
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Power-Optimal Mapping of CNN Applications to Cloud-Based Multi-FPGA Platforms / Shan, Junnan; Lazarescu, Mihai
T.; Cortadella, Jordi; Lavagno, Luciano; Casu, Mario R.. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II,
EXPRESS BRIEFS. - ISSN 1549-7747. - ELETTRONICO. - 67:12(2020), pp. 3073-3077. [10.1109/TCSII.2020.2998284]

Original

Power-Optimal Mapping of CNN Applications to Cloud-Based Multi-FPGA Platforms

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSII.2020.2998284

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2837760 since: 2020-12-11T21:34:35Z

IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XX, NO. YY, MONTH 20ZZ 1

Power-Optimal Mapping of CNN Applications to

Cloud-Based Multi-FPGA Platforms
Junnan Shan, Student Member, IEEE, Mihai T. Lazarescu, Senior Member, IEEE, Jordi Cortadella, Fellow, IEEE,

Luciano Lavagno, Senior Member, IEEE, and Mario R. Casu, Senior Member, IEEE

Abstract—Multi-FPGA platforms like Amazon Web Services
F1 are perfect to accelerate multi-kernel pipelined applications,
like Convolutional Neural Networks (CNNs). To reduce energy
consumption, we propose to upload at runtime the best power-
optimized CNN implementation for a given throughput con-
straint. Our design method gives the best number of parallel
instances of each kernel, their allocation to the FPGAs, the
number of powered-on FPGAs and their clock frequency. This
is obtained by solving a mixed-integer, non-linear optimization
problem that models power and performance of each component,
as well as the duration of the computation phases—data transfer
between a host CPU and the FPGA memory (typically DDR),
data transfer between DDR and FPGA, and FPGA computation.
The results show that the power saved compared to simply
clock gating the fastest implementation is obviously very high,
but it is also much more significant than simply scaling the
frequency of the fastest implementation or replicating the slowest
implementation on multiple FPGAs.

Index Terms—CNN, Multi-FPGA, power optimization.

I. INTRODUCTION

MOST data center applications can be easily parallelized,

e.g., deep neural networks, big data processing and

analysis, scientific (finite element analysis), and energy is

a significant running and environmental cost. To offset this

while maintaining the performance, cloud providers (Amazon,

Alibaba, Microsoft) offer low cost multi-Field Programmable

Gate Array (FPGA) platforms. FPGAs are less energy efficient

than ASICs, but incomparably more configurable, suitable to

support rapid application evolution.

Data center workloads vary and accelerators designed for

the highest application throughput may be underutilized most

of the time, wasting both FPGA resources and energy. Clock

gating and frequency scaling can lower energy consumption, but

FPGA reconfiguration adapted to application throughput can

lower it even more. Throughput is the inverse of the Initiation

Interval (II), hence a smaller II means a faster throughput.

Fig. 1 outlines a multi-FPGA platform. Here the host CPU

controls eight FPGAs over a PCI-express (PCIe) bus and

can quickly (≈100ms) reconfigure them with one of several

configurations generated offline, adapting them to the actual

application performance needs. Reconfiguration is most likely

infrequent, e.g., once per minute (or hour), but it optimizes

the number of active FPGAs and their clock to spare energy.

J. Shan, M.T. Lazarescu, L. Lavagno and M.R. Casu are with the Department
of Electronics and Telecommunications, Politecnico di Torino, I-10129 Torino,
Italy, e-mail: mario.casu@polito.it.

J. Cortadella is with the Computer Science Department, Universitat
Politècnica de Catalunya, Barcelona, Spain, e-mail: jordi.cortadella@upc.edu

Manuscript received Month XX, 20ZZ; revised Month YY, 20ZZ.

Fig. 1. Multi-FPGA configurations for different power-performance profiles.

Energy-per-computation is the product of power times the

initiation interval. Hence at fixed II, minimum power is also

minimum energy-per-computation. Since we provide the full

power and energy-per-computation versus II curves, other

choices can be made (e.g., find the best II to minimize energy-

per-computation), according to the application requirements.

We propose a flow to obtain power-optimized multi-FPGA

configuration bitstreams that satisfy different application II

requirements. We consider applications that can be modeled as

multi-kernel task-level pipelines, and among these we focus our

experiments on Convolutional Neural Networks (CNNs). Each

task, which corresponds to a CNN layer, can be computed by

parallel kernel instances, termed Compute Units (CUs). They

are shown in Fig. 1 as k3:2, k4:3, etc., indicating how many

CUs of each kernel are allocated on each FPGA (e.g., k3:2 in

FPGA3 means the allocation of two CUs of kernel 3 on it).

After characterizing the multi-FPGA environment and ker-

nels for power, performance, resources, etc., we build a power-

performance model that considers both computation and data

transfers. Then we solve a Mixed-Integer Non-Linear Problem

(MINLP) that, given an II constraint, finds the allocation of

the CUs to FPGAs and the clock frequency of each FPGA that

minimize power and so also energy per computation.

We compare this strategy to two alternatives: 1) finding the

fastest multi-FPGA implementation and applying frequency

scaling to reduce energy when the II requirement decreases; 2)

finding the fastest single-FPGA implementation and replicating

it on the minimum number of FPGAs needed to meet the II

constraint. Fig. 2 compares the three strategies showing an

allocation example for AlexNet [1] convolutional layers. The

fastest solution (not shown in figure) achieves II = 0.8ms with

three FPGAs (F1–F3) each running at a fast and individually

optimized clock frequency. But if the application requires II =
1.4ms, frequency scaling applied to the fastest solution (middle)

consumes 14% more power than an optimized configuration

(left), which uses only two FPGAs (F1, F2) at a higher clock

frequency. The replication solution (right) is also less efficient

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XX, NO. YY, MONTH 20ZZ

 0

 20

 40

 60

 80

 100

F1 F2 F3 F1 F2 F3 F1 F2 F3

%
 o

f
to

ta
l

re
s

o
u

rc
e

CONV1
POOL1

NORM1
CONV2

NORM2
CONV3

CONV4
CONV5

SLACK

199
 MHz

184
 MHz

OFF 131
 MHz

129
 MHz

119
 MHz

215
 MHz

215
 MHz

OFF
Our Solution, P=36 W Freq. Scaling, P=41 W Replication, P=42 W

Fig. 2. Comparison of different power optimization strategies for AlexNet.

and consumes 17% more power than our solution.

Resource allocation is a well-studied problem for high-

performance data centers with heterogeneous hardware (CPUs

with Graphical Processing Unit (GPU) or FPGA accelerators).

Tesfatsion et al. [2] provide a resource management framework

with a hardware scheduler and an optimizer for FPGA-

accelerated clouds. Similar to our work, they split workloads

into “chunks” run by Virtual Machines on CPUs and sharing

FPGA accelerators. But they do not pipeline chunk execution

and consider only the FPGA static power.

Zhang et al. [3] map pipelined CNN layers to a multi-FPGA

platform exploring the design space for optimal performance

and energy with dynamic programming. However, they do not

explicitly minimize power or energy. Also, they use First In

First Out queues (FIFOs) for inter-layer communications, which

require in-order production and consumption of activation

values. This may be difficult to achieve, and is not supported

by current multi-FPGA cloud platforms like Amazon AWS F1

(FPGA-to-FPGA transfers must be mediated by the CPU). On

the other hand, we model inter-kernel communication using

memory arrays, which is arguably a more general and natural

programming model, supported by C, C++, and OpenCL.

The execution model in [4] exploits, like us, application

parallelism at task, data, and pipeline level, but they target

processors instead of FPGAs. Furthermore, a compiler decides

the allocation through heuristic moves, while we solve an

optimization problem. A task-parallel static dataflow graph

execution model with multiple CU instances is proposed in [5]

for FPGA targets, with efficient scheduling formulated as a set

of difference constraints. But it does not consider multi-FPGA

platforms and optimizes only performance, not power.

For multi-FPGA targets, [6], [7] propose to improve perfor-

mance by using direct network communication between FPGAs.

However, they do not optimize the power of the FPGA clusters,

and again this communication model is not offered by current

PCIe-based multi-FPGA cloud platforms.

II. MULTI-FPGA POWER OPTIMIZATION

We model CNN layers as K kernels organized in a linear

pipeline, including Data Transfer (DT) stages between the

host CPU and the FPGA DDRs (see Fig. 3). The slowest

stage sets the II of the pipeline (here the bottleneck is k1,

but it could also be DT). To reduce II, we split the kernel

workloads into one or more CUs running concurrently, like

OpenCL workgroups or CUDA thread groups (see Fig. 4(a)),

and allocate them to the FPGAs (see Fig. 4(b)). This execution

model is well supported by commercial FPGA design tools,

Fig. 3. CNNs modeled as pipelines of kernels, including data transfer DT.

(a) (b)

Fig. 4. Kernels are split into multiple compute units allocated on FPGAs.

e.g., Xilinx SDAccel [8], and it approximately divides the

computation time by N when allocating N CUs to each layer

(data transfer times are accounted for separately in our model).

We design a custom IP for each layer grouping convolution,

pooling, and normalization in a single kernel.

Power consumption depends on the number of CUs of each

kernel and their allocation to FPGAs. We seek the solution

that minimizes power for a given II. Since the II target can

change at runtime, we find the optimal solution for each II

value in a discretized range. Fig. 5 shows the proposed design

flow. From a C++ or OpenCL high-level description of kernels,

we use Xilinx SDAccel to profile their implementation: FPGA

resource utilization (LUTs, FFs, DSPs, BRAMs), DDR memory

bandwidth, execution time, etc. We enter the profile and target

platform characteristics (AWS F1 x8.large in our experiments,

which is the largest publicly available cloud FPGA platform)

into our power and performance model, then use a MINLP

solver to find the configuration with minimum power for each

value of II (the points in the graph inset in Fig. 5). Finally, for

each configuration we generate the configuration bitstream.

Fig. 5. Design flow to obtain the power-optimal FPGA configurations.

A. Problem formulation

We aim to minimize the total power while keeping the

initiation interval II shorter than IImax to satisfy the required

throughput (1). As shown later, II depends on the number nk,f

of CUs of each kernel k allocated to each FPGA f , and on

the clock frequency Fckf of each FPGA. Each CU of kernel

k requires Rk,t resources of type t (where t ∈{FF, LUT, DSP,

BRAM, DDR bandwidth}) and must not exceed the available

amount on each FPGA Rt (2), while the clock Fckf of any

SHAN et al.: POWER-OPTIMAL MAPPING OF CNN APPLICATIONS TO CLOUD-BASED MULTI-FPGA PLATFORMS 3

FPGA f must be slower than the maximum supported FCK

(3). Moreover, each kernel k must run on at least one CU (4).

II ≤ IImax (1)
∑

k nk,fRk,t ≤ Rt, ∀f, ∀t (2)

Fckf ≤ FCK, ∀f (3)

Nk =
∑F

f=1
nk,f ≥ 1, ∀k. (4)

The resulting problem is a MINLP one because it includes inte-

ger (nk,f) and real (Fckf) variables and non-linear constraints.

B. Initiation interval (II) modeling

The top-level computation consists of pipelined data transfers

and kernel executions. We use double buffers in the FPGA

DDR so that execution can overlap data transfer with the host

CPU (using single-buffering requires just a simple change of

our model, and it will not be discussed further).

II is limited by the maximum among the data transfer time

from host CPU to FPGA DDR Th2f and back Tf2h, and the CU

execution time Texe. Execution can overlap with data transfer

(Fig. 3), but all data transfers are managed by the CPU, hence

II ≥ max(Th2f + Tf2h, Texe). (5)

We now analyze separately the terms in (5).

1) Execution phase: We assume that kernel workloads are

arbitrarily parallelizable via doall top-level loops, which is

applicable not only to CNNs but also to many machine learning,

big data, and scientific applications, and is well supported by

the OpenCL and CUDA models of computation. If Twc,k is

the single-CU execution time of kernel k at maximum FPGA

frequency FCK, and the kernel workload is split over nk,f CUs

on one or several FPGAs f , then the actual kernel execution

time in FPGA f , Tk,f , scales with the number Nk of CUs

and the actual frequency Fckf of FPGA f (7), and Texe is the

maximum across all kernels and FPGAs (8)

δk,f =

{

1 if nk,f > 0

0 otherwise
, ∀f, ∀k (6)

Tk,f = Twc,k

Nk
· FCK

Fckf
· δk,f , ∀f, ∀k (7)

Texe = max
k,f

Tk,f . (8)

Here, the allocation variable δk,f is 1 if at least one CU of

kernel k is allocated to FPGA f , and 0 otherwise.

2) Host-to-FPGA and FPGA-to-Host phases: Th2f is the

ratio between the total size of input data from the host memory

to the DDR of the FPGAs, DIh2f, and the PCIe bandwidth,

Bh2f. Similarly, Tf2h is the ratio between the total size of output

data from the DDR of the FPGAs to the host memory, DOf2h,

and the PCIe bandwidth, Bf2h

Th2f =
DIh2f

Bh2f
, Tf2h =

DOf2h

Bf2h
. (9)

In this paper we assume the worst case, namely that direct

data transfers between FPGA DDRs are not supported, since

this is the case for the AWS F1 platform (again, relaxing this

assumption requires a minor change to the model, and will not

be discussed further). We also assume that all CUs need the

entire input data set DIk, which is true for CNNs and can be a

TABLE I
VARIABLES USED IN POWER MODEL EQUATIONS.

Notation Description

Ptotal total power
Fckf actual working frequency of FPGA f
Th2f, Tf2h data transfer time host to DDR and DDR to host, resp.
Texe execution time
Eh2f, Ef2h energy spent during Th2f and Tf2h, resp.
Eexe total energy spent during Texe

Erw energy spent by accesssing to DDR during Texe

DIh2f total data transferred in the host-to-FPGA phase
DOf2h total data transferred in the FPGA-to-host phase
PDDRdr, PDDRdw DDR dynamic power when reading and writing, resp.
Pfs on-chip static power
Pfd,f dynamic power of FPGA f

worst-case assumption for other applications. Hence, we must

replicate the input data if the CUs of a kernel k are allocated

to multiple FPGAs, and the replication factor αk is

αk =
∑F

f=1
δk,f , ∀k. (10)

The data transferred in the host-to-FPGA phase amount to

DIh2f =
∑K

k=1
αkDIk. (11)

Note that constant data (e.g., weights and bias in CNNs) are not

considered, since they are transferred once during initialization.

Differently from the input data, we assume instead that the

output data computed by a kernel, DOk, are equally divided

among its CUs, hence we transfer

DOf2h =
∑K

k=1
DOk. (12)

C. Power modeling

FPGA-related average power consumption has a constant

static contribution, Ps, and a dynamic one, Pd, accounting

for both data transfer with the host and the FPGA processing.

TABLE I shows all the variables involved in the power model.

1) DDR power model: we obtained the FPGA DDR power

using a calculator [9] and from experiments on the AWS F1 plat-

form, which includes an API to report power consumption. Idle

DDR consumes only static power, PDDRs, while dynamic power

depends on the normalized read Br and write Bw bandwidths

(i.e., Br = 1 if the maximum bandwidth is used for reading),

and is the sum of the corresponding PDDRdr and PDDRdw. The

equations that we used, with coefficients expressed in Watt

and coming from the characterization above, are: PDDRs = 0.5,

PDDRdr(Br) = 0.672Br and PDDRdw(Bw) = 0.4Bw.

2) Single FPGA power: it consists of static and dynamic

power obtained with the Xilinx Power Estimator (XPE) [10].

Static power Pfs includes logic Pfls and memory I/O Pfio power

Pfs = Pfls +Nfio · Pfio (13)

with Nfio = 4 DDR banks per FPGA. One I/O bank consumes

Pfio = 0.414W from [10] and logic power is Pfls = 2.842W.

Dynamic power Pfd,f of FPGA f depends on each kernel’s

CUs allocated to f , nk,f , and scales with clock frequency

Pfd,f =
∑

k nk,f · Pk ·
Fckf
FCK

(14)

with Pk the dynamic power of one CU of kernel k when

running at the highest clock frequency FCK.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XX, NO. YY, MONTH 20ZZ

3) Multi-FPGA power: static power Ps depends only on

the number of active FPGAs, NF :

Ps = NF (PDDRs + Pfs) . (15)

Total dynamic power Pd depends on the energy spent during

data transfer from host to FPGA DDRs Eh2f, processing Eexe,

and data transfer from FPGA DDRs to host Ef2h

Pd =
Eh2f+Eexe+Ef2h

II
= Ed

II
. (16)

Here, Eh2f depends on the data replication factor αk (10),

DDR write bandwidth Bwk, and transfer time twk obtained

from the FPGA profiling reports

Eh2f =
∑K

k αk · PDDRdw(Bwk) · twk. (17)

Similarly, Ef2h depends on DDR read bandwidth Brk, and

transfer time trk also from profiling (note that there is no

output data replication)

Ef2h =
∑K

k PDDRdr(Brk) · trk. (18)

CU execution energy Eexe includes the energy to read/write

data on DDR Erw and the FPGA processing energy Ec

Erw =
∑K

k Nk (PDDRdr(brk) + PDDRdw(bwk)) · Texe (19)

Ec =
∑F

f Pfd,f · Texe (20)

Eexe = Erw + Ec. (21)

where the data transfer bandwidths that the CUs of kernel k use

to read from and write to DDR are brk and bwk, respectively.

Total power consumption Ptotal is given by the static power

from (15) and the dynamic power from (16)

Ptotal = Ps + Pd. (22)

The energy per computation is Ecomp = Ptotal · II.

III. EXPERIMENTS

We check our optimization method against frequency scaling,

clock gating, and replication for two widely used and realisti-

cally large CNNs, AlexNet [1] and VGGNet [11]. However,

note that our technique is not specific to CNNs (even though

we evaluate it for well-known CNNs), and only depends on

the assumption of arbitrarily parallelizable kernel pipelines

mapped to multiple FPGAs with DDR-based memory transfers.

We show results for AlexNet using 32-bit floating-point and 16-

bit fixed-point, and VGGNet using only fixed-point. To solve

the minimization problem in (1)–(3) we use a state-of-the-art

MINLP solver, Couenne [12]. Note that a MINLP problem

can have in principle multiple local minima. We tried running

the solver multiple times, but the result was always the same.

We characterize the kernels for the power and performance

model discussed in Sec. II using the FPGA profiling reports

from Xilinx SDAccel and actual measurements on an Amazon

AWS F1 x8-large instance with eight Xilinx UltraScale+

FPGAs, each with four DDR banks and a PCIe connection

to the host CPU (see Fig. 1). MINLP and SDAccel run on

CentOS Linux 6.9 on a 16-core Intel Core i7-6900K @3.2GHz.

The MINLP solver requires ≈1 hour to optimize one AlexNet

fixed-point implementation, ≈1 day for AlexNet floating-point,

and ≈30 hours for VGGNet. Note that in all our experiments the

solver reaches quickly (after around half an hour) a reasonably

good solution, usually within 5% of the best found after multi-

day runs. So even if the problem size increases, we can still

efficiently get a good solution in a reasonable amount of time.

Note also that the solver run time is not critical if it is less than

one day, because the characterization of the optimal allocations

is done only once, offline, then the networks can run for

months on many boards in the cloud. Moreover, this time

is comparable with the time required by physical design for

several large FPGAs. Faster heuristics are left to future work.

Characterization data from AWS executions for the AlexNet

and VGG benchmarks are shown in TABLE II and TABLE III,

respectively. The performance of the optimization methods is

shown Fig. 6, and the number of FPGAs used as a function of

the II is shown in Fig. 7. The labels in the figure captions are:

• Our Solution is the MINLP optimum using the design flow

in Fig. 5; note that this is most likely a local minimum, since

the optimization space is not convex;

• Freq. Scaling scales down the clock frequency of the fastest-

II MINLP solution to meet each actual II requirement; note

that the AWS platform does not support voltage scaling;

including it into our model would be a simple modification;

• Clock Gating stops the FPGA clock when the CUs of the

fastest-II MINLP solution finish computation; note that the

AWS platform does not support power gating at runtime;

since static power is ≈20% of the total power, considering

power gating would bring Clock Gating closer to Freq.

Scaling, but still far from Our Solution.

• Replication makes copies of the MINLP solution that uses

the minimal number of FPGAs (hence the slowest solution)

until it meets the II requirement.

By design, 1) all plots in Fig. 6 except for replication start

at the best performance point, and 2) replication meets our

solution at the worst performance point. Note that our solution

always yields equal or superior results to other methods.

Freq. scaling and clock gating show a reciprocal dependency

between power and II, because they keep the same number of

kernel CUs, the same FPGA allocation, and the same number

of active FPGAs. They satisfy the II constraint either by scaling

the FPGA clock frequency only, or by disabling the clock in

addition to scaling it. Unlike them, our solution saves more

power when the II constraint is relaxed, because it optimizes

both the number and allocation of CUs, the number of active

FPGAs, and their working frequencies at the same time.

Replication starts from the optimal results obtained using our

solution for the highest II. For both AlexNet implementations

in Fig. 6(a) and Fig. 6(b), replication finds better solutions

than freq. scaling and clock gating for II constraints when

the execution time is much higher than data transfer time. In

fact, from (7) the execution time is inversely proportional to

CU number, while from (9)–(11) Th2f is proportional to the

number of CUs, because the input data are replicated with the

same factor. VGGNet [Fig. 6(c)] shows an extreme case when

data transfer time is very high and solution replication mostly

increases power by increasing the number of CUs, without a

significant reduction of the II, since it is dominated by data

transfer time. However, as shown in Fig. 2, our solution smartly

SHAN et al.: POWER-OPTIMAL MAPPING OF CNN APPLICATIONS TO CLOUD-BASED MULTI-FPGA PLATFORMS 5

TABLE II
ALEXNET 32-BIT FLOATING-POINT AND ALEXNET 16-BIT FIXED-POINT KERNEL CHARACTERIZATION. LAYERS: CONVOLUTIONAL CONV, POOLING POOL.

Alex-32 Alex-16

BRAM DSP Twc Bw/Br tw/tr bw/br Pk BRAM DSP Twc Bw/Br tw/tr bw/br Pk

Kernels (%) (%) (ms) (%) (ms) (%) (W) (%) (%) (ms) (%) (ms) (%) (W)

Conv1 13.07 21.24 13 26.54 / 21.96 0.2 / 0.55 0.193 / 0.130 4.542 10.59 4.31 5.16 16.19 / 15.42 0.2 / 0.39 0.209 / 0.052 1.004

Pool1 2.84 0 1.78 41.48 / 13.62 0.29 / 0.21 1.415 / 0.341 0.633 0.05 0 1.78 26.86 / 8.79 0.23 / 0.17 0.709 / 0.171 0.605

Norm1 6.1 2.11 0.839 12.5 / 11.39 0.23 / 0.26 0.725 / 0.725 1.091 2.53 0.06 0.78 6.26 / 9.62 0.23 / 0.15 0.389 / 0.388 0.596

Conv2 8.73 37.59 7.19 8.45 / 9.4 0.35 / 0.19 0.54 / 0.052 8.367 4.39 7.63 4.11 7.08 / 7.77 0.22 / 0.12 0.475 / 0.046 1.438

Norm2 7.75 2.11 0.807 9.32 / 9.92 0.19 / 0.18 0.466 / 0.466 1.252 6.66 0.06 0.67 4.59 / 7.63 0.2 / 0.12 0.281 / 0.279 0.664

Conv3 5.22 28.13 7.78 7.92 / 26.33 0.23 / 0.1 1.18 / 0.072 6.173 2.63 5.66 6.7 1.864 / 14.4 0.5 / 0.09 0.684 / 0.042 1.109

Conv4 2.13 37.5 9.08 6.63 / 12.7 0.4 / 0.21 1.063 / 0.073 7.979 1.91 7.55 5.06 5.346 / 14.5 0.256 / 0.09 0.737 / 0.056 1.274

Conv5 8.73 37.5 4.84 3.77 / 4.38 0.38 / 0.09 1.027 / 0.017 8.150 4.39 7.55 3.29 2.93 / 2.08 0.24 / 0.09 0.755 / 0.012 1.340

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

P
o

w
e

r
(W

)

Initiation Interval (ms)

(a)

AlexNet Fixed-Point

Our Solution
Freq. Scaling
Clock Gating
Replication 60

 80

 100

 120

 140

 160

 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

P
o

w
e

r
(W

)

Initiation Interval (ms)

(b)

AlexNet Floating-Point

Our Solution
Freq. Scaling
Clock Gating
Replication

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 16 17 18 19 20 21 22 23 24 25 26

P
o

w
e

r
(W

)

Initiation Interval (ms)

(c)

VGGNet Fixed-Point

Our Solution
Freq. Scaling
Clock Gating
Replication

Fig. 6. Power versus initiation interval in (a) AlexNet Fixed-Point, (b) AlexNet Floating-Point, and (c) VGGNet Fixed-Point.

TABLE III
VGGNET 16-BIT FIXED-POINT KERNEL CHARACTERIZATION RESULTS

BRAM DSP Twc Bw/Br tw/tr bw/br Pk

Kernels (%) (%) (ms) (%) (ms) (%) (W)

Conv1 3.67 2.95 28.8 17.33 / 24.79 0.18 / 2.70 0.028 / 0.484 0.914

Conv2 9.97 15.14 67.8 83.20 / 22.78 0.80 / 2.94 0.321 / 0.206 2.106

Pool2 11.6 0.03 13.3 83.86 / 23.33 0.80 / 0.72 1.045 / 0.261 0.825

Conv3 9.97 15.14 22.7 49.28 / 24.47 0.34 / 1.37 0.269 / 0.307 2.108

Conv4 9.97 15.14 32.1 78.28 / 24.26 0.46 / 1.38 0.380 / 0.217 2.107

Pool4 2.94 0.03 6.9 72.86 / 22.67 0.92 / 0.74 1.020 / 0.254 0.714

Conv5 8.32 15.07 22.8 23.37 / 22.52 0.36 / 0.74 0.341 / 0.153 2.055

Conv6-7 8.32 15.05 32.9 44.44 / 23.33 0.38 / 0.72 0.472 / 0.106 2.063

Pool7 1.50 0.03 3.5 56.74 / 17.18 0.29 / 0.24 0.985 / 0.246 0.615

Conv8 2.12 15.02 24.5 8.986 / 19.06 0.47 / 0.44 0.455 / 0.071 1.982

Conv9-10 2.12 15.02 37.7 10.93 / 19.28 0.77 / 0.43 0.590 / 0.046 1.979

Pool10 0.05 0.01 2.1 31.87 / 11.84 0.26 / 0.18 0.800 / 0.200 0.582

Conv11-13 2.12 14.99 20.3 3.319 / 10.96 0.63 / 0.19 0.629 / 0.022 1.986

 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3

F
P

G
A

s
 i

n
 u

s
e

Initiation Interval (ms)

AlexNet Fixed-Point

 1
 2
 3
 4
 5
 6
 7
 8

 2 3 4 5 6 7 8

AlexNet Floating-Point

 1
 2
 3
 4
 5
 6
 7
 8

 16 18 20 22 24 26

VGGNet Fixed-Point

Fig. 7. Number of used FPGAs as a function of the optimization method (FS
is frequency scaling, CK is clock gating) and the target initiation interval.

groups the kernel CUs on fewer FPGAs, minimizing both data

transfer time and power at the same time.

IV. CONCLUSION

We proposed a power-performance optimization method to

optimally configure a multi-FPGA platform running multi-

kernel pipelined workloads. Given an II target, the solution of

a MINLP problem provides an optimal allocation of the best

number of CUs for each kernel so as to minimize the overall

power consumption. Compared to applying frequency scaling

to reduce both II and power starting from a fast configuration,

or to replicating a slow configuration on multiple FPGAs, our

solution provides a much more effective way of saving power.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.
[2] S. K. Tesfatsion et al., “Power and performance optimization in

fpga-accelerated clouds,” Concurrency and Computation: Practice and

Experience, vol. 30, no. 18, p. e4526, 2018.
[3] C. Zhang et al., “Energy-efficient CNN implementation on a deeply

pipelined FPGA cluster,” in Proc. 2016 Int. Symp. on Low Power

Electronics and Design. ACM, 2016, pp. 326–331.
[4] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained

task, data, and pipeline parallelism in stream programs,” SIGOPS Oper.

Syst. Rev., vol. 40, no. 5, pp. 151–162, Oct. 2006.
[5] J. Cong, M. Huang, and P. Zhang, “Combining computation and com-

munication optimizations in system synthesis for streaming applications,”
in Proc. 2014 ACM/SIGDA Int. Symp. on FPGAs, 2014, pp. 213–222.

[6] N. Tarafdar et al., “Enabling flexible network fpga clusters in a
heterogeneous cloud data center,” in Proc. 2017 ACM/SIGDA Int. Symp.

on FPGAs. ACM, 2017, pp. 237–246.
[7] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in 49th

IEEE/ACM Int. Symp. on Microarchitecture (MICRO), Oct 2016, pp.
1–13.

[8] “SDAccel Development Environment.” [Online]. Available: https:
//www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[9] “Power Calculators.” [Online]. Available: https://www.micron.com/
support/tools-and-utilities/power-calc

[10] “Xilinx Power Estimator (XPE).” [Online]. Available: https://www.xilinx.
com/products/technology/power/xpe.html

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] P. Belotti. (2018) Couenne (convex over and under envelopes for nonlinear
estimation). [Online]. Available: https://www.coin-or.org/Couenne/

