
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Effectiveness of Kotlin vs. Java in Android App Development Tasks / Ardito, Luca; Coppola, Riccardo; Malnati, Giovanni;
Torchiano, Marco. - In: INFORMATION AND SOFTWARE TECHNOLOGY. - ISSN 0950-5849. - ELETTRONICO. -
127:(2020). [10.1016/j.infsof.2020.106374]

Original

Effectiveness of Kotlin vs. Java in Android App Development Tasks

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.infsof.2020.106374

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.infsof.2020.106374

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2837799 since: 2020-10-22T16:56:14Z

Elsevier

Effectiveness of Kotlin vs. Java in Android App

Development Tasks

Luca Ardito, Riccardo Coppola, Giovanni Malnati, Marco Torchiano

Politecnico di Torino
Department of Control and Computer Engineering

Turin, Italy
name.surname@polito.it

Abstract

Context: Kotlin is a new programming language representing an alternative
to Java; they both target the same JVM and can safely coexist in the same
application. Kotlin is advertised as capable to solve several known limitations
of Java. Recent surveys show that Kotlin achieved a relevant diffusion among
Java developers.

Goal: We planned to empirically assess a few typical promises of Kotlin
w.r.t. known Java’s limitations, in terms of development effectiveness, main-
tainability, and ease of development.

Method: Our experiment involved 27 teams of 4 people each that com-
pleted a set of maintenance tasks (both defect correction and feature ad-
dition) on Android apps written in either Java or Kotlin. In addition to
the number of fixed defects, effort, and code size, we collected, though a
questionnaire, the participants’ perceptions about the avoidance of known
pitfalls.

Results: We did not observe any significant difference in terms of main-
tainability between the two languages.We found a significant difference re-
garding the amount of code written, which constitutes evidence of better
conciseness of Kotlin. Concerning ease of development, the frequency of
NullPointerExceptions reported by the subjects was significantly lower when
developing in Kotlin. On the other hand, no significant difference was found
in the occurrence of other common Java pitfalls. Finally, the IDE support
was deemed better for Java than Kotlin.

Conclusions: Some of the promises of Kotlin to be a ”better Java” have
been confirmed by our empirical assessment. Evidence suggests that the

Preprint submitted to Information and Software Technology July 1, 2020

effort in transitioning to Kotlin can provide some advantages to Java de-
velopers, especially regarding code conciseness.Our results may serve as the
basis for further investigations on the properties of the language.

Keywords: Android, Effectiveness, Kotlin, Java, Maintenance

1. Introduction1

Kotlin is a modern programming language, appeared in 2011, which rep-2

resents an alternative to Java, with which it can seamlessly coexist. Many3

pieces of evidence are available in the literature underlining that Kotlin is4

gaining traction among Android software developers. In a previous study,5

we mined all Android apps hosted on the F-Droid platform and updated6

after October 2017: we found that nearly one-fifth of them featured Kotlin7

code, with 2/3 of those projects featuring more Kotlin than Java code [1].8

Similar trends have been reported by Oliveira et al. regarding the number of9

StackOverflow questions about Kotlin programming for Android and GitHub10

repositories with Kotlin [2].11

One of the main design guidelines that led to the development of the12

Kotlin language is a better handling of null values. In the Java language,13

without the usage of specific checks, the handling of null values can lead14

to NullPointerExceptions (NPE). Several studies in the literature report the15

prominent role of NullPointerExceptions among the reasons for Android ap-16

plication to crash. Coelho et al. report that near 30% of all stack traces col-17

lected upon the Android app crash contained NPEs as their root causes [3].18

The authors also underline the difficulty in protecting the code against those19

exceptions, especially when the app does not have access to third-party source20

code. NPEs can also happen – as Payet and Spoto report – in the link be-21

tween the XML layouts and explicit application code casts [4]. Such a link22

is obtained utilizing the very commonly used setContentView and findView-23

ById methods. These method calls are very crucial, and frequent operations24

are executed every time the components of the application screen are instan-25

tiated. The effects of those issues are amplified by misuses of the exception26

handling mechanisms provided by Java, which are documented frequently27

among Android developers [5].28

Readability and conciseness are considered key-features of the Kotlin lan-29

guage, especially for what concerns the declaration of objects and classes with30

numerous attributes [6].31

2

The novelty of the Kotlin language, and the easiness in adapting existing32

(and possibly long-running) Java projects to it, suggests the need for an33

evaluation of the benefits guaranteed to developers from such transition.34

Many advantages are reported by works in the specialized literature, but to35

the best of our knowledge, their empirical assessment is still missing. With36

this work, we aimed at assessing some assumed advantages of Kotlin with37

respect to Java in the context of Android development and maintenance.38

To do so, we conducted a controlled study with undergraduate students, a39

sample that can represent average Kotlin developers due to the low experience40

possessed – as of today – by developers with such language.41

In light of an ever increasing adoption of Kotlin for Android development,42

this empirical assessment aims to provide practical evidence that could help43

in a transition from Java to Kotlin. In particular we focused on possible ef-44

fects on maintainability, conciseness, and avoidance of a few common pitfalls.45

The remainder of the paper is organized as follows: Section 2 provides46

some background for Kotlin programming, its characteristics, and the recent47

trends of its diffusion, and it provides a brief review of related work in liter-48

ature; Section 3 describes the goal, procedure, participants and material of49

the experiment, along with possible threats to the validity of our findings;50

Section 4 discusses the threats to the validity of this study; Section 5 reports51

the results of the experiment, that are discussed in section 6; finally, Section52

7 concludes the paper.53

2. Background54

Kotlin first appeared in 2011, but its first stable release was distributed55

in February 2016. In May 2017, Kotlin became a first-class language on56

Android, and support was provided by the Android Studio DE since release57

3.0 of October 2017. The popularity of Kotlin increased rapidly since then.58

The State of Developer Ecosystem in 2018 shows that Kotlin is mainly used59

for mobile and Server applications working mainly in Oreo and Nougat in60

Android, and JDK 8 in servers. According to statistics provided by JetBrains,61

only around 40% of Kotlin developers have adopted the language for more62

than one year1.63

1https://www.jetbrains.com/research/devecosystem-2019/ Last visited January
2020

3

https://www.jetbrains.com/research/devecosystem-2019/

Kotlin is a statically typed programming language that runs on the Java64

Virtual Machine (JVM) and fully interoperates with Java: it is possible to65

mix Kotlin and Java code in the same application, to call Kotlin code from66

Java code and vice versa [7]. The two languages share several common-67

alities [2], and the official documentation of Kotlin itself reports its main68

characteristics by means of comparisons with Java.69

Kotlin takes a pragmatic approach, such as not re-implementing the en-70

tire Java collections framework making it compatible with the JDK collection71

interfaces without breaking any existing project implementations. For exam-72

ple, Kotlin still supports Java 6 bytecode because almost half of the Android73

devices still run on it. It is possible to start using Kotlin for small parts of a74

large project, including a few UI components and simple business logic. The75

possible coexistence between Kotlin and Java can be deemed as one of the76

main factors that are fueling the transition to Kotlin for Android developers.77

As a first example of features that are not supported by Java, Kotlin78

also allows functions in addition to classes to be first level constructs. In79

Kotlin, everything is an object, even numeric values that in Java are treated80

as primitive types. Kotlin provides the ability to extend a class with new81

features without having to inherit from the class or use any design pattern82

such as Decorator [8] through special declarations called Extension Functions83

and Extension Properties.84

On the other hand, Kotlin does not feature some characteristics of the85

Java language, like checked exceptions, static members, non-private fields,86

and the ternary operator.87

A complete description of the features of Kotlin is out of the purpose of88

this paper2. The primary objective of our work has been instead to verify89

some of the peculiarities of Kotlin, mostly regarding the avoidance of common90

Java development pitfalls [9]:91

• Nullability : the typical convention used throughout Java APIs is to92

let a method return a null reference to represent the absence of a93

result. This approach, when not accompanied by appropriate checks,94

may lead to NPEs, which reportedly is one of the most common causes95

for crashes in Android apps [3] [10]. Java 8 introduced the Optional96

class to provide API with a clear way to represent ”no result” as an97

2A large set of open resources about the Kotlin language is available online at https:
//kotlinlang.org/docs/reference/

4

https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/

alternative to returning null, but not as a general-purpose solution to98

the nullability problem [11]. Kotlin provides a way to declare nullable99

variables explicitly (?) and a safe-call operator (?.) that can be used100

in conjunction with the elvis operator (?:) to avoid most NPEs.101

Figure 1 reports side-by-side examples of equivalent Kotlin and Java102

code. We can observe how Kotlin allows declaring a nullable variable103

– by default variables are non-nullable – and to use safe call and elvis104

operators to achieve safer and more compact code.105

var bob : Person? = null;

//...

return bob?.department?.name; // safe call

Person bob = null;

// ...

if(bob!=null)

if(bob.department!=null)

return

bob.department.name;

return null;

var bob : Person? = null;

//...

return bob?.name:"<?>"; // ?: elvis

Person bob = null;

// ...

return

bob!=null?bob.name:"<?>";

Kotlin Java

Figure 1: Nullability examples in Kotlin vs. Java

• Mandatory Casts : Java often requires several explicit casts to let the106

compiler cope with type conversions, this makes code longer and hard107

to read, in addition, a wrong cast could be accepted by the compiler108

and result into a run-time exception; Kotlin introduced smart casts and109

a safe (nullable) cast operator (as?).110

Figure 2 report an example of a safe cast, in Kotlin and Java. Safe casts111

are capable of eliminating the possibility of triggering a ClassCastException112

at run-time. As it is evident from the comparison, the safe cast in Java113

requires a more verbose syntax – that we reported with the usage of114

the ternary operator – with respect to that needed by Kotlin. Such a115

higher verbosity can be deemed as a deterrent for developers to exten-116

sively use the practice of safe casting, hence increasing the likelihood117

of generating ClassCast exceptions.118

• Long argument lists : the invocation of Java methods uses a strict po-119

sitional argument mapping. Therefore methods may require passing120

5

val p: Person? = x as? Person
Person p = x instanceof

Person?(Person)x:null;

Kotlin Java

Figure 2: Mandatory casts examples in Kotlin vs. Java

many arguments even if they assume default or null values; writing121

overloaded methods might help in such cases, but it may require sig-122

nificant effort without covering all cases. Kotlin adopts a solution to123

this issue by defining default values for arguments and allowing – in124

addition to positional arguments – passing arguments by name. Other125

recent languages have adopted similar solutions, e.g., default values for126

arguments are provided by Python.127

• Data Classes : often, a program requires the creation of classes whose128

primary purpose is to hold data. The amount of boilerplate code re-129

quired by Java to implement these classes can be relevant. The addi-130

tional code can often be mechanically derivable from the data: such131

automatic derivation is done by libraries that are not part of the stan-132

dard Java library, e.g., in project Lombok3. Kotlin introduced the133

Data Classes that the compiler is able to process to generate all the re-134

quired boilerplate code automatically. In our prior investigations about135

Kotlin, we found out that the amount of LoCs savings for a data class136

with few fields can be of up to 90% w.r.t. the Java equivalent. An137

example of Kotlin class and its Java equivalent is reported in Figure 3.138

The main contribution of our work is a comparison between Java and139

Kotlin in the context of Android Mobile Applications, and specifically when140

performing maintenance tasks on apps written in either language. We per-141

form this comparison with undergraduate students attending the course of142

Mobile Application Development, inspired by the work done by Kosar et143

al. [12] for setting up the experiment.144

2.1. Related Work145

The present manuscript is related to experiments with students in com-146

paring different programming languages or practices, and to literature ded-147

3https://projectlombok.org Last visited March 2019

6

https://projectlombok.org

data class User(

val name: String,

val age: Int)

class User

private String name;

private int age;

public User(String name, int age){
this.name=name; this.age=age;

}
public String getName(){ return name; }
public String getAge(){ return age; }
public String toString(){

return "User(name="+name+",age="+age+")");

}
public boolean equals(Person){...}
public int hashCode(){ ... }

}
Kotlin Java

Figure 3: Data class example in Kotlin vs. Java

icated to the comparison between Kotlin and Java. This section reports a148

summary of relevant work in these fields.149

2.1.1. Studies on Kotlin150

Since Kotlin has been released recently, the literature does not include151

many works related to this topic.152

Shah et al. [13] analyzed how to perform code obfuscation with Android153

applications written in Kotlin. Bryksin et al. [14] discussed a methodology154

for detecting anomalies – i.e., code fragments are written in ways different155

from the typical ones for a given language – for Kotlin apps. Skripal et al.156

proposed an Aspect-Oriented extension for Kotlin [15]. Maeda et al. [16]157

designed a domain-specific language to specify syntax rules based on Kotlin.158

Belyakova [17] analyzed the dependencies between different language fea-159

tures. Mateus and Martinez [7] performed an empirical study on the quality160

of Android apps written in Kotlin, finding that the quality of Android apps161

is increased by the usage of Kotlin in terms of the presence of code smells.162

Flauzino et al. [18] performed a comparative study between Java and163

Kotlin: they compared 50 Java and 50 Kotlin projects to understand if Kotlin164

contains fewer smells than Java. Code smells are clusters of negative deci-165

sions made by developers in software design that do not directly affect the166

execution flow of a program but are potential causes of future problems, in-167

creasing the complexity, maintainability, and even the cost of software [19].168

7

Their findings support the hypothesis that Kotlin presents fewer code smells169

than Java. With this paper, however, we did not focus on code smells but170

on maintenance aspects of code development.171

Banerjee et al. [20] performed comparisons between the usage of Java and172

Kotlin for developing Android applications. They conclude that the usage of173

Kotlin makes the development of Android applications easier while reducing174

the number of errors and bugs in the code. The principal limit of the work175

by Banerjee et al. lies in the fact that their assumptions are based only on176

coding tasks executed by the authors (thus, significant researcher biases can177

be introduced), and no empirical evidence is provided to support them. The178

results of the present manuscript are in line with those authors’ findings but179

– to the best of our knowledge – we provide the first empirical assessment of180

the claimed advantages of the Kotlin language when compared to Java.181

2.1.2. General Programming Language Comparisons182

A large number of works in the literature have performed programming183

language comparisons. For instance, Nanz et al. performed comparisons184

of 22 different programming languages of 4 different families. They found185

that functional and scripting languages are more concise than procedural186

and object-oriented language, and that compiled and strongly-typed lan-187

guages are less prone to run-time failures than interpreted or weakly-typed188

languages [21].189

Prechelt performed a comparison of seven programming languages, in-190

cluding C++, Java, and several scripting languages, concluding that modern191

scripting languages offer reasonable alternatives to C and C++ even for tasks192

that require substantial amounts of computations [22].193

Singh performed empirical studies on programming languages used for194

scientific computing, hinting that in such context, Fortran may be deemed195

as preferable over Java or C++ [23].196

Chen et al. studied the effects of the first programming language that197

is taught to high-level students, finding that no specific programming lan-198

guage provided better performance in subsequent courses sustained by the199

students [24].200

3. Experimental design201

We designed an experiment to be conducted in the context of a Mobile202

Applications Development course within a Computer Engineering MSc. de-203

8

Table 1: GQM Template for the study

Object of Study : usage of Java and Kotlin programming languages

Purpose : comparing

Focus : effectiveness in avoiding common pitfalls

Context : maintenance and development tasks performed on
Android applications by students

Stakeholders : developers, researchers

gree, attended by 108 students. During the course, the students usually204

attend practical labs where they are required to work together in groups to205

develop code for a course running project. The experiment took place dur-206

ing two such labs and involved working on both a small application and the207

course running project.208

This section follows the reporting guidelines proposed by Jedlitschka et209

al. [25] and the APA Manual [26] to organize the discussion of the exper-210

imental design. More specifically, the following subsections provide details211

about the high-level goal of the experiment, the participants that were in-212

volved, the overall experimental design, and the individual research questions213

that we formulated. For each research question, we report the materials, the214

procedure, and the metrics that were used to answer them.215

3.1. Experiment Goal216

We report the design, goal, research questions, and procedure adopted217

in this study following the Goal Question Metric (GQM) template [27], as218

summarized in Table 1. The goal of the experiment can be expressed as:219

Analyze the usage of Java and Kotlin programming languages220

for the purpose of comparing with respect to their effectiveness in221

avoiding common pitfalls from the point of view of developers in222

the context of maintenance and development tasks performed on223

Android applications.224

3.2. Participants225

The experimental units of the experiment were the student groups formed226

for the Mobile Applications Development course. The groups were formed by227

9

picking students ID randomly, in order to avoid any bias in the composition228

of the groups that could be introduced by allowing the students to compose229

the groups as they desired. All the groups were formed by four students230

enrolled in the course and attending the Computer Engineering MSc degree231

at Politecnico di Torino.232

The sample of the experiment is clearly a convenience sample that might233

be representative of small teams of novice developers.234

Following recommended good practices [28], the subjects were rewarded235

with points for participating in the experiment. Based on the correctness of236

their answers, each subject earned up to a 10% bonus on their assignment237

grade for the course.238

3.3. Design and Procedure239

The experiment follows a structure that was standard between subjects,240

with two treatments and two groups. The participating groups worked in241

two consecutive lab sessions: the first was a warm-up and is not used for the242

experiment, the latter constituted the actual experiment.243

The participating groups have been divided into two sets; each set was244

administered the tasks with different languages (Java vs. Kotlin) in a differ-245

ent order in the two sessions. After the second lab session, the participating246

groups were asked to answer a questionnaire about their experience. The247

questionnaire had the following objectives:248

i. Understand the characteristics of the group;249

ii. Evaluate the level of understanding of the application that they in-250

spected;251

iii. Assess the issues encountered by the group;252

The items of the questionnaire were organized into three different sections253

corresponding to the aims defined above. We report the full questionnaire in254

Table 2.255

The tasks performed by the researchers and the students are summarized256

in the BPMN diagram reported in Figure 4.257

We aimed at answering three different research questions, based on the258

outcomes of the experiments and on the answers to the questionnaire. In259

Table 3, we briefly report the research questions and the materials, tasks, and260

questionnaire sections that are used to respond to each of them. Detailed261

descriptions of the procedure to answer each RQ are reported in the following262

subsections.263

10

Table 2: Questionnaire Structure

Group N Question Type Options

Context 1 What is your group ID? String -
2 How many people are in your group Numerical -
3 How many of you have worked as professional

java developers?
Numerical -

4 How many of you have worked as professional
developers in other languages?

Numerical -

5 On average what is your experience in Java
programming?

Ordinal (i) Less than one year

(ii) Between one year and three
years
(iii) More than three years

6 In this lab what language has been assigned to
your group?

Categorical Java / Kotlin

7 Have any of you developed programs using
Kotlin?

Categorical Yes / No

8 What is the Java knowledge of the most expe-
rienced member in your group?

Ordinal (i) Novice: up to 20 classes
projects
(ii) Intermediate: 20 to 50
classes projects
(iii) Advanced: 50+ classes
projects

i 1 How easy was to understand the overall struc-
ture of the code

Likert Very Easy - Very difficult

2 What is the purpose of class RecordingItem? Categorical (i)Manage audio registration
(ii) Send registration to server
(iii) Store registration in
database
(iv) Wrap registration data
(v) Notify the OS when the
registration data changes

3 How many defects did you find in the App? Numerical -
4 How many defects were you able to fix? Numerical -
5 How long did it take to fix the defect(s)? (In

minutes)
Numerical -

6 Which classes contained defects? Categorical (i) Main Activity
(ii) FileViewerAdapter
(iii) DBHelper
(iv) RecordingItem
(v) RecordingService

ii 1 Did the IDE (e.g., autocomplete) help in writ-
ing code?

Likert Very Little — Very Much

2 Did you often experienced
NullPointerExceptions?

Likert Never — Very Frequently

3 Did you often encounter problems with meth-
ods having long argument lists?

Likert Never — Very Frequently

4 How much the effort required to write classes
containing mainly data compare to the added
value?

Ordinal Much Higher — Much Lower

5 How much the effort required to write code to
handle class casts compare to the added value?

Ordinal Much Higher — Much Lower

11

Re
se

ar
ch

er
s

Translation of
Java apps into

Kotlin

Verification of
app

correctness

App use
cases

Experiment

Type 1
groups
startup

Reception
of Type 1
groups

deliverables

Type 2
groups
startup

Reception
of Type 2
groups

deliverables

Deliverable
Analysis

Ty
pe

 1
 g

ro
up

s

EXPERIMENT - KOTLIN

Corrective
Maintenance

[BookSearch]

Development

[Chat]

EXPERIMENT - JAVA

Corrective
Maintenance

[SoundRec]

Development

[SoundRec]

Questionnaire
Project
Delivery

Ty
pe

 2
 g

ro
up

s

EXPERIMENT - JAVA

Corrective
Maintenance

[BookSearch]

Development

[Chat]

EXPERIMENT - KOTLIN

Corrective
Maintenance

[SoundRec]

Development

[SoundRec]

Questionnaire
Project
Delivery

Figure 4: BPMN diagram of the experimental procedure

3.4. RQ1: Maintainability264

One of the most cited properties of the Kotlin language is that it makes265

code easier to understand and thus more maintainable. We hence formulated266

the following Research Question:267

RQ1: Does the use of Kotlin vs. Java affect the maintainability of Android268

projects?269

In our study, we focus on corrective maintenance, considering the specific270

activities of defect location and correction. We aimed, in practice, to under-271

stand whether Kotlin’s “better syntax” makes it easier to detect the location272

of a defect and the subsequent code change less difficult.273

12

Table 3: Summary of the research questions

RQ Materials Experimental Tasks Analyzed Variables

RQ1: Maintainability
BookSearch
SoundRecorder
Questionnaire (sec. 1)

Corrective maintenance
Understanding level
Defect location accuracy
Fix effort

RQ2: Conciseness
Course-running project
Questionnaire (sec. 2)

New feature development
Lines of Code
No. of Classes

RQ3: Coding Pitfalls Questionnaire (sec. 3) Post-experiment reflection Experienced pitfalls

Table 4: Characteristics of the applications.

Java Kotlin
App Classes LOCs Classes LOCs

Booksearch 5 471 5 450
SoundRecorder 13 1525 12 1340

3.4.1. Materials274

The maintenance task of the experiment was based on two small appli-275

cations (both available in Java and in Kotlin). The main characteristics of276

the two apps are shown in Table 4.277

The first application, Booksearch4, uses the OpenLibrary API5 to search278

book-related information and display their cover images. It is quite a small279

application counting just five classes with 471 LoCs. This application was280

used in the pre-experiment.281

The second application, SoundRecorder6, is a tool for performing record282

and playback of sounds. The application package, albeit larger than Book-283

search, can be considered still rather small: it counts 1525 LoCs in 13 classes.284

The second task with this application had the purpose of making the student285

familiarize with the assigned task.286

Both applications are open-source and available on GitHub. Since the ap-287

plication packages are written using Java, the translation to a Kotlin version288

of the application (needed to allow the participants to perform maintenance289

tasks in such language) was performed by one of the authors of the paper.290

4Available at: https://github.com/shrikant0013/android-booksearch
5Available at: https://openlibrary.org/dev/docs/api/search
6Available at https://github.com/dkim0419/SoundRecorder

13

https://github.com/shrikant0013/android-booksearch
https://openlibrary.org/dev/docs/api/search
https://github.com/dkim0419/SoundRecorder

While the IntelliJ Idea IDE is capable of automatically translating from Java291

to Kotlin, we opted for a manual translation performed by one of the authors292

– having more than ten years of experience in Android development – in order293

to have the code as close as possible to an application natively developed in294

Kotlin. For each app, we identified the main use cases that were reproduced295

on the Kotlin versions by another author of the app. The execution of all the296

use cases allowed to validate the correctness of the translated apps, and to297

verify that they provide the same functionalities of their Java counterparts7.298

The first section of the questionnaire administered to the participating299

groups concerned the maintainability concepts measured to answer RQ1.300

3.4.2. Experimental tasks301

The participants in the experiment had to perform a task of corrective302

maintenance on the two apps described above.303

The two applications have been injected with two defects each. The304

defects are equivalent in both applications, one resulting in a NullPointerEx-305

ception, and one to an exception caused by a missing element in the layout306

hierarchy of the application. Specifically, the NullPointerExceptions were307

obtained by removing instructions to find a specific view (hence resulting308

in a null view on which the user can operate) and by removing the call to309

the initialization of a class. The missing element errors were both obtained310

by commenting method calls used to populate the GUI of the apps. The311

bugs were injected in the application code by one author of the paper, and312

their presence - and their ability to cause crashes - was checked by the other313

authors independently. Both typologies of bugs are frequently mentioned314

among the most frequently occurring ones for Android applications [29] [30].315

Hence they can be deemed representative of defects happening during typical316

(either industrial or open-source) Android app development projects.317

The goal for the participants was to detect the faults, locate the defects,318

and fix them.319

3.4.3. Hypotheses and Variables320

The following null hypotheses were defined to answer RQ1:321

7We report as a digital appendix the use case narratives of the applications:
https://figshare.com/articles/Effectiveness of Kotlin vs Java in Android App Development Tasks -
Use Cases of experimental subjects/11808018

14

Hu0 There is no difference between the understanding level achieved when322

using Java or Kotlin.323

Hl0 There is no difference between the capability of locating a defect when324

using Java or Kotlin.325

Ht0 There is no difference between the reported time required to correct a326

defect when using Java or Kotlin.327

The variables considered in our analysis correspond to the answers col-328

lected through the questions in group 1 of the questionnaire.329

Besides, we defined three derived measures, that were automatically com-330

puted based on the answers to the questionnaire:331

Purpose understanding is defined starting from item ii.2. The item asks332

for a specific class in the application. One of the five options is cor-333

rect; the others are wrong. Purpose understanding is a dichotomous334

variable whose levels can be either correct or wrong. More specifically,335

the RecordingItem class is used in the SoundRecorder app to manage336

data about recordings; hence the Purpose understanding measure was337

correct for all the experimental subjects that selected the fourth answer338

to question ii.2.339

Location accuracy is defined starting from item ii.6. The item asks the340

respondents to identify the classes where the defects are located.341

Two out of five classes are expected as a correct answer. We adopt342

an information retrieval approach and compute the accuracy of the343

answer.344

In particular, Defect Location Accuracy (LA) is a ratio measure defined
as:

LA =
TP + TN

TP + TN + FP + FN

Where TP are the true positive, TN are the true negatives, FP are345

the false positives, and FN are the false negatives.346

More specifically, the two defects of the SoundRecorder app were in-347

jected in the RecordingItem and FileViewerAdapter classes. Hence,348

the maximum score for the Defect Location Accuracy was obtained if349

and only if the respondents checked these two classes only in question350

ii.6.351

15

Fix effort is defined starting from item ii.5, that in the questionnaire col-352

lects the time employed by each group to fix the defects, and item ii.6,353

that reports the defects supposedly identified by the groups.354

Fix Effort is defined as the ratio of the number of answers checked for355

question ii.6 and the time estimated by the group for fixing the defects;356

hence, it serves as a self-estimate of the average effort (in minutes) to357

fix one defect.358

3.4.4. Analysis method359

Concerning the first research question (RQ1), we analyze three aspects:360

• Understanding: we analyze the Purpose understanding variable, and361

we compare the odds of a correct answer when the program is written362

in Java vs. Kotlin. To this end, in order to assess Hu0, we apply a363

Fisher test for 2 × 2 contingency tables that test the null hypothesis364

that the odds ratio is equal to one.365

• Defect location: we analyze the variable Location accuracy to assess366

Hl0, in particular, we apply a Mann-Whitney test to check the null367

hypothesis that there is no difference between the medians.368

• Time to fix a defect: we analyze the variable Fix effort to assess Ht0369

by using Mann-Whitney test.370

3.5. RQ2: Conciseness371

Another common claim of Kotlin advocates is that it lends itself to write372

more compact code. This impacts productivity and indirectly, also maintain-373

ability.374

We hence formulate the following Research Question:375

RQ2: Does the use of Kotlin vs. Java makes the code more concise?376

We consider conciseness at the macroscopic level, which means less code,377

both in terms of the number of classes and LoCs.378

16

3.5.1. Materials379

The students worked on a larger running project, which is developed380

throughout the whole course. The running project consists of an app to help381

people share books. The app had to allow users to sign up easily and set up382

a basic profile; then users can make books available for sharing, providing all383

the relevant pieces of information by accessing some shared database. The384

users can search for shared books and get in contact, via the app, with the385

book owner in order to arrange the withdrawal and successive return; as a386

consequence of each sharing, users’ reputation must be updated.387

The average final size of the projects was around 30 to 40 classes per388

project, with an average total of 6KLOC, including both Java and Kotlin.389

The second section of the questionnaire administered to the participating390

groups concerned the conciseness concepts measured to answer RQ2.391

3.6. Experimental Tasks392

The students were asked on a weekly basis to perform development tasks393

on the course-running Android project.394

For the purpose of the evaluation of Kotlin vs. Java usage for the main-395

tenance tasks of Android applications, we designed two features to be imple-396

mented by the students.397

The specific features were defined by one of the authors of the paper, and398

were designed to be related to the category of the application under devel-399

opment, compatible with the subjects’ expertise with Android, and feasible400

in the time frame allocated to the experiment.401

The features that were defined for the participant were: (1) implement a402

user chat with notifications, using Firebase (referred as CHAT); (2) imple-403

ment a way to express user ratings for the exchanged books, using a five-star404

scheme (referred as RATINGS).405

3.6.1. Hypotheses and Variables406

The following null hypotheses were defined to answer RQ2:407

Hc0 There is no difference between the measured amount of classes written408

to implement a new feature when using Java or Kotlin.409

Hl0 There is no difference between the measured lines of code written to410

implement a feature when using Java or Kotlin.411

17

3.6.2. Analysis method412

Regarding code conciseness, we focused on two measures collected through413

static analysis of the submitted experimental assignments:414

• Classes: number of classes developed for the required feature;415

• Lines of Code: LoCs written to implement the required feature;416

Both above measures were used to asses Hc0 by applying a non-parametric417

Mann-Whitney test.418

3.7. RQ3: Coding Pitfalls419

One important principle in the design of Kotlin was to avoid several420

common pitfalls of the Java programming language.421

In this work, we decided to investigate four of the common pitfalls, i.e.,422

Nullability, Mandatory Casts, Long argument list, and Data Classes, and are423

described in section 2.424

To evaluate the occurrence of known issues in Kotlin vs. Java program-425

ming in the context of Android development, we defined our third and final426

research question:427

RQ3: Does the use of Kotlin vs. Java effectively avoids the occurrence of428

common pitfalls?429

3.7.1. Materials430

The section (ii) of the questionnaire administered to the participating431

groups (see table 2) concerned their experience with the occurrence of the432

investigated common pitfalls. The reported occurrence of the pitfalls was433

used to answer RQ3.434

We decided to use the answer to those questions as proxies of the actual435

occurrence of the pitfalls. This choice is due to the limited observability of436

the teams while performing their development task. In fact, the participants437

wrote the code on their own machines; therefore it was not feasible to install438

a monitoring plug-in as it would be possible had they worked on lab devices.439

18

3.7.2. Hypotheses and variables440

The following null hypotheses were formulated to answer RQ3:441

Hp10 There is no perceived difference in terms of the number of NPEs oc-442

currences with Java or Kotlin.443

Hp20 There is no perceived difference in terms of the number of casts with444

Java or Kotlin.445

Hp30 There is no perceived difference in terms of issues with long argument446

lists with Java or Kotlin.447

Hp40 There is no perceived difference in terms of tool support to Java or448

Kotlin.449

Hp50 There is no perceived difference in terms of effort required to write450

data classes.451

3.7.3. Analysis Method452

To analyze the perceived pitfalls (RQ3), we resort to the responses to the453

items ii.1 to ii.5 of the questionnaire. For each variable, we compute the454

effect size using the Cliff Delta statistic, and we used the relative confidence455

interval for deciding about hypothesis rejection.456

4. Threats to validity457

External validity threats concern the generalization of the results. We458

have considered two real-world (even if small) open-source applications, thus459

selecting a realistic context for Kotlin or Java maintenance of Android ap-460

plications. The course running project also has functional requirements that461

are common among real-world Android apps, so the used software artifacts462

can be considered as representative of typical Android apps. Hamedani et463

al. provided a classification of Android apps under twelve different cate-464

gories [31]. The considered applications in this experiment can be catego-465

rized under Office & Business and Music & Video, both belonging to the top466

three categories that were identified in the study.467

It is also possible that the results obtained regarding bug-fixing efforts are468

not generalizable to other categories of defects that are proper for Android469

applications. However, classifications of Android defects are provided by Hu470

19

et al. [29] [30], and NPEs and layout issues are among the most popular471

categories of bugs.472

A final threat to the generalizability of results may be linked to how un-473

dergraduate students may be considered representative of Android developers474

in general. The use of students as participants in experiments is, however,475

widely recognized: Sjoeberg et al. [28] report that 50% of the 2,969 exper-476

iments in 12 leading software engineering journals and conferences between477

1993 and 2002 used undergraduate students as participants [28]. Carver et al.478

define a model for conducting a valid empirical study with students (ESWS).479

They identify research and pedagogical requirements that need to be man-480

aged while preparing and executing an experiment in a university course. In481

short, researchers have to make sure that the study is well-integrated with482

the course goals and materials, give realistic time estimates for experimen-483

tal tasks, properly motivate the participants without revealing the goals,484

measures and analysis prior to the study, allow students to give feedback,485

convince the participants of the relevance of what they are learning, avoid486

conflicts with students’ other commitments, and give students feedback on487

the results of the experiment [32]. All these guidelines were followed in the488

conduction of the work documented in this paper. Besides, Carver et al. [32]489

also provide a checklist to explain when the various activities should occur490

(i.e., before starting the study, as soon as the study begins, during the study,491

or after the study is completed). The requirements and checklist provide a492

useful guide for judging how well a study is integrated into the university493

course and for judging the reliability of the results. We used that checklist494

to verify the research and pedagogical goals in this study.495

Construct validity threats concern the relationship between theory and496

observation. It is not assured that the Purpose Understanding, Location497

Accuracy, and Fix Effort metrics defined in this paper are the best possible498

proxies for providing answers to the Research Questions identified for this499

study. We measure conciseness in terms of code size, though shorter code500

could – at least in principle – bear a higher cognitive load, thus reversing the501

benefits stemming from more concise code. Considering the specific features502

introduced in Kotlin, we do not believe this is the case though there is no503

empirical evidence supporting such belief. As explained in section 3.7.1,504

we decided to measure the occurrence of pitfalls by means of proxies. In505

practice, we inferred the actual occurrence on the basis of the reported pitfall506

manifestation, recorded through the questionnaire. While this choice was507

dictated by practical feasibility reasons, we have no reason to believe any508

20

10

1

1

1

11

1

1

1

Java Kotlin

None 1 None 1

None

1

2

Java professionals in group

Other language
professionals

in group

Figure 5: Groups with members having professional experience with Java or other lan-
guages

misreporting took place. Moreover, we argue the pitfalls do not represent a509

problem per se but rather in as much they affect the development activities510

of the developer, thus in this specific case the reported experience of such511

pitfalls is probably closer to the original construct than a mechanical count512

of pitfall frequency.513

As far as the IDE support, we have to notice that in the presence of514

participants familiar with Java but not at all with Kotlin, the perceived515

support could be more related to familiarity than to actual IDE support.516

Finally, Researcher bias is another possible threat to the validity of this517

study, since the authors were involved in the creation of the starting Kotlin518

versions of the two considered apps and the bug injection phase. However,519

the authors have no reason to favor any language; neither are they inclined520

to demonstrate any specific result.521

5. Results522

In this section, we report the results measured for the three Research523

Questions of the experiment. We also provide details about the population524

that participated in the experiment.525

5.1. Population526

The population of experimental units that performed all the required ac-527

tivities consisted of 27 groups, all made up of four students. Thirteen groups528

performed the development tasks in Kotlin, the others in Java. Overall the529

21

1

1

2

7

2

1 4

5 2

2

Java Kotlin

< 1 year 1 to 3 years > 3 years < 1 year 1 to 3 years > 3 years

Novice

Intermediate

Advanced

Average group experince in Java development

Highest Java
skill in group

Figure 6: Java skill level and experience of the respondents

experiment involved 108 students aged between 25 years old and 40 years old530

of different gender and ethnicity.531

The professional experience of group members was measured through the532

answers to question 3 and 4 of the questionnaire. Figure 5 summarizes the533

answers to those questions for both typologies of groups. Three groups in-534

cluded participants that had professional Java development experience, and535

overall, 6 out of 27 groups included components with experience as profes-536

sional software developers in any language. No participant had any previous537

experience in Kotlin.538

The skill level of the population was measured through the answers to539

question 5 and 8 of the Context section of the questionnaire. Figure 6 sum-540

marizes the answers to those questions for both typologies of groups. The541

experience with Java development was mostly between one and three years,542

although three groups had no member with more than one year of experience543

in Java, and four groups included a member with more than three years of544

experience.545

In the whole population, four groups had members having advanced Java546

skills (i.e., they developed at least one project of over than 50 classes); eight547

groups had a most experienced member that considered him/herself a novice548

(i.e., they developed a few projects featuring up to 20 classes); in the re-549

maining fifteen groups the most experienced member considered him/herself550

an intermediate (i.e., at least one medium-sized project of 20 to 50 classes).551

Regarding the years of experience with Java, four groups had an average552

experience of more than three years, and three groups had an average expe-553

rience of less than one year; the remaining groups had an average experience554

22

Table 5: Null hypotheses for RQ1

Name Description p-value Decision

Hu0 There is no difference between the understand-
ing level achieved when using Java or Kotlin

0.68 Don’t Reject

Hl0 There is no difference between the capability of
locating a defect when using Java or Kotlin

0.81 Don’t Reject

Ht0 There is no difference between the reported time
required to correct a defect when using Java or
Kotlin

0.43 Don’t Reject

4

9

(31%)

(69%)

3

11

(21%)

(79%)

Java
K

otlin

0 2 4 6 8 10

Wrong

Correct

Wrong

Correct

Frequency

Purpose

Figure 7: Frequency of correct answer to the purpose understanding question

with Java between one and three years.555

5.2. Maintainability (RQ1)556

To address the research question concerning maintainability, we focused557

on three different aspects: the understanding of the code, the defect detection558

ability, and the time required to fix the defects.559

Table 5 reports the null hypotheses formulated to answer RQ1 and the560

related decisions.561

5.2.1. Understanding562

Figure 7 reports the measured purposed understanding, based on question563

i.2 of the questionnaire. We can observe that four out of thirteen Java groups564

failed in the purpose of properly understanding the purpose of a class of the565

experimental object. On the other hand, only three out of fourteen Kotlin566

groups failed in the same task.567

23

92%

31%

8%

8%

77%

100%

36%

0%

0%

64%

Java Kotlin

0% 40% 80% 0% 40% 80%

DBHelper

FileViewerAdapter

MainActivity

RecordingItem

RecordingService

Selected as defect location

Class

Figure 8: Frequency of the answers to the defect location question selected by the respon-
dents

To test the hypothesis Hu0, we performed a Fisher-test that provided a568

p-value=0.68. Therefore we cannot reject the null hypothesis.569

Even though the estimated odds ratio is around 2, such difference is not570

statistically significant.571

5.2.2. Defect location accuracy572

Concerning the accuracy in defect location tasks, we report in Figure573

8 the frequency with which the respondents selected each of the possible574

answers to question 6 of the questionnaire. As it can be deduced from the575

graph, all groups working with Kotlin and 92% of groups working with Java576

were able to find the bug in the MainActivity class of the app. Fewer groups577

(respectively 77% and 64% of those working with Java and Kotlin) were able578

to spot the other defect injected in the RecordingService class.579

Figure 9 reports the distributions of the defect location accuracy for the580

two languages. We can observe a substantial similarity that is confirmed by581

the applied Mann-Whitney test (p-value=0.81). Therefore we cannot reject582

Hl0 either.583

5.2.3. Defect correction time584

To test the hypothesis Ht0 concerning the time employed in defect fixing585

tasks, we analyzed the average time reported by the groups, normalized by586

the number of defects they had found. The distribution of the average time587

per found defect is reported in Figure 10.588

The hypothesis was tested using a Mann-Whitney test that returned a589

p-value of 0.43. Therefore we cannot reject the null hypothesis.590

24

+

+

Java

Kotlin

25% 50% 75% 100%
Accuracy

Language

Figure 9: Distributions of the defect location accuracy metric

+

+

Java

Kotlin

0 20 40 60
Average time to fix a defect

Language

Figure 10: Distributions of the average time to fix a defect

The average time to fix defects is similar between Kotlin and Java, with591

no statistically significant difference.592

5.3. Conciseness (RQ2)593

After the development tasks, we measured both the number of new classes594

added to the application design and the lines of new code written overall.595

Table 6 reports the null hypotheses formulated to answer RQ2, and the596

related decisions.597

In Table 7, we report the measured amount of classes and code that were598

added by the respondents to implement the required features. The table599

reports the raw count of classes and code and the percentage over the total600

amount of code of the application. We also report in the last column the601

number of data classes that were developed. The code was automatically602

25

Table 6: Null hypotheses for RQ2

Name Description p-value Decision

Hc0 There is no difference between the measured
amount of classes written to implement a new
feature when using Java or Kotlin

0.2138 Don’t Reject

Hl0 There is no difference between the measured
lines of code written to implement a feature
when using Java or Kotlin

0.033 Reject

measured by a script that leveraged the open-source cloc tool8. Blank and603

comment lines were not included in the computation.604

From the table, it can be seen that the number of classes and the amount605

of code development had a very high variability between groups. Groups606

that worked with Kotlin to implement the new features produced a number607

of classes that ranged from 3 to 12 (246 to 1568 lines of code). Four different608

groups developed data classes. Groups that worked with Java produced a609

number of classes that ranged from 0 to 26 (583 to 4745 lines of code).610

The distribution of the number of new classes is reported in Figure 11.611

We observe a lower number of classes developed for the participating groups612

using Kotlin. The mean number of classes developed with Kotlin is 7 while613

it is 12 for Java; the medians are respectively 8 and 13.614

The hypothesis Hc0 was tested using a Mann-Whitney test that returned615

a p-value=0.2138. Therefore we cannot reject the null hypothesis.616

The effect size can be considered small, as Cliff’s Delta is 0.29; the 95%617

CI for the effect size is (-0.24; 0.68): it includes the 0. Therefore, it cannot618

be considered as statistically significant.619

The same kind of analysis can be applied to the amount of Lines-Of-Code620

(LOCs) written in order to implement the new feature. The distribution of621

the LOCs by language is reported in Figure 12. The median LOCs reported622

for Java is between 1526, while for Kotlin, it is Less than 589.5.623

The hypothesis Hl0 was tested using a Mann-Whitney test that returned624

a p-value=0.003. Therefore we can reject the null hypothesis.625

The effect size can be considered large, Cliff’s Delta is 0.65, with the626

relative 95% CI being (0.24; 0.86); since the CI does not include the 0, the627

8https://github.com/AlDanial/cloc

26

Table 7: Absolute and relative added classes and LOCs for the development of the required
features

Added
Language Group Classes (%) LOCs (%) Data classes

Kotlin 1 7 (17.1%) 483 (8.3%) 0
3 8 (12.3%) 337 (5.2%) 0
5 12 (24.0%) 1568 (18.9%) 4
7 8 (12.7%) 745 (8.1%) 0
9 5 (4.4%) 515 (4.0%) 0

11 8 (13.6%) 978 (12.9%) 1
13 3 (8.8%) 322 (3.2%) 1
15 9 (20.4%) 664 (10.2%) 0
17 9 (17.0&) 972 (13.0%) 0
19 8 (7.1%) 460 (4.0%) 1
21 5 (9.1%) 380 (5.0%) 0
23 6 (12.8%) 835 (14.4%) 0
25 3 (5.1%) 246 (4.3%) 0
27 9 (14.1%) 744 (7.5%) 0

Java 2 17 (24.3%) 4099 (37.3%) 0
4 4 (11.8%) 679 (15.6%) 0
6 17 (37.8%) 1526 (31.6%) 0
8 22 (31.4%) 2208 (24.9%) 0

10 26 (32.9%) 4745 (45.0%) 0
12 17 (30.0%) 2688 (32.0%) 0
14 0 (0.0%) 583 (7.3%) 0
16 19 (16.4%) 3810 (31.9%) 0
18 3 (8.6%) 775 (18.1%) 0
20 13 (17.6%) 742 (14.9%) 0
22 6 (15.4%) 1755 (29.6%) 0
24 9 (15.0%) 1424 (14.7%) 0
26 2 (6.1%) 647 (15.4%) 0

27

+

+

Java

Kotlin

0 10 20
Number of added classes

Language

Figure 11: Distribution of number of classes developed.

+

+

Java

Kotlin

1000 2000 3000 4000
LOC added

Language

Figure 12: Distribution of LOC written

difference can be considered significant.628

As far as the LOCs are concerned, we can, therefore, reject the null629

hypothesis Hl0 and conclude that there is a significant difference in terms of630

the number of LOCs written when developing the same feature with Kotlin631

or Java. It is also worth underlining that only four groups used data classes632

in Kotlin. Also, one of those groups was the one that wrote most code to633

implement the new feature (1568 LOCs). The low number of developed data634

classes suggests that the Kotlin language is more concise than Java, even635

without taking into consideration the data class construct.636

5.4. Pitfalls (RQ3)637

To answer our research questions about the experienced pitfalls by the638

developers, we analyzed the self-reported perceptions on the questionnaire.639

The null hypotheses for RQ3 are reported in Table 8.640

28

Table 8: Null hypotheses for RQ3

Name Description Decision

Hp10 There is no perceived difference in terms of number of
NPEs occurrences with Java or Kotlin

Reject

Hp20 There is no perceived difference in terms of the number
of casts with Java or Kotlin

Don’t Reject

Hp30 There is no perceived difference in terms of issues with
long argument lists with Java or Kotlin

Don’t Reject

Hp40 There is no perceived difference in terms of tool sup-
port to Java or Kotlin

Don’t Reject

Hp50 There is no perceived difference in terms of effort re-
quired to write data classes

Don’t Reject

Larger for Kotlin
L M S

Larger for Java
LMS

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Effectiveness of IDE support

Effort in writing casts

Effort in writing data classes

Frequency of NullPointerExceptions

Issues with long args lists

−1.0 −0.5 0.0 0.5 1.0

Effect size (Cliff's delta)

Figure 13: Effect size with confidence interval of language for different aspects.

The distributions of the answers to the perception questions are reported641

in Figure 13. For each aspect, the figure reports Cliff’s Delta estimate effect642

size as a diamond shape, and the relative 95% CI is as a whiskered segment.643

The shades of the background represent the standard quantification ranges644

for the practical magnitude of the effect size.645

With reference to the 95% confidence interval, the following assumptions646

can be based on the respondents’ perceptions:647

• More NPEs and null-pointers related issues are likely to happen when648

coding with Java; the difference in the respondents’ answers is statis-649

tically significant, and the size of the effect is of large magnitude;650

29

• The usage of Kotlin for writing code casts is perceived as less effort con-651

suming than Java; this difference is not statistically significant though652

the effect size magnitude is medium;653

• The respondents considered the definition of long argument lists with654

Kotlin easier than with Java; this difference is not statistically signifi-655

cant though the effect size magnitude is medium;656

• Java is perceived as better supported by tooling than Kotlin; this dif-657

ference is not statistically significant though the effect size magnitude658

is medium;659

• Negligible differences are observed in terms of the effort required to660

write data-intensive classes by the developers, in Java or Kotlin.661

6. Discussion662

The overall goal of our comparative investigation on Java vs. Kotlin663

was focused on assessing the consequences of a possible transition from one664

programming language to the other. The switch could occur at different665

levels: from a single project to a unit, up to a whole company.666

We know that, by design, Kotlin is fully compatible at the bytecode-level667

with Java; therefore, a smooth, progressive transition between the two lan-668

guages is technically possible. The focus of our research questions addressed669

the development part of the transition that entails:670

• Understandability of the code written in the new language;671

• Defect location effectiveness;672

• Defect correction efficiency;673

• Code conciseness;674

• Error proneness.675

6.1. Maintenance (RQ1)676

The first three former items can be comprised under the broader area of677

maintenance and were addressed by our first research question (RQ1). The678

results from our experiment show that no specific difference was detected in679

30

terms of the ability to detect defects, to fix them, and the effort required to680

perform the change.681

There is no evidence that the use of Kotlin, as a substitute for Java,682

either enhances or lessens software maintainability (RQ1).683

It is important to asses how this finding can be generalized. For this684

purpose, we have to consider the background of the participants in our ex-685

periment: they are students in a computer engineering master’s degree, only686

three teams in each language group reported some professional experience.687

Overall we may consider them close to a junior developer profile. Moreover,688

we wish to stress that none of our participants had any previous experience in689

Kotlin. Nonetheless, they were able to detect and fix the defects seamlessly.690

This may represent evidence in favor of limited risks deriving from the switch691

to Kotlin in a company, even with little previous knowledge of Kotlin.692

From our understanding, it remains an open question whether the lack693

of evidence in terms of maintainability was due to the confounding factors694

represented by the characteristics of the participants and the small size of695

the applications.696

6.2. Conciseness (RQ2)697

One of the design goals of Kotlin, likewise other recent generation lan-698

guages, is an increased expressive power that enables writing code in a more699

concise way. This feature is extremely important because it can improve both700

the productivity – by reducing the sheer number of keystrokes required – and701

the understandability of the code. The second research question (RQ2) in702

out study addressed this aspect. In this respect, we observed a significant703

effect of using Kotlin on the amount of code written to develop new features.704

More specifically, we found a large and statistically significant difference in705

terms of lines of code developed (see Figure 12): Java development required706

writing three times more lines than Kotlin. Concerning the number of classes707

created in the development of new features, while the average is 67% higher708

for Java, the difference is not statistically significant.709

We found evidence that the usage of Kotlin led to writing more concise710

code than Java (RQ2).711

While we believe that, in general, the adoption of Kotlin can lead to712

a more concise code, the extent of code reduction depends on the specific713

type of application and environment. As we mentioned in section 4, our714

31

experiment was able to provide evidence limited to the Android environment715

and specifically concerning two small applications.716

An important aspect that deserves further investigation is the capability717

of modern construct that is present in Kotlin – but we argue in many mod-718

ern programming languages – to actually enable more concise code in many719

different settings.720

Also related to the previous research question, we wonder it conciseness721

stemming from more expressive constructs also translates into a higher un-722

derstandability of the code.723

6.3. Error reduction (RQ3)724

An important selling point of Kotlin, as opposed to Java, is the capability725

to reduce programming errors through a set of new syntax constructs. Kotlin726

offers several new constructs, though, in our experiment, we focused our727

attention on four of them: Nullability, Mandatory Casts, Long argument728

lists, and Data Classes (see details in Section 2).729

Our study provides evidence suggesting a reduction in the occurrence of730

NullPointerException during development. For teams using Java, NPE731

occasionally occurred too frequently, while for teams using Kotlin, they hap-732

pened mostly rarely. Although not statistically significant, we also observed733

a lesser reduction of issues with long arguments lists and with the effort in734

writing casts. Finally, no evidence was found of any reduction in the effort735

devoted to writing data classes.736

Our respondents also reported slightly better language support for Java737

than for Kotlin. Even though the difference is not statistically significant, it738

is surprising considering that the producer of the IDE is the same company739

that designed the Kotlin language. Probably the much longer experience740

available for Java development allowed for better support.741

We found evidence that Kotlin was able to reduce the frequency of Null-742

PointerExceptions. While no evidence was found concerning effects on other743

investigated pitfalls. (RQ3).744

The extent to which these findings can be generalized to experienced745

programmers is unknown. We can speculate that NPE would represent a746

lesser problem for experienced developers, though both writings cast and747

dealing with long arguments lists can be expected to be issued less dependent748

on the developers’ experience. The essentially inconclusive result concerning749

data classes might be due to the architecture of the application and the750

32

characteristic of the required new features, which did not require the use of751

any data class (see Table 7).752

Concerning the IDE support, we have to keep in mind that no student had753

any experience with Kotlin’s development before the experiment. This bias754

could have affected the participants’ perception. Therefore we could have755

measured the familiarity with the language rather than the actual support756

provided by the IDE.757

The limited evidence and partially counter-intuitive results concerning758

the coding pitfalls deserve further investigation. Research should be aimed759

at understanding whether and under which circumstances the adoption of760

Kotlin allows avoiding the pitfalls.761

6.4. Practical implications762

The above findings, though preliminary and subject to some generaliz-763

ability limitations, can bear significant implications. We can summarize such764

implications for three categories of stakeholders:765

• Developers willing the transition from Java to Kotlin: we provide766

evidence that no negative effect on maintainability can be expected, a767

more concise code is likely to be written, and that the Kotlin language is768

able to reduce the occurrence of one of the four pitfalls we investigated.769

• Researchers interested in Kotlin: we highlighted a few interesting770

aspects, regarding some of them we could not get any conclusive re-771

sult, e.g., the effect on writing casts, long arguments lists, and data772

classes. Such aspects are good candidates for further studies, as well773

as confirmative replications of our findings.774

• Tool builders: we found some hint of support that is perceived to be775

better for Java than for Kotlin, further studies could confirm this and776

provide directions for improving the IDE support.777

7. Conclusion778

Kotlin is a modern programming language that represents a relevant al-779

ternative to Java in several development domains. In particular, it has been780

adopted as an official development language for the Android OS. In this work,781

we focused on the main promises of this new language. In particular, we in-782

vestigated how Kotlin can improve the maintainability of code, make code783

33

more compact, and avoid common pitfalls. For this purpose, we carried on an784

experiment in the context of a Mobile Application Development course in an785

MSc. degree. The experiment compared the Kotlin programming language786

to its ancestor, Java.787

With our experiment, we found that the usage of Kotlin apparently does788

not affect the maintainability with respect to Java, when working on two789

small applications. At the same time, we found evidence that the adoption790

of Kotlin leads to more compact code when the subjects of the experiments791

were asked to develop new features for an ongoing software project.792

The adoption of Kotlin makes a few common Java annoyances less fre-793

quent, thus making the development safer. We registered evidence of a re-794

duction in the frequency of Null Pointer Exceptions. We also observed fewer795

issues with long argument lists and reduced effort when dealing with casts,796

although no definitive evidence could be found with this respect.797

Those findings represent a first empirical assessment of the advantages798

of Kotlin with respect to Java, as reported by many works in the related799

literature. The findings showed that most of the promises of the develop-800

ment of the Kotlin language are reflected by the code produced and by the801

developers’ perception.802

The study has few limitations, mainly due to the academic settings: the803

software artifacts were small, the developers were students with limited ex-804

perience; therefore, the number of bugs and tasks that were studied was805

limited. The study may not be representative of bigger, real-world projects806

that require many development tasks and may expose many typologies of807

defects and issues. It is important to collect more evidence for different and808

possibly larger applications and outside the Android ecosystem.809

As future work, we hence plan to investigate the advantages brought810

by Kotlin in other domains, e.g., server-side development. Also, we aim at811

finding whether other expected Kotlin benefits hold.812

References813

[1] R. Coppola, L. Ardito, M. Torchiano, Characterizing the transition to814

kotlin of android apps: a study on f-droid, play store, and github, in:815

Proceedings of the 3rd ACM SIGSOFT International Workshop on App816

Market Analytics, pp. 8–14.817

[2] L. M. T. Victor L. de Oliveira, Felipe Ebert, On the adoption of kotlin818

34

on android development: a triangulation study, in: 27th IEEE Interna-819

tional Conference on Software Analysis, Evolution, and Reengineering820

(SANER 2020), IEEE, pp. 1–6.821

[3] R. Coelho, L. Almeida, G. Gousios, A. v. Deursen, C. Treude, Exception822

handling bug hazards in android, Empirical Software Engineering 22823

(2017) 1264–1304.824

[4] É. Payet, F. Spoto, Static analysis of android programs, Information825

and Software Technology 54 (2012) 1192–1201.826

[5] J. Oliveira, D. Borges, T. Silva, N. Cacho, F. Castor, Do android devel-827

opers neglect error handling? a maintenance-centric study on the rela-828

tionship between android abstractions and uncaught exceptions, Journal829

of Systems and Software 136 (2018) 1–18.830

[6] S. Hellbrück, A Data Mining Approach to Compare Java with Kotlin,831

Metropolia Ammattikorkeakoulu, 2019.832

[7] B. Góis Mateus, M. Martinez, An empirical study on quality of android833

applications written in kotlin language, Empirical Software Engineering834

24 (2019) 3356–3393.835

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-836

ments of Reusable Object-Oriented Software, Addison-Wesley Profes-837

sional Computing Series, Pearson Education, 1994.838

[9] VV.AA., Kotlin Language Documentation, v 1.3, Technical Report,839

Kotlin Foundation, 2018.840

[10] A. Levy, Top 5 crashes on android, https://www.apteligent.com/841

technical-resource/top-5-crashes-on-android/, 2016. Accessed:842

2018-02-23.843

[11] B. Goetz, Response to ”should java 8 getters return optional type?”,844

https://stackoverflow.com/a/26328555/3687824, 2014. Accessed:845

2018-02-23.846

[12] T. Kosar, M. Mernik, J. C. Carver, Program comprehension of domain-847

specific and general-purpose languages: comparison using a family of848

experiments, Empirical Software Engineering 17 (2012) 276–304.849

35

https://www.apteligent.com/technical-resource/top-5-crashes-on-android/
https://www.apteligent.com/technical-resource/top-5-crashes-on-android/
https://www.apteligent.com/technical-resource/top-5-crashes-on-android/
https://stackoverflow.com/a/26328555/3687824

[13] Y. Shah, J. Shah, K. Kansara, Code obfuscating a kotlin-based app850

with proguard, in: 2018 Second International Conference on Advances851

in Electronics, Computers and Communications (ICAECC), pp. 1–5.852

[14] T. Bryksin, V. Petukhov, K. Smirenko, N. Povarov, Detecting anomalies853

in kotlin code, in: Companion Proceedings for the ISSTA/ECOOP 2018854

Workshops, ACM, pp. 10–12.855

[15] B. Skripal, V. Itsykson, Aspect-oriented extension for the kotlin pro-856

gramming language, in: CEUR Workshop Proceedings, volume 1864,857

pp. 1–6.858

[16] K. Maeda, Statically typed domain-specific language to define syntax859

rules, in: WMSCI 2017 - 21st World Multi-Conference on Systemics,860

Cybernetics and Informatics, Proceedings, volume 1, pp. 132–135.861

[17] J. Belyakova, Language support for generic programming in object-862

oriented languages: Peculiarities, drawbacks, ways of improvement, Lec-863

ture Notes in Computer Science (including subseries Lecture Notes in864

Artificial Intelligence and Lecture Notes in Bioinformatics) 9889 LNCS865

(2016) 1–15.866

[18] M. Flauzino, J. Veŕıssimo, R. Terra, E. Cirilo, V. H. S. Durelli, R. S.867

Durelli, Are you still smelling it?: A comparative study between java868

and kotlin language, in: Proceedings of the VII Brazilian Symposium on869

Software Components, Architectures, and Reuse, SBCARS ’18, ACM,870

New York, NY, USA, 2018, pp. 23–32.871

[19] M. Fowler, Refactoring: Improving the Design of Existing Code,872

Addison-Wesley, Boston, MA, USA, 1999.873

[20] M. Banerjee, S. Bose, A. Kundu, M. Mukherjee, A comparative study:874

Java vs kotlin programming in android application development, Inter-875

national Journal of Advanced Research in Computer Science 9 (2018)876

41.877

[21] S. Nanz, C. A. Furia, A comparative study of programming languages in878

rosetta code, in: 2015 IEEE/ACM 37th IEEE International Conference879

on Software Engineering, volume 1, IEEE, pp. 778–788.880

36

[22] L. Prechelt, An empirical comparison of seven programming languages,881

Computer 33 (2000) 23–29.882

[23] D. Singh, An empirical study of programming languages from the point883

of view of scientific computing, Int. J. Innov. Sci. Eng. Technol 4 (2017)884

367–371.885

[24] C. Chen, P. Haduong, K. Brennan, G. Sonnert, P. Sadler, The effects of886

first programming language on college students’ computing attitude and887

achievement: a comparison of graphical and textual languages, Com-888

puter Science Education 29 (2019) 23–48.889

[25] A. Jedlitschka, M. Ciolkowski, D. Pfahl, Reporting Experiments in Soft-890

ware Engineering, Springer London, London, pp. 201–228.891

[26] G. R. VandenBos, Publication manual of the american psychological892

association (6th ed.), 2010. American Psychological Association, Wash-893

ington, DC.894

[27] R. Van Solingen, V. Basili, G. Caldiera, H. D. Rombach, Goal question895

metric (GQM) approach, Encyclopedia of software engineering (2002).896

[28] D. I. K. Sjoberg, J. E. Hannay, O. Hansen, V. By Kampenes, A. Kara-897

hasanovic, N.-K. Liborg, A. C. Rekdal, A survey of controlled exper-898

iments in software engineering, IEEE Trans. Softw. Eng. 31 (2005)899

733–753.900

[29] G. Hu, X. Yuan, Y. Tang, J. Yang, Efficiently, effectively detecting901

mobile app bugs with appdoctor, in: Proceedings of the Ninth European902

Conference on Computer Systems, pp. 1–15.903

[30] C. Hu, I. Neamtiu, Automating gui testing for android applications,904

in: Proceedings of the 6th International Workshop on Automation of905

Software Test, pp. 77–83.906

[31] M. Reyhani Hamedani, D. Shin, M. Lee, S.-J. Cho, C. Hwang, Andro-907

class: An effective method to classify android applications by applying908

deep neural networks to comprehensive features, Wireless Communica-909

tions and Mobile Computing 2018 (2018).910

37

[32] J. C. Carver, L. Jaccheri, S. Morasca, F. Shull, A checklist for integrating911

student empirical studies with research and teaching goals, Empirical912

Softw. Engg. 15 (2010) 35–59.913

38

Author Biography914

915

Luca Ardito Luca Ardito is an Assistant Professor at Dept. of Control916

and Computer Engineering at Politecnico di Torino where he works in the917

Software Engineering research group. He received BSc, MSc, and PhD in918

Computer Engineering from Politecnico di Torino. His current research in-919

terests are: mobile development and testing, green software and empirical920

software engineering methodologies.921

922

Riccardo Coppola Riccardo Coppola is a Post-Doctoral Research Fellow923

at Dept. of Control and Computer Engineering at Politecnico di Torino,924

where he received his MSc and PhD degree in Computer Engineering. He925

is currently a member of the Software Engineering research group, and his926

research interests include automated GUI testing for web and mobile appli-927

cations, and the evaluation of non-functional properties of testware.928

929

Giovanni Malnati Giovanni Malnati is an Assistant Professor at Politec-930

nico di Torino. He has participated to several European and national research931

projects and to many technology transfer activities with private companies,932

addressing different topics in the areas of embedded, mobile, and multimedia933

programming. His research activities covers software and network technolo-934

gies for mobile and pervasive systems, vehicular network applications, indoor935

positioning systems and multimedia technologies supporting e-learning en-936

39

vironments. He is a co-author of seven patents. Since 1999, he cooperates937

with Istituto Superiore ”Mario Boella”, participating to a shared laboratory938

for the development of mobile services and applications. He supervised the939

research activities of several graduate and PhD students at Politecnico di940

Torino. He has been the advisor of four PhD students in Computer and941

Control Engineering and more than 40 master students.942

943

Marco Torchiano is an associate professor at the Control and Computer944

Engineering Dept. of Politecnico di Torino, Italy; he has been post-doctoral945

research fellow at Norwegian University of Science and Technology (NTNU),946

Norway. He received an MSc and a PhD in Computer Engineering from Po-947

litecnico di Torino. He is Senior Member of the IEEE and member of the948

software engineering committee of UNINFO (part of ISO/IEC JTC 1). He949

is author or co-author of over 140 research papers published in international950

journals and conferences, of the book “Software Development—Case studies951

in Java” from Addison-Wesley, and co-editor of the book “Developing Ser-952

vices for the Wireless Internet” from Springer. He recently was a visiting953

professor at Polytechnique Montréal studying software energy consumption.954

His current research interests are: green software, UI testing methods, open-955

data quality, and software modeling notations. The methodological approach956

he adopts is that of empirical software engineering.957

40

Appendix958

7.1. Population details959

Professional experience in Java and other languages in the two experi-960

mental groups.961

10

1

1

1

11

1

1

1

Java Kotlin

None 1 None 1

None

1

2

Java professionals in group

Other language
professionals

in group

962

7.2. RQ1963

Classes selected as location for defects (correct answers, i.e. classes con-964

taining actually seeded defects are highlighted)965

92%

31%

8%

8%

77%

100%

36%

0%

0%

64%

Java Kotlin

0% 40% 80% 0% 40% 80%

DBHelper

FileViewerAdapter

MainActivity

RecordingItem

RecordingService

Selected as defect location

Class

966

41

7.3. Detailed answer for perceptions967

7.3.1. IDE support effectiveness968

1

3

2

7

1

3

5

1

4

Java Kotlin

0 2 4 6 0 2 4 6

Very little

Little

Enough

Much

Very much

Frequency

IDE support
effectiveness

969

7.3.2. NullPointerException issues frequency970

1

6

5

1

3

7

3

1

Java Kotlin

0 2 4 6 0 2 4 6

Never

Rarely

Occasionally

Frequently

Very Frequently

Frequency

NullPointer
occurrence

971

42

7.3.3. Frequency of Long arguments list issues972

3

5

5

5

5

4

Java Kotlin

0 1 2 3 4 5 0 1 2 3 4 5

Never

Rarely

Occasionally

Frequently

Very Frequently

Frequency

Long arg list
occurrence

973

7.3.4. Efficacy of data class creation974

2

2

7

2

2

3

7

2

Java Kotlin

0 2 4 6 0 2 4 6

Much lower

Lower

Proportional

Higher

Much higher

Frequency

Data class
creation

effort

975

43

7.3.5. Effort to write casts976

2

1

8

1

1

4

2

8

Java Kotlin

0 2 4 6 8 0 2 4 6 8

Much lower

Lower

Proportional

Higher

Much higher

Frequency

Cast writing
effort

977

44

	Introduction
	Background
	Related Work
	Studies on Kotlin
	General Programming Language Comparisons

	Experimental design
	Experiment Goal
	Participants
	Design and Procedure
	RQ1: Maintainability
	Materials
	Experimental tasks
	Hypotheses and Variables
	Analysis method

	RQ2: Conciseness
	Materials

	Experimental Tasks
	Hypotheses and Variables
	Analysis method

	RQ3: Coding Pitfalls
	Materials
	Hypotheses and variables
	Analysis Method

	Threats to validity
	Results
	Population
	Maintainability (RQ1)
	Understanding
	Defect location accuracy
	Defect correction time

	Conciseness (RQ2)
	Pitfalls (RQ3)

	Discussion
	Maintenance (RQ1)
	Conciseness (RQ2)
	Error reduction (RQ3)
	Practical implications

	Conclusion
	Population details
	RQ1
	Detailed answer for perceptions
	IDE support effectiveness
	NullPointerException issues frequency
	Frequency of Long arguments list issues
	Efficacy of data class creation
	Effort to write casts

