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Automated optimal firewall orchestration
and configuration in virtualized networks
Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, Jalolliddin Yusupov

Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—Emerging technologies such as Software-Defined
Networking and Network Functions Virtualization are mak-
ing the definition and configuration of network services more
dynamic, thus making automatic approaches that can replace
manual and error-prone tasks more feasible. In view of these
considerations, this paper proposes a novel methodology to
automatically compute the optimal allocation scheme and config-
uration of virtual firewalls within a user-defined network service
graph subject to a corresponding set of security requirements.
The presented framework adopts a formal approach based on
the solution of a weighted partial MaxSMT problem, which
also provides good confidence about the solution correctness. A
prototype implementation of the proposed approach based on
the z3 solver has been used for validation, showing the feasibility
of the approach for problem instances requiring tens of virtual
firewalls and similar numbers of security requirements.

Index Terms—NFV, network security, firewall, optimization

I. INTRODUCTION

Software-Defined Networking (SDN) [1] and Network Func-
tions Virtualization (NFV) [2] are new technologies, designed
to introduce flexibility in networking. SDN enables the run-
time definition of the paths that traffic flows must cross,
while NFV enables virtualized network functions, installed
on general-purpose servers in the cloud. These features allow
service designers to define the intended network services by
means of Service Graphs (SGs) representing the involved
service functions and their interconnection.

In a virtualized network, security automation is becoming
more feasible thanks to the intrinsic agility of this environ-
ment, and to the full software-based control of each network
component it allows. Nevertheless, automation of security
defenses is still only partially addressed in literature [3].

A commonly time-consuming and error-prone security task
that could be heavily eased by an automatic approach is
the placement and configuration of the Network Security
Functions (NSFs) [4] that must be introduced in order to
satisfy some Network Security Requirements (NSRs) – i.e.,
the security constraints the network behavior must respect –.
For example, isolation of a compromised network node could
be required after an attack, and this new requirement can be
fulfilled by properly placing and configuring NSFs that enforce
it. As performing this task manually can lead to incorrect
or non-optimal results, automation can be exploited not only
to save human effort, but also to get provably correct and
optimal solutions. Formal correctness of the achieved solution
represents an added value, because it does not require further

manual checks by the user, who can rely with a high level of
confidence on a solution generated according to this approach.
Optimality, on the other side, leads to a minimization of the
employed computational resources and to a maximization of
performance. In view of these motivations, in this paper we
propose a new security automation methodology for virtual-
ized networks, and we provide its validation. The main aim
is to automatically define the optimal allocation scheme and
configuration of virtual firewall instances, by refining a SG
provided by the service designer so that it fulfills a set of
given NSRs. The internal definition of this problem as a partial
weighted Maximum Satisfiability Modulo Theories (MaxSMT)
problem provides at the same time formal assurance about
the correctness of the solution and optimality. To the best
of our knowledge, this is the first time an approach with
all these features together – i.e. automation, optimality, and
formal correctness assurance – is proposed.

The focus of the proposed methodology is on packet filters,
which represent the most common firewall technology and the
most frequently exploited security defense in networks.

The remainder of the paper is structured as follows. Section
II explains how our methodology is designed, Section III
presents some performance tests carried out on a prototype
implementation. Finally, Section IV and Section V contain the
related works and the conclusions.

II. THE PROPOSED APPROACH

A. Problem statement and solution strategy

The problem addressed in this paper is to automatically
compute, in a formally correct way, the optimal allocation
scheme and configuration of packet filtering firewalls in a SG,
in such a way to satisfy a set of NSRs.

According to our approach, optimality means: 1) minimize
the number of allocated virtual firewall instances in the SG,
in order to minimize the resources consumed by the SG; 2)
minimize the number of rules inside each firewall configura-
tion, in order to reduce the memory required to store the rules
and, at the same time, improve the performance of the filtering
operations. The second goal has lower priority than the first,
since deploying a new virtual machine requires more memory
and introduces more overhead than adding a filtering rule in an
already deployed firewall. Here we do not address the problem
of optimal allocation of the SG onto physical servers because
we already addressed it in a previous work [5].
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Fig. 1: Allocation Graph example

Our strategy to reach the goals of formal correctness and
optimality consists of adopting a formal model of the virtual
network behavior and a procedure to search for the opti-
mal solution which guarantees correctness by construction
according to this formal model. More precisely, our idea is
to formulate the problem as a partial weighted Maximum
Satisfiability Modulo Theories (MaxSMT) problem, which
receives two different sets of clauses, hard and soft, for which
partial satisfiability has to be achieved. Hard clauses need
necessarily to be satisfied, representing essential commitments
which nonetheless contribute to the reduction of the space of
all the possible solutions. On the other hand, soft clauses are
relaxable constraints, because their satisfiability is not strictly
required; in this sense, their presence makes the SMT problem
partial. Moreover, in a partial weighted MaxSMT problem
each soft clause is characterized by a weight, and the problem
consists not only in establishing partial satisfiability but also
in finding, among the assignments that satisfy a partial set of
clauses, one that maximizes the sum of the weights of the
satisfied soft clauses; consequently, when an optimizer engine
tries to solve a partial weighted MaxSMT instance, it assigns
priority to the soft clauses characterized by higher weights. In
the remainder of the paper, for simplicity, the word MaxSMT
stands for partial weighted MaxSMT.

Given this context, the inputs of the problem that must be
formally modeled as hard clauses are: 1) a graph, describing
the network functions of the virtual network and their inter-
connection; 2) a set of Network Security Requirements (NSRs),
describing which traffic flows must be allowed or blocked in
the virtual network. The positioning of firewalls in the graph
and their configuration, instead, have to be encoded as soft
clauses, because they are subject to optimization.

If at least one of the hard clauses cannot be satisfied,
then the outcome of the MaxSMT problem is UNSAT, i.e.
partial satisfiability does not hold. If instead all the hard
constraints can be satisfied, then the outcome is the optimal
firewalls allocation scheme and the automatically computed
configuration of their Filtering Policy (FP), that is the set of the
mappings between the conditions to check on the packet fields
and the actions to perform about forwarding. These outputs are
achieved by targeting the two optimization objectives that have
been stated at the beginning of this section.

The remainder of this section provides more details about
the inputs and outputs of the methodology and their First-
Order Logic (FOL) formulation in the MaxSMT problem.

Finally, a complete example is provided to clarify how our
automated approach can heavily impact the design of a net-
work security service.

B. Service and Allocation Graph

The SG is a directed graph GS = (NS , LS), where NS

is the set of vertices representing the network nodes, while
LS is the set of edges representing the directed connections
between the nodes. In particular, the vertex set is modeled as
NS = ES ∪ SS . ES is the set of end points that can directly
correspond to a terminal, a physical server or a subnetwork
in the substrate infrastructure where virtual instances of the
functions will be allocated. Instead, SS is the set of service
functions; the elements in SS are simple Network Functions
(NFs), that do not offer any security protection from cyberat-
tacks, but are simply exploited to create an end-to-end service.

The SG is fed to an automatic tool that generates an
intermediate internal representation, called Allocation Graph
(AG), which is obtained from the SG by adding new nodes
called Allocation Places (APs). Each AP is a tentative position
in the graph where a firewall instance could be allocated.
In general, it is necessary to insert an AP for each edge of
the SG in order to explore all the possible placements and
hence have the assurance of eventually reaching the optimal
solution. However, the service designer can introduce some
placement constraints as additional inputs, clearly relying on
his security knowledge. In particular, these constraints can be
divided into two categories: (i) the user can explicitly forbid
the generation of an AP, thus reducing the solution space (ii)
the user can force the allocation of a firewall on an AP, for
example because the corresponding VNF is already deployed
in the virtualized network. Fig. 1 shows an example of AG,
automatically generated from a SG where the service designer
forbids the creation of the APs between the function f9 and
the end points e5, and e6.

Formally, the AG is another directed graph GA =
(NA, LA), where NA is the set of vertices representing the
network nodes, while LA is the set of links interconnecting
them. The main difference with respect to the SG is that the
vertex set is defined as NA = EA∪SA∪PA, where EA = ES

and SA = SS , while PA is the set of the APs, that are absent
in the SG. In GA, each nk ∈ NA is identified by a unique
index k, so that each lij ∈ LA, with i 6= j, represents the
directed link from node ni to node nj .

For each NF in the AG, a formal model of the NF for-
warding behavior is defined. The forwarding behavior is the
only aspect of NFs that is really relevant for the definition of
firewall placement and configuration in the SG. Other aspects
of the packet processing performed by the NFs that do not
influence the forwarding behavior can be safely neglected.
More precisely, in order to keep the models simple, we track
only the possibility of the various forwarding actions taken by
each NF for each packet, rather than representing all the details
of the decision algorithm. Hence, these models are based on
two predicates, that represent the possibility that each packet
is received or forwarded by any node. These predicates are



defined for each ni, nj ∈ NA and p0 ∈ P , where P is the set
of all packets: (i) recv(ni, nj , p0) which is true if node nj can
receive a packet p0 from node ni; (ii) send(ni, nj , p0) which
is true if node ni can send a packet p0 to node nj .

In view of this consideration, some of the NFs have an
extremely simplified model, according to which each packet
can be forwarded to each out-port without modifications. For
example, traffic monitors belong to this class of NFs, because
they forward all packets to their out port without modifying
them. Another example is a load balancer, because, even
though it implements a specific algorithm by means of which
it distributes the traffic to different servers of a cluster, it
is not possible to establish beforehand how each flow will
be effectively managed. On the other hand, other functions,
such as a NAT, have more complex behaviors that require
specific models. This kind of modeling of NFs, expressed by
means of sets of FOL clauses, has already been proposed and
validated in literature for network verification [6]–[8]. The
same approach is reused in our work, by feeding the FOL
formulas that represent each NF forwarding behavior to the
MaxSMT solver as hard clauses. For firewalls, the model is
slightly different, because each firewall can be present or not.
This will be detailed in section II-D. Finally, graph edges are
also expressed as hard clauses involving the send and recv
predicates.

C. Network Security Requirements

Concerning the security requirements to be enforced in
the network service, our methodology focuses on connectivity
requirements, i.e., the specification of which traffic flows must
be allowed (or prohibited) between any pair of end points in
the SG. These security constraints represent the second input
of the framework and are characterized by two elements: (i)
a general behavior representing the default rule applied to
traffic flows for which the user does not specify any further
indication; (ii) a set of specific Network Security Requirements
(NSRs), each one specifying whether a traffic flow must be
allowed (reachability requirement), or must be blocked by a
firewall (isolation requirement).

There are three approaches a service designer can adopt for
the definition of the security constraints. Two are based on the
traditional whitelisting and blacklisting methods, i.e., all traffic
flows must be blocked (in the former) or allowed (in the latter)
with the exception of the communications for which the user
explicitly defines some reachability (in the former) or isolation
(in the latter) requirements. In the third available approach,
called specific, the service designer must explicitly formulate
only the requirements – both isolation and reachability specific
properties – he is interested in. Therefore, the optimal solution
will be computed in order to satisfy exclusively this specific
set of constraints, while for the unspecified cases the system
will automatically decide whether to allow or forbid the flow.
Within this approach, we assume that the entire set of security
requirements is conflict-free, since this can be easily obtained
from a general set by means of well-known conflict analysis
techniques proposed in literature [9]–[11]; in this way, the

security constraints do not require a priority criterion in their
formulation.

Formally, if R is the set of all the NSRs that must be
fulfilled, each r ∈ R is modeled as a 6-tuple r = (type, IPSrc,
IPDst, pSrc, pDst, tProto) where type is the requirement type,
which can be isolation or reachability, while the other elements
are the typical IP 5-tuple values (source and destination IP
addresses, source and destination port numbers, transport-level
protocol) that specify a packet flow.

The NSRs contribute to the definition of the hard clauses of
the MaxSMT problem. Before presenting their FOL formulas,
however, two notations must be introduced. The first one,
addr(ek), is the function that maps an endpoint ek ∈ EA

to its IP address if it is a single host or to its IP address
range – e.g. 10.1.∗.∗ – if it is a collection of end points. The
second notation, r.match(p) is the predicate that is true if
and only if packet p ∈ P matches requirement r ∈ R, i.e. if
each requirement component positively matches or includes –
depending if it is a single value or a range – the corresponding
packet field.

Having introduced these notations, the hard clauses for
enforcing the NSRs in the AG are defined as follows. On
one side, if r ∈ R is an isolation property, all the pairs of
end points ei, ej ∈ EA such that addr(ei) ⊆ r.IPSrc ∧
addr(ej) ⊆ r.IPDst are identified. For each pair of nodes
ei and ej thus identified, then the following constraints must
be satisfied:

∀k | nk ∈ NA ∧ lik ∈ LA. ∃p0. (send(ei, nk, p0) ∧ r.match(p0)) (1)

∀k | nk ∈ NA ∧ lkj ∈ LA. ∀p0. (recv(nk, ej , p0) ∧
p0.IPDst = addr(ej) =⇒ ¬ r.match(p0))

(2)

Both clauses are needed to enforce an isolation property: (1)
imposes that the source can send at least one packet matching
the requirement to every neighbor; (2) imposes that all the
packets that can be received and accepted by the destination
do not match the requirement. On the other hand, if r ∈ R
is a reachability property, for each pair of nodes ei, ej ∈ EA

such that addr(ei) ⊆ r.IPSrc ∧ addr(ej) ⊆ r.IPDst, the
following constraints must be satisfied:

∃k | nk ∈ NA ∧ lik ∈ LA. ∃p0. (send(ei, nk, p0) ∧ r.match(p0)) (3)

∃k | nk ∈ NA ∧ lkj ∈ LA. ∃p0. (recv(nk, ej , p0) ∧
p0.IPDest = addr(ej) ∧ r.match(p0))

(4)

These two clauses introduce different commitments than
those defined for an isolation property: (3) imposes that at
least a packet that can be sent by the source to one of its
neighbors matches the requirement; (4) imposes that at least
a packet that can be received and accepted by the destination
matches the requirement.

D. Firewalls allocation and configuration

In case of success, the first outcome must be the optimal
allocation scheme of the firewalls in the AG. This result is
achieved by considering the possibility to allocate an instance
in each available AP. Since the best solution would be to
allocate the least number of firewalls, in the MaxSMT problem



a soft constraint is formulated for each pk ∈ PA so that
the optimal value of the allocated(pk) predicate – which is
true if a firewall is allocated in pk – is false. This clause is
formalized by (5), where the notation Soft(x, ck) specifies a
soft constraint with formula x and weight ck.

∀k | pk ∈ PA. Soft(allocated(pk) = false, ck) (5)

The second expected outcome is the automatic configuration
of the allocated firewalls; in this context, the firewall FP is
characterized by a default action and a set of more specific
5-tuple-based rules.

First, the default action is established so that the number
of filtering rules is minimized, as it has been explained
beforehand, according to the approach the service designer
exploits for the formulation of the NSRs. Then, for each
firewall allocated in pk ∈ PA, a set of placeholder rules
Πk must be identified, i.e., the maximum number of rules
that could be needed in its FP is established with respect to
the input security requirements. This step, which is critical to
achieve good scalability, is performed by means of a number of
pruning strategies. The main two ones are: (i) given a specific
NSR, in a firewall policy a corresponding placeholder rule is
not needed if the traffic flow related to this requirement cannot
cross the AP on which the packet filter is tentatively allocated;
(ii) given a specific NSR whose traffic flow can cross the AP,
a placeholder rule is not needed anyway if the default action
of the firewall that would be allocated there already enforces
the requirement (e.g. a whitelisting firewall guarantees the
satisfiability of an isolation property, if the specific rules are
properly configured, as they are in an optimal configuration).

Moreover, the wildcards feature has been introduced to fur-
ther reduce the cardinality of the maximum set of placeholder
rules. This feature allows us to represent both an IP address
and the netmask in a joint expression: for instance, the 10.0.0.∗
statement refers to the network 10.0.0.0/24. Besides, it can be
also applied to transport-level ports and protocols. In view
of this consideration, if some NSRs that would effectively
require corresponding filtering rules in the same firewall can
be merged in a single one by means of wildcards, then it
is possible to assign a single placeholder rule for all these
requirements, as long as this decision does not have any impact
on the satisfiability of the other ones.

After identifying the maximum number of placeholder rules
by means of the aforementioned algorithms, two different
classes of soft clauses are defined for policy configuration.
First, in order to minimize the total number of configured
rules, for each placeholder rule πi ∈ Πk of a firewall that
can be allocated in pk ∈ PA, a soft constraint is defined so
that the optimal value of the function configured(πi) – which
returns true if πi is configured in the policy – is false:

∀i | πi ∈ Πk. Soft(configured(πi) = false, cki) (6)

In order to enforce the wanted priority between the two
minimization objectives, the weights of these soft clauses are
decided so as to satisfy constraint (7).∑

i|πi∈Πk

(cki) < ck (7)

A second class of soft clauses is, instead, introduced to
specify that using wildcards has to be preferred for each single
component of each filtering rule; in fact, wildcards are useful
not only to reduce the number of placeholder rules, which
is done in the pre-processing phase, but also to reduce the
number of rules in the solution of the MaxSMT problem. (8)
and (9) define the soft clauses related to wildcards usage in
each one of the four components of IP addresses in quad-
dotted notation. Similar soft clauses are defined also for the
transport-level ports and protocol.

∀i | πi ∈ Πk. ∀j ∈ {1, 2, 3, 4}. Soft(πi.IPSrcj = ∗, ckij1) (8)

∀i | πi ∈ Πk. ∀j ∈ {1, 2, 3, 4}. Soft(πi.IPDstj = ∗, ckij2) (9)

In our approach, the use of wildcards for each rule component
has lower priority than the absence of rule itself. Consequently,
constraint (10) must be respected for each πi ∈ Πk.

4∑
j=1

(ckij1 + ckij2) < cki (10)

The set of clauses so built is analyzed by the MaxSMT
solver. If partial satisfiability holds, the optimal allocation
and configuration of firewalls is returned. Instead, if partial
satisfiability does not hold, a non-enforceability report is
returned. A possible reason for this condition is that the APs
are not sufficient because of additional constraints introduced
by the user to prohibit their creation. This report can then be
exploited for a next run of the tool, after the inputs have been
properly updated.

E. Clarifying example

The most relevant features of our approach can be clarified
by means of a sample scenario, where a manual configuration
would be easily prone to human errors. For this purpose, let
us consider Fig. 1 as the AG generated from an input SG. It is
worth mentioning that the end points e3 and e4 are not single
hosts, but subnetworks. Table I illustrates: (i) how each SG
node is mapped to an equivalent single IP address or address
range and the function type of the node; (ii) the NSRs to
satisfy, defined through the specific approach.

First of all, let us focus only on the first two constraints of
the NSRs list in Table I, that are the isolation requirements for
the end points e1 and e2, shadowed by the NAT f7. Since the
service designer requires that they are isolated from the two
services e5 and e6, at least a firewall is needed. Considering
for the moment only the APs p10, p11 and p12 and supposing
that no other requirements are specified, then our methodology
would place a single whitelisting firewall on p12, since it would
be able to filter all the packets coming from the NAT, thus
reducing the number of firewalls – the non-optimal alternative
which a service designer may instead consider to adopt would
be to place two firewalls, one in p10 and the other one in p11.

Then let us consider also the other NSRs, except the last
one of the list in Table I. On one side, e3 must be able to
reach the HTTP web server e5 at the TCP destination port 80,
e4 must be able to reach the POP3 mail server e6 at the TCP



TABLE I: Input
IP addresses and function type

Identifier IP address Function type

e1 192.168.0.2 Web client
e2 192.168.0.3 Web client
e3 130.192.225.∗ Network of end points
e4 130.192.120.∗ Network of end points
e5 220.226.50.2 HTTP web server
e6 220.226.50.3 POP3 mail server
f7 120.0.2.2 NAT
f8 120.0.2.3 Traffic monitor
f9 120.0.2.4 Web cache

Network Security Requirements
Type IPSrc IPDst pSrc pDst tProto

Isol 192.168.0.2 220.226.50.∗ ∗ ∗ ∗
Isol 192.168.0.3 220.226.50.∗ ∗ ∗ ∗
Isol 130.192.225.∗ 220.226.50.3 ∗ ∗ ∗

Reach 130.192.225.∗ 220.226.50.2 ∗ 80 TCP
Isol 130.192.225.∗ 220.226.50.2 ∗ 6=80 TCP
Isol 130.192.225.∗ 220.226.50.2 ∗ ∗ UDP

Reach 220.226.50.2 130.192.225.∗ ∗ ∗ ∗
Isol 130.192.120.∗ 220.226.50.2 ∗ ∗ ∗

Reach 130.192.120.∗ 220.226.50.3 ∗ 110 TCP
Isol 130.192.120.∗ 220.226.50.3 ∗ 6=110 TCP
Isol 130.192.120.∗ 220.226.50.3 ∗ ∗ UDP

Reach 220.226.50.3 130.192.120.∗ ∗ ∗ ∗
Isol 130.192.120.∗ 130.192.225.∗ ∗ ∗ ∗

f7

e1

e2

f8 fw2 f9

e5

e6

fw1
e4

e3

Fig. 2: Final Service Graph with allocated firewalls

destination port 110; all the other traffic between these pairs
– i.e. TCP with different destination port or UDP – must be
blocked. Since the paths from e3 and e4 towards the server
intersect in p15 with the paths from e1 and e2, the optimal
solution would be to allocate a firewall in that position.

Finally, according to the last NSR of Table I, e4 must not
be able to contact e3. However, neither the path between them
crosses p15, where the previous discussion led to the decision
to place a firewall, nor it is possible to identify a single other
intersection between all the paths that the possible traffic flows
that must be considered pass through. Consequently, the only
solution is to allocate an additional firewall, either in p13 or
in p14, which would block the packets from e4.

In this process, if each decision is taken manually by the
designer, several mistakes can be made while defining firewall
allocation and configuration. For example, since among the
same pairs of end points different constraints are defined for
different traffic flows, a manual approach could likely intro-
duce shadowing or correlation anomalies [9], which would
lead to an incorrect security service. Moreover, even though
the designer manages to reach a correct solution, it could be
a non-optimal one.

TABLE II: Policy rules
Firewall fw1

# Action IPSrc IPDst pSrc pDst tProto

1 Allow 220.226.50.3 130.192.120.∗ ∗ ∗ ∗
2 Allow 130.192.120.∗ 220.226.50.3 ∗ 110 TCP
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall fw2

# Action IPSrc IPDst pSrc pDst tProto

1 Allow 130.192.225.∗ 220.226.50.2 ∗ 80 TCP
2 Allow 130.192.120.∗ 220.226.50.3 ∗ ∗ ∗
3 Allow 220.226.50.∗ 130.192.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Instead, using the framework we developed according to the
methodology we proposed, it is possible to reach the optimal
and formally correct solution. For the sake of completeness,
Fig. 2 shows the final logical topology of the SG computed
by our approach, whereas Table II describe the FPs of the
two introduced firewall instances. In these table, the D letter
is used to identify the firewall default action.

III. IMPLEMENTATION AND VALIDATION

We implemented our approach by means of a Java frame-
work, which exploits the APIs offered by the z3 theorem
prover [12] to formulate and solve the MaxSMT problem.
The framework offers a REST APIs, so that it can be easily
integrated as a component of more complex architectures.

The validation of the developed framework has been per-
formed by means of scalability tests, which have been run
on a machine with Intel i7-6700 CPU running at 3.40 GHz
and 32GB of RAM. The parameters that have been considered
are the ones that mostly affect the complexity of the problem
(i.e. the number of clauses): (i) the number of APs where the
firewall instances can be allocated (ii) the number of NSRs.
We cannot compare our approach with alternative existing
approaches because, as explained in section IV, no other
approach solving the same problem exists.

The charts in Fig. 3a and 3c present the results of the tests
performed to evaluate execution time versus number of APs
and number of NSRs. The security requirements considered
for the tests are defined in the context of a specific approach
and only functions that do not modify packets are considered,
so that the validation is focused on the two metrics of interest.
Besides, for each test case with a given number of APs and
NSRs, we compute the median computation time on 30 runs,
where the service and the requirements are the same but
only the IP addresses are different. This is motivated by the
experimental observation that computation time can vary if the
IP addresses are changed, which is due to how z3 internally
manages the integer theory. For this reason, we also show the
experimental results by means of the whisker plots in Fig. 3b
and 3d. The number of NSRs in Fig. 3b, and the number of
APs in Fig. 3d are fixed to 30.

The most evident result from this validation is that, even
though the MaxSMT problem belongs to the NP-complete
class in terms of worst-case computational complexity, the
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Fig. 3: Results of scalability tests on APs and NSRs

framework can scale to SGs of tens of APs and a number
of NSRs that is expected in a service of this dimension. It is
also possible to notice that an increment of the NSRs number
produces a computation time comparable to the one produced
by the same increment of the APs number. Furthermore, the
two whisker plots show how most of the values are gathered
around the expected median value. Moreover, memory con-
sumption is not an issue because, in the worst case which has
been considered, it is only 10.3 MB. All these positive results
that have been showed in this section are mainly due to the
correct tuning of the optimization parameters and the pruning
strategies we adopted, which reduce the solution space. In fact,
even though some possible solutions are not evaluated by the
MaxSMT solver because of these strategies, nevertheless they
would not be considered optimal.

IV. RELATED WORKS

A. Automatic configuration and verification of firewall policies

In literature, the automatic configuration of firewalls and
the formal verification of their policies represent a central
research area in the network security field. A milestone is
represented by Firmato [13], a firewall management toolkit
that performs a refinement of high-level filtering requirements.
Other similar works are [14] and [15], which can automatically
generate rule sets also in distributed firewall architectures.
Despite the relevance of these works, they are mainly targeted
to traditional networks, rather than to NFV environments.
Moreover, they do not provide formal correctness assurance.

Formal methods have been exploited in more recent works,
such as [16]–[19]. However, they have a number of limitations.
[16] lacks optimality but also generality, since it is bound
to IPChains and Cisco PIX. [17], [18] and [19] can only fix
firewall misconfigurations rather than allowing the creation of
rules from scratch. Furthermore, [17] and [18] do not focus on
virtualized networks, while [19] works at an abstraction level
higher than the actual policy rules.

Finally, in all the works mentioned so far, the decision about
where to allocate the packet filters in the logical topology is
not made by the tool, but it is assumed as input.

B. Automatic synthesis and refinement of a Service Graph

Other works address the automatic creation and refine-
ment of a SG, according to a set of constraints, before its

deployment. This topic is becoming central because of the
growing interest in operational resilience based on NFV and
intent-based networking [20] [21]. Among the works regarding
automatic synthesis of SGs, [22]–[25] define methodologies
for intent-based generation of network services in virtualized
environments. However, not only they lack formal correctness
assurance of the achieved solutions, but the approaches de-
scribed in [22] and [25] do not even target optimality.

The most relevant works that provide optimal or sub-optimal
automatic placement of firewalls in a SG are [26] and [27].
However, none of them can also optimally synthesize the
rules of each placed firewall. [26] approximately minimizes
the maximum number of rules for each firewall by means
of a heuristic algorithm, without providing formal correctness
assurance, while [27] computes the optimal placement using
a formal model, also taking other aspects into account, but
using an iterative approach where the constraints are tuned
after each failed attempt.

V. CONCLUSION AND FUTURE WORKS

This paper presents a new methodology for automated
firewall allocation and configuration that can be used to exploit
the flexibility provided by virtualized networks. The proposed
approach suits the work of a service designer, replacing
manual tasks, and contributes to achieving a correct security
configuration, by means of its formal approach, also finding
the optimal solution among all the possible ones. Up to our
knowledge, this is the first time an approach with these features
is proposed. From the validation of the framework developed
according to the described methodology, the approach has been
shown to be feasible for problem instances requiring tens of
virtual firewalls and similar numbers of security requirements.

Our purpose for a near future is to further refine the method-
ology, addressing the automatic allocation and configuration
of other security functions, such as web application firewalls,
anti-spam filters and VPN gateways. Besides, we are planning
to improve the performance, by pursuing a trade-off between
optimality of configurations and required computational com-
plexity. Finally, we are planning experiments with real SGs.
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