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Abstract 

A fast measurement of the car handling performance is highly 

desirable to easily compare and assess different car setup, e.g. tires size 

and supplier, suspension settings, etc. Instead of the expensive 

professional equipment normally used by car manufacturers for 

vehicle testing, the authors propose a low-cost solution that is 

nevertheless accurate enough for comparative evaluations. The paper 

presents a novel measuring system for vehicle dynamics analysis, 

which is based uniquely on the sensors embedded in a smartphone and 

therefore completely independent on the signals available through 

vehicle CAN bus. Data from tri-axial accelerometer, gyroscope, GPS 

and camera are jointly used to compute the typical quantities analyzed 

in vehicle dynamics applications. In addition to signals such as yaw 

rate, lateral and longitudinal acceleration, vehicle speed and trajectory, 

normally available when working with Inertial Measurement Units 

(IMU) equipped with GPS, in the presented application the steering 

wheel angle is also measured, without additional sensors. The latter 

signal, besides being important for identifying the maneuver imposed 

by the driver, enables the usage of Kalman filters based on dynamic 

vehicle models (e.g. the single-track model) for the estimation of body 

sideslip angle. The system was tested during experimental campaigns 

on test tracks and the comparison between data from a professional 

measuring equipment and the Smart Measuring System showed a very 

good match. In the paper, hardware installation of smartphone and 

related accessories is discussed together with the main tasks of the 

algorithm implemented in the application, i.e. identification of 

smartphone orientation, steering wheel angle measurement, Kalman 

filter sideslip angle estimators (based on kinematic and single-track 

models). Furthermore, the time histories of the vehicle dynamics 

quantities during a lap on a handling test track are shown and compared 

with reference signals from the professional equipment. The proposed 

system proved to be a promising cost- and time-effective solution for 

vehicle dynamics testing. 

Introduction 

The adoption of measuring systems in automotive filed is essential for 

vehicle dynamics analysis and control system design [1,2]. For a 

complete description of vehicle motion, a set of signals needs to be 

recorded and monitored when experimental maneuvers are executed 

[3,4]. This set of quantities may include vehicle body kinematics, i.e. 

global vehicle position together with its linear and angular speeds and 

accelerations, tires kinematics and dynamics, i.e. wheel rotational 

speeds and tires-terrain contact forces, as well as driver-imposed input, 

such as steering wheel angle, gas and brake pedal positions and 

engaged gear. 

A basic approach consists of monitoring all the desired quantities 

through direct sensor measurements; accelerations are commonly 

measured by tri-axial accelerometers, angular speeds by gyroscopes 

and global position by GPS antenna. All these quantities are usually 

measured by professional IMU which includes the measurements set 

into a unique compact sensor. The direct measurement represents, in 

some cases, the most expensive solution since some quantities, such as 

vehicle speed components, usually require extremely expensive 

equipment which may include optical sensors [5] or high precision 

differential GPS [6-10] that relies on real time corrections coming from 

fixed-sight antenna (i.e. RTK corrections). A second approach may 

involve the vehicle network system. Driver input, for instance, are 

usually extracted from the vehicle CAN network. A larger set of data 

can be read from the CAN network, including vehicle longitudinal 

speed estimated from wheels angular speed. Unfortunately, the CAN 

communication is not available for common vehicle users. The last 

solution involves the implementation of estimators [11,12]: most of the 

professional data acquisition systems adopt Kalman Filters algorithms 

to estimate non-measurable quantities, such as lateral speed 

components, sideslip angle, roll and pitch angles, or to improve the 

robustness of available measurements. The Kalman Filter always relies 

on vehicle dynamics models which may include kinematic relations 

[13,14], dynamic equations [15-17], or a combination of both solutions 

[18]. Most of the time, a combination of the three solutions represents 

a good compromise among economic constraints, available onboard 

space for instrumentation installation and accessibility to vehicle CAN 

network.  

Differently from other low-cost solutions [19,20], the present paper 

describes a Smart Measuring System able to satisfy the following 

characteristics: 

• Provide vehicle center of gravity accelerations, velocities 

and global position, angular velocities, steering wheel angle 

and sideslip angle 

• To be independent from vehicle CAN network 

• Require an easy and noninvasive installation and calibration 

• To be based on low-cost (≤ 1000 €) and widely available 

components 

The Smart Measuring System aims to be an attractive solution for both 

amateur and professional users who just need a ready-to-use 

acquisition system for preliminary experimental evaluation. It consists 

of an APP that processes off-line the data measured from sensors 

conventionally embedded on a smartphone. The APP also adopts the 

rear-facing camera of the smartphone to evaluate the steering wheel 

angle applied by the driver, which represents a more transparent and 

non-invasive solution with respect to other ones [21-23]. The steering 
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wheel angle information is also used as input for two cascade Kalman 

Filters which are implemented to estimate the sideslip angle. 

The paper is divided into the following sections: the first one 

introduces the smart measuring system together with a professional 

data acquisition system used as reference for test validation; the second 

section is related to the main tasks of the smartphone application, i.e. 

identification of smartphone orientation, steering wheel angle 

measurement and sideslip angle estimation; experimental signals 

comparison from the two data acquisition systems are then shown in 

the next section. Finally, the outlines of the research are listed in the 

conclusions. 

Data acquisition systems 

For the purpose of validating the smart measuring system, a 

professional data acquisition system by REMAK is adopted which 

includes the following components: 

• A VBOX 3i Dual Antenna (VB3iSL) with a 

GPS/GLONASS receiver to achieve high level accuracy of 

global position and vehicle speed  

• Racelogic’s Inertial Measurement Unit (RLVBIMU04-V2) 

provides highly accurate measurements of pitch, roll, and 

yaw rate using three rate gyros, as well as x, y, z acceleration 

via three accelerometers 

The REMAK data acquisition system is also enhanced by the presence 

of Kalman Filter algorithm to estimate roll, pitch and sideslip angles 

and to depurate the vehicle accelerations from roll and pitch motions. 

The Smart Measuring System relies on the set of sensors commonly 

available on nowadays smartphones. In this application, the 

smartphone sensors set includes the following components: 

• LSM6Dl 6-axis inertial sensor representing a system-in-

package featuring a MEMS 3D digital accelerometer and a 

3D digital gyroscope for low-power consumption 

accelerations and angular speeds measurements  

• GPS/GLONASS/BeiDou/Galileo single antenna receiver for 

global position measurement 

• SM-G950W 12 MP rear-facing camera module with a 

IMX333 Sony sensor, used for recording the steering wheel 

angle motion  

Smartphone application tasks 

The algorithm here presented receives and processes the smartphone 

raw data in order to provide a direct measurements of vehicle 

accelerations, angular speeds and global position enhanced by an 

estimation of steering wheel angle, sideslip angle and longitudinal 

speed. 

A general scheme of the algorithm is represented in Fig. 1 by showing 

three main steps: 

1. Coordinate reference system transformation from the 

smartphone-based system to the vehicle-based one  

2. Estimation of steering wheel angle from smartphone camera 

video frames  

3. Estimation of sideslip angle  

 

Figure 1. General scheme of the algorithm implemented by the Smart 
Measuring System. 

The application developed is designed to calibrate the Smart 

Measuring System, to measure and save smartphone sensors raw data, 

to run the algorithm off-line at the end of the maneuver thus finally 

plotting the desired quantities on the smartphone display. 

Identification of smartphone orientation 

The measurement of vehicle dynamics quantities requires the 

definition of specific coordinate reference systems. Three reference 

frames are thus considered, as shown in Fig.2: 

• Ground absolute reference frame 𝑅𝑂 (𝑋0, 𝑌𝑂, 𝑍𝑂 axes) 

adopted to express the global vehicle position and 

orientation 

• Vehicle reference frame 𝑅𝑉 (𝑋𝑉 , 𝑌𝑉 , 𝑍𝑉 axes) located in the 

vehicle center of gravity and oriented according the to 

vehicle longitudinal and lateral axes; it is a non-inertial 

reference frame since it moves together with the vehicle but 

it does not roll or pitch, thus allowing the definition of 

vehicle roll and pitch angles 

• Smartphone reference system 𝑅𝑆 (𝑋𝑆, 𝑌𝑆, 𝑍𝑆 axes) which 

position and orientation depends on the specific installation 

of the smartphone inside the vehicle; it is a non-inertial 

reference frame since it moves and rotates according to the 

vehicle sprung mass 

 

Figure 2. Coordinate reference systems definition: 0 (ground), V (vehicle), S 
(smartphone) reference frames. 

The smartphone can be placed in a specific position by means of a 

suction holder in order to point the steering wheel angle with its rear 
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facing camera. Generally, the smartphone reference frame does not 

coincide with the vehicle one, where most of the quantities are tipically 

analyzed, including linear accelerations and angular speeds. 

A suitable rotation matrix is then used to transform vector quantities, 

originally measured in the smartphone reference frame, to vectors 

expressed with respect to the vehicle reference frame, according the 

following equation: 

 𝑟𝑉 = 𝐴𝑆
𝑉 𝑟𝑆 (1) 

where 𝐴𝑆
𝑉 is the rotation matrix containing the direction cosines 

defining the orientation of the smartphone reference frame with respect 

to the vehicle frame; 𝑟𝑆 and 𝑟𝑉 are the set of components of a  generic 

vector quantity 𝑟 expressed with respect to frames 𝑅𝑆 and 𝑅𝑉 

respectively. 

A calibration procedure is therefore designed to automatically get the 

rotation matrix 𝐴𝑆
𝑉 when the Smart Measurement System is installed. 

It is based on acceleration measures during specific maneuvers the 

driver is requested to perform: 

1. Stationary vehicle: since the gravity is the only acceleration 

measured by the system in this condition, this phase is used 

to detects the 𝑍𝑉 axis  

2. Acceleration and deceleration of the vehicle on a straight 

line: since the vehicle has null lateral acceleration in this 

condition, this phase is used to detects the < 𝑋𝑉 , 𝑍𝑉 > plane 

By executing the two calibration phases, since the vehicle lateral and 

vertical acceleration components are constantly null or equal to the 

gravity respectively, the measured acceleration vectors are expected to 

lie on the plane identified by the 𝑍𝑉 and 𝑋𝑉 axes. At the same time, 

since the smartphone is rotated with respect to the vehicle frame, the 

measured acceleration vectors lie on a plane that is expected to be 

rotated as well with respect to the smartphone frame. An example of 

the acceleration data measured by the smartphone during the 

calibration procedure is shown in Fig.3. In the figure, the points cloud 

represents the tips of the acceleration vectors with tails at the origin of 

the graph axes. 

 

Figure 3. Acceleration components of the vehicle measured by the smartphone, 
in the smartphone reference frame, during calibration. 

A fitting plane is calculated as the plane passing through the origin of 

the smartphone frame and the points cloud. The axis perpendicular to 

the fitting plane is the 𝑌𝑉 axis. Assuming that the direction of 𝑍𝑉 axis 

is identified by the data with stationary vehicle, the 𝑋𝑉 axis is evaluated 

to complete a right-handed frame together with 𝑌𝑉 and 𝑍𝑉 axes. The 

resulting orientation of the smartphone frame with respect to the 

vehicle frame of the data represented in Fig. 3 is shown in Fig. 4. As a 

matter of facts, the points cloud has a main axis parallel to the vehicle 

longitudinal 𝑋𝑉 axis, the rear face of the smartphone (identified by the 

−𝑍𝑆 axis) points frontward, and the longitudinal 𝑌𝑆 axis of the 

smartphone is approximately parallel to the vehicle lateral 𝑌𝑉 axis; that 

means an approximately horizontal holding positioning of the 

smartphone. 

 

Figure 4. Smartphone reference frame with respect to the vehicle reference 
frame resulting from the calibration procedure. 

The orientation matrix evaluated during the Smart Measuring System 

calibration is then applied to transform the gyroscope and the 

accelerometer data from the smartphone reference frame to the vehicle 

reference frame according to Eq. 1. 

Moreover, the vehicle center of gravity acceleration has to be evaluated 

for vehicle dynamics estimation. The acceleration components of the 

vehicle center of gravity are calculated from the angular speed and 

angular acceleration, since they represent a property of the sprung 

mass and do not depend on the measurement point: 

 

[

𝑎𝑥𝑆
𝑎𝑦𝑆
𝑎𝑧𝑆

] = [

𝑎𝑥𝐺
𝑎𝑦𝐺
𝑎𝑧𝐺

] + 

+[

𝜑̈ 𝑧𝑆 − (𝜑̇
2 + 𝜓̇2) 𝑥𝑆 − 𝜓̈ 𝑦𝑆 + 𝜓̇ 𝜃̇ 𝑧𝑆 + 𝜑̇ 𝜃̇ 𝑦𝑆

𝜓̈ 𝑥𝑆 − (𝜃̇
2 + 𝜓̇2) 𝑦𝑆 − 𝜃̈ 𝑧𝑆 + 𝜓̇ 𝜑̇ 𝑧𝑆 + 𝜑̇ 𝜃̇ 𝑥𝑆

𝜃̈ 𝑦𝑆 − (𝜃̇
2 + 𝜑̇2 )𝑧𝑆 − 𝜑̈ 𝑦𝑆 + 𝜃̇ 𝜓̇ 𝑥𝑆 + 𝜑̇ 𝜓̇ 𝑦𝑆

] 

(2) 

where [𝑎𝑥𝑆  𝑎𝑦𝑆
 𝑎𝑧𝑆]

𝑡 and [𝑎𝑥𝐺  𝑎𝑦𝐺
 𝑎𝑧𝐺]

𝑡 are the smartphone and 

vehicle center of gravity acceleration components, both expressed in 

the vehicle reference frame, 𝜓̇ and 𝜓̈ are the yaw rate and yaw 

acceleration, 𝜃̇ and 𝜃̈ are the roll rate and roll acceleration, 𝜑̇ and 𝜑̈ are 

the pitch rate and pitch acceleration and [𝑥𝑆 𝑦𝑆 𝑧𝑆] is the vector of the 

smartphone position with respect to the vehicle reference frame 

centered in its center of gravity. 

It is important to underline that Eq. 2 is not always applicable since the 

position of the vehicle center of gravity is not always a known 
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parameter and 𝜓̈, 𝜃̈, 𝜑̈ are not directly measured by the smartphone 

sensors. Evaluation of the angular acceleration should require an 

estimation algorithm applied to the angular speed, nevertheless, if the 

smartphone is placed on the driver or front passenger window, it can 

be reasonably supposed that it is sufficiently close to the vehicle center 

of gravity, thus neglecting the distances 𝑥𝑆, 𝑦𝑆 and  𝑧𝑆. 

Steering wheel angle measurement 

The steering wheel angle represents one of the most important 

information for correlating all vehicle dynamics quantities to driver 

input and to allow the estimation of non-measurable quantities such as 

the sideslip angle. The Smart Measuring System adopts the rear-facing 

camera to record the position of ArUco makers set, previously placed 

on the steering wheel angle. An algorithm based on the Computer 

Vision Matlab toolbox is then used for detecting the markers positions 

at different time instants thus providing an estimation of the relative 

steering wheel angle imposed by the driver with respect to the zero-

position detected during the calibration phase. This methodology is 

promising since it not invasive, does not require the communication 

with the vehicle CAN network and it does not require that the camera 

is perfectly placed in front of the steering wheel. 

 
Figure 5. Markers detection through the rear-facing camera. 

The markers are usually installed on a white plate thus avoiding any 

interferences with the steering wheel commands as shown in Fig. 5. 

The algorithm is robust enough when 3 or more markers are attached 

to the steering wheel. Moreover, if one marker is not well detected, its 

position is estimated processing its previous position and the current 

positions of other visible markers. Despite all these advantages, it is 

not exempt from defects: in presence of bright conditions or obstacles 

that totally obstructs the camera view, the algorithm may provide a 

wrong estimation of the steering wheel angle.  

Sideslip angle estimation 

Vehicle sideslip angle, together with yaw rate and lateral acceleration, 

provides a deep insight of vehicle lateral response to a driver-imposed 

steering wheel angle. It is defined as: 

 𝛽 = arctan ( 
𝑣

𝑢
 )  (3) 

where 𝑢 and 𝑣 are respectively the longitudinal and lateral components 

of the vehicle speed measured at its center of gravity. 

The sideslip angle provides an estimation on vehicle lateral drift, thus 

being a fundamental quantity for vehicle stability or “fun-to-drive”. 

 

Figure 6. Cascade Kalman Filter scheme. 

The smartphone does not have specific sensor for a direct measurement 

of vehicle sideslip angle, so two cascade Kalman Filters are 

implemented by adopting different vehicle models as highlighted in 

Fig. 6: a kinematic vehicle model is firstly adopted for estimating the 

vehicle longitudinal speed component starting from measured 

accelerations and the total vehicle speed obtained by the GPS; a single-

track vehicle model is then considered for estimating the lateral 

component of vehicle speed thus calculating the sideslip angle from 

Eq. 3. 

Kinematic vehicle model 

This first model is one of the simplest vehicle models, since it relies on 

the kinematics relations between accelerations and angular speeds of a 

rigid body that can move on a horizontal plane: 

 
(
𝑢̇

𝑣̇
) = [

0 𝜓̇

−𝜓̇ 0
]

⏟    
𝑨

(
𝑢

𝑣
) + [

1 0

0 1
]⏟  

𝑩

(
𝑎𝑥𝐺

𝑎𝑦𝐺

) 
(4) 

where 𝑢̇ and 𝑣̇ are the time derivative of longitudinal and lateral 

vehicle speed components respectively. 

This model has the advantage of being independent on vehicle 

parameters, relying only on the smartphone measurements. The main 

drawback is that it requires the accelerations components of vehicle 

center of gravity as input of the model. These measurements are 

affected by noise and offset perturbations with respect to their actual 

values. Moreover, even if the accuracy of the smartphone 

accelerometers were extremely high and in total absence of noise and 

offset interference, the transformation of acceleration values on 

vehicle center of gravity depends on Eq. 2 and on the availability of 𝜓̈, 

𝜃̈, 𝜑̈, 𝑥𝑆, 𝑦𝑆 and  𝑧𝑆. On the contrary, vehicle yaw rate 𝜓̇ does not 

depend on the measurement point and it is more reliable than vehicle 

acceleration for estimation purposes. 

The discretized version of Eq. 4 is obtained by considering the discrete 

derivative based on smartphone sampling time 𝑇𝑆: 

 
(
𝑢𝑘+1
𝑣𝑘+1

) = [
1 𝑇𝑆𝜓𝑘̇

−𝑇𝑆𝜓𝑘̇ 1
]

⏟          
𝑨𝑘

(
𝑢𝑘
𝑣𝑘
) + [

𝑇𝑆 0
0 𝑇𝑆

]
⏟    

𝑩𝑘

(
𝑎𝑥𝐺,𝑘
𝑎𝑦𝐺,𝑘

) 

(5) 

where the subscript 𝑘 refers the 𝑘𝑇𝑠 time instant, 𝑨𝑘 is the state matrix 

and 𝑩𝑘 is the input matrix. 
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Single-track vehicle model  

The kinematic model described in the previous section is adequate to 

provide a good estimation of vehicle longitudinal speed from to the 

one measured through smartphone GPS. A single-track model is then 

introduced for vehicle lateral speed estimation.  

This second model relies on the following hypothesis: 

• the vehicle is assumed as a rigid body in motion on a plane 

with mass 𝑚 and mass moment of inertia 𝐽 around 𝑍𝑉-axis  

• the front and rear axles are considered as an equivalent front 

and rear tires respectively 

• the front steering angle 𝛿1 is applied as input by the driver 

• vehicle speed is assumed constant 

• two degrees of freedom: yaw rate and sideslip angle 

• vehicle sideslip angle 𝛽 and tires slip angles 𝛼1 and 𝛼2 are 

considered small enough to linearize the trigonometric 

functions 

• curvature radius R much greater than vehicle wheelbase L 

 
Figure 7. Single-track model scheme. 

By referring to Fig. 7, the lateral and yaw equilibrium equations are 

expressed by: 

 
{
𝑚(𝑣̇ + 𝑢𝜓̇) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟

𝐽𝜓̈ = 𝐹𝑦𝑓𝑎 − 𝐹𝑦𝑟𝑏
 

(6) 

where 𝑎 and 𝑏 are the front and the rear semi-wheelbase respectively 

and 𝐹𝑦𝑓, 𝐹𝑦𝑟 are the front and rear axles lateral forces respectively, 

which can be expressed as linear functions of tires slip angles 𝛼𝑓 and 

𝛼𝑟: 

 

𝐹𝑦𝑓 = 𝐶𝑓𝛼𝑓
𝐹𝑦𝑟 = 𝐶𝑟𝛼𝑟

 
(7) 

where 𝐶𝑓 and 𝐶𝑟 are the front and rear axles cornering stiffnesses. 

To consider the change of the cornering stiffness with the lateral 

acceleration a parabolic relation is introduced: 

 
𝐶𝑓/𝑟 = 𝐶𝑓/𝑟 0 − (

𝑎𝑦

𝑎𝑦|𝐶𝑓/𝑟=0
)

2

𝐶𝑓/𝑟 0 
(8) 

where 𝑎𝑦|𝐶𝑓/𝑟=0 is the value of lateral acceleration correspondent to a 

null cornering stiffness, which must be set outside the working range 

of the car at least for one axle. 

The model equations are finally correlated with the following 

kinematic relations: 

 

𝛼𝑓 = 𝛿 −
𝑣 + 𝜓̇𝛼𝑓

𝑢
= 𝜏𝛿𝑠𝑤 −

𝑣 + 𝜓̇𝛼𝑓

𝑢

𝛼𝑟 = −
𝑣 − 𝜓̇𝛼𝑟

𝑢

 
(9) 

where 𝜏 is the steering ratio and 𝛿𝑠𝑤 is the steering wheel angle. 

Equations 6-9 can be finally grouped into the following matrix 

equation: 

 

(
𝑣̇

𝜓̈
) =

[
 
 
 
 −

𝐶𝑓 + 𝐶𝑟

𝑚𝑢
−(

𝐶𝑓𝑎 − 𝐶𝑟𝑏

𝑚𝑢
+ 𝑢)

−
𝐶𝑓𝑎 − 𝐶𝑟𝑏

𝐽𝑢
−
𝐶𝑓𝑎

2 + 𝐶𝑟𝑏
2

𝐽𝑢 ]
 
 
 
 

(
𝑣

𝜓̇
) + 

+

[
 
 
 
𝐶𝑓𝜏

𝑚
𝐶𝑓𝑎 𝜏

𝐽 ]
 
 
 

𝛿𝑠𝑤 

(10) 

where 𝒙 = [𝑣 𝜓̇]′ is the state vector and 𝛿𝑠𝑤 is the input. The former 

equation can be rewritten in a more compact matrix form using the 

state-space representation: 

 
{
𝒙̇ = 𝑨(𝒕)𝒙 + 𝑩𝒘

𝑦 = 𝑪𝒙
 

(11) 

where 𝒘 = 𝛿𝑠𝑤 is the input vector, 𝑦 = 𝜓̇ the measurement output, 

A(t) the time-variant state matrix, B the input matrix, C the output 

matrix. It must be noted that the vehicle longitudinal speed 𝑢 has a 

non-linear relation with respect to the model states, as can be seen in 

Eq. 10. Since the value of this quantity is known, thanks to GPS data, 

the state matrix A is not a constant matrix, but it is time variant due to 

the vehicle longitudinal dynamics and it should be therefore updated 

at each time step. 

The discretized version of Eq. 10 is obtained by considering the 

discrete derivative based on smartphone sampling time 𝑇𝑆: 

 

(
𝑣𝑘+1
𝜓̇𝑘+1

) = 

=

[
 
 
 1 −

𝐶1 + 𝐶2
𝑚𝑢

𝑇𝑆 −(
𝐶1𝑎1 − 𝐶2𝑎2

𝑚𝑢
+ 𝑢)𝑇𝑆

−
𝐶1𝑎1 − 𝐶2𝑎2

𝐽𝑢
𝑇𝑆 1 −

𝐶1𝑎1
2 + 𝐶2𝑎2

2

𝐽𝑢
𝑇𝑆 ]

 
 
 

⏟                            
𝑨𝑘

(
𝑣𝑘
𝜓̇𝑘
) + 

+

[
 
 
 
𝐶1𝜏

𝑚
𝑇𝑆

𝐶1𝑎1𝜏

𝐽
𝑇𝑆]
 
 
 

⏟      
𝑩𝑘

𝛿𝑣,𝑘 

(12) 
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where the subscript 𝑘 refers the 𝑘𝑇𝑠 time instant, 𝑨𝑘 is the state matrix 

and 𝑩𝑘 is the input matrix. 

Kalman Filters Implementation 

The Kalman Filter is a well-known algorithm that uses a series of 

measurements observed over time for estimating desired variables 

through a two-step process: 

1. A time update phase that produces estimates of the current 

state variables through a mathematical model  

2. A measurement update phase that corrects the former 

estimation using the available experimental data 

Two covariance matrices are required for the Kalman Filter 

implementation: 

• The process noise covariance 𝑄 ∈ ℝ𝑛𝑥𝑛, where 𝑛 is the 

number of the mathematical model states. 

• The measurement noise covariance 𝑅 ∈ ℝ𝑚𝑥𝑚, where 𝑚 is 

the number of measured states. 

The algorithm is recursive, and it works also in real time by using only 

the current input measurements and the previously calculated state 

with its uncertainty matrix. 

Two Kalman Filters are designed for the Smart Measuring System, as 

highlighted in Fig. 6: one for estimating the longitudinal vehicle speed 

through the kinematic model and a second one for estimating the 

sideslip angle through a single-track model. 

The time update equations are responsible for projecting forward the 

current state (Eq.13) and error covariance (Eq.14) estimates to obtain 

the a priori or predicted estimates for the next time step: 

 
𝒙𝑘
𝑃 = 𝑨𝑘𝒙𝑘−1 + 𝑩𝑘𝒘𝑘 

(13) 

where 𝒙𝑘
𝑃 = [𝑢𝑘  𝑣𝑘]′  is the a priori or predicted state vector from the 

kinematic model and 𝒙𝑘
𝑃 = [𝑣𝑘  𝜓̇𝑘]′ the one from the single track 

model; 𝒘𝑘 = [𝑎𝑥𝐺,𝑘  𝑎𝑦𝐺,𝑘
]′ is the input vector for the kinematic model 

and 𝒘𝑘 = 𝛿𝑣,𝑘 is for the single-track model. Matrices 𝑨𝑘 and 𝑩𝑘 are 

defined in Eq. 5 and Eq. 12 for the kinematic and single-track models 

respectively. 

The predicted covariance matrix is obtained by the following 

expression: 

 
𝑷𝑘
𝑃 = 𝑨𝑘  𝑷𝑘−1 𝑨𝑘

𝑇 +𝑸 
(14) 

where 𝑷𝑘
𝑃 is the the a priori or predicted error covariance estimates and 

𝑷𝑘−1 is the error covariance estimated in the previous time step. 

The measurement update equations are responsible for the feedback, 

i.e. for incorporating a new measurement into the a priori estimate to 

obtain an improved a posteriori estimate. The first task during the 

measurement update is to compute the Kalman gain 𝐾𝑘: 

 
𝑲𝑘 = 𝑷𝑘

𝑃 𝑪𝑇(𝑪𝑷𝑘
𝑃𝑪𝑇 + 𝑹)

−1
 

(15) 

where 𝑪𝑘 = [1 0] is the output matrix for the kinematic model and 

𝑪𝑘 = [0 1] for the single-track model. 

The next step is to measure the process to obtain 𝑦𝑘, and then to 

generate a posteriori state 𝒙̂𝑘 (Eq. 16) and error covariance 𝑷̂𝑘 (Eq.17) 

estimates. 

 
𝒙̂𝑘 = 𝒙𝑘

𝑃 +𝑲𝑘(𝑦𝑘 − 𝑪 𝒙𝑘
𝑃) 

(16) 

 
𝑷̂𝑘 = [𝑰 − 𝑲𝑘𝑪]𝑷𝑘

𝑃 
(17) 

where 𝑦𝑘 = 𝑢𝑘 is the measurement output for the kinematic model 

(from GPS data) and 𝑦𝑘 = 𝜓̇𝑘 for the single-track model.  

Test track experimental validation 

After a preliminary proof-of-concept phase, when an extensive 

validation of the process and algorithm was carried out adopting virtual 

analysis based on accurate vehicle simulators, the Smart Measuring 

System was tested on a real car driven on a test track for the final 

experimental validation.  

The handling circuit of ASC (Automotive Safety Centre) in Vairano di 

Vidigulfo (Italy) was used to test the first prototypes into a real-world 

scenario. As can be observed in Fig. 8, it is a tortuous and very 

technical circuit having the following main features: length 2.6 km, 

width 7.5 m, maximum straight 350 m, maximum bend radius 400 m, 

minimum bend radius 12 m, clockwise driving direction.  

A professional driver drove three cars belonging to different segments: 

a city car (B segment), a mid-size sport sedan and a pick-up. A typical 

measuring system used for vehicle handling analysis, already 

described in section “Data acquisition systems”, was installed on the 

car and used as reference for the assessment of the smart measuring 

system.  

 

Figure 8. Top view of the handling test track. The red line is the car trajectory 
during a lap. 
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The smartphone was fixed to the driver’s side window by means of a 

mobile phone holder with suction cup and it was oriented so that the 

rear camera can frame the steering wheel angle on which ArUco 

markers were attached, as shown in Fig. 9.  

 

 
 
Figure 9. Typical smartphone installation on a car: mobile phone fixed to the 
driver’s front window via a suction holder (left), smartphone position and 
orientation in the car cabin (right).  

The typical handling quantities, that might be either directly measured 

or estimated, from the two systems working in parallel were collected 

and compared in post processing as explained in the following 

sections. 

Direct measurements comparison 

In this section, the comparison between Smart Measuring System and 

professional measurements in terms of accelerations, angular speeds 

and steering wheel angle during the initialization phase and a single 

lap on the handling test track are shown. 

First, the initialization phase is analyzed. The most interesting signal 

in this case is vehicle longitudinal acceleration. In Fig. 10 the signals 

from the smart measuring system, named APP in the figures, and the 

professional system, named VBOX, are compared in time domain. At 

second 2, vibration due to engine start is clearly visible from the time 

history, at second 8.5 the car is accelerated in first gear and then braked 

starting from second 13, a similar sequence of acceleration and braking 

is repeated from second 18 to 30. The two signals overlap very well 

both allowing to distinguish the aforementioned phases and the 

frequency content of each of them. The unfiltered APP data appear 

noisier due to vibration induced by the mobile phone holder 

compliance.  

The natural frequency of the supporting system, which was identified 

to be 15.5 Hz, is well above the frequency range of handling analysis, 

i.e. 0-3 Hz; hence it does not interfere with the measure of chassis rigid 

body dynamics. More specifically, the spectrograms of the three 

components of chassis acceleration were analyzed with the aim of 

identifying the natural frequency of the supporting system. In Fig. 11, 

as an example, the spectrogram of the vertical acceleration measured 

during an initialization phase is reported and the resonance frequency 

located. 

 

 

Figure 10 – Longitudinal acceleration during the initialization phase.  

Figure 11 – Spectrogram of the vertical acceleration and identification of the 
natural frequency of the supporting system during the initialization phase. The 

reference value for dB is 1 m/s^2. 

The experimental validation of the smart measuring system was then 

carried out by comparing the time histories of signals relevant for 

handling analysis. Data from VBOX system were used as reference to 

validate the measures/estimates from APP. Fig. 12 and Fig.13 plot the 

trends of longitudinal and lateral components of the vehicle 

acceleration. Although the APP data are noisier, as already explained 

for the initialization phase, the main dynamics of the signals are 

properly captured. Fig. 14 and Fig.15 show the trends of steering wheel 

angle and yaw rate. 

Resonance 
frequency: 

15.5 Hz 

aZ spectrogram 

Engine 

start 

1st Accel. 

1st Braking 

2nd Accel. 

2nd Braking 
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Figure 12 – Experimental validation: longitudinal acceleration during a lap on 

the handling test track. 

 

Figure 13 – Experimental validation: lateral acceleration during a lap on the 

handling test track. 

 

 

Figure 14 – Experimental validation: steering wheel angle during a lap on the 

handling test track. 

 

Figure 15 – Experimental validation: yaw rate during a lap on the handling 

test track. 

By applying a 2nd order Butterworth type low pass filter with cut-off 

frequency set at 13 Hz to the raw data from smart system, trends like 

the one shown in Fig. 16, where the filtered yaw rate signals are 

compared, can be obtained. 

 

Figure 16 – Experimental validation: filtered yaw rate. 

The comparison of the measures from the two systems, shown in 

Figures 12-16, highlights a very good correlation. The smart 

measurement is able to capture the dynamics of interest for vehicle 

handling analysis. However, a variable phase lag is visible, e.g. at 

around 100 s in the figures, due to the lack of a shared clock system 

for all the smartphone sensors. The smart measuring system will be 

updated in the next App release to solve this synchronization issue. 

Estimated sideslip angle comparison 

In this section, results from the sideslip angle estimation algorithm 

based on Kalman filters are compared with the measures made by the 

dual antenna GPS system.  

Before the test, the cars used on the proving ground were weighted in 

their final setup, considering driver, passengers and equipment. The 

longitudinal position of the center of gravity was then estimated 

knowing the axles weight. The values of wheelbase and steering ratio 

were available from cars data sheets.  

The cornering stiffnesses of front and rear axle have been optimized 

so that the estimation error was minimum. The starting values and the 

variability range of these parameters are typical of the considered car 

segment. The idea, for non-professional users of the smart system, is 
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to allow them selecting simply the car segment from a list and then 

load a set of values for the bicycle model parameters which are 

representative of the selected car type, that will be used for the dynamic 

Kalman filter initialization. 

Two cars belonging to different segments were considered for the 

assessment of the smart measuring system, a fastback coupé (Vehicle 

A) and a pick-up truck (Vehicle B). The single-track model parameters 

for these two vehicles are reported in Table 1. 

The covariance matrices were tuned and then they are kept the same 

for both cars. The only difference between the two estimators are the 

values of the two car models.  

Table 1. Parameters of the two vehicles used in the Kalman sideslip estimator. 

 Vehicle A Vehicle B 

Type Fastback Coupé Pick-up Truck 

a [mm] 1190 1336 

b [mm] 1380 1664 

m [kg] 1446 2226 

J [kg m2] 1800 2500 

𝜏 [-] 1/12.5 1/17 

𝐶𝑓0 [kN/rad] 130 150 

𝐶𝑟0 [kN/rad] 110 145 

𝑎𝑦|𝐶𝑓,𝐶𝑟=0 [g] 1.12 1.02 

𝑟𝑚𝑠(𝛽𝑃𝑟𝑜 − 𝛽𝑠𝑚𝑎𝑟𝑡) [°] 0.56 0.55 

𝑄0 diag([0.005 0.005]) 

𝑅0 0.1 

 

 

Figure 16 – Side-slip angle during a fast lap on the handling test track: 

comparison between measure by dual antenna (Pro) and estimation based on 

Kalman filter (Smart). Vehicle A. 

 

Figure 17 – Side-slip angle during a fast lap on the handling test track: 

comparison between measure by dual antenna (Pro) and estimation based on 

Kalman filter (Smart). Vehicle B. 

Fig. 16 and Fig. 17 show the sideslip angle time histories during the 

fast lap on the handling circuit travelled by the two selected vehicles. 

The Kalman filter side slip angle estimator based on single-track model 

with variable cornering stiffness proved to be suitable to perform the 

task even in these extreme dynamic conditions. The rms of the error 

during the reported tests is less than 0.6 degrees for both cars, that is 

an acceptable value for the aim of this instrumentation.  

If the mean value of the cornering stiffness is used (i.e. 70% of the 

maximum value C0 reported in the Table) instead of implementing 

their dependency on lateral acceleration, the error increases by 20% 

for Vehicle B, and by 3% for Vehicle A. 

In the absence of a professional measuring system that can be used as 

a reference for the filter tuning, a robust identification procedure is 

needed to find the right cornering stiffness values and more in general 

the lacking model parameter values. For instance, a steady-state 

cornering maneuver like steering pad and a transient maneuver like 

sweep steer are suitable tests allowing parameter identification. 

Conclusions 

In this paper a novel measuring system based on the sensors available 

on a smartphone aiming at fast vehicle handling evaluation has been 

presented. The remarks of the activity are: 

- a preliminary vibration analysis of the mobile phone 

supporting system showed that its natural frequency is well 

above the maximum frequency considered in handling 

analysis, so it does not significantly interfere with the quality 

of the measure; 

- although the APP data are noisier, due to the compliance of 

the supporting system, the main dynamics of the signals are 

properly captured; 

- a simple low-pass filter is effective to extract the trend of the 

signals of interest from raw data coming from sensors; 

- the sensors available in a top-class smartphone are accurate 

and with a bandwidth compliant with typical handling 

analysis requirements; 

- the Kalman filter estimator proved an effective method for 

side slip angle estimation but requires model parameters 

values; 

- an automatic tuning procedure will be developed in the 

future to automatically detect the model parameters by using 
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steady-state cornering events, especially for cornering 

stiffness identification, and transient events like sweep-steer; 

- the system can be effectively used for a fast and cheap 

evaluation of the vehicle dynamics for private and 

professional usage. 
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