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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Metal components produced by Additive Manufacturing (AM) technologies usually exhibit a rough surface, that in certain applications can 
result detrimental for the part’s functionality. Thus, it is of great interest to study the finishing processes that can be applied to the surfaces, 
both external and internal, of AM components. The aim of this work is the evaluation of the capabilities of a vibro-finishing process in the 
treatment of samples produced by Laser-Powder Bed Fusion (L-PBF) from AlSi10Mg powders. In this research, the abrasive media is 
identified, and the surface quality improvement is analysed in terms of surface roughness and modifications induced by the finishing treatment 
(i.e., edge rounding, material loss) against finishing duration. The cost of the treatment is also evaluated. 
© 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering. 
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1. Introduction 

Additive Manufacturing (AM) has grown exponentially 
over the last seven years. From technology for prototypes, 
customer-oriented, it has become a viable industrial 
production system. In particular, the rapid rise of metal 
systems is well documented in the literature and consulting 
reports. Wohlers et al. [1] indicated a growth of 80% in the 
sale of metal AM systems. New systems producers enter the 
market, new technologies are developed with the aim of 
overcoming the barriers of the established technologies, in 
terms of productivity, part quality and costs. Industries are 
looking to capitalize the very high potential of AM processes, 
although currently undermined by lack of control and 
repeatability of the systems. The sustainable growth of AM 
processes is a challenge that has been taken up by large 
multinational companies, such as GE, HP or DMG MORI, 
who have allocated their numerous resources for the 
development and the supply chain of industrial AM 
techniques. 

One of the critical points of AM is the finishing, which is 
inevitable for most components. In fact, despite the numerous 
advantages given by AM in terms of achievable geometric 
complexity, consolidated designs, optimization of the material 
use and product’s added value, they suffer from drawbacks in 
terms of surface quality and dimensional accuracy. 
Consequently, it is often necessary to carry out machining 
operations on the AM components, in order to give the 
appropriate tolerances and tribological properties to the 
surfaces, or to improve the fatigue behavior, or to induce 
surface compressive stresses. Basically, the same aspects that 
are considered advantages in AM production represent 
challenges for finish machining: complex forms and light 
weighting can lead to difficulties in alignment and work-
holding and could generate vibrations. Moreover, intricate 
shapes could be very difficult or impossible to cut. Thus, the 
research is focused on the study of finishing processes, 
alternative to machining, that can be applied to AM parts 
[2,3]. 
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The aim of this paper is to assess the capabilities of a 
vibro-finishing process in the treatment of AlSi10Mg samples 
fabricated by Laser-Powder Bed Fusion (L-PBF). The 
resulting quality at different treatment durations has been 
analysed in terms of surface roughness and geometrical 
modifications induced by the finishing treatment. 
Corresponding costs have been also evaluated. 

2. Surface finishing of metal AM parts 

The most commonly adopted post-processes to reduce 
surface finishing of metal AM parts can be mainly classified 
according to the energy source leading such processes: 
mechanical, thermal, chemical, and electrochemical [4]. 

2.1. Mechanical processes 

Additionally to conventional machining, hot cutter 
machining and micro machining, processes such as grinding, 
blasting and water-jetting belong to mechanical finishing 
processes investigated in the last years [4]. Moreover, 
tribofinishing is gaining more and more attention due to its 
low unit cost and its capability of treating many components 
at the same time [5]. The mechanism underlying 
tribofinishing processes, such as vibratory bowl abrasion [6], 
centrifugal finishing, rotary barrel finishing, mass-finishing 
and drag finishing [5] is the removal of roughness peaks 
through plastic deformation and abrasion due to the relative 
motion between components and abrasive media. Different 
variants of finishing processes employing abrasive particles 
have been developed and are listed in the following. Abrasive 
Flow Machining (AFM), existing in different configurations 
[7], is indicated for difficult-to-access inner structures. Peng 
et al. [8] obtained a surface roughness Sa of 1.8 µm on an 
AlSi10Mg component whose as-built roughness was equal to 
13-14 µm. Atzeni et al. [3] using Abrasive Fluidized Bed 
(AFB) obtained an average Ra of around 1.5 μm on AlSi10Mg 
parts realised through L-PBF. Yamaguchi et al. [9] processed 
the surfaces of a 316L steel part manufactured by L-PBF, 
changing the Rz-value from 100 to 0.1 μm through a Magnetic 
field-Assisted Finishing (MAF) process. With MAF, complex 
shapes can be processed in different regimes of machining by 
altering the magnetic tools. Tan and Yeo [10] used for the 
first time ultrasonic wave for surface modification purpose. In 
the process they named Ultrasonic Cavitation Abrasive 
Finishing (UCAF), the authors exploited the cavitation 
occurring in a liquid medium in which a high-frequency 
sinusoidal wave of pressure is induced. If micro-particles of 
abrasive media are added to the liquid medium, they act as 
nucleation sites for new bubbles, and enhance the erosion of 
the surface being accelerated against by the bubbles collapse. 
Witkin et al. [11] led chemically accelerated vibratory 
polishing, both eliminating surface defects and enhancing 
fatigue life of Ti6Al4V components made through Electron 
Beam Melting (EBM) and L-PBF. 

2.2. Thermal processes 

Laser polishing and Electron Beam (EB) irradiation [4] 
provide thermal energy to surface apexes, whose material 
melts and in the liquid state is redistributed at the same 
horizontal level due to gravity and surface tension [6]. Both 
the processes are contactless, with no limitations due to tool 
wear. In particular, laser polishing offers the possibility of 
easy integration and high automation [6]. Gora et al. [12] 
laser polished parts produced by L-PBF. The achieved results 
were a reduction in the roughness of 85% on Ti6Al4V 
samples and of 85-96% for CoCr ones. Bhaduri et al. [13] 
reported a list of the key publications on laser polishing, from 
1997 to 2016 with details on laser systems used. The most 
investigated are CO2, Nd:YAG and fiber lasers [6,13]. 
Although, the use of shorter wavelength lasers (UV lasers in 
the range of 350 to 250 nm) used in micro-machining is 
getting attention, as they can perform the so-called Cold Laser 
Machining (CLM) or photochemical ablation [6]. Also the 
laser pulse regime is a key parameter, since in ultrashort ones 
the laser beam interacts with the material on a much greater 
timescale than the one of thermal diffusion, enabling the 
production of precise and clean features reducing the heat-
affected zone [14]. Ma et al. [15] used a nanosecond pulsed 
fiber laser (wavelength 1060 nm and pulse duration 220 ns) to 
polish a surface cut by wire-electrode of additively 
manufactured titanium alloys. Worts et al. [14] employed 
femtosecond lasers to micromachine Ti6Al4V parts made by 
a L-PBF process. Femtosecond laser systems are forecast to 
be integrated into L-PBF systems, as they can operate at 
identical wavelengths (about 1040 nm) of high average power 
Yb-fiber lasers employed in those AM processes (L-PBF), 
according to the gain medium used. 

2.3. Chemical and electrochemical processes 

Chemical polishing (or chempolishing) consists of material 
removal by dissolution. The surface is considered chemically 
polished when the layer formation rate and its dissolution are 
the same [16,17]. Such post-processes have the capability of 
improving the roughness of outer and inner complex surfaces 
simultaneously [18]. Tyagi et al. [17] obtained uniform 
roughness distribution on 316 stainless steel, reaching values 
from 5.0 to 0.4 µm for outer surfaces, and 15 to 0.4 µm inner 
ones. Wysocki et al. [19] chemically polished titanium 
scaffolds to remove not fully melted particles using various 
HF and HF-HNO3 acid solutions. Łyczkowska et al. [20] 
reviewed chemical polishing techniques for Ti6Al7Nb 
scaffolds. Electrochemical Polishing (ECP) [4] and Plasma 
Electrolytic Polishing (PeP) exploit electrolytic processes 
where the AM part acts as the anode, specifically PeP is 
considered a particular case of anodic dissolution [21]. A 
counter electrode is needed near the to-finish surface [18]. 
Urlea and Brailovski [22] and [23] electro-polished 
selectively laser-melted Inconel 625 and Ti6Al4V parts. Jung 
et al. [24] instead, tested titanium plates manufactured 
through EBM. 
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2.4. Comparison and limitations 

Each post-process owns pros and cons, according to the 
specific case. For example, electropolishing returns smoother 
surfaces than chemical polishing, but at the same time the 
electrode used encounters limits on the accessibility to the 
workpiece in narrow inlets reachable through chempolishing 
[17]. In a similar way, micromachining, grinding and blasting, 
as well as EB irradiation and PeP, require a line of sight [4]. 
Processes such as EB irradiation, electropolishing and 
chemical etching, instead, do not allow finishing of limited 
areas of a surface since they are not selective [4]. Tyagi et al. 
[17] found different morpologhical surfaces after adopting 
electropolishing and chempolishing, especially in the quantity 
of retaining sub-micrometric cavities. Witkin et al. [11], by 
comparing abrasive and laser polishing operations on Inconel 
625 parts fabricated using L-PBF, highlighted that removing 
material by abrasion or by re-melting could have different 
outcome on fatigue life, since in the first case the defect roots 
could not be always successfully removed. All of these 
peculiarities have to be considered during the choice of the 
proper finishing post-process, according to the geometry of 
the component and the load it will bear [17], even in the early 
stages of its design process [4]. 

3. Material and methods  

The fabrication and finishing of the aluminum alloy 
samples produced by AM is detailed in the following 
Sections. The methodology adopted for the evaluation of the 
surface quality is also described. 

3.1. Fabrication of the samples 

Direct Metal Laser Sintering (DMLS) process by EOS 
GmbH (Krailling, Germany) was used to build three 
AlSi10Mg 15 × 15 × 10 mm3 parallelepiped-shaped samples 
as shown in Fig. 2a. The EOSINT M 270 Dual Mode 
machine, equipped with a 200 W Yb-fiber laser source 
focused on a 0.1 mm spot diameter, allows to process reactive 
materials in an argon environment, to prevent oxidation of the 
material. The building process begins with the deposition of a 
powder layer onto the building platform. Then, the laser 
selectively melts the powder according to the section 

geometry. Thereafter, the building platform is lowered, and 
the sequence is repeated, layer by layer, up to the complete 
fabrication of the parts. Commercial EOS Aluminium 
AlSi10Mg material was used and standard process and 
exposure parameters, optimized by the system producer for 
this material type and EOSINT systems, were adopted. Thus, 
the layer thickness was set to 30 m, the building platform 
was maintained at 100 °C and the scan strategy was a stripe 
pattern, rotated by 67° at each new layer. The standard scan 
strategy uses different exposure parameters for the upper and 
bottom layers, the core and the skin.  Samples were anchored 
to the platform with a saw-toothed 5 mm high support 
structure. After the fabrication and before the manual parts 
removal, the platform with samples was subjected to a stress 
relieving thermal treatment, at 310 °C for one hour. 

3.2. Finishing process  

The REM Isotropic Superfinishing (REM ISF®) process 
was carried out in Best Finishing Srl (Gessate, Milano, Italy) 
by means of an AV 40 vibro-finishing machine shown in Fig. 
1 filled with FMX 3/8” TC abrasive inserts. The process was 
executed in two subsequent steps of (i) finishing and (ii) 
polishing. A commercial ALUMIL 241 medium with 10:100 
dilution in water was used in the finishing step, and the flow 
rate was fixed to 1 liter/h. The finishing step lasted for 38 h 
and 62 h for Test #1 and Test #2, respectively. This process 
was followed by a polishing step, in which an FBC 50 
medium with 1.5:100 dilution in water and a flow rate of 5 
liter/h was used. The polishing step lasted 2 h for both Test #1 
and Test #2. At the end of the vibro-finishing process, the 
specimens were extracted from the machine, washed in water 
and dried with hot air. 

3.3. Surface quality evaluation 

Measurements of surface profiles of the samples, before 
the finishing treatment, were conducted by using a MarSurf 
XR 20 with GD25 roughness measuring station. Traversing 
length was 5.6 mm, with a step size of 0.5 µm and processed 
with five cut-offs of 0.8 mm. Traversing speed was 0.5 mm/s. 
In addition, surface roughness and texture were analysed on 
each sample, before and after the finishing treatment, by using 
a MarSurf CM mobile confocal microscope with an 800XS 

(a) (b) (c)

 

Fig. 2. Top and later view of (a) the as-built sample, (b) the sample after 
Test #1 and (c) the sample after Test #2. 

 

Fig. 1. AV 40 vibro-finishing machine (Best Finishing Srl, Italy). 
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tribofinishing is gaining more and more attention due to its 
low unit cost and its capability of treating many components 
at the same time [5]. The mechanism underlying 
tribofinishing processes, such as vibratory bowl abrasion [6], 
centrifugal finishing, rotary barrel finishing, mass-finishing 
and drag finishing [5] is the removal of roughness peaks 
through plastic deformation and abrasion due to the relative 
motion between components and abrasive media. Different 
variants of finishing processes employing abrasive particles 
have been developed and are listed in the following. Abrasive 
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the process they named Ultrasonic Cavitation Abrasive 
Finishing (UCAF), the authors exploited the cavitation 
occurring in a liquid medium in which a high-frequency 
sinusoidal wave of pressure is induced. If micro-particles of 
abrasive media are added to the liquid medium, they act as 
nucleation sites for new bubbles, and enhance the erosion of 
the surface being accelerated against by the bubbles collapse. 
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were a reduction in the roughness of 85% on Ti6Al4V 
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1997 to 2016 with details on laser systems used. The most 
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getting attention, as they can perform the so-called Cold Laser 
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the laser beam interacts with the material on a much greater 
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polish a surface cut by wire-electrode of additively 
manufactured titanium alloys. Worts et al. [14] employed 
femtosecond lasers to micromachine Ti6Al4V parts made by 
a L-PBF process. Femtosecond laser systems are forecast to 
be integrated into L-PBF systems, as they can operate at 
identical wavelengths (about 1040 nm) of high average power 
Yb-fiber lasers employed in those AM processes (L-PBF), 
according to the gain medium used. 

2.3. Chemical and electrochemical processes 

Chemical polishing (or chempolishing) consists of material 
removal by dissolution. The surface is considered chemically 
polished when the layer formation rate and its dissolution are 
the same [16,17]. Such post-processes have the capability of 
improving the roughness of outer and inner complex surfaces 
simultaneously [18]. Tyagi et al. [17] obtained uniform 
roughness distribution on 316 stainless steel, reaching values 
from 5.0 to 0.4 µm for outer surfaces, and 15 to 0.4 µm inner 
ones. Wysocki et al. [19] chemically polished titanium 
scaffolds to remove not fully melted particles using various 
HF and HF-HNO3 acid solutions. Łyczkowska et al. [20] 
reviewed chemical polishing techniques for Ti6Al7Nb 
scaffolds. Electrochemical Polishing (ECP) [4] and Plasma 
Electrolytic Polishing (PeP) exploit electrolytic processes 
where the AM part acts as the anode, specifically PeP is 
considered a particular case of anodic dissolution [21]. A 
counter electrode is needed near the to-finish surface [18]. 
Urlea and Brailovski [22] and [23] electro-polished 
selectively laser-melted Inconel 625 and Ti6Al4V parts. Jung 
et al. [24] instead, tested titanium plates manufactured 
through EBM. 
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2.4. Comparison and limitations 

Each post-process owns pros and cons, according to the 
specific case. For example, electropolishing returns smoother 
surfaces than chemical polishing, but at the same time the 
electrode used encounters limits on the accessibility to the 
workpiece in narrow inlets reachable through chempolishing 
[17]. In a similar way, micromachining, grinding and blasting, 
as well as EB irradiation and PeP, require a line of sight [4]. 
Processes such as EB irradiation, electropolishing and 
chemical etching, instead, do not allow finishing of limited 
areas of a surface since they are not selective [4]. Tyagi et al. 
[17] found different morpologhical surfaces after adopting 
electropolishing and chempolishing, especially in the quantity 
of retaining sub-micrometric cavities. Witkin et al. [11], by 
comparing abrasive and laser polishing operations on Inconel 
625 parts fabricated using L-PBF, highlighted that removing 
material by abrasion or by re-melting could have different 
outcome on fatigue life, since in the first case the defect roots 
could not be always successfully removed. All of these 
peculiarities have to be considered during the choice of the 
proper finishing post-process, according to the geometry of 
the component and the load it will bear [17], even in the early 
stages of its design process [4]. 

3. Material and methods  

The fabrication and finishing of the aluminum alloy 
samples produced by AM is detailed in the following 
Sections. The methodology adopted for the evaluation of the 
surface quality is also described. 

3.1. Fabrication of the samples 

Direct Metal Laser Sintering (DMLS) process by EOS 
GmbH (Krailling, Germany) was used to build three 
AlSi10Mg 15 × 15 × 10 mm3 parallelepiped-shaped samples 
as shown in Fig. 2a. The EOSINT M 270 Dual Mode 
machine, equipped with a 200 W Yb-fiber laser source 
focused on a 0.1 mm spot diameter, allows to process reactive 
materials in an argon environment, to prevent oxidation of the 
material. The building process begins with the deposition of a 
powder layer onto the building platform. Then, the laser 
selectively melts the powder according to the section 

geometry. Thereafter, the building platform is lowered, and 
the sequence is repeated, layer by layer, up to the complete 
fabrication of the parts. Commercial EOS Aluminium 
AlSi10Mg material was used and standard process and 
exposure parameters, optimized by the system producer for 
this material type and EOSINT systems, were adopted. Thus, 
the layer thickness was set to 30 m, the building platform 
was maintained at 100 °C and the scan strategy was a stripe 
pattern, rotated by 67° at each new layer. The standard scan 
strategy uses different exposure parameters for the upper and 
bottom layers, the core and the skin.  Samples were anchored 
to the platform with a saw-toothed 5 mm high support 
structure. After the fabrication and before the manual parts 
removal, the platform with samples was subjected to a stress 
relieving thermal treatment, at 310 °C for one hour. 

3.2. Finishing process  

The REM Isotropic Superfinishing (REM ISF®) process 
was carried out in Best Finishing Srl (Gessate, Milano, Italy) 
by means of an AV 40 vibro-finishing machine shown in Fig. 
1 filled with FMX 3/8” TC abrasive inserts. The process was 
executed in two subsequent steps of (i) finishing and (ii) 
polishing. A commercial ALUMIL 241 medium with 10:100 
dilution in water was used in the finishing step, and the flow 
rate was fixed to 1 liter/h. The finishing step lasted for 38 h 
and 62 h for Test #1 and Test #2, respectively. This process 
was followed by a polishing step, in which an FBC 50 
medium with 1.5:100 dilution in water and a flow rate of 5 
liter/h was used. The polishing step lasted 2 h for both Test #1 
and Test #2. At the end of the vibro-finishing process, the 
specimens were extracted from the machine, washed in water 
and dried with hot air. 

3.3. Surface quality evaluation 

Measurements of surface profiles of the samples, before 
the finishing treatment, were conducted by using a MarSurf 
XR 20 with GD25 roughness measuring station. Traversing 
length was 5.6 mm, with a step size of 0.5 µm and processed 
with five cut-offs of 0.8 mm. Traversing speed was 0.5 mm/s. 
In addition, surface roughness and texture were analysed on 
each sample, before and after the finishing treatment, by using 
a MarSurf CM mobile confocal microscope with an 800XS 

(a) (b) (c)

 

Fig. 2. Top and later view of (a) the as-built sample, (b) the sample after 
Test #1 and (c) the sample after Test #2. 

 

Fig. 1. AV 40 vibro-finishing machine (Best Finishing Srl, Italy). 
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objective. The measured area was 2 × 2 mm2, with sampling 
intervals of 5 µm. From surface data, roughness profiles were 
also extracted. A Gaussian filter was applied. Changes in the 
edge radius of the samples were evaluated by retrieving the 
actual geometry with the 3D scanner Picza PIX-3. It is a 
contact-type scanner, equipped with a piezoelectric sensor. 
Scanning steps were 25 µm in height (Z-axis) and 50 µm in 
width (X-axis) and depth (Y-axis).  

4. Results and discussion 

The results achieved in terms of surface roughness, edge 
roundness and finishing costs are presented and discussed in 
the following sections.  

4.1. Geometry and mesh 

Bi- and tri-dimensional observations of the morphology of 
as-built and finished surfaces are shown in Fig. 3 . For the 
sake of clarity, it is worth to remark that the scale axis is 

different per each picture, with the aim to better present the 
results and the surface features. The observed changes in 
surface morphology are consistent with those typical of the 
chemically accelerated REM ISF® process. The treatment is 
progressive, and the roughness is reduced by leveling the 
most exposed peaks with the formation of an isotropic 
surface. As the duration of the finishing process increases (as 
highlighted by the differences between Test #1 and Test #2), 
even the deepest valleys can be gradually removed.  

The surface roughness parameters (computed in 
compliance with the ISO 25178 standard) are resumed in 
Table 1. In comparison with the results concerning the as-
deposited samples, a significant reduction in the height 
parameters Sa, Sq, Sz, Sp and Sv was noticed. As expected, the 
longer the finishing step is, the better the surface quality. The 
surface skewness (Ssk) is slightly negative, and its value 
decreases with the increase of the duration of the finishing 
process, while the Kurtosis (Sku) and the areal material ratio 
(Smr) parameters both slightly increase. 

500 1000 1500 2000 µm

500

1000

1500

2000

0

50

100

150

200

250

300 µm
µm

0
0

500 1000 1500 2000 µm

500

1000

1500

2000

0

µm

0
0

500 1000 1500 2000 µm

500

1000

1500

2000

0

µm

0
0

100

50

90 µm

80

70

60

50

40

30

20

10

150 µm

(a) As-built 

(b) Test #1

(c) Test #2

fin
is

hi
ng

 =
 3

8 
h

po
lis

hi
ng

 =
 2

 h
fin

is
hi

ng
 =

 6
2 

h
po

lis
hi

ng
 =

 2
 h

 
Fig. 3. Bi- and tri-dimensional observations of the morphology of a sample in (a) as-build state, after Test #1 and (c) after Test #2. 
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4.2. Edge roundness 

The scanning operations allowed to perform measurements 
on the samples. Moreover, samples were weighted to 
determine the loss of weight due to the finishing treatments. 
Results are shown in Table 2 and in Fig. 4. The abrasive 
finishing operations generated an edge radius of about 0.6 mm 
on the treated samples. This radius was observed after 
Test #1, and it did not vary after Test #2 increasing the 
finishing treatment time. Similarly, a reduction in edge length 
by 0.27 mm (1.8%) was observed for Test #1, and the longer 
finishing time had a negligeable effect on this dimension, 
being the measured variation comparable with the accuracy of 
the scanner (0.05 mm). As regards the lateral radius, it is 
observed that the original radius was not significantly 
changed. The weight measurements confirmed these results: 
the weight reduction was about 3%, and the weight of the two 
treated samples are comparable to each other. 

4.3. Finishing costs  

The costs for the REM ISF® vibro-finishing were 
computed by accounting for the (i) indirect costs, (ii) 
processing costs and (iii) labour costs, under the hypothesis of 
simultaneously finishing 50 identical parts per each cycle in 
order to saturate the working volume of the AV 40 machine. 
The indirect costs add up the administrative/production 
overheads as well as the purchase and maintenance costs of 
the machine, and they were allocated through the total part 
finishing time. An indirect cost rate [25] of 5.76 €/h was 
supposed by assuming: (i) a purchase cost for the AV 40 
machine of 2,270 €; (ii) a depreciation period of 2 y; (iii) an 
annual operating time of 4,680 h/y, which was computed by 
assuming an 18-h/d use over 260 working days per year; (iv) a 
maintenance cost of 100 €/y; (v) an administrative/production 
overhead rate of 5.5 €/h. The labour charge rate was 16.45 
€/h, since a full annual labour cost of 30,000 € was considered 
for 228 8h/d-working days (net of holidays) per year. The 
operator’s working time was obtained by supposing an 
employment due to manual and supervision operations equal 
to 3% of the total finishing time. As far as the processing 
costs are concerned, the AV 40 machine was filled with 16 kg 
of FMX abrasive inserts, the purchase cost of which was 5.75 
€/kg and the consumption rate when finishing was quantified 
in 0.06 %/h. The purchase costs of the ALUMIL 241 and FBC 
50 media were 7.50 €/liter and 4.00 €/liter, respectively. The 
AV 40 machine is equipped with an electric engine, and its 
constant power demand was assumed to be 0.15 kW. The cost 
of electric energy was fixed to 0.25 €/kWh. The cost for the 
disposal of waste fluids was esteemed to be 0.12 €/liter. The 
cost assessment is detailed in Table 3. Under the above 
mentioned assumptions, the costs per finished part are equal 
to 5.77 € and 9.24 € for Test #1 and Test #2, respectively. 
These values are dominated by the indirect costs. It is worth 
 

Table 3. Cost assessment for vibro-finishing operations. 

Variable Test #1 Test #2 

Duration of finishing + polishing process (h) 38 + 2 62 + 2 
Cost of FMX 3/8” TC abrasive inserts (€) 2.21 3.53 
Cost of ALUMIL 241 medium (€) 28.50 46.50 
Cost of FBC 50 medium (€) 0.60 0.60 

Cost of electric energy (€) 1.50 2.40 
Cost of waste disposal (€) 5.76 8.64 
Processing costs, per batch (€) 38.57 61.67 
Indirect costs, per batch (€) 230.40 368.64 
Labour costs, per batch (€) 19.74 31.58 
Total costs, per batch (€) 288.71 461.89 
Total costs, per part (€) 5.77 9.24 

 

Table 1. Typical surface roughness results. 

Parameter 
(ISO 25178) 

As  
built 

After 
Test #1 

After 
Test #2 

Sa (μm) 44.0 12.1 4.25 
Sq (μm) 54.1 18.8 7.96 
Sz (μm) 304 156 97.3 
Sp (μm) 130 30.7 25.6 
Sv (μm) 174 126 71.7 
Ssk − 0.21 − 2.35 − 3.66 
Sku  2.56 9.36 18.3 
Smr (%) 5.13 6.23 7.51 

 

 

Fig. 4. Lateral and edge radius of (a) the as-built sample, (b) the sample after 
Test #1 and (c) the sample after Test #2. 

Table 2. Weight and dimensions of the samples. 

Parameter As  
built 

After 
Test #1 

After 
Test #2 

Weight (g) 5.75 5.57 5.60 
Lateral radius (mm) 2.12 2.12 2.17 
Edge length (mm) 15.12 14.85 14.83 
Edge radius (mm) 0 0.64 0.64 
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objective. The measured area was 2 × 2 mm2, with sampling 
intervals of 5 µm. From surface data, roughness profiles were 
also extracted. A Gaussian filter was applied. Changes in the 
edge radius of the samples were evaluated by retrieving the 
actual geometry with the 3D scanner Picza PIX-3. It is a 
contact-type scanner, equipped with a piezoelectric sensor. 
Scanning steps were 25 µm in height (Z-axis) and 50 µm in 
width (X-axis) and depth (Y-axis).  

4. Results and discussion 

The results achieved in terms of surface roughness, edge 
roundness and finishing costs are presented and discussed in 
the following sections.  

4.1. Geometry and mesh 

Bi- and tri-dimensional observations of the morphology of 
as-built and finished surfaces are shown in Fig. 3 . For the 
sake of clarity, it is worth to remark that the scale axis is 

different per each picture, with the aim to better present the 
results and the surface features. The observed changes in 
surface morphology are consistent with those typical of the 
chemically accelerated REM ISF® process. The treatment is 
progressive, and the roughness is reduced by leveling the 
most exposed peaks with the formation of an isotropic 
surface. As the duration of the finishing process increases (as 
highlighted by the differences between Test #1 and Test #2), 
even the deepest valleys can be gradually removed.  

The surface roughness parameters (computed in 
compliance with the ISO 25178 standard) are resumed in 
Table 1. In comparison with the results concerning the as-
deposited samples, a significant reduction in the height 
parameters Sa, Sq, Sz, Sp and Sv was noticed. As expected, the 
longer the finishing step is, the better the surface quality. The 
surface skewness (Ssk) is slightly negative, and its value 
decreases with the increase of the duration of the finishing 
process, while the Kurtosis (Sku) and the areal material ratio 
(Smr) parameters both slightly increase. 
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Fig. 3. Bi- and tri-dimensional observations of the morphology of a sample in (a) as-build state, after Test #1 and (c) after Test #2. 
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4.2. Edge roundness 

The scanning operations allowed to perform measurements 
on the samples. Moreover, samples were weighted to 
determine the loss of weight due to the finishing treatments. 
Results are shown in Table 2 and in Fig. 4. The abrasive 
finishing operations generated an edge radius of about 0.6 mm 
on the treated samples. This radius was observed after 
Test #1, and it did not vary after Test #2 increasing the 
finishing treatment time. Similarly, a reduction in edge length 
by 0.27 mm (1.8%) was observed for Test #1, and the longer 
finishing time had a negligeable effect on this dimension, 
being the measured variation comparable with the accuracy of 
the scanner (0.05 mm). As regards the lateral radius, it is 
observed that the original radius was not significantly 
changed. The weight measurements confirmed these results: 
the weight reduction was about 3%, and the weight of the two 
treated samples are comparable to each other. 

4.3. Finishing costs  

The costs for the REM ISF® vibro-finishing were 
computed by accounting for the (i) indirect costs, (ii) 
processing costs and (iii) labour costs, under the hypothesis of 
simultaneously finishing 50 identical parts per each cycle in 
order to saturate the working volume of the AV 40 machine. 
The indirect costs add up the administrative/production 
overheads as well as the purchase and maintenance costs of 
the machine, and they were allocated through the total part 
finishing time. An indirect cost rate [25] of 5.76 €/h was 
supposed by assuming: (i) a purchase cost for the AV 40 
machine of 2,270 €; (ii) a depreciation period of 2 y; (iii) an 
annual operating time of 4,680 h/y, which was computed by 
assuming an 18-h/d use over 260 working days per year; (iv) a 
maintenance cost of 100 €/y; (v) an administrative/production 
overhead rate of 5.5 €/h. The labour charge rate was 16.45 
€/h, since a full annual labour cost of 30,000 € was considered 
for 228 8h/d-working days (net of holidays) per year. The 
operator’s working time was obtained by supposing an 
employment due to manual and supervision operations equal 
to 3% of the total finishing time. As far as the processing 
costs are concerned, the AV 40 machine was filled with 16 kg 
of FMX abrasive inserts, the purchase cost of which was 5.75 
€/kg and the consumption rate when finishing was quantified 
in 0.06 %/h. The purchase costs of the ALUMIL 241 and FBC 
50 media were 7.50 €/liter and 4.00 €/liter, respectively. The 
AV 40 machine is equipped with an electric engine, and its 
constant power demand was assumed to be 0.15 kW. The cost 
of electric energy was fixed to 0.25 €/kWh. The cost for the 
disposal of waste fluids was esteemed to be 0.12 €/liter. The 
cost assessment is detailed in Table 3. Under the above 
mentioned assumptions, the costs per finished part are equal 
to 5.77 € and 9.24 € for Test #1 and Test #2, respectively. 
These values are dominated by the indirect costs. It is worth 
 

Table 3. Cost assessment for vibro-finishing operations. 

Variable Test #1 Test #2 

Duration of finishing + polishing process (h) 38 + 2 62 + 2 
Cost of FMX 3/8” TC abrasive inserts (€) 2.21 3.53 
Cost of ALUMIL 241 medium (€) 28.50 46.50 
Cost of FBC 50 medium (€) 0.60 0.60 

Cost of electric energy (€) 1.50 2.40 
Cost of waste disposal (€) 5.76 8.64 
Processing costs, per batch (€) 38.57 61.67 
Indirect costs, per batch (€) 230.40 368.64 
Labour costs, per batch (€) 19.74 31.58 
Total costs, per batch (€) 288.71 461.89 
Total costs, per part (€) 5.77 9.24 
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Sq (μm) 54.1 18.8 7.96 
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Sv (μm) 174 126 71.7 
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After 
Test #1 

After 
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Edge length (mm) 15.12 14.85 14.83 
Edge radius (mm) 0 0.64 0.64 
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to underline that, when excluding the administrative/ 
production overheads from the calculation (i.e., by including 
in the assessment of the indirect cost rate only the purchase 
and maintenance costs of the machine), the costs per finished 
part would be noticeably reduced to 1.37 € and 2.20 € for Test 
#1 and Test #2, respectively. 

5. Conclusions 

A vibro-finishing process in the treatment of AlSi10Mg 
samples fabricated by L-PBF was assessed. Two different 
treatment durations were applied while keeping the same 
abrasive media, which were selected as a function of the 
specific material and the acquired knowledge on finishing of 
additively manufactured parts. The finishing performance 
capabilities were quantified in terms of surface topology and 
roughness, edge roundness and process costs. The 
experiments show that the finishing process is suitable to 
reduce the average surface roughness, Sa, to one-tenth of the 
as built one, resulting in an Sa of about 4 m. The treatment 
progressively reduces the roughness by leveling the most 
exposed peaks with the formation of an isotropic surface. 
Even the deepest valleys can be gradually removed by 
increasing the duration of the finishing process. Moreover, 
while retaining the original geometrical shape, the as-built 
sharp edges are rounded. This phenomenon is particularly 
evident in the earlier phases of the abrasive process. Overall, 
it was possible to estimate a needed allowance of 0.3 mm to 
account for the material removal. The cost for the finishing 
process is not expected to significantly increase the total costs 
of the whole manufacturing route. 
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