρ (that minimize the DBI) 

for each period with the corresponding number of clusters. It means that for ρ = ρ* the 

resulting clusters exhibited optimal inter cluster separation and intra cluster cohesion.  

 In particular, two clusters were identified as the best partition for period 1 and 3 while 

sub-profiles in period 2 have been grouped in five clusters. The clusters obtained are 

characterised by different cardinalities as shown in Figure 5.  

 

Figure 5. Clusters of sub-profiles obtained for each period 

 

After the clustering phase, a text string obtained by concatenating the three cluster labels 

of the sub-profiles, belonging to the same day, was associated to each daily load profile.  

For example, considering a daily load profile whose period 1 is included in the cluster 

cl_1, period 2 is included in the cluster cl_5 and period 3 is included in the cluster cl_2, 

the daily sequence was encoded by concatenating the three labels (i.e., cl_1 – cl_5 – cl_2). 



 

In order to identify the infrequent load profiles, a frequency analysis was then performed 

among the unique sequences identified. As a consequence, even if for period 1 and 3 only 

two cluster were identified, a cluster label related to a single period cannot explain the 

existence of an anomalous profile. The same filtering approach was employed by (Miller 

et al., 2015) for detecting infrequent daily load profiles encoded in symbol strings by 

means of SAX transformation. In that case the discord candidates were separated 

according to a threshold of string frequency count equal to 2%.  

In this study, eleven unique sequences were found after the concatenation of the three 

cluster labels. In particular five patterns were identified as frequent (they include about 

the 96% of load profiles) while six patterns were found as infrequent (each infrequent 

pattern group includes less than 30 profiles). Figure 6, shows through a Sankey 

representation, each pattern identified with the evidence of the typical and infrequent 

ones. 

 

Figure 6.Sankey diagram of patterns identified by concatenating the three cluster labels for each day 

 

The 48 profiles included in the most infrequent patterns were analysed and labelled. In 



 

order to characterise the infrequent profiles, a preliminary analysis was conducted for 

understanding which sub-load of the substation C majorly contributed to the occurrence 

of such energy consumption patterns. To this purpose, during days where infrequent load 

profiles were identified, the Spearman correlation coefficient (Corder, 2014) was 

calculated for evaluating the strength of the existing associations between the total load 

of the substation C and each sub-load. From the analysis, the sub-load related to 

mechanical room resulted to be the highest correlated one (ρSpearman = 0.7). Moreover, for 

the portion of dataset considered (load profiles detected as anomalous), the mechanical 

room accounts for about the 28% of the electrical energy consumption of the substation 

C (the highest between all the sub-loads) almost doubling its average annual impact. In 

Figure 7 are shown the load profiles related to the electrical demand of the substation C, 

together with the corresponding average load profile of the mechanical room: all the 6 

infrequent patterns were found to be related to an anomalous management of the 

mechanical room during building operation. Therefore, it can be inferred that the 

identified infrequent load profiles were strongly affected, in terms of both shape and 

magnitude, by the energy consumption behaviour of the mechanical room.  

The labelling process of the infrequent patterns was then performed according to 

anomalous events concerning the mechanical room. In particular the labels 

“sat_start_stop” and “sun_start_stop” were assigned to the patterns 2-5-2 and 2-2-2 

respectively. Such patterns refer to some weekends during which the hourly energy 

consumption of the substation was always higher than 200 kWh due to a continuative 

operation of the cooling system. The remaining labels refer to abnormal continuative 

chiller operation before the start time (i.e., “wd_start”), after the stop time (i.e., 

“wd_stop”) or both of them during working days (i.e., “wd_start_stop_1” and 

“wd_start_stop_2”). In more detail, even though “wd_start_stop_1” and 



 

“wd_start_stop_2” refer to the same typology of anomalous event, the two groups are 

characterised by different climatic conditions. In fact, while the pattern 2-3-2 (i.e., 

“wd_start_stop_1”) occurred during the middle season (i.e., May, September), the pattern 

2-4-2 (i.e., “wd_start_stop_2”) refers to abnormal weekdays of the warm season.   

 

Figure 7. Infrequent profiles labeled according to anomalous management of the mechanical room: in 

grey the load profiles related to the electrical demand of the substation C, in yellow their centroids and in 

blue the corresponding average load profile of the mechanical room. 

All these profiles were then isolated and removed from the dataset with the aim 

of obtaining a fault-free data set for the development of a reference prediction model.  

5.2 Stage 2: Development of fault-free prediction model 

The second stage of the methodological framework aims at developing a robust 

reference model capable to predict the normal/expected energy consumption of substation 

C. The prediction model combines a non-autoregressive Multi-Layer Perceptron ANN 

and a regression tree developed through the CART algorithm. 

The considered input variables of the ANN were: i) the hour of the day, ii) the 

month, iii) the day of the week, vi) the week of the year, vi) the hourly outdoor 

temperature and vii) the day ahead energy consumption. This latter variable was in turn 

evaluated through a regression tree model for the day ahead, which uses as input the i) 



 

day of the week, ii) the month and the iii) the daily mean outdoor air temperature (see 

Figure 8).   

The outdoor air temperature can be easily obtained from a weather forecast service 

with very high accuracy in the prediction. In this case study, actual values of outdoor 

temperature were used, assuming them as output of a perfect prediction.  

The regression tree model was trained and tested, following the same procedure 

discussed in (Capozzoli et al. 2018), only on the daily energy consumption data from 01-

01-2016 to 31-12-2018 that were not labelled as anomalous during the pattern recognition 

phase (i.e., stage 1 of the framework).  

The splitting process of the regression tree is based on the reduction of the 

variance around the mean value of the numeric target variable in each leaf node until the 

stopping criteria have been satisfied. In this case study, the selected stopping criterion 

was based on the minimum number of objects in a child node that was set equal to 30.  

 

Figure 8. Regression tree developed for predicting the daily energy consumption of the substation C 

 

In addition, a cost-complexity pruning process was performed in order to avoid 

overfitting problems. Such procedure makes it possible to identify the optimal trade-off 



 

between the regression accuracy (i.e., residuals sum of squares) and the tree complexity 

(i.e., number of terminal nodes) in order to set a reasonable tree size by reducing the 

number of branches and terminal nodes. 

 

Table 1. Decision rules extracted from the developed regression tree 

Node 
N° 

of objects 
Decision Rules 

Predicted 

value 

3 178 IF day_type = 7 OR 8 3390 kWh 

4 147 IF day_type = 6 4500 kWh 

6 65 IF day_type < 6 AND month = 8 6210 kWh 

10 228 IF day_type < 6 AND month = 1, 4, 9, 10, 12 AND t_est ≥ 3.34 °C 7650 kWh 

11 33 IF day_type < 6 AND month = 1, 4, 9, 10, 12 AND t_est < 3.34 °C 8700 kWh 

12 247 IF day_type < 6 AND t_est < 20.13 °C AND month = 2, 3, 5, 6, 11 8220 kWh 

13 136 IF day_type < 6 AND month ≠ 8 AND t_est ≥ 20.13 °C 9230 kWh 

 

The final model (Figure 8) is composed of three splitting levels and six terminal nodes, 

achieving an accuracy of about 90%. The output of the regression tree consists of a set of 

decision rules (Table 1) that provide numerical predictions of the total daily electrical 

energy consumption which were subsequently used as an input for the non-autoregressive 

Multi-Layer Perceptron (MLP) model.  

The use of the predicted daily energy consumption as input of the ANN made it 

possible to reduce under-fitting problems of the hourly energy consumption during 

normal days. In addition, the final estimation model results with a higher interpretability 

considering that the estimation of the regression tree is obtained with a set of IF-THEN 

rules. 

The structure of the neural network consisted in an input layer including 7 nodes, 

2 hidden layers and an output layer with 1 node. As previously mentioned the inputs 

considered are i) the mean hourly outdoor air temperature (Text) of the hour at which the 

estimation is carried out, ii) the total daily electrical energy consumption (Eday) predicted 



 

with the CART, iii) the day of the week (from 1 to 8, where 8 is the label of holydays), 

iv) the day of the year (from 1 to 365), v) the week of the year (from 1 to 52), vi) the 

month of the year (from 1 to 12) and vii) the hour of the day (from 0 to 23). All the inputs 

were treated as numerical variables and were normalised on their maximum values in the 

(0,1) range. In order to identify the best configuration of the network different sets of 

hyperparameters were tested.  

 

Table 2. Configurations of hyper-parameters tested for identify the best architecture of the neural 

network 

Test 
Neurons 

1st layer 

Neurons 

2st layer 

Batch 

size 

N° of 

epochs 

Learning 

rate 

MAPE 

training 

MAPE 

testing 

1 8 8 720 10000 1E-04 12.0 % 12.2 % 

2 8 8 48 1000 5E-03 13.9 % 12.7 % 

3 16 16 720 10000 1E-04 11.3 % 11.6 % 

4 16 8 48 1000 1E-03 11.6 % 11.5 % 

5 16 8 360 10000 1E-04 11.8 % 12.1 % 

6 16 16 48 1000 5E-03 12.0 % 11.7 % 

7 32 32 360 10000 1E-04 10.2 % 10.8 % 

8 32 8 720 10000 1E-04 11.2 % 12.3 % 

9 32 8 360 10000 1E-04 12.7 % 12.7 % 

10 64 64 48 1000 1E-03 8.5 % 9.1 % 

11 64 64 360 10000 1E-04 8.9 % 9.6 % 

12 64 32 720 10000 1E-04 9.5 % 10.7 % 

 

In Table 2 all the tested configurations are reported, considering the number of 

hidden layers (i.e., 2 hidden layers), the activation function (i.e., Relu), the optimizer of 

neuron’s weights (i.e., RSMProp) and the loss function (i.e., Mean Absolute Error) as 

constant parameters. The model was developed in Keras (i.e., a high-level neural 

networks API) in the statistical R environment (R core team, 2017). The model was 



 

trained, validated and randomly tested by splitting the hourly data from 01-01-2016 to 

31-12-2018 in subsets of about 70%, 10% and 20% respectively.  

 

Figure 9. Architecture of the neural network developed for predicting the hourly energy consumption of 

substation C 

 

The best evaluated configuration of the network is the 10th among the tested ones 

reported in Table 2. The architecture of the model is graphically reported in Figure 9 and 

consists of 64 neurons for the first hidden layer, 64 for the second one, batch size equal 

to 48, number of epochs equal to 1000 and learning rate equal to 0.001. The Mean 

Absolute Percentage Error (MAPE) in training and testing was 8.5% and 9.1% 

respectively. The results achieved in terms of MAPE were found to be consistent with the 

findings of the extended benchmarking analysis conducted in (Miller, 2019) about the 

performance of energy consumption prediction models. 

5.3 Stage 3: Fault detection and diagnosis process 

After the development of the reference model, the detection of anomalous daily 

patterns was tested. A punctual anomaly is detected if the hourly difference between the 

actual and predicted energy consumption is higher than three times the standard deviation 

of the model residuals.   



 

The standard deviation was evaluated hour by hour separately for working and 

non-working days on the residuals of training fault-free dataset. Following this process, 

it was possible to obtain more sensitive thresholds of 3-σ, during days and hours 

characterised by low deviation in energy consumption (e.g., Sundays, night hours). 

Moreover, if the number of punctual anomalies per day overcomes a threshold 

value the entire daily load profile was supposed to have an anomalous energy trend. A 

sensitivity analysis was performed in order to select the optimal number of hours (N an.-

per-day) of out-of-range values per day for robustly detecting anomalous daily energy 

patterns. The anomalous trend detection rate of the procedure was assessed for different 

sets of Nan.-per-day on a sample composed by both fault-free and faulty days (anomalous 

days filtered out in the pre-processing phase).  

The activation of the anomaly alert was tested on 100 days sampled from the fault-

free dataset and the 48 anomalous days filtered out during the pre-processing phase by 

varying the threshold N an. per day in the range 1-24 hours, see Figure 10. 

  

 

Figure 10. Process for the identification of the optimal number of hours of out-of-range values per day 

for robustly detect anomalous daily energy pattern 

 

For each value of N an.-per-day the detection capability of the process was assessed 

calculating the number of true positives (anomalous days detected as anomalous), true 

negatives (normal days detected as normal), false positives (normal days detected as 



 

anomalous) and false negatives (anomalous day detected as normal). The main objective 

of this analysis was to define the minimum number of out-of-range hours for robustly 

detecting anomalous energy trends and limiting the number of false alarms.   

 

Figure 11. Overall accuracy, percentage of true positives and percentage of true negatives for each value 

of Nan.-per-day 

 

Figure 11 shows the results of the sensitivity analysis. In particular the green and 

red lines represent the percentage of true positive and true negative values respectively, 

while the bars of the histogram correspond to the overall accuracy of the detection tool 

for each value of N an. per day calculated as follows (eq. 3): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
∗ 100                                      (3) 

The best solution, with an overall accuracy of 94.6 %, was identified when N an.-per-day is 

equal to six. It means that after six out-of-range hourly predictions of the energy 

consumption, the entire daily load profile was labelled as anomalous.  

In Table 3 the confusion matrix of the results of the detection tool related to validation 

data (setting N an.-per-day equal to 6) is reported.  

 



 

 

 

Table 3. Confusion matrix of the results of the detection tool 

n = 148 Predicted: anomaly Predicted: normal Recall 

Actual: anomaly 45 3 93.7% 

Actual: normal 5 95 95% 

Precision 90% 96.9%  

 

The model was able to detect the 93.7% of the anomalous profiles and only the 5% of 

fault-free days was wrongly predicted as anomalous. The obtained results showed that 

the anomalous pattern recognition is reliable and robust enough for a real implementation.  

After the tuning of tool detection parameters, the data included between 01-01-2019 and 

25-07-2019 were used for testing the diagnosis capabilities of the process.  

Among the 205 days included in the testing dataset, 13 daily load profiles were 

recognized as anomalous given that for all these days a number of hours higher than 

Nan.per-day have been identified as punctual anomalies.  

 

Figure 12. Daily load profiles recognized as anomalous in the testing dataset of 2019: in red actual load 

profile, in blue estimated load profiles, in green the 3 standard deviation range of residuals 



 

 

During the deployment of the FDD tool, when a load profile is detected as anomalous 

(i.e., more than 6 hours are characterised by an anomalous power demand) three different 

conditions could occur: 

• The punctual anomalies detected are noisy values related to problems in the 

transmission or storing of data. 

• The punctual anomalies detected are related to the absence of the monitored data 

(missing values) and the detector was not able to compute the residuals 

• The punctual anomalies refer to energy consumption data that are consistent 

regarding data quality but actually describe an anomalous pattern. 

In order to handle all the possible cases, when a daily pattern is detected as anomalous, it 

is subjected to an analysis of inconsistencies. First missing values are detected and 

replaced by means of a linear interpolation; when 3 consecutive hours include missing 

values the daily profile is filtered out.  Moreover, the punctual outliers, are detected by 

means of the Hampel filter method (Pearson 1999).  

When the load profile considered has been checked, the residuals (related to the reference 

estimation model) are recalculated and if the number of punctual anomalies is still higher 

than Nan. per day, the profile goes through the diagnosis module.  

In the test performed, all the 13 profiles detected still overcame the threshold of Nan.-per-

day after the detection of inconsistencies (Figure 12). According to the methodology, they 

were compared with the centroids of the anomalous profiles previously identified in the 

pattern recognition stage. Specifically, the detected anomalous profiles were assigned to 

the clusters with the closest centroids only if the distance between those profiles is lower 

than a fixed threshold otherwise a new cluster is generated. In this case study a threshold 



 

of 240 kWh (assuming 10 kWh per 24 hours) was assumed as a distance threshold for the 

generation of a new cluster.  

Figure 13 shows in which cluster the detected profiles (red lines) were grouped 

due to high similarity with the centroids (yellow line). Moreover, also the profiles of the 

energy consumption of the mechanical room (blue lines) are shown in the figure.  

According to the results obtained it is possible to see that two profiles were labelled as 

“wd_start”, three profiles were labelled as “wd_start_stop_2” and one profile was 

labelled as “wd_stop”. Those profiles are very closed to the centroids of the clusters they 

were assigned to, highlighting how the diagnosis process is accurate in distinguishing the 

different types of anomalies. None of the detected profiles during the testing process were 

assigned to clusters “sat_start_stop”, “sun_start_stop” and “wd_start_stop_1”.  

Moreover 7 profiles out of 13 overcame the threshold distance for being assigned 

to the pre-identified groups of anomalies, so that two new groups of infrequent patterns 

were automatically generated. The profiles, labelled as “new_anomaly_1” are similar to 

the profiles labelled as “wd_start”, however, during these days the cooling system was 

not continuatively operated during night-time, but the chillers were turned ON about 5 

hours before the schedule time. Moreover, a single profile was labelled as 

“new_anomaly_2”. Such profile refers to a Saturday during which the cooling system was 

turned OFF in the very late night (about 2:00 a.m.) and then turned ON again after 2 

hours. In addition, instead of to be turned OFF at 4:00 p.m. the cooling system was 

operated about 8 hours longer than the normal schedule time.   

 



 

 

Figure 13. Classification of the detected profiles in the pre-identified groups of anomalies: in red the 

detected anomalous profiles of the substation C, in yellow the centroids of the pre-identified groups of 

anomalies, in blue the profiles of the energy consumption of the mechanical room.   

 

The results obtained proved that the anomalous profiles extracted in the pattern 

recognition phase represent a consistent fault library capable to effectively summarise the 

most important anomalous patterns of the substation C. In addition, the entire procedure 

proved to be flexible and upgradable over time considering the opportunity to 

automatically generate new classes of anomalies in a robust way.      

6. Discussion and concluding remarks 

The need of reducing and optimising the use of energy during building operation is a key 

issue to face for achieving current decarbonisation targets. Nowadays the implementation 

of Building Energy Management Systems (BEMS) makes the collection of a large amount 

of building related data possible. The analysis of these data represents a valuable 

opportunity for better managing the energy demand of buildings during their operation 

(Yu et al., 2013) and for making occupants aware of their energy intensive behaviours 



 

(Yan et al. 2017). Data analytics-based energy management makes it possible on one side 

to gain deep knowledge of building energy behaviour and on the other side to predict its 

evolution over time.  

This study proposed a novel methodology for the development of a robust 

reference model for detecting abnormal daily electrical energy consumption patterns of a 

transformer substation located in the Politecnico di Torino. The model estimates the 

hourly energy consumption of the substation that can approach or deviate from the 

measured one. In the first case the substation is behaving as expected by the model, which 

has been trained on fault-free data. In the second case the deviation can be generated by 

malfunctions of the metering system or by an abnormal consumption/management of 

facilities/systems served by the substation. The last hypothesis was tested, by verifying 

the capability of the model in detecting all the anomalous patterns that were filtered out 

from the dataset during the pattern recognition phase. By means of the fine tuning of the 

neural network parameters and the identification of the best value of Nan.-per-day, the 

detection rate of anomalous daily load profiles was high, and the false alarm rate was low 

enough to consider the procedure robust and reliable if implemented on real BEMS.  

The pattern recognition analysis showed that anomalous events usually occurred during 

consecutive days. Therefore, such detection tool can support building managers to early 

recognize abnormal events avoiding their protraction over a long time. Detecting in 

advance anomalous patterns leads to a significant reduction of energy waste during 

building operation. For instance, comparing the expected energy consumption with the 

actual one during the 48 days grouped in the anomalous clusters, a potential saving of 

around 40 MWh could be estimated.   

In the methodological framework, also a diagnosis phase was conceived. Potential 

abnormal events were compared with the centroids of the anomalous clusters identified 



 

in the pre-processing stage. In that case the abnormal daily load profile was assigned to 

its closest a-priori labelled cluster making the diagnosis of the most probable cause 

possible. This diagnosis procedure is open and upgradable over time. In fact, in case of 

low match with the a-priori labelled anomalies, new patterns are automatically added to 

the anomaly library. This work led to the development of a flexible intelligent tool useful 

for operating a continuous commissioning of the campus facilities by integrating several 

tailored analytics layers.  

Future works will be aimed at extending the tool capabilities and testing the 

process on other data sets for benchmarking purposes (Miller, 2019). The methodology 

consists of a multi-step process that can be reproduced and implemented also substituting 

algorithms employed in this study (e.g. clustering algorithm, prediction model) according 

to user necessities. The proposed algorithms cannot be considered always as the best 

general solution for the tasks addressed in this study (i.e., data clustering, forecasting). 

However, once a machine learning algorithm is selected its carefully development (e.g., 

selection of input variables, training and testing) and tuning (e.g., setting of 

hyperparameters) are essential steps for obtaining the best performance achievable. As a 

reference, in this study the sensitivity analysis performed on ANN model 

hyperparameters made it possible to identify a performance gap of 5.4% (in terms of 

MAPE) between the best and worst configuration used for training the model.  Future 

works will also be aimed at enhancing the capability of this tool in recognising new kinds 

of anomalies or rare events and at optimally scheduling the re-training of the prediction 

models. Moreover, an advanced visualisation will be conceived and developed for 

supporting different actors (e.g., energy manager, users) in enhancing their awareness of 

building operation saving energy and costs.  
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