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Neural Networks for Indoor Human Activity
Reconstructions

Osama Bin Tariq, Student Member, IEEE, Mihai Teodor Lazarescu, Senior Member, IEEE,
and Luciano Lavagno, Senior Member, IEEE

Abstract—Low cost, ubiquitous, tagless, and privacy aware
indoor monitoring is essential to many existing or future ap-
plications, such as assisted living of elderly persons. We explore
how well different types of neural networks in basic configu-
rations can extract location and movement information from
noisy experimental data (with both high-pitch and slow drift
noise) obtained from capacitive sensors operating in loading
mode at ranges much longer that the diagonal of their plates.
Through design space exploration, we optimize and analyze
the location and trajectory tracking inference performance of
multilayer perceptron (MLP), autoregressive feedforward, 1D
Convolutional (1D-CNN), and Long-Short Term Memory (LSTM)
neural networks on experimental data collected using four
capacitive sensors with 16 cm x 16 cm plates deployed on the
boundaries of a 3 m x 3 m open space in our laboratory. We
obtain the minimum error using a 1D-CNN [0.251 m distance
Root Mean Square Error (RMSE) and 0.307 m Average Distance
Error (ADE)] and the smoothest trajectory inference using an
LSTM, albeit with higher localization errors (0.281 m RMSE
and 0.326 m ADE). 1D Convolutional and window-based neural
networks have best inference accuracy and smoother trajectory
reconstruction. LSTMs seem to infer best the person movement
dynamics.

Index Terms—Indoor localization, movement tracking, capaci-
tive sensors, CNN, LSTM, autoregressive, multilayer perceptron.

I. INTRODUCTION

A growing number of smart space applications rely on
indoor person localization and activity recognition for safety
monitoring, providing added value services, or continuous
assistance. For instance, assisted living applications can lower
assistance costs, improve safety and quality of life, which are
increasingly important with a projected ratio between working-
age and elderly people of 3.5 by 2050 [1].

Indoor person localization can rely on wearable or portable
devices [2], such as the IEEE 802.11 (Wi-Fi) [3], [4] or the
Bluetooth [5] standards, low power communications using the
ZigBee protocol [6], radio frequency identification (RFID) [7],
ultra wideband radio (UWB) [8], visible light communication
[9], or audible [10] and ultrasound [11] acoustic signals.

However, tagless indoor localization [12], [13] is necessary
whenever the persons may not carry or wear a device to be
sensed by the localization system, such as in some smart home
applications or assisted living for elderly people. Furthermore,
to improve the localization system acceptance and added value,
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it should ensure personal privacy, be affordable, unobtrusive,
easy to install, and require little or no maintenance (e.g., long
battery life or use wireless power).

Many localization techniques have been proposed [14], such
as pressure and load cells [15], sensing mats [16], thermal
infrared [17], sound source [18], ultrasound reflections [19],
[20], air pressure [21], residential power lines [22], water usage
[23], optical [24], carbon dioxide [25], vital functions [26],
and data fusion from various sensor types [27]. Electric field
sensors [28] used for localization include capacitive tiles [29],
electric resonance coupling [30], and capacitive coupling [31].
They use the conductive properties of the human body and do
not require the person to carry any specific device.

Capacitive sensors can operate in loading mode [32] (see
below for other modes) using only one plate [33], can be self-
contained, easy to install, inconspicuous, privacy-observant, and
inexpensive. They can sense [34], [35], identify [36], [37], and
localize [38]–[41] persons indoor, but their sensitivity decreases
steeply with the distance. Long range sensing, at distances of
10–15 times the plate diagonal, are highly susceptible to several
environmental factors, such as electromagnetic and electrostatic
noise, humidity, or temperature [42].

In this work, we explore how advanced data processing
can improve capacitive sensor accuracy [43], [44]. We use
relatively simple capacitive sensors, which are known to be
more susceptible to environmental noise, to better compare
the effectiveness of the data processing chains on the overall
accuracy. We use several signal filtering combinations for
preprocessing and then we optimize different Neural Network
(NN) types through design space exploration (DSE). For NN
training, validation, and testing, we use capacitive sensor data
collected while a person moves arbitrarily in a 3m × 3m
experimental room, and we compare the inferred position and
trajectory with the reference location acquired using an accurate
ultrasound localization system.

The main contributions of this work are:
• Neural Network-based signal processing techniques for

indoor person localization and tracking using small
capacitive sensors operating in loading mode at long
ranges (up to 10-15 times their plate diagonal);

• noise attenuation using various kinds of digital filters and
neural networks (NN) for location and trajectory inference;

• comparative analysis of NN-based location and movement
dynamics inference accuracy from noisy sensor data.

We believe that this is the first study of tagless human
movement trajectory estimation using capacitive sensors, while
previous works focused mostly on static localization.
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II. RELATED WORK

Our work combines long range capacitive sensors, digital
filters, and neural networks to infer the position and the
trajectory of a person indoors.

Capacitive sensors have many applications [35], which
include tagless human body motion detection, indoor local-
ization, person identification and biometrics. Loading mode
capacitive sensor operation is demonstrated for various sensing
applications in [42], inclusing human activity monitoring
using sensors installed behind furniture. Similarly, capacitive
sensors placed under the bed are demonstrated to monitor
sleep patterns [45], and concealed sensors in ambient assisted
living environments can classify the postures of several persons
[46]. Mobile capacitive sensors attached to limbs are used to
monitor slow movements of elderly persons or people with
movement-affecting conditions that limit the effectiveness of
typical accelerometer- or image-based monitoring sensors [47].

We note that in these works the sensors operate within
relatively short ranges. This limits the effectiveness of the
systems for tracking the free movement of a person within
the space of a typical room, and also improves the signal-to-
noise ratio, which simplifies the signal processing needed to
reconstruct the observed physical behavior.

Person localization using capacitive sensors is proposed
usually through distributed deployment of sensor or excitation
electrodes within the monitored space. A proposed solution
uses excitation wire or plate electrodes under the room floor
and a receiver wire on a wall to achieve sensing ranges up to
2m and feet localization errors up to 40 cm [48]. Excitation
plates in or under the floor coupled through the person body
with sensing electrodes on the ceiling are proposed to monitor
the location, height, and posture indoor, including detection of
falls [49], [50]. Localization for elderly persons monitoring in
assisted living application was also proposed using impedance
variations of an array of thick film sensors distributed under
the floor of rooms up to 10m wide [51]. Operating on similar
principles, floor tiles instrumented with capacitive sensors have
been repeatedly proposed for indoor person localization [52],
also using data fusion [53] from capacitive sensors operating
in shunt mode, pressure, vibration, and various radio frequency
sensors. The sensors can be embedded in large surfaces like
the floor, living room table, or beds. For inconspicuous indoor
person localization, past research also considered distributed
capacitive sensors made using printed electronics, which can
be embedded in carpet textiles, linoleum, laminate, tiles or
stone covering the floor or other large surfaces or objects in
the room [54].

In general, distributed deployment of sensors or electrodes
can be costly and may require significant works on home
surfaces, e.g., floor, ceiling, walls, furniture. But since they
usually sense within relatively close range, they have good
signal-to-noise margins and can localize persons and postures
with good accuracy and limited signal processing.

1D Convolutional NNs (CNNs), Long-Short Term Memory
(LSTM) NNs and their variants were used in multiple sensing
applications. In [55], the authors survey the use of NN archi-
tectures for human activity recognition, including 1D CNNs,

Recurrent Neural Networks (RNNs), and hybrid architectures
using data from various sensors to classify human activities.
LSTM networks were used for indoor static localization using
the magnetic and light sensors that are included in the modern
smartphones [56]. They do so in close proximity to the site
where they trained the system (a 6m× 12m lab) to preserve
the validity of the magnetic field calibration. The authors
of [57] used Wi-Fi fingerprinting for LSTM-assisted indoor
discrete localization of multiple persons in a research lab of
35.3m× 16.0m and in an office of 55m× 50m.

We build on our previous work [58], where we used long
range capacitive sensors to infer the discrete position (out of
a predefined set) of a person in an experimental room using
machine learning classifiers. We also improve on our previous
work [59], in which we used only an autoregressive NN and
digital filters to infer the person trajectory, and explored only the
effects of varying the window size of the preprocessing median
filter and the NN. Here we significantly extend the exploration
of the NN inference performance by changing several network
and filter parameters, as well as the network type (in basic
configurations, to establish a performance baseline) while
tracking the movement and the position of a person in a
laboratory space. We also use relatively noisy data from strongly
non-linear capacitive sensors (conditioned using digital filters)
to test the NN capacity to filter out the noise, including through
their ability to detect the underlying dynamics of the person’s
movement. We optimize both the NNs and the filter parameters
through Design Space Exploration (DSE) and analyze both the
overall error, as well as the smoothness and closeness of the
inference to the actual person’s trajectory.

III. METHODOLOGY, EQUIPMENT AND TOOLS

We emulate in our laboratory a small (yet realistic with
respect to a typical apartment room where an elderly person
may live) room as an empty space of 3m× 3m. We monitor
the position of the person within the room using two systems.
The “target” system uses four capacitive sensors, each one with
a sensing plate of 16 cm× 16 cm installed at chest level in the
center of a “wall” of the virtual room (as shown in Fig. 1),
providing readings three times per second. The “reference”
system (from Marvelmind Robotics [60]) is based on four
ultrasound anchors that can localize a mobile tag with ±2 cm
accuracy at 15Hz.

The capacitive sensors are similar to our previous experi-
ments [39], [58], [59], based on an LM555 circuit configured as
astable multivibrator and using the sensor plate capacitance (see
Fig. 2). The oscillation frequency f is inversely proportional
to sensor plate capacitance C

f =
kc
C

(1)

through a constant kc determined by the resistor values in the
multivibrator circuit. Plate capacitance cannot be determined
analytically for distances d between the plate and the human
body that are much longer than the plate diagonal. Empirically,
it is approximated proportional to the inverse of the distance
at a power n (n ≈ 3) through a constant kd with an offset C0

C ≈ C0 +
kd
dn

, (2)
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Fig. 1. Four capacitive sensors centered on the walls of a 3m× 3m virtual
room in the lab trace the position of a person moving in the space.
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Fig. 2. Schematic of capacitive sensor front-end using an astable multivibrator
to convert the plate capacitance to frequency, measured by a microcontroller

where n, kd, and C0 depend on multiple geometric, electric, and
dielectric properties [61], [62]. We improved both the sampling
rate of our previous sensor from 1 Hz to 3 Hz, to adequately
track a person moving indoors, as well as its discretization
error from 20 ppm to 3 ppm, further lowered to 1.5 ppm through
oversampling, decimation and averaging (or about 15 aF while
measuring a plate capacitance of roughly 10 pF). Yet, (2) shows
that sensor distance resolution changes much with the distance.

However, this sensor front-end is sensitive to both high
pitch and drift environmental noise, which limits its range and
stability over time. In Fig. 3, we show an example of sensor
data, where the high-pitch noise is mostly visible at long range,
at the top of the plot, while the drift is mostly visible at the
beginning, up to around the 200 sample mark, and towards the
end, especially beyond the 1200 sample mark. Environmental
noise typically reduces considerably the sensing range, e.g., in
laboratory tests we were able to detect a person standing at a
distance up to about 1.6m–1.8m in front of the sensor.

Nevertheless, the higher noise susceptivity of the sensors
allows us to better compare how efficiently different signal
processing techniques can reject environmental noise. In future
work, we plan to use the best processing chain on cleaner data
collected from sensor front-ends that are more resilient to noise.
For instance, instead of using period modulation to measure the
capacitance of the sensor transducer, we can explore front-ends
based on carrier modulation in amplitude and/or phase, as well
as other techniques that are less susceptible to and reject better
the environmental noise.

We characterize the localization accuracy of the ultrasound-
based reference system in our environment by acquiring four
times per second for five seconds the location of a person that
wears the tag on the head, while standing on each one of 16
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Fig. 3. Example of raw sensor data acquired at 3 Hz while a person was
moving in the room. High-pitch noise is visible at the top (far end of sensor
range). Slow drift is mostly visible before sample #200 and after #1200.

predefined locations inside the experimental room space. The
average localization error of the system is ±3.9 cm, with a
maximum error of ±6.4 cm, and a maximum standard deviation
(calculated over the norm) of ±0.7 cm. We note that the
absolute localization error in our setting is higher than the
±2 cm reported by the producer, but with a good stability.

In this setting, we record concurrently the reference position
of the person using the ultrasound system (ground truth) and
the capacitive sensor readings (see Fig. 4). Then we

1) translate the average of the latter to zero,
2) pass it through a wide window (50 s) Median Filter (MF),

to extract the slow drift,
3) pass it through a Low-Pass Filter (LPF) with a pass-band

edge of 0.1 Hz and a stop-band edge of 0.6 Hz, to reduce
high-pitch noise (see both traces in Fig. 5(a)),

4) and finally, we subtract the median filter output from the
LPF output and

5) normalize the values to [0, 1] range to use them to train
and test the performance of different NN types.

Note that the best values for the window and the cutoff fre-
quency were found via an extensive Design Space Exploration,
as reported in Section IV.

In the semi-logarithmic scale plot of the inverted normalized
output (1−y) of the filter block shown in Fig. 5(b), we can see
a rugged but relatively flat low level as effect of the median
filter reducing much of the drift visible on the top side of
raw sensor output in Fig. 3. Filtering effects can also be seen
in Fig. 6 comparing the frequency spectrum of the raw and
the filtered sensor signals. As noted in Fig. 5(b), very low
frequency components are reduced by the median filter, while
components above 0.3Hz are attenuated by the high-pass filter
below the noise level around −60 dB.

Comparing the frequency spectrum of the capacitive sensors
with the spectrum of the location data from the ultrasound-
based reference localization system, shown in Fig. 7, we note
that also the noise floor of the reference system is around
−60 dB, and that the signal emerges above it for frequencies
below 0.3Hz. However, while the sensor spectrum flattens
around −40 dB for lower frequencies, the reference signal
starts to increase below 0.1Hz and is about 20 dB stronger
than the sensor signal for lower frequencies, around 0.02Hz.
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Fig. 4. Experimental data processing uses an accurate ultrasound-based
reference (for training data labelling and inference testing), and the capacitive
sensor processing chain with digital filters and the neural network under test.

This part of the spectrum is important because most of the
movement in the room during the experiment was slow, as can
be expected of an elderly person, and likely contributed to the
lower end of the frequency spectrum.

Comparing the filtered sensor signal in Fig. 5(b) to the
plot of the distance between the person and the sensor in
Fig. 5(c) (calculated from the reference system measurements),
we can see a strong and well correlated sensor response when
the person comes closer [the top peaks in Fig. 5(b) match
the bottom peaks in Fig. 5(c)], but noise still limits sensor
sensitivity at longer distances [which can be seen from the
poor correlation with the distance sensor-person of the rugged
lower part of sensor response in Fig. 5(b)].

Considering the high noise level of this type of sensors, we
are mostly interested in how well various neural network types
can extract position and trajectory information from them.

We use the Keras library with a TensorFlow [63] back-end
to implement the NNs [64]. We design each NN with the same
number of neurons on all hidden layers within a given network
and the ReLU [65] activation function. We use the first order
gradient-based optimization algorithm Adamax (with default
parameters [66]), which computes individual adaptive learning
rates for different parameters from estimates of first and second
moments of the gradients. For the LSTM networks [67], we
use the default activation functions for the various gates.

IV. DESIGN SPACE EXPLORATION RESULTS

We use two types of tests: static localization and movement
tracking. For the former, we use the data that we collected in
our previous classification experiment [58], namely 320 tuples
collected while a person was standing in each one of the 16
positions shown in Fig. 8, i.e. 320 × 16 = 5120 total tuples.
For the latter, we use the sensor and reference data collected
while the person moves along arbitrary paths in the room for
about nine minutes (1626 tuples at 3 tuples/s, see Fig. 9).

Generally, the trajectory does not come too close to the
walls to better reflect the person movements in actual rooms
and because sensor measurements closer to the center of the
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Fig. 5. Sensor output sampled at 3 Hz after (a) filtering [50 s-window median
(MF) and 0.1 Hz low-pass (LPF) filters], (b) normalization (shown inverted
and in semi-logarithmic scale to expose the noise), and (c) distance to person
body as they roam the room

room (far from the sensors) are noisier, hence more interesting
for us, because they are more difficult to interpret.

Note that in both tests we train and test the neural networks
to report location estimation as a pair of X/Y coordinates, not
to classify the position into a predefined set of locations.

We optimize and compare the performance of several types
of neural networks in terms of Mean Square Error (MSE)
and average Euclidean Distance Error (ADE) between the
inferred position and the reference position (ground truth). For
movement tracking, we also compare graphically the plots
of the ground truth (as reported by the reference system, see
Fig. 8) and the NN inference. We do this separately for the X
and Y coordinates instead of 2D plots of full trajectories to
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Fig. 6. Power frequency spectrum of one sensor output before (“raw”) and
after digital filtering (“filtered”). The median filter attenuates frequencies below
0.02Hz and the low-pass filter attenuates frequencies above 0.3Hz.
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Fig. 7. Power frequency spectrum of the reference localization system output
coordinates, X and Y. Below 0.3Hz the signal rises above the noise floor and
increases especially at lower frequencies, corresponding to slow movements.

visualize better inference discrepancies from ground truth and
to comparatively analyze the accuracy of different NNs.

We discretize sensor data (shown on top-left of Fig. 10) at
3 Hz into four-sample tuples, S1, . . . , S4, holding one sample
for each capacitive sensor. Then we concatenate the tuples in
chronological order and provide them (with suitable windowing,
as we will discuss later) to the tested neural networks.

A. Static position classification with multilayer perceptron
neural networks

Also here we use the preprocessed experimental data from
our previous classification experiment [58]. It holds 320
capacitive sensor tuples collected when the person stood in each
of the 16 positions shown in Fig. 8 (320 tuples×16 positions =
5120 tuples) labelled with the coordinates of each position.

Because this experiment monitors static positions, we can
consider the tuples independent and use a multilayer perceptron
NN (see Fig. 11), which does not consider the tuple temporal
sequence. Hence, we split the experimental data randomly in
subsets of size 60%, 20%, and 20% to use for NN training,
validation, and testing, respectively. We use the validation set
to stop the NN training before it starts overfitting, i.e. when
the NN inference error on the validation set starts to increase
while the error on the training set continues to decrease.
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Fig. 8. Static test of the reference system in 16 locations (red ‘x’). The results
shows very good stability (blue circles) and adequate accuracy.

TABLE I
MEAN SQUARE ERROR (MSE) AND AVERAGE DISTANCE ERROR (ADE)

FOR MULTILAYER PERCEPTRON NEURAL NETWORK INFERRING STATIC
LOCATIONS

Number of hidden layers

1 3 4 5

Neurons MSE ADE MSE ADE MSE ADE MSE ADE
per layer (m2) (m) (m2) (m) (m2) (m) (m2) (m)

4 0.116 0.373 0.074 0.299 0.073 0.298 0.065 0.271
8 0.084 0.324 0.062 0.262 0.053 0.235 0.051 0.225

16 0.076 0.307 0.048 0.224 0.042 0.203 0.039 0.188
32 0.072 0.302 0.037 0.186 0.030 0.159 0.026 0.142
64 0.063 0.273 0.026 0.150 0.024 0.137 0.022 0.124

We keep the size of the input layer fixed at four neurons,
equal to the number of sensors. We vary the structure of the
rest of the neural network from one hidden layer with four
neurons up to five hidden layers with 64 neurons each (all
hidden layers have always the same number of neurons). For
each configuration, we train and test the NN ten times using
random initializations.

Table I shows the best MSE performance of the multilayer
perceptron NN. Both performance metrics (MSE and ADE)
improve as either the number of hidden layers or the number
of neurons per hidden layer increase, albeit with diminishing
returns beyond four hidden layers with 32 neurons each.

Fig. 12 shows the location inferred by the best NNs for
each one of the 16 static locations. Standard deviation is from
0.040 m to 0.227 m and we can see that most inferences are
close to the actual location. We also note that inference spread
appears to be higher in the upper and the right parts of the
room. This may be due to higher environmental noise in that
areas of the experimental space.

B. Filter optimization and trajectory tracking with multilayer
perceptron neural networks

We will show later that neural networks that track the position
of the person considering the past behaviour can have better
accuracy than those that consider one tuple at a time, as in
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Fig. 9. Virtual room used for movement tracking experiments and person
trajectory (split into segments for NN training, validation and testing)

Section IV-A. But we evaluate first the tracking performance of
the multilayer perceptron neural networks (see Fig. 11), which
do not consider past behaviour, to establish a baseline for the
next experiments.

We split the whole trajectory of the person in the room (after
applying the median and low-pass filter) in three contiguous
segments 60%, 20%, and 20% long for neural network training,
validation, and testing, respectively, as shown in Fig. 9. Note
that the trajectory segments are different, as they would be in
the case of a real-life deployment.

We use the best NN structure that we found in Section IV-A,
five hidden layers with 64 neurons each. We next optimize
the parameters of the filters (see Fig. 5) by analyzing the NN
performance for all combinations of:

• median filter window: 50 s, 100 s and 150 s
• low-pass filter pass-band edge: 0.1 Hz, 0.2 Hz, 0.3 Hz,

0.4 Hz, and 0.6 Hz
• low-pass filter stop-band edge: 0.2 Hz, 0.3 Hz, 0.4 Hz,

0.5 Hz, 0.6 Hz, and 0.7 Hz.

We obtain the best NN performance (MSE 0.111 m2 and ADE
0.405 m) for a median filter window of 50 s, and low-pass filter
pass-band edge of 0.3 Hz and stop-band edge of 0.4 Hz (see the
top ten results shown in Table II). The NN performance seems
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s1 s3s2 s4 s1 s2

t0 t2t1
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Neural Network

Fig. 10. Sensor data (top-left) is discretized at 3 Hz in four-sample tuples,
S1, . . . , S4, which are then concatenated in chronological order and input to
the neural network with appropriate windowing.
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Fig. 11. Network structure and data access for the multilayer perceptron
network. The input layer receives sensor data tuples from randomly selected
time frames (with labels during training, not shown for readability) and reports
the inferred x and y coordinates of the person.

TABLE II
DESIGN SPACE EXPLORATION RESULTS FOR FILTER OPTIMIZATION FOR THE
BEST MULTILAYER PERCEPTRON NEURAL NETWORK MEAN SQUARE ERROR

(MSE) AND THE CORRESPONDING AVERAGE DISTANCE ERROR (ADE)

Low-pass filter Median filter Error

Passband edge Stopband edge Window MSE ADE
(Hz) (Hz) (s) (m2) (m)

0.3 0.4 50 0.111 0.405
0.5 0.7 50 0.115 0.418
0.2 0.6 50 0.116 0.432
0.1 0.3 50 0.121 0.429
0.6 0.7 50 0.122 0.428
0.4 0.5 50 0.122 0.431
0.1 0.6 50 0.125 0.432
0.1 0.4 50 0.126 0.445
0.2 0.6 100 0.127 0.449
0.3 0.6 50 0.128 0.447

to be more dependent on the median filter window (windows
longer than 50 s generally lead to poorer NN results) than on
the parameters of the low-pass filter (almost all present in the
NN top ten best results). This can be explained because the
amplitude of the drift can be much higher than that of the
high-pitch noise (see Fig. 3).

For these parameters, we show in Fig. 13 the NN inference
separately for the X and Y coordinates compared with the
ground truth. We notice the ragged look of both X and Y
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Fig. 12. Inference of 16 static positions (black ‘x’) using multilayer perceptron
neural networks. Inference results (dots) are colored according to their reference
positions.
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Fig. 13. Multilayer perceptron neural network trajectory tracking inference
and ground truth for the (a) X axis and (b) Y axis

inference, which seems not to smooth enough the sensor noise.
We also notice increasing discrepancies in the latter part of the
X and Y tracks (roughly after sample 250).

C. Trajectory tracking with autoregressive feedforward neural
networks

This is the first experiment to infer the trajectory using a
neural network that considers some aspects of the movement
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Fig. 14. Network structure and data access for the autoregressive feedforward
network. The input layer receives sensor data tuples from sequential time
frames that fall into network window (labelled with the x and y coordinates
of the central sample during training, not shown for readability) and reports
the inferred coordinates of the person.

history. We choose autoregressive feedforward neural networks
[68], [69] because they are non-recurrent (i.e., feedback-free)
sequence-aware models that can be used to infer sequential
data as a simpler alternative to recurrent neural networks (see
Fig. 14). They are akin to Finite Impulse Response filters
in digital signal processing, while recurrent NNs are akin to
Infinite Impulse Response filters.

We provide the NN with capacitive sensor tuples that fall
within a temporal window and train the NN to infer the X and Y
coordinates corresponding to the middle tuple in each window.
Hence, the window gives the NN access to both past and future
readings in the sensor time series. Using these, during training
the NN can refine the best weights for both the past and future
sensor readings (around the current position) to better reject
the noise and perhaps also to learn the dynamic characteristics
of person movements, such as maximum speed, acceleration,
movement patterns or direction changes. Of course, the NN
may also significantly overfit in a real deployment, hence we
put a lot of attention to the “natural looking” aspects of our
sample trajectories.

Since the NN needs a window width of samples to produce a
valid inference, it will start inferring after seeing a full window
of samples at the beginning of the trajectory and stop when the
last sample of the trajectory enters the window. But it infers
the position corresponding to the middle of the window, hence
the inferred trajectory in Fig. 15 starts and stops half a window
from trajectory extremes. This behavior is not a problem for
our target applications, which are not particularly sensitive to
delays of a few seconds. The same applies to the other NNs
based on windows that are discussed later.

We implement the best network structure that we found
in Section IV-A (see Fig. 14), i.e., five hidden layers with
64 neurons each. The input layer receives all sensor samples
within the input window and is fully connected to the first
hidden layer, like in Fig. 11.

We explore the performance of this neural network by setting
the duration of its input window to 5 s, 10 s, and 15 s. They
give the number of input tuples (thus the size of the NN input
layer) that are seen by the NN at any moment at 3 Hz sampling
rate. For example, for an input window of 5 s we have on the
NN input layer

5 s × 3 tuples/s × 4 samples/tuple = 60 input neurons. (3)



IEEE SENSORS JOURNAL, VOL. XX, NO. YY, MONTH 20ZZ 8

TABLE III
DESIGN SPACE EXPLORATION RESULTS FOR FILTER OPTIMIZATION FOR THE
BEST AUTOREGRESSIVE FEEDFORWARD NEURAL NETWORK MEAN SQUARE

ERROR (MSE) AND THE CORRESPONDING AVERAGE DISTANCE ERROR
(ADE)

NN Input Low-pass filter Median filter Error

Window Passband Stopband Window MSE ADE
edge edge

(s) (Hz) (Hz) (s) (m2) (m)

5 0.1 0.6 50 0.079 0.342
10 0.2 0.6 50 0.082 0.347
10 0.3 0.6 50 0.083 0.340
10 0.4 0.7 50 0.085 0.365
10 0.6 0.7 100 0.086 0.371
5 0.3 0.6 50 0.092 0.358
10 0.1 0.5 100 0.092 0.380
10 0.4 0.6 50 0.092 0.373
5 0.5 0.6 50 0.093 0.358
10 0.4 0.7 100 0.093 0.395

We also vary the parameters of the low-pass and median
filters in the ranges shown in Section IV-B. As can be seen
from the top-ten best results shown in Table III, the best
MSE is 0.079 m2 for an ADE of 0.342 m. They show a marked
improvement compared to the multilayer perceptron NN results
shown in Table II, which is attributable to allowing the NN
to infer the position while examining the sensor tuples of a
segment of the trajectory instead of just the current tuple. We
also note that the optimal length of the trajectory segment
(input window) in our DSE seems to be 10 s (the performance
for windows of 5 s are equal or marginally better).

In Fig. 15 we see that the inferences of the X and Y
coordinates are smoother and tend to follow closer the ground
truth almost everywhere, and especially towards the end
(roughly after sample 250) than the multilayer perceptron NN
shown in Fig. 13.

D. Trajectory tracking with 1D convolutional neural networks

We extend the tests of neural networks that infer the
trajectory based on movement history using 1D Convolutional
NNs (CNNs) [70]. They are known to be effective for
deriving meaningful features from fixed-length segments (input
windows) of data sequences. Typical applications include
sequences of sensor data (e.g., accelerometer, audio), which
are similar to the ones that we have in this application.

We use 1D CNNs with the structure shown in Fig. 16. We
set the window size to 5 s, which we determined to be among
the best options in Section IV-C. We scan this window with
several 1D convolution filters with kernels of the same size,
which make one convolutional layer. Convolutional processing
in our NN uses several such layers, followed by a pooling
layer, and a fixed size MLP network (of two layers with 64
neurons each), before the output layer.

During the DSE, we change the number of convolutional
layers (in groups of two convolutional layers followed by a
50% dropout), the convolution kernel size, and the number of
filters. In each experiment, we keep constant for each network
architecture the kernel size and the number of filters per layer.
We use the LPF and MF parameters optimized in Section IV-B.
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Fig. 15. Autoregressive feedforward neural network trajectory tracking
inference and ground truth for the (a) X axis and (b) Y axis
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Fig. 16. Network structure and data access for the convolutional network.
Each filter processes the data tuples within the kernel width, then the kernel
slides one tuple to the right until the end of the input window. When done,
the window moves one tuple to the right and the kernel restarts its scanning.
For network training, each window is labelled (not shown for readability) with
the person coordinates corresponding to the middle tuple in the window.

We train and test ten times the neural network for each com-
bination of hyperparameters. We show in Table IV the results of
the best network for each hyperparameter combination. We note
that most of the best configurations have four convolutional
layers, while the network performance tends to degrade for
either smaller or larger number of layers. Also, for a given
number of convolutional layers, the network configurations
with fewer filters appear to have the best performance. The
best overall network configuration has the least number of
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TABLE IV
DESIGN SPACE EXPLORATION RESULTS FOR 1D CONVOLUTIONAL NEURAL

NETWORKS MEAN SQUARE ERROR (MSE) AND THE CORRESPONDING
AVERAGE DISTANCE ERROR (ADE) FOR DIFFERENT CONVOLUTIONAL

KERNEL SIZES, NUMBER OF CONVOLUTIONAL LAYERS, AND FILTERS

Number of filters

8 16 32 64

Kernel MSE ADE MSE ADE MSE ADE MSE ADE
size (m2) (m) (m2) (m) (m2) (m) (m2) (m)

Two 1D convolutional layers

3 0.086 0.351 0.092 0.370 0.090 0.364 0.085 0.357
5 0.084 0.346 0.094 0.373 0.093 0.369 0.092 0.371
7 0.080 0.347 0.093 0.359 0.078 0.343 0.097 0.384

Four 1D convolutional layers

3 0.063 0.307 0.089 0.372 0.090 0.366 0.085 0.351
5 0.081 0.350 0.088 0.358 0.088 0.371 0.091 0.365
7 0.093 0.369 0.090 0.351 0.091 0.388 0.078 0.342

Six 1D convolutional layers

3 0.078 0.328 0.101 0.377 0.087 0.364 0.092 0.385
5 0.086 0.365 0.090 0.372 0.099 0.379 0.093 0.378
7 0.098 0.387 0.107 0.397 0.092 0.366 0.092 0.373

filters (eight) and the smallest convolutional kernel size (three).
We show in Fig. 17 the inference of the X and Y coordinates

of the best networks for each number of convolutional layers,
two, four, and six (highlighted in Table IV). We note how the
six-layer network matches well the last part of the X trace, but
less so in the middle. The two-layer network appears to have
the highest ripples, while the four-layer seems to match best
almost the whole trace, except for the last part, roughly after
sample 250. On the Y trace, the four-layers network appears
to stay closest to the ground truth overall.

E. Trajectory tracking with long-short term memory networks

After testing feedforward neural networks (multilayer per-
ceptron, autoregressive, and 1D convolutional types, discussed
in previous sections), we explore recurrent neural networks.
Of these, the LSTMs [71] are widely used to extract features
from data sequences, such as speech or handwriting.

Fig. 18 shows the structure of our LSTM network [71]. It is a
typical LSTM, in which the cells transfer the state horizontally
and receive inputs either from the sensors (the first layer) or
from the outputs of the previous layer.

To explore the LSTM network performance, we vary the
hyperparameters known to have most influence [72], namely
the number of neurons in the hidden layers and the number
of hidden layers. During the DSE, we run ten times the
LSTM training (with random initialization) and testing for each
combination of hyperparameters, and report the best results in
the top half of Table V. We note that the network performance,
MSE, does not change much with the number of hidden layers
or their number of neurons, and especially so for smaller
numbers of neurons (8 or 16 per each hidden layer). An LSTM
with one hidden layer with 16 neurons appears to perform best.

Bidirectional LSTMs (BD-LSTMs) [73] can improve the
LSTM performance leveraging future samples in their inference
(e.g., handwriting recognition can improve by looking also
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Fig. 17. Best 1D convolutional neural network trajectory tracking inferences
and the ground truth for the (a) X axis and (b) Y axis for different number of
convolutional layers.
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Fig. 18. Network structure and data access for the Long-Short Term Memory
(LSTM) network, in which the LSTM cells in the input layer process the
data tuples from the input window. Each window is labelled for training with
the person coordinates corresponding to the middle tuple in the window (not
shown for readability).

at letters after the current one). We test the BD-LSTM
performance for our problem using the same DSE parameters
and report the results in the second half of Table V. Performance
seems to be more sensitive to hyperparameters, and especially
to the number of hidden layers. The best appears again the
configuration with one hidden layer with 16 neurons.

We show in Fig. 19 the inference of the X and Y coordinates
of the best LSTM and BD-LSTM network (highlighted in
Table V). Generally, we note very little differences between
them. They both miss the first two peaks of the X coordinate and
the central peak of the Y coordinate, as well as the beginning
(up to sample 70 or so) and end (from around sample 250)
of the Y coordinate. In some occasions BD-LSTM appears to
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TABLE V
DESIGN SPACE EXPLORATION RESULTS FOR UNI- AND BI-DIRECTIONAL

LONG-SHORT TERM MEMORY NETWORKS MEAN SQUARE ERROR (MSE)
AND THE CORRESPONDING AVERAGE DISTANCE ERROR (ADE) WHILE
VARYING THE NUMBER OF HIDDEN LAYERS AND NEURONS PER LAYER

Internal units of LSTM layer

8 16 32 64

MSE ADE MSE ADE MSE ADE MSE ADE
Layers (m2) (m) (m2) (m) (m2) (m) (m2) (m)

Unidirectional long-short time memory neural network

1 0.085 0.339 0.080 0.325 0.085 0.333 0.089 0.352
2 0.083 0.345 0.082 0.335 0.088 0.347 0.091 0.357
3 0.084 0.350 0.083 0.342 0.096 0.366 0.087 0.355

Bidirectional long-short time memory neural network

1 0.083 0.342 0.079 0.326 0.091 0.341 0.095 0.362
2 0.095 0.362 0.092 0.352 0.099 0.378 0.102 0.376
3 0.080 0.339 0.099 0.372 0.110 0.408 0.107 0.401

come closer than LSTM to the ground truth, such as around
sample 50 on the Y trace and sample 160 on the X trace.

We note that the trajectories inferred by the LSTM network
are the smoothest among all networks that we explored.
They seem to reflect more closely the movement dynamics
of a person, albeit with slightly higher error than the best
inference (LSTM 0.079 m2 MSE and 0.326 m ADE versus 1D
convolutional 0.063 m2 MSE and 0.307 m ADE). We intend to
investigate in future work if LSTM networks indeed capture
better movement dynamics and if their performance improves
using less noisy readings from capacitive sensors that are more
robust to environmental noise.

V. DISCUSSION

In Fig. 20, we can compare visually the quality of the inferred
X and Y traces of the room trajectory of the best configurations
of all neural network types. Their performance metrics are
shown in Table I and in Table III to Table VI. In Table VI we
report the correlation between the network inferences and the
ground truth, as a measure of the inference replication of the
actual person trajectory regardless of systematic distance errors.
We also report the RMS of the first and second derivative of the
inferences, as inverse measures of the speed and acceleration
smoothness of the inferences, respectively (lower numbers are
associated with better smoothness) [74, p. 62]. Note that the
figures for the smoothness of the ground truth itself are rather
high, mostly because the localization data collected from the
ultrasound-based reference system has some centimeter-level
jitter which we did not filter, but which seems to be filtered
well by all neural networks.

The 1D convolutional network appears to follow best the X
and Y components of the reference trajectory. The four-layer
1D CNN inference has the lowest MSE and the best correlation
with the ground truth. The 1D CNN inference is also among
the smoothest, closely matching the dynamics of the actual
movement of the person, as can be seen in Fig. 20. In fact,
the RMS of the first and second derivatives of the inferred
location are bested only by networks in the LSTM class, as
shown in Table VI.
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Fig. 19. Best Long-Short Term Memory (LSTM) and Bidirectional LSTM
(BD-LSTM) neural network trajectory tracking inferences and the ground truth
for the (a) X axis and (b) Y axis

TABLE VI
CHARACTERIZATION OF MOVEMENT INFERENCE QUALITY IN TERMS OF

CORRELATION WITH THE GROUND TRUTH, AND SPEED AND ACCELERATION
SMOOTHNESS CALCULATED AS THE ROOT MEAN SQUARE (RMS) OF THE

FIRST AND SECOND DERIVATIVES, RESPECTIVELY.

Inference characterization

Ground truth RMS first RMS second
correlation derivative derivative

Neural network type (%) (m/s) (m/s2)

Multilayer perceptron 77.1 0.215 0.370
Autoregressive 83.1 0.211 0.475
1D CNN (2 layers) 83.3 0.157 0.172
1D CNN (4 layers) 87.5 0.162 0.187
1D CNN (6 layers) 84.5 0.176 0.259
LSTM 85.0 0.129 0.106
Bidirectional LSTM 84.0 0.133 0.129

Ground truth 0.143 0.333

The inference of the recurrent networks, LSTMs, seems to be
the smoothest, closely matching the actual person movement
dynamics, as shown by the low RMS of first and second
derivatives of the inferred location in Table I. LSTM ground
truth correlation is also very good, but its MSE is higher
because it does not follow well all parts of the person trajectory.
We intend to investigate in future work if the discrepancy is
due to the low signal-to-noise ratio of the sensor data.

Fig. 20 shows that the multilayer perceptron network infers
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Fig. 20. Ground truth and best neural network trajectory tracking inferences of
the (a) X axis and (b) Y axis for different types of neural networks: multilayer
perceptron (FF), autoregressive feedforward (AR-FF), 1D convolutional (1D-
Conv), and bidirectional long-short term memory (BD-LSTM)

a trajectory with the largest oscillations. Hence, it has the
lowest correlation with the ground truth and distinctly high
RMSs of the inference first and second derivatives. This can be
because the network has no means to understand the physical
movement dynamics because it is trained with separate points of
the trajectory, which carry no dynamic information. But even in
autoregressive configuration, where it is trained using segments
of trajectory, the performance of the multilayer perceptron
network does not improve, most likely because it lacks filtering
capabilities, unlike the convolution filters of the 1D CNN or
the intrinsic recurrent memory of the LSTMs. However, the
multilayer perceptron networks can infer with good accuracy
static positions, as shown in Table I and Fig. 12.

Besides the noise in the sensor data, we should note that
the accuracy of neural network inferences was affected both
by errors of the reference system and by differences in the
posture of the person. As discussed in Section III, we measured
the former to average at ±3.9 cm with peaks of ±6.4 cm in
our experimental conditions. The latter can depend on head
inclination (the person was wearing the mobile tag on the head)
or body rotation, which can change the distance between the
part of the body that is closest to the sensors for the same
position of the person in the room. In fact, the human body can
have complex postures and irregular shape, making it difficult to
accurately define its position. Hence part of the reported neural

TABLE VII
NUMBER OF PARAMETERS, FLOATING-POINT OPERATIONS (FLOPS), AND

INFERENCE ERROR [MEAN SQUARE (MSE) AND AVERAGE DISTANCE
(ADE)] FOR THE BEST NEURAL NETWORKS OF EACH TYPE

Neural network Parameters FLOPs MSE ADE
(m2) (m)

Multilayer perceptron 17090 34180 0.111 0.405
Autoregressive 20674 40382 0.079 0.342
1D CNN (2 layers) 14530 22318 0.078 0.343

32 filters, kernel size 7
1D CNN (4 layers) 7618 34078 0.063 0.307

8 filters, kernel size 3
1D CNN (6 layers) 8018 45838 0.078 0.328

8 filters, kernel size 3
LSTM 1378 16800 0.080 0.325
Bidirectional LSTM 2754 33600 0.079 0.326

network errors can be attributed to this intractable application
domain-specific uncertainty.

In Table VII, we show the number of parameters, processing
effort (estimated as the number of floating-point operations),
and the inference accuracy for the best neural network of each
type. The four layer 1D convolutional has the best accuracy,
but needs more parameters and higher processing effort. The
single layer LSTM provides very good localization estimation,
the smoothest movement tracking, and also requires the fewest
parameters and lowest processing effort (both important for
embedded applications).

VI. CONCLUSION

We tested the inference accuracy of several neural network
types, both feedforward and recurrent, while tracing the location
and movement of a person using data from four capacitive
sensors placed in the middle of the ”walls” of a 3m×3m empty
laboratory area. Sensor sensitivity was limited by noise level,
and their stability was also affected by a slow but significant
drift. While we used filters to reduce both drift and high-pitch
noise, we were especially interested in how much the remaining
noise affects the accuracy of the inference of person location
and trajectory for various types of neural networks.

The best inference, evaluated both as mean square error and
as smoothness and closeness to the actual person movement
in the room, was obtained by neural networks trained on
trajectory segments, processing either windows (feedforward
autoregressive and 1D convolutional) or sequences (long-short
term memory). The latter kind seems to capture best the
movement dynamics, while the 1D convolutional network has
the smallest error. Networks that consider trajectory points in
isolation perform well with data collected for static positions,
but have the worst trajectory inference error and do not seem
to capture the movement dynamics.

It is hard to define accurately the position of the human
body, especially while moving, due to its complex shapes
and postures. This can explain part of the inference errors,
in addition to the limited accuracy of the reference system
(±3.9 cm average and ±6.4 cm max in our setting).

We note that even with these noisy sensors, the best average
localization error of 0.307 m is suitable for our main target
application, namely assisted living of elderly persons.
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The inference characteristics of several very distinct NN
architectures, in basic configurations and processing noisy
sensor data, provide a broad performance baseline that can help
designing more application-specific NN architectures, which
may use and tune specialized DSP blocks to better recognize
the movement dynamics and reject environmental noise.
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