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1 Introduction  
Hybrid electric vehicles (HEVs) are forecasted remarkably spreading in the global ve-
hicle market over the next years due to their capability of reducing fuel consumption 
and tailpipe emissions while simultaneously tackling current limitations for on-board 
storable electrical energy [1]. Nevertheless, design procedures and sizing methodolo-
gies for HEV powertrains are consistently complicated compared to both battery elec-
tric vehicles (BEVs)that are powered by electric motors solely, and conventional vehi-
cles that are powered by internal combustion engines (ICEs) solely [2]. Difficulties in 
HEV powertrain design and sizing relate both to the amount of power components em-
bedded (i.e. one ICE, one or multiple electric motor/generators (MGs), a high-voltage 
battery, dedicated power electronics) and the necessity of a related proper energy man-
agement strategy (EMS) [3]. 

EMSs for HEVs can be classified into off-line and on-line ones. Off-line EMSs profit 
from the overall knowledge of preselected driving missions to optimize the HEV 
powertrain operation. They can be used to assess the fuel economy capability of HEV 
powertrain architectures and component sizes [4][5] or to calibrate and benchmark on-
line EMSs [6][7][8]. On the other hand, on-line EMSs do not require the knowledge of 
future driving conditions and they can therefore be implemented in the on-board ECU 
of HEVs. This paper focuses on off-line EMSs for HEVs. In this framework, examples 
of popular optimization strategies for HEVs include Dynamic Programming (DP), the 
Pontryagin’s Minimum Principle (PMP) and the Power-weighted Efficiency-based 
Analysis for Rapid Sizing (PEARS) [9]. DP represents the most popular HEV optimi-
zation approach as it can return a global optimal solution, nevertheless it suffers from 
curse of dimensionality [10]. The PMP can approximate the global optimal solution 
provided by DP under few assumptions, however it does not always guarantee the 
global optimum and requires the calibration of the tuning factor for the electrical energy 
consumption [11]. The PEARS algorithm is computationally rapid and it can satisfy the 
charge-sustaining criterion without recurring to iterative calculation, however it exhib-
its non-uniform proximity with the global optimum and it can be applied to a limited 
set of HEV architectures represented by the multimode power split powertrains [12]. 
Therefore, there remains a need for a validated universal off-line control strategy suit-
able for rapid sizing of all types of HEV powertrains [13]. 

To answer the illustrated drawbacks, this paper aims at presenting a new off-line EMS 
for HEVs suitable for rapid sizing of hybrid powertrain components named Slope-
weighted Energy-based Rapid Control Analysis (SERCA). This EMS has been devel-
oped aiming at achieving a good approximation of the optimal HEV fuel economy 
benchmark provided by DP while simultaneously reducing the computational cost by 
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around two orders of magnitude. Moreover, the SERCA algorithm can be easily imple-
mented for different kind of HEV powertrain architectures including parallel, series-
parallel and power split. The rest of this paper is organized as follows: the HEV power-
train architectures under study are firstly presented and modeled. The off-line optimal 
control problem is then introduced for all the retained HEV architectures. DP is subse-
quently recalled as global optimal, yet computationally expensive, benchmark EMS. 
SERCA is then illustrated and implemented for all the HEV layouts. Simulation results 
and conclusions are finally given. 

2 HEV powertrain architectures and modeling  
This section firstly aims at presenting the considered HEV powertrain architectures in-
cluding parallel, series-parallel and power split layouts. Then, the adopted HEV mod-
eling approach will be discussed. 

2.1 HEV powertrain layouts  

2.1.1 Parallel P2  

Among the different hybrid architectures, parallel HEVs have been selected by many 
car manufacturers as their first step into vehicle electrification [14]. In a parallel HEV, 
the tractive power is combined: both the ICE and the MGs can contribute to the vehicle 
propulsion, i.e. their corresponding torques are additive. When the MG is large enough, 
it can drive the HEV by itself or simultaneously with the ICE. Particularly, the MG can 
be used to shift the ICE operating points to a higher-efficiency area by acting as a gen-
erator or a motor depending on the power demand being higher or lower. Particularly 
in the P2 architecture, one MG is placed between the ICE and the gearbox input and a 
clutch connection allows for eventually disengaging it from the ICE crankshaft. A pos-
sible scheme of the parallel P2 HEV layout is illustrated in Figure 1. 

2.1.2 Series-Parallel P1P2  

Series-parallel HEV powertrain architectures embed two MGs. Particularly for the 
P1P2 layout, other than the MG located in the P2 position, an additional MG is mounted 
directly on the ICE crankshaft as shown in Figure 2. When the clutch is engaged, ICE, 
MG1 and MG2 exhibits the same angular speed and the propelling torque can be arbi-
trarily distributed among these three power components. On the other hand, when the 
clutch is disengaged, the HEV powertrain can either operate in pure electric mode (i.e. 
ICE and MG1 are not activated) or in series mode (i.e. the ICE is turned on and MG1 
serves as generator in providing electrical energy to the battery). 
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Figure 1: Parallel P2 HEV layout   Figure 2: Series-Parallel P1P2 HEV layout  

2.1.3 Power split 

Power split HEV architectures are much successful and represent a large portion of the 
current population of commercially available full HEV powertrains. They consist of 
one or multiple planetary gear (PG) sets, which are very compact and can realize a 
continuously variable transmission. PG sets embed a ring gear, a sun gear and a carrier 
and they constitute the power split device (PSD), which is responsible for directing the 
power fluxes between the components of the hybrid powertrain [15]. Thanks to the PG 
kinematics, in a power split HEV the rotating speed of the ICE can be decoupled from 
the speed of the vehicle, thus enhancing fuel economy potential and flexibility in the 
operation. The power split HEV layout retained in this paper is illustrated in Figure 3 
and refers to the well-known Toyota Hybrid System® [16]. In this HEV configuration, 
ICE, MG1 and output shaft are respectively linked to carrier, sun gear and ring gear of 
a PG set, while MG2 is directly linked to the output shaft through a reduction gearset. 

 
Figure 3: Power split HEV layout  

2.2 HEV powertrain modeling  

Overall, the HEV powertrain architectures considered in this paper are modelled adopt-
ing a backward quasi-static approach [17]. In this modeling procedure, required speed, 
torque and power values for the hybrid powertrain components are directly derived 
from the vehicle speed profile defined in the retained driving mission. In other words, 
the actual vehicle speed always matches the targeted profile of the driving mission. The 
power components (i.e. ICE and MGs) are taken into account through their empirical 
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operational maps with torque and speed as independent variables, while an internal re-
sistance model is adopted for the battery. Here, values for voltage and internal resistance 
are assumed to be constant and independent from the battery state-of-charge (SoC), as 
it has been demonstrated that it is still possible to achieve a globally optimal solution 
with this hypothesis for charge-sustaining (CS) problems [18].With regards to the ve-
hicle, road resistance forces are evaluated using experimental road load coefficients. 
More details about the powertrain and vehicle model can be found in [4]. 

3 Off-line HEV control  
In this section, the HEV off-line control problem is presented that is typically consid-
ered in HEV powertrain design and sizing processes and in development and calibration 
procedures of on-line EMSs. Subsequently, DP is recalled as universally accepted nu-
merical tool to return the global optimal solution for the HEV off-line control problem. 

3.1 Control problem  

The optimal off-line control problem for an HEV aims here at minimizing a multi-target 
cost function 𝐽 that considers, among other terms, estimated fuel consumption (EFC) 
and number of ICE activations over a certain period as example. The resulting mathe-
matical formulation is stated in (1): min ቄ 𝐽 = ׬ 𝐿௉೔(𝑡)𝑑𝑡௧೐೙೏௧బ  ቅ  

subject to: 𝑆𝑜𝐶(𝑡଴) = 𝑆𝑜𝐶(𝑡௘௡ௗ) 𝑆𝑂𝐶ሶ = 𝑓(𝑆𝑂𝐶,𝜔ெீଵ,𝑇ெீଵ,𝜔ெீଶ,𝑇ெீଶ) 𝜔ூ஼ா௠௜௡ ≤ 𝜔ூ஼ா ≤ 𝜔ூ஼ாெ஺௑ 𝜔ெீଵ௠௜௡ ≤ 𝜔ெீଵ ≤ 𝜔ெீଵெ஺௑ 𝜔ெீଶ௠௜௡ ≤ 𝜔ெீଶ ≤ 𝜔ெீଶெ஺௑ 𝑇ூ஼ா௠௜௡ ≤ 𝑇ூ஼ா ≤ 𝑇ூ஼ாெ஺௑ 𝑇ெீଵ௠௜௡ ≤ 𝑇ெீଵ ≤ 𝑇ெீଵெ஺௑ 𝑇ெீଶ௠௜௡ ≤ 𝑇ெீଶ ≤ 𝑇ெீଶெ஺௑ 𝑃௕௔௧௧௠௜௡ ≤ 𝑃௕௔௧௧ ≤ 𝑃௕௔௧௧ெ஺௑ 𝑆𝑜𝐶௠௜௡ ≤ 𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶ெ஺௑  

(1) 
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Where 𝐿௉೔(𝑡) represents the instantaneous cost function which needs specific definition 
depending on the retained HEV powertrain architecture Pi as it will be detailed later in 
this section. Charge-sustaining (CS) criteria is defined by imposing equivalent battery 
SoC values at the beginning and the end of the considered time period. Finally, speed, 
torque and power of power components (battery, ICE, MG1 and MG2 as well where 
applicable) are restricted within the correspondent actual operating regions. In the fol-
low-up of this section, DP will be illustrated as numerical approach to solve this control 
problem. 

3.2 Dynamic Programming  

DP is by far the most commonly adopted approach to solve the HEV optimal control 
problem. It involves generating a globally optimal solution backward along a time hori-
zon by searching through all feasible discrete control actions for all the state grid points 
[19]. While DP is demonstrated achieving global optimality under a wide range of op-
erating conditions, its major drawback refers to the computational power and computa-
tional time needed for exhaustively searching through all the possible solutions [20]. 
Specifically considered control variables, state variables and cost functions for the re-
tained HEV powertrain layouts will be illustrated below. 

3.2.1 Parallel P2  

When controlling a parallel P2 HEV, three levels of decision need accomplishment at 
each time instant [7]: 

1 Which gear is to be engaged in the gearbox;  

2 Whether to propel the vehicle in pure electric mode (MG only) or in hybrid 
operation (ICE+MG);  

3 In case the hybrid mode is selected, how to split the required torque between 
ICE and MG.  

This leads to embed the two terms illustrated in (2) for the control variable 𝑈௉ଶ includ-
ing the gear number #௚௘௔௥ and the value of ICE torque 𝑇ூ஼ா. 𝑈௉ଶ = ൜#௚௘௔௥𝑇ூ஼ா ൠ  (2) 

In a backward HEV modelling approach, pure electric or hybrid operation are particu-
larly distinguished by the sign of the ICE torque being null or positive, respectively. As 
regards the state variable 𝑋௉ଶ, its formulation considered here is reported in (3). 
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𝑋௉ଶ = ቐ 𝑆𝑜𝐶𝐼𝐶𝐸௢௡/௢௙௙#௚௘௔௥ ቑ      (3) 

The battery SoC is retained in order to achieve CS operation, while a binary term de-
fining the ICE state (i.e. on/off) and the engaged gear number are considered in order 
to account for comfort and smooth HEV operation. Particularly, the optimal control 
solution identified by DP throughout the driving mission should avoid an excessive 
number of ICE de/activation and gear shifting events. This is performed by formulating 
the instantaneous cost function (whose integrated value over the driving mission needs 
minimization) 𝐿௉ଶ as follows: 𝐿௉ଶ =  𝑚ሶ ௙௨௘௟ + 𝛼ଵ ∙ 𝐼𝐶𝐸௦௧௔௥௧ +  𝛼ଶ ∙ 𝑔𝑒𝑎𝑟௦௛௜௙௧    (4) 

Where 𝑚ሶ ௙௨௘௟ represents the instantaneous rate of fuel consumption as given by the ICE 
fuel table, while 𝐼𝐶𝐸௦௧௔௥௧ and 𝑔𝑒𝑎𝑟௦௛௜௙௧ denote ICE activation and gear shifting events, 
respectively, which can be detected by means of the corresponding state terms. 𝛼ଵ and 𝛼ଶ are constant weighting factors.  

3.2.2 Series-Parallel P1P2  

The required control decisions for a series-parallel P1P2 layout are similar to the ones 
related to the parallel P2 HEV architecture, yet few additions need to be made. Obtained 
levels of decisions are reported as follows:  

1 Which gear is to be engaged in the gearbox;  

2 Whether to keep the clutch engaged or disengaged;  

3 In case the clutch is engaged, how to split the required torque between ICE, 
MG1 and MG2;  

4 In case the clutch is disengaged, whether to operate in pure electric mode (i.e. 
only MG2 is activated) or in series mode (ICE and MG1 are activated as 
well);  

5 In case the series hybrid operation is selected, which values of speed and 
torque assign to ICE and MG1.  

As a result, the corresponding control variable 𝑈௉ଵ௉ଶ requires additional terms to handle 
the increased control complexity for this HEV layout, namely the MG1 torque 𝑇ெீଵ, 
the ICE speed 𝜔ூ஼ா and the binary clutch status 𝐶𝑙௘௡௚/ௗ௜௦ (i.e. engaged or disengaged): 
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𝑈௉ଵ௉ଶ = ⎩⎪⎨
⎪⎧ #௚௘௔௥𝑇ூ஼ா𝑇ெீଵ𝜔ூ஼ா𝐶𝑙௘௡௚/ௗ௜௦⎭⎪⎬

⎪⎫
  (5)  

As concerns state variable 𝑋௉ଵ௉ଶ and cost function 𝐿௉ଵ௉ଶ, their formulations for the 
series-parallel P1P2 HEV architecture equal their counterparts for the parallel P2 layout. 

3.2.3 Power split  

Power split HEV powertrain layouts exhibit different terms in their control variables 
compared to parallel and series-parallel architectures. The control variable 𝑈௉ௌ consid-
ered in this paper for the power split HEV layout contains speed and torque values for 
the ICE and it is formulated in (6). 𝑈௉ௌ = ቄ𝜔ூ஼ா𝑇ூ஼ா ቅ (6) 

In a backward modeling approach, values of speed and torques for both the MGs can 
indeed be evaluated starting from the control variable terms following the planetary 
gear kinematics and dynamics [15]. In the considered power split HEV layout, the em-
bedment of a gearbox is not strictly necessary in the hybrid transmission since the ca-
pability of PG sets of operating as an electrically variable transmission (eVT). As con-
sequence, the state variable 𝑋௉ௌ and the cost function 𝐿௉ௌ for the power splti HEV 
architecture can be simplified as in (7) and (8), respectively. 𝑋௉ௌ = ൜ 𝑆𝑜𝐶𝐼𝐶𝐸௢௡/௢௙௙ൠ      (7) 𝐿௉ௌ =  𝑚ሶ ௙௨௘௟ + 𝛼ଵ ∙ 𝐼𝐶𝐸௦௧௔௥௧  (8) 

4 Slope-weighted Energy-based Rapid Control 
Analysis (SERCA)  

In this section, the Slope-weighted Energy-based Rapid Control Analysis (SERCA) is 
described as a novel approach for the HEV off-line optimal control problem. This meth-
odology can be divided in three phases, as illustrated in Fig. 4: the division into sub-
problems, the definition of the generalized optimal operating points and the energy bal-
ance realization process [21][22]. 
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Figure 4: Workflow of SERCA   

4.1 Sub-problems exploration  

The first step of SERCA aims at exploring the possible solutions of each sub-problem, 
particularly represented by the single time point of the retained driving mission. The 
sub-problems are characterized with the specific values of current vehicle speed and 
desired acceleration, respectively. Similar to DP, discretized arrays for the control var-
iable terms are firstly created. Each possible control sub-solution for the specific sub-
problem is thus represented by a certain combination of control term values. Following 
the backward HEV modeling approach, values for EFC and variation in the battery SoC 
can then be assessed for each feasible sub-solution.  

4.2 Definition of optimal operating hulls  

Once all the possible sub-solutions are identified for a specific subproblem (i.e., a time 
point of a target driving mission), they can be assessed based on EFC and battery SoC 
depletion. Examples of sub-solution comparisons for the same sub-problem corre-
sponding to a current vehicle speed value of 35 km/h and a requested vehicle accelera-
tion from the driver of 0.1 m/s2 are illustrated in Fig. 5, Fig. 6 and Fig. 7 for the parallel, 
the series-parallel and the power split HEV layouts, respectively. In all the three figures, 
a positive value of SoC depletion means that the battery is providing energy to power 
the vehicle. This corresponds both to pure electric operation and to hybrid operation in 
case the ICE is not providing enough power to propel the vehicle by itself. On the other 
hand, a negative value of battery depletion means that the ICE is providing more power 
than the amount needed to satisfy the power demand coming from the algebraic sum of 
vehicle resistance forces and inertia load related to the requested vehicle acceleration. 
In this case, the excess ICE power can be used to charge the high-voltage battery. 

Step A:  Sub-problems exploration

Step B: Definition of optimal operating hulls

Step C. Energy balance realization process

Outcome: 
- Estimated fuel consumption
- Time series of HEV control and state variables over the driving mission
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Figure 5: Sub-solutions comparison example for a parallel P2 HEV layout (vehicle speed =  

35 km/h, vehicle acceleration = 0.1 m/s2)  

 
Figure 6: Sub-solutions comparison example for a series-parallel P1P2 HEV layout (vehicle 

speed = 35 km/h, vehicle acceleration = 0.1 m/s2)  

 
Figure 7: Sub-solutions comparison example for a power split HEV layout (vehicle speed =  

35 km/h, vehicle acceleration = 0.1 m/s2)  
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The general descending trend of the point cloud reminds how battery recharging can be 
achieved through the gradual increase of fuel consumption. The shape of the cloud of 
points for the hybrid electric sub-solutions differs according to the specifically retained 
HEV powertrain layout as shown in Fig. 5, Fig. 6 and Fig. 7, respectively. As example, 
for the P2 HEV layout in Fig. 5, a single curve can be observed for each feasible gear 
number that can be traced by varying the value set to the ICE torque. On the other hand, 
for series parallel P1P2 and power split architectures in Fig. 6 and Fig. 7 respectively, 
a cloud of points can be recognized rather than single curves. This is due to the addi-
tional degree of freedom related to the capability of varying the speed of the ICE. 

This representation can be interpreted as a sort of Pareto frontier for all the feasible sub-
solutions of the HEV powertrain in the considered sub-problem. The sub-solutions at 
the lower edge of the point cloud thus correspond to the optimal ones, as they exhibit 
the highest ratio between charged battery energy and correspondently consumed fuel. 
As consequence, these sub-solutions should be considered for eventual hybrid operation 
in an attempt of reaching the global optimal solution in a considered driving mission. 
A discrete operating hull is therefore stored for each sub-problem that is represented by 
the optimal sub-solutions of the Pareto frontier. Then, the slope between two adjacent 
points (k-1) and k of the optimal hull is defined as θ in (9). 𝜃(𝑘 − 1, 𝑘) = ௱ௌ௢஼ሶ௱௠ሶ ೑ೠ೐೗ = ௌ௢஼ሶ (௞)ିௌ௢஼ሶ (௞ିଵ)௠ሶ ೑ೠ೐೗(௞)ି௠ሶ ೑ೠ೐೗(௞ିଵ)  (9) 

After the optimal operating hull is identified and stored and the slope for each optimal 
sub-solution is computed for all the sub-problems of the considered driving mission, 
the energy balance realization process can be performed.  

4.3 Energy balance realization process  

The last stage of SERCA aims at efficiently solving the optimal HEV off-line control 
problem for the overall considered driving mission. 

First it is assumed that, when feasible, the HEV powertrain operates all the time points 
in pure electric mode. Particularly, in the Pareto frontiers of Fig. 5, Fig. 6 or Fig. 7 the 
pure electric point with the lowest depleted SoC value is considered and the hybrid 
powertrain is set to operate according to the corresponding control variables in the con-
sidered sub-problem. The total required electrical energy EEV is then obtained by sum-
ming the depleted (or charged) battery energy in each point where pure electric mode 
is selected. 

Consequently, the time point i exhibiting the highest value of slope ( |θi| =|θMAX| ) is 
selected for hybrid operation. The corresponding control variables are set to operate in 
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the identified time point. Then, the variables related to the overall driving mission op-
eration are updated in (10). Eா௏ = Eா௏ + 𝑆𝑜𝐶ௗ௘௣௟௘௧௘ௗ೔                                       m௙௨௘௟_்ை் = m௙௨௘௟_்ை் + m௙௨௘௟೔   (10) 

Particularly, the value of required electrical energy needed is reduced by the charged 
battery energy in correspondence with the selected point i. Meanwhile, the global fuel 
consumption mfuel_TOT is increased with the increment provided by the selected hybrid 
operating point. 

The electric-to-hybrid operation replacement is carried out iteratively until the value of 
overall electrical energy consumed in the retained driving mission EEV becomes null or 
negative. Finally, the corresponding EFC and the hybrid powertrain operation for the 
considered driving mission can be extrapolated in this way. 

5 Simulation results  
The SERCA algorithm aims at achieving optimality for the HEV off-line control prob-
lem solution and simultaneously reducing the associated computational cost. In this 
section, several driving missions are considered to evaluate the performance of SERCA 
when applied to various HEV powertrain architectures while benchmarking it with the 
well-known DP approach. Table 1 illustrates the vehicle and powertrain data considered 
in this paper. In general, vehicle and battery data for a full HEV model have been re-
tained from Amesim® software, while lookup tables for power components and battery 
have been derived from [23] and scaled appropriately in order to get an hybridization 
factor of around 0.45 for all the three HEV considered architectures [24].  

Table 1. Vehicle and powertrain data  

Component  Parameter  Value  

Vehicle 

Mass 1000 Kg 
Wheel dynamic radius 0.317 m 
Road Load coefficient A 100 N 
Road Load coefficient B 5 N/(m/s) 
Road Load coefficient C 0.5 N/(m/s)^2 

ICE 
Capacity 1.2 l 
Maximum power 89 kW @ 4000 rpm 
Maximum torque 230 Nm @ 2000 rpm 

Transmission  
(P1 and P1P2 layouts) 

Gear ratios [3.7; 2; 1.5; 1; 0.8] 
Final drive ratio 3 
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Transmission  
(power split layout) 

PG ratio (ring/sun) 3.27 
MG2 to output shaft ratio 1.26 
Final drive ratio 3.27 

MG (P2 layout) Maximum power 72 kW 
Maximum torque 240 Nm 

MG1 (P1P2 and power 
split layouts) 

Maximum power 22 kW 
Maximum torque 74 Nm 

MG2 (P1P2 and power 
split layouts) 

Maximum power 50 kW 
Maximum torque 167 Nm 

Battery 

Capacity 19 Ah 
Open-circuit voltage 123.62 V 
Internal resistance 54.54 mΩ 
Temperature 25 ° 

 

Driving missions simulated here particularly refer to the Urban Dynamometer Driving 
Schedule (UDDS), the Highway Fuel Economy Test (HWFET), the Worldwide Har-
monized Light Vehicles Test Procedure (WLTP) and the New European Driving Cycle 
(NEDC). All the reported computational times (CTs) refer to a desktop computer with 
Intel Core i7-8700 (3.2 GHz) and 32 GB of RAM. In all the simulations, a CS operation 
has been simulated by imposing equal battery SoC values at the beginning and the end 
of the driving missions. 

Table 2 and Table 3 report obtained simulation results for all the retained HEV power-
train architectures focusing on the EFC and the CT, respectively. Concerning EFC, the 
SERCA algorithm is demonstrated capable of predicting fuel economy results close to 
the DP global optimal benchmark over different driving missions. Considering the 
UDDS as example, the increase in the EFC value obtained by SERCA is limited within 
0.76 %, 0.13 % and 0.85 % for the P2, P1P2 and power split hybrid powertrain archi-
tectures, respectively. On the other hand, looking at CTs, the SERCA algorithm is 
proven achieving remarkable savings compared to the DP benchmark. In the UDDS 
case as example, CTs required to perform a simulation using SERCA only represent the 
1.46 %, 0.09 % and the 14.05 % of the DP counterpart for the P2, P1P2 and power split 
hybrid powertrain layouts, respectively, while giving comparable values for the EFC. 
In this framework, the SERCA reveals more efficient compared to the current state-of-
art. The objective realization of the CS HEV operation particularly allows avoiding 
recursive calculation, thus suggesting the successful implementation of SERCA for ef-
fective rapid sizing of hybrid powertrain architectures. 
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Table 2. Simulation results for EFC  

 P2 P1P2 Power split 
Driving mis-
sion  DP  SERCA  DP  SERCA  DP  SERCA  

UDDS 293.25 g 295.49 g 234.99 g 235.29 g 243.22 g 245.28 g 
HWFET 581.43 g 587.21 g 546.95 g  551.58 g 554.62 g 557.17 g 
WLTP 723.47 g 723.95 g 757.74 g 766.68 g 771.54 g 779.26 g 
NEDC 308.66 g 307.69 g 287.55 g 287.55 g 290.12 g 291.62 g 

Table 3. Simulation results for CT  

 P2 P1P2 Power split 
Driving mis-
sion  DP  SERCA  DP  SERCA  DP  SERCA  

UDDS 274 s 4 s 22260 s 20 s 747 s 105 s 
HWFET 115 s 2 s 13179 s 17 s 450 s 69 s 
WLTP 184 s 7 s 30506 s 29 s 4584 s 289 s 
NEDC 188 s 3 s 24100 s 14 s 3123 s 199 s 

 

6 Conclusions  
This paper presents the application of a novel rapid near-optimal EMS named slope-
weighted energy-based rapid control analysis (SERCA) to various HEV powertrains 
including parallel, series-parallel and power split layouts. The operating steps of 
SERCA have been detailed, particularly the division into sub-problems, the construc-
tion of the generalized optimal operating hulls and the energy balance realization pro-
cess. The SERCA addresses the problem of effective rapid component sizing for HEV 
powertrains. The illustrated energy management strategy is validated based on a com-
parison of the resulting SERCA EFC values with the globally optimal solution provided 
by DP over several driving missions. Results for several different driving missions par-
ticularly reveal a narrow difference contained within 0.99 %, 1.18 % and 1.00 % at 
maximum for the parallel P2, the series parallel P1P2 and the power split HEV power-
train architecture, respectively. Moreover, the SERCA algorithm is demonstrated 
achieving remarkable computational rapidness compared to DP.  

Future work may consider the implementation of the SERCA in a design methodology 
for rapid component sizing of various HEV powertrains. Finally, an on-line energy 
management strategy may be developed based on the SERCA and implemented in an 
on-board control logic. For instance, offline SERCA optimization may be considered 
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to derive optimal control policies [25]. Alternatively, SERCA may rapidly provide 
near-optimal benchmarks for recently developed artificial intelligence-based on-line 
HEV EMSs [26]. 
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