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Majorana-like localized spin density without bound states in topologically
trivial spin-orbit coupled nanowires

Lorenzo Rossi ,* Fabrizio Dolcini , and Fausto Rossi
Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino, Italy

(Received 20 February 2020; accepted 28 April 2020; published 13 May 2020)

In the topological phase of spin-orbit coupled nanowires Majorana bound states are known to localize at the
nanowire edges and to exhibit a spin density orthogonal to both the magnetic field and the spin-orbit field. By
investigating a nanowire exposed to a uniform magnetic field with an interface between regions with different
spin-orbit couplings, we find that the orthogonal spin density is pinned at the interface even when both interface
sides are in the topologically trivial phase, and even when no bound state is present at all. A trivial bound
state may additionally appear at the interface, especially if the spin-orbit coupling takes opposite signs across
the interface. However, it can be destroyed by a smoothening of the spin-orbit profile or by a magnetic field
component parallel to the spin-orbit field. In contrast, the orthogonal spin density persists in various and realistic
parameter ranges. We also show that, while the measurement of bulk equilibrium spin currents has been elusive
so far, such robust orthogonal spin density peak may provide a way to detect spin current variations across
interfaces.

DOI: 10.1103/PhysRevB.101.195421

I. INTRODUCTION

Topological materials have been under the spotlight of
experimental and theoretical research for years by now, due
to their relevance in terms of fundamental physics and their
broad spectrum of applications, from spintronics to quan-
tum computing [1–3]. One of the most remarkable features
of a topological phase is that edge states localize at the
interface with a topologically trivial phase. Indeed several
theoretical analysis have shown that such interface states
emerge at the boundaries of topological insulators (TIs), like
the one-dimensional Su-Schrieffer-Heeger model for poly-
acetylene [4–6] or the two-dimensional quantum spin Hall
systems [7–11]. Similarly, as first predicted by Kitaev [12],
at the edges of topological superconductors [13–15], real-
ized in proximized nanowires (NWs) with Rashba spin-orbit
coupling (RSOC) [16,17], in ferromagnetic atomic chains
deposited on a superconductor [18], or in two-dimensional
TIs proximized by superconductors and magnets [19–21],
Majorana quasiparticles (MQPs) appear. These exotic quasi-
particles, which are equal to their antiparticles, are currently
considered a promising platform for quantum computing in
view of their nontrivial braiding properties and their robust-
ness to charge decoherence effects [22–26].

While in theoretical models a topological phase is charac-
terized by a well specified range of parameters in the Hamil-
tonian, when it comes to finding an experimental evidence
of such phase in a given material, the difficult question is
“how to distinguish signatures of a topological from a trivial
bound state?” As a general criterion, a topological bound state
is stable to perturbations that do not close the gap of the
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topological phase, while a trivial bound state is not. However,
because in a given experimental setup the actual parameter
range characterizing the topological phase is not known a
priori and/or may be relatively narrow, the search for such
stable signatures is in general not a trivial task. For instance,
although it is by now commonly accepted that MQPs exist in
RSOC nanowires [27–34], the early observations of a zero-
bias conductance peak stable to magnetic field and Fermi
energy variations were cautiously claimed to be compatible
with the existence of MQPs. The remark that such a scenario
may also be caused by Kondo effect [35], disorder [36,37],
or inhomogeneities [38] has recently spurred further investi-
gations, which pointed out that in the topological phase also
trivial bound states may be present [38–44]. Furthermore, a
quite recent analysis [45], carried out on a nanowire with
homogeneous RSOC and with inhomogeneous magnetic field,
showed that at the interface between two magnetic domains
with opposite magnetization directions, bound states appear
that are unrelated to the Jackiw-Rebbi topological states.

A more clear evidence of topological bound states requires
a spatially resolved analysis. This was done, for instance,
in ferromagnetic atomic chains deposited on a supercon-
ductor [46], where the combined use of spatially resolved
spectroscopic and spin-polarized measurements showed that
zero-bias conductance peaks are due to states localized at
the ends of the chain. Yet, the smoking gun enabling one to
identify such states with MQPs is their disappearance in the
normal state, when superconductivity is suppressed. As far
as NWs are concerned, it has been pointed out that MQPs
in the topological phase exhibit an orthogonal spin density,
i.e., a component perpendicular to both the magnetic and
spin-orbit fields, localized at the NW ends [47–49]. In order
to identify a topological phase in a given system, it is thus
particularly important to understand whether and when the
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FIG. 1. (a) Top view of a Rashba nanowire deposited on a
substrate: the Rashba effective magnetic field hSO is directed along z,
whereas an actual magnetic field, externally applied in the substrate
plane, has components in the x-z substrate plane. The NW con-
tains an interface between two regions with different RSOC values.
(b) The spatial profile of the RSOC across the interface of the NW,
ranging from the bulk values αL to αR over a smoothening length
scale λs. (c) Examples of electronic bands related to the bulks of
the two interface sides, the left-hand side in the Zeeman dominated
regime, and the right-hand side in the Rashba-dominated regime.

topologically trivial phase may exhibit observables that are
spatially localized at the interfaces and that may mistakenly
be interpreted as a topological signature. So far, this aspect
has been analyzed far less than the topological bound states.

This paper is meant to bridge this gap. Specifically, we
consider the case of a RSOC NW exposed to a uniform
magnetic field, and we analyze the spatial profile of charge
and spin densities at the interface between two regions with
different values of RSOC, as sketched in Fig. 1(a). Such types
of interfaces emerge quite naturally in any realistic setup,
since metallic electrodes or gates are typically deposited on
top of a portion of the NW, thereby altering the underneath
structure inversion asymmetry characterizing the very RSOC.
Furthermore, the recent advances in various gating tech-
niques, including gate-all-around approaches, allow a large
tunability of the RSOC constant, possibly even changing the
RSOC sign [50–57].

Importantly, on both sides of the interface, the NW that
we consider is in the topologically trivial phase, since no
superconducting coupling is included. Furthermore, as the gap
depends only on the strength of the magnetic field, it never
closes at the interface, since the magnetic field is assumed
to be uniform. Thus, under these conditions the existence of
bound states of topological origin is ruled out a priori.

Our analysis unveils various noteworthy aspects. In the
first instance, a bound state may appear at the interface.
Importantly such bound state, while being not topological,

is not a customary interface state merely arising from the
inhomogeneity of the RSOC. Indeed it can only exist if an
external magnetic field is applied orthogonally to the RSOC
field direction, and if its intensity fulfills specific conditions
with respect to the two spin-orbit energies characterizing
the two NW regions. The conditions of existence and the
robustness of the bound state are analyzed in details in terms
of different values of RSOC across the interface, including
the smoothening length characterizing the crossover between
these two values and the presence of a magnetic field compo-
nent parallel to the RSOC field direction.

Second, we find for realistic values of chemical potential
and temperature that the orthogonal spin density exhibits
a peak pinned at the interface. Despite the NW is in the
topologically trivial phase, such a peak is relatively robust to
other parameter variations. In fact, we show that it persists
even when the bound state is absent, indicating that in such
a case also the continuum states locally modify their spin
texture to maintain such effect.

Furthermore, by considering the case of two interfaces, we
show that the peaks of the orthogonal spin density are opposite
at the two ends of the inner NW region, similarly to what
occurs for MQPs in the topological phase.

These results imply that a localized orthogonal spin density
can neither be taken as a unique signature of a MQP nor of a
topologically trivial bound state. However, we argue that it
can represent a useful way to indirectly detect spin current
differences. Indeed, while the detection of a bulk equilibrium
spin current, which emerges in a homogeneous NW from
the correlations between spin and velocity induced by the
magnetic and spin-orbit fields [58], has been elusive so far,
any variation of equilibrium spin current occurring at the
interface is precisely related to the orthogonal spin-density
peak predicted here.

The paper is organized as follows. In Sec. II we introduce
the model and describe the involved energy scales. In Sec. III
we present the results concerning the bound state, discussing
first the case of a sharp RSOC interface profile in the pres-
ence of a magnetic field applied along the NW axis. Then
we analyze the more realistic case of a finite smoothening
length in the profile, and address the effect of a magnetic
field component parallel to the spin-orbit field direction. In
Sec. IV we investigate the spatial profile of the charge and spin
densities, and analyze specifically the bound state contribution
to them. In Sec. V we discuss the interpretation of our main
results, we include the case of two interfaces and we propose
some possible experimental realizations. Finally, in Sec. VI
we draw our conclusions.

II. THE MODEL FOR A SOC INTERFACE

A. Nanowire Hamiltonian

Let x denote the longitudinal axis of a NW deposited on
a substrate. The NW is characterized by a RSOC, which is
assumed to take two different values αL and αR on the left and
on the right side of an interface, respectively [see Figs. 1(a)
and 1(b)]. This inhomogeneity in the RSOC profile α(x) may
result, e.g., from the presence of a gate covering only one
portion of the NW, or by two different gate voltage values

195421-2



MAJORANA-LIKE LOCALIZED SPIN DENSITY WITHOUT … PHYSICAL REVIEW B 101, 195421 (2020)

applied to top/bottom gates or to the substrate. The crossover
between αL and αR occurs over a smoothening length λs.
Denoting by z the direction of the spin-orbit field hSO, i.e.,
the effective “magnetic” field generated by the RSOC [see
Fig. 1(a)], the NW Hamiltonian is

Ĥ =
∫

�̂†(x) H (x) �̂(x) dx, (1)

where

H (x) = p2
x

2m∗ σ0 − {α(x), px}
2h̄

σz − h · σ. (2)

Here �̂(x) = (�̂↑(x), �̂↓(x))T is the electron spinor field,
with ↑,↓ corresponding to spin projections along z, px =
−ih̄∂x is the momentum operator, m∗ is the NW effective
mass, σ0 is the 2 × 2 identity matrix, and σ = (σx, σy, σz )
are the Pauli matrices. For definiteness, we take the location
of the interface at x = 0. The anticommutator in Eq. (2) is
necessary since px does not commute with the inhomogeneous
RSOC α(x) [59,60]. The last term in Eq. (2), where h =
gμBB/2, describes the Zeeman coupling with an external uni-
form magnetic field B = (Bx, 0, Bz ) applied in the substrate
plane, with μB denoting the Bohr magneton and g the NW
Landé factor. It is useful to decompose the magnetic gap
energy vector as h = hxix + hziz, where hx and hz denote the
components parallel and perpendicular to the nanowire axis x,
i.e., perpendicular and parallel to the Rashba spin-orbit field
direction z, respectively [see Fig. 1(a)]. Although for most of
our analysis we shall focus on the case of the magnetic field
directed along the nanowire axis x, we shall also discuss the
effects of the component hz parallel to hSO.

B. Energy scales

In order to describe the results about the inhomogeneous
RSOC profile at the interface, it is first worth pointing out the
energy scales involved in the problem.

1. The homogeneous NW

Let us start by briefly summarizing the case of a homoge-
neous profile α(x) ≡ α in Eq. (2), for an infinitely long NW.
In such a case the Hamiltonian (2) commutes with px, and the
spectrum reads [58–60]

E±(k) = ε0
k ±

√
h2

x + (αk + hz )2, (3)

where ε0
k = h̄2k2/2m∗ is the customary parabolic spectrum in

the absence of RSOC and magnetic field. The spectrum (3)
describes two bands separated by a minimal gap 2�Z , where
the quantity

�Z = |hx| (4)

shall be henceforth called the magnetic gap energy. Moreover,
the RSOC α identifies the spin-orbit wave vector kSO =
m∗|α|/h̄2, which characterizes, in the absence of external
magnetic field, the two degenerate minima E (±kSO) = −ESO

of the spectrum, where

ESO = m∗α2

2h̄2 = h̄2k2
SO

2m∗ (5)

is called the spin-orbit energy.

In the case hz = 0 the magnetic field is directed along x,
i.e., orthogonal to the RSOC field, the spectrum (3) is sym-
metric E±(−k) = E±(+k). Two regimes can be identified:

(a) In the Zeeman-dominated regime (�Z > 2ESO) both
bands have a minimum at k = 0, which takes values Emin

± =
±�Z , respectively.

(b) In the Rashba-dominated regime (�Z < 2ESO), the
upper band still has a minimum Emin

+ = +�Z at k = 0, while
the lower band acquires two lower and degenerate minima
Emin

− = −ESO − �2
Z/4ESO occurring at k = ±kmin, with

kmin = kSO

√
1 − �2

Z/4E2
SO. (6)

When a component hz �= 0 parallel to the RSOC field is
also present, the minimal gap 2�Z between the two bands
occurs at k = −hz/α and the spectrum is no longer symmetric
E±(−k) �= E±(+k).

The eigenfunctions related to the spectrum (3) read

ψk±(x) = wk± exp[ikx]/
√


, (7)

with 
 denoting the system length. They describe plane waves
with spinors

wk− =
(

cos θk
2

sin θk
2

)
, wk+ =

(
− sin θk

2

cos θk
2

)
, (8)

whose spin orientation n(k) ≡ (sin θk , 0 , cos θk ) lies on the
x-z substrate plane and forms with the z axis an angle θk ∈
[−π, π ]. The latter, defined through

cos θk = αk + hz√
(αk + hz )2 + h2

x

,

sin θk = hx√
(αk + hz )2 + h2

x

,

(9)

depends on the wave vector k, the magnetic field, and the
RSOC α. In particular, it is worth recalling that in the case
of a magnetic field along the NW axis (hz = 0) and in the
deep Rashba-dominated regime (�Z 	 2ESO) the states with
energy inside the magnetic gap mimic the helical edge states
of the quantum spin Hall effect. Indeed their spin orientation,
determined mainly by the RSOC, is opposite for right- and
left-moving electrons, whose helicity is determined by the
sign of the RSOC α. This is precisely the most suitable regime
for the topological phase to be induced by an additional s-
wave superconducting coupling [16,17,61,62].

2. The NW with a RSOC interface

When an interface separates two portions of a NW char-
acterized by two different values αL and αR of RSOC [see
Fig. 1(b)], the momentum px does not commute with the
Hamiltonian characterized by an inhomogeneous α(x) profile,
and the spectrum cannot be labeled by a wave vector k. Before
attacking the inhomogeneous problem in the next section, it is
worth identifying the energy scales and the possible scenarios
one can expect in the interface problem from a preliminary
analysis of the bulks of the two regions across the RSOC
interface. To begin with, the two bulk values αL and αR of
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the two NW regions lead to two spin-orbit energies (5)

ESO,ν = m∗α2
ν

2h̄2 , ν = R/L. (10)

Without loss of generality, we shall choose the RSOC with
higher magnitude |α| on the right-hand side, and we can set it
to a positive value αR > 0, whereas the RSOC on the left-hand
side is allowed to take any value in the range −αR � αL � αR

[63]. Correspondingly, one has ESO,L � ESO,R. The fact that
the magnetic field is uniform has important consequences,
which are easily illustrated in the case hz = 0: First, in the
bulk of each region the gap between the bands is always
given by 2�Z , regardless of the regime (Rashba or Zeeman
dominated) of each interface side. Second, the overall mini-
mum of the two energy band bottoms is determined by the
band bottom of the side with higher spin-orbit energy, i.e., the
right-hand side, and is thus given by

Emin
band =

⎧⎪⎨
⎪⎩

−�Z , if �Z > 2ESO,R,

−ESO,R

(
1 + �2

Z

4E2
SO,R

)
, if �Z < 2ESO,R.

(11)

With these notations, if the right side is in the Zeeman-
dominated regime, so is the left-hand side, whereas if the
right side is in the Rashba-dominated regime the left-hand
side can be either in the Rashba- or in the Zeeman-dominated
regime. There can thus be only three possible regime com-
binations: (i) ESO,L � ESO,R � �Z/2, where both sides are
Zeeman dominated; (ii) �Z/2 � ESO,L � ESO,R, where both
sides are Rashba dominated; and (iii) ESO,L � �Z/2 � ESO,R,
where the left side is Zeeman dominated while the right side is
Rashba dominated. The bands of the latter case are illustrated
as an example in Fig. 1(c).

III. BOUND STATE AND ITS STABILITY

In this section we focus on the inhomogeneous interface
problem. By diagonalizing the inhomogeneous Hamiltonian,
with methods to be described here below, we find that its
spectrum always exhibits a continuum branch, whose bottom
Emin

cont coincides with the minimal band energy obtained in
Eq. (11) from the comparison of bare bulk spectra. How-
ever, for some parameter range (see below), the spectrum
also displays an additional eigenvalue Ebs, lying below the
continuum spectrum Emin

cont. The related eigenfunction exhibits
an evanescent behavior for |x| → ∞. When such bound state
exists, we define its positive “binding energy” as

Eb = Emin
cont − Ebs > 0. (12)

Here below we now analyze the conditions for its existence.

A. The case of a sharp interface

Let us start by analyzing the existence of the bound state
in the case of a sharp interface, where the smoothening length
λs → 0 vanishes and the profile can be assumed as

α(x) = αLθ (−x) + αR θ (x), (13)

with θ denoting the Heaviside function. In this case the
eigenfunctions of the inhomogeneous problem can be ob-
tained analytically by combining the eigenstates (7) of the

FIG. 2. The case of a sharp profile interface Eq. (13). (a) The
phase diagram for the existence of the bound state is shown as a
function of the magnetic gap energy (in units of twice the maximal
spin-orbit energy 2ESO,R) and of the ratio between the two RSOC val-
ues across the interface. The thick black line identifies the transition
curve, where the binding energy vanishes. The vertical thin dashed
line indicates the crossover value from the Rashba-dominated to the
Zeeman-dominated regime for the right side of the interface. (b) The
binding energy Eb of the bound state as a function of �Z/2ESO,R for
four different values of the RSOC ratio across the interface.

homogeneous problem in each side and by matching them
appropriately at the interface. In particular, since bound states
are eigenstates with evanescent wave function for |x| → ∞,
they are obtained requiring that the wave vector k acquires an
imaginary part. Details of such calculation can be found in
Appendix A.

By keeping one side of the junction as a reference, e.g., the
right-hand side where the bulk spin-orbit energy is maximal,
the problem can be formulated in terms of dimensionless
parameters, namely the RSOC ratio αL/αR ∈ [−1 , 1] and the
energy ratios Eb/ESO,R and h/ESO,R to the maximal spin-orbit
energy ESO,R. We shall focus here below on the case where
the applied magnetic field is directed only along the nanowire
axis x, h = hxix, i.e., orthogonally to the Rashba spin-orbit
field, while the effects of a parallel magnetic field component
hz will be discussed later.

The results are presented in Fig. 2. In particular, Fig. 2(a)
displays the phase diagram of the existence of the bound state.
For a sufficiently strong magnetic field, �Z > 2ESO,R, i.e.,
when both NW sides are in the Zeeman-dominated regime,
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FIG. 3. The binding energy as a function of the magnetic gap
energy, for an interface with αL = −αR, with ESO,R = ESO,L =
0.25 meV. (a) The effects of a smoothening length. (b) Effects of
a magnetic field component hz parallel to the spin-orbit field on the
binding energy, for a fixed smoothening length λs = 50 nm.

the bound state always exists, while for �Z < 2ESO,R, where
the NW right side is in the Rashba-dominated regime, the
bound state may or may not exist. In particular, for �Z = 0
(no external magnetic field), the bound state never exists,
regardless of the ratio of the two RSOC values across the
interface. This shows that the bound state, although it has
no topological origin, it is not an intrinsic interface state like
the ones occurring at a customary semiconductor interface.
The thick black in Fig. 3(a) denotes the transition curve for the
existence of the bound state, and corresponds to the vanishing
of the binding energy Eb = 0. In particular, the parabolic
curve for �Z/2ESO,R < 1 is described by the equation

��
Z

2ESO,R
=

√
1 + αL/αR

2
, (14)

while the upper horizontal line corresponds to the homo-
geneous NW in the Zeeman-dominated regime, where the
bound state does not exist, as is obvious to expect. Then,
Fig. 2(b) shows, for four different values of the ratio αL/αR,
the behavior of the binding energy Eb as a function of the ratio
�Z/2ESO,R. Several features are noteworthy.

First, in all cases the binding energy exhibits a nonmono-
tonic behavior as a function of the magnetic gap energy,
with a maximum Emax

b occurring for a magnetic gap energy
slightly below the transition value �Z = 2ESO,R between the
Rashba- and Zeeman-dominated regime of the right-hand
side, highlighted by the vertical dashed line as a guide to the
eye.

Second, the bound state energy strongly depends on the
ratio αL/αR of the two RSOC values, and is typically much
higher when the RSOC changes sign across the interface. In
particular, the optimal condition for the existence of the bound
state is αL/αR = −1, i.e., when the RSOC takes equal and
opposite values of two sides: In this situation not only the
bound state always exists, its binding energy is also higher
than any other case. For these reasons, we shall henceforth
term such case the “optimal configuration.” In particular, it
can be shown that, for weak applied field (�Z 	 2ESO,R),
the binding energy of the optimal configuration behaves as
Eb � �2

Z/4ESO,R, while for strong field (�Z  2ESO,R), one
finds Eb � E2

SO,R/2�Z .
Third, for all other cases (−1 < αL/αR < 1) the bound

state exists only if the magnetic gap energy overcomes a
minimal threshold value, which precisely corresponds to the
transition curve of Fig. 2(a) described by Eq. (14). The
threshold of the magnetic gap energy increases as the RSOC
ratio αL/αR increases from the negative value −1 to the value
+1, corresponding to the homogeneous case. Furthermore,
the following “rule of thumb” can be inferred: when the band
bottoms of the two interface sides are equal, the bound state
certainly exists. Indeed a close inspection of Fig. 2 shows
that this certainly occurs in these two situations: (i) when
�Z/2ESO,R > 1, i.e., when both sides are in the Zeeman-
dominated regime and their band bottoms are both equal to
−�Z ; and (ii) when αL = −αR, i.e., when the two spin-orbit
energies (10) are equal, both sides are in the same regime
(Rashba or Zeeman dominated) and thus have the same band
bottoms. In all other cases the existence of the bound state
depends on the specific energy ratios.

Finally, even when the bound state exists, its binding
energy can be quite small. For instance, the maximal binding
energy in the case where αL/αR = 1/2 is about 25 times
smaller than the maximal value in the optimal case αL/αR =
−1. Similarly, even in the regime �Z/2ESO,R > 1 the binding
energy decreases with increasing magnetic field.

B. Effects of smoothening length

In any realistic system the crossover between two RSOC
bulk values occurs over a finite smoothening length λs. To
include such an effect we now assume the following profile
function:

α(x) = αR + αL

2
+ αR − αL

2
Erf

(√
8 x

λs

)
, (15)

which varies from αL to αR up to 2% within the length scale
λs. In Eq. (15) Erf denotes the error function. Although in
the presence of such smoothened profile the model cannot be
solved analytically, it can be approached by an exact numeri-
cal diagonalization of the Hamiltonian (2), with a method sim-
ilar to the one introduced in Ref. [58], whose details specific
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to the profile (15) are summarized in Appendix B. Instead of
expressing the results in terms of dimensionless parameters,
we now choose to fix the parameters to realistic setup values.
For definiteness we consider the case of a InSb NW, with
an effective mass m∗ = 0.015 me and a maximal spin-orbit
energy ESO,R = 0.25 meV. Furthermore, in order to appreciate
the effects of the smoothening length, we focus on the case of
the optimal configuration αR/αL = −1. The results, displayed
in Fig. 3(a), show the binding energy as a function of the
magnetic gap energy �Z for four different values of the
smoothening length. As one can see, while for the ideal case
λs → 0 (sharp profile) the bound state always exists, for any
finite smoothening length the bound state only appears above
a threshold value for the Zeeman field. For sufficiently strong
applied magnetic field (Zeeman-dominated regime) the bound
state always exists. However, the binding energy exhibits an
overall suppression for increasing λs. These effects can be
understood be realizing that a crossover from −αR to αR in
the RSOC profile occurring over a finite smoothening length
can, to a first approximation, be considered as a stairlike
sequence of smaller sharp α steps. As the analysis carried out
above on the sharp profile indicates (see Fig. 2), in the case
of a nonoptimal jump αL > −αR, a threshold value for �Z

does exist and the binding energy is reduced. In summary, a
finite smoothening length λs broadens the white portion of the
sharp-profile phase diagram Fig. 2(a) where the bound state
does not exist, and suppresses the binding energy.

C. Effects of a parallel field component

So far we have analyzed cases where the magnetic field hx

is directed along the NW. Here we want to discuss the effect
of a magnetic field component hz parallel to the spin-orbit
field. We first point out that, for hz �= 0 and hx = 0, i.e., for
a magnetic field directed purely along the spin-orbit field
direction z, the eigenvalue problem for the Hamiltonian (2)
completely decouples in the two spin-↑ and spin-↓ compo-
nents, and it can be shown that the bound state does not
exist (see Appendix A). The orthogonal field component hx

is thus a necessary, though not sufficient, condition for the
bound state to exist. One can then analyze how the parallel
field component hz modifies the existence of the bound state,
for a fixed value of hx �= 0. To this purpose, we focus again
on a InSb NW, with an optimal configuration αR = −αL > 0,
and we take a realistic smoothening length λs = 50 nm. The
result, displayed in Fig. 3(b), shows that the presence of an ad-
ditional parallel field component hz modifies the dependence
of the binding energy Eb as a function of the magnetic gap
energy �Z , especially by increasing the threshold value ��

Z at
which the bound state starts to exist. Similarly to the case of
the smoothening length, the binding energy values are quite
reduced as compared to the case hz = 0.

IV. CHARGE AND SPIN DENSITY SPATIAL PROFILES

In the previous section we have discussed the existence
and the robustness of the bound state, which is a spectral
feature. Here we wish to analyze spatial behavior of physical

observables, namely the charge and spin densities, described
by the operators

n̂(x) = e �̂†(x) �̂ (x), (16)

Ŝ(x) = h̄

2
�̂†(x) σ �̂ (x), (17)

respectively, where e denotes the electron charge. The pres-
ence of the interface makes the NW an inhomogeneous
system, and we aim to investigate the spatial profile of the
equilibrium expectation values

ρ(x) ≡ 1

e
〈n̂(x)〉◦, (18)

s(x) ≡ 2

h̄
〈Ŝ(x)〉◦, (19)

with a particular focus on their behavior near the interface.
Details about the computation of such expectation values can
be found in Appendix B. Before presenting our results, a few
general comments are in order.

Chemical potential and temperature. The equilibrium dis-
tribution determining the expectation values (18) and (19) is
characterized by a well defined value of chemical potential μ

and temperature T . As pointed out above, the whole spectrum
of the inhomogeneous Hamiltonian (2), which we obtain by
an exact numerical diagonalization, consists of a continuum
spectrum, related to extended propagating states, and possibly
(if present) a bound state, energetically lying below the con-
tinuum and corresponding to a state localized at the interface.
At equilibrium, and ideally at zero temperature, all states (lo-
calized or extended) with energy up to the chemical potential
μ are filled up, and contribute to determine the equilibrium
expectation values ρ(x) and s(x), while at finite temperature
the Fermi function is smeared over a range kBT around the
chemical potential. We shall choose for T and μ realistic val-
ues of low-temperature experimental setups involving NWs,
namely T = 250 mK and μ = 0, corresponding to the energy
value in the middle of the magnetic gap [see Fig. 1(c)]. This is
the situation, for instance, where the Fermi energy states of a
NW in the Rashba-dominated regime mimic the helical states
of a quantum spin Hall system.

Orthogonal spin density. Concerning the spin density s(x)
in Eq. (19), we shall specifically focus on sy component,
which we shall refer to as the orthogonal spin density, since
it is orthogonal to the x-z plane identified by the applied
magnetic field and the spin-orbit field. The interest in an-
alyzing the profile of sy(x) stems from a comparison with
the topological phase. Indeed it has been predicted [47–49]
that the MQPs appearing at the ends of a proximitized NW
in the topological phase, are precisely characterized by a
nonvanishing expectation value sy. However, we shall show
here below that such orthogonal spin density already appears
in the NW interface problem, where the NW is certainly in the
topologically trivial phase, so that it cannot be considered as
a signature of a MQP.

Full vs bound state contribution. Bound states and orthog-
onal spin density sy share two properties. First, both can only
exist at an interface, i.e., in the presence of inhomogeneities.
Indeed, in the bulk of a homogeneous NW, sy vanishes since
the spin orientation of each electron lies in the x-z plane [see
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FIG. 4. Spatial profiles of charge density and orthogonal spin density for a sharp interface profile Eq. (13) with αL/αR = −1/2 and ESO,R =
0.25 meV. The four different curves in each panel refer to four different values of the magnetic gap energy �Z = (0.1, 0.3, 0.5, 1.0) meV.
(a) The actual equilibrium density profile ρ(x) [see Eq. (18)]. (b) The bound state contribution ρbs(x) to the density ρ(x). For �Z = 0.1 meV
the bound state does not exist and yields a vanishing contribution (black dashed curve). (c) The full orthogonal spin density sy Eq. (19) (with
the inset magnifying the peaks) while (d) describes the related bound state contribution sy,bs.

Eqs. (8) and (9)]. Second, just like the bound state, sy may
only exist if both a magnetic field component hx and the
spin-orbit field are present. Indeed if hx = 0 (or α = 0) the
electron spin is directed, along z (or x) for all states. In view
of such common features, one is naively tempted to conclude
that an orthogonal spin density is necessarily ascribed to the
presence of the bound state. However, this is not the case. To
this purpose, we shall illustrate below two types of spatial
profiles. First, we shall show the actual equilibrium values
ρ(x) and sy(x) [see Eqs. (18) and (19)], which can be referred
to as the “full” density and orthogonal spin density profiles, as
they result from contributions of all states, with the customary
weight given by the Fermi function. In particular, since we
focus on the low temperature regime, the latter essentially
amounts to the contribution of all states occupied up to the
chemical potential μ. Then we shall also provide the profiles
ρbs(x) and sy,bs(x) describing the contribution to ρ(x) and
sy(x) due to the localized bound state only (see Appendix B
for details).

This distinction enables us to show that an orthogonal spin
density peak, besides being no evidence for a MQP, may also
not originate from any bound state.

A. The case of a sharp profile with an orthogonal magnetic field

Let us start our analysis from the case of a sharp profile in-
terface and a magnetic field applied along the NW axis. As an
illustrative example, we consider an interface with αL/αR =
−1/2, which implies ESO,L = ESO,R/4 [see Eq. (10)], and
we choose a value of ESO,R = 0.25 meV for the maximal
spin-orbit energy.

Figure 4(a) shows the full equilibrium density Eq. (18), for
four different values of the magnetic gap energy �Z of the
applied magnetic field hx. Its spatial profile ρ(x) exhibits a
crossover at the interface x = 0 between two different bulk
density values. The density increases towards the right-hand
side, namely the region with higher spin-orbit energy, whose
band bottom is lower than on the left-hand side with lower
spin-orbit energy, as observed above in Sec. IIB2. This indi-
cates that a higher spin-orbit energy has a similar effect on the
density as a lower gate voltage bias.

In Fig. 4(b) we have singled out the contribution ρbs due
to the bound state only. Differently from ρ(x), the profile of
ρbs(x) is localized only around the interface and is dramati-
cally sensitive to the value of �Z . Indeed, as can be deduced
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from Eq. (14), the minimal threshold for the appearance of
the bound state is, for the chosen parameters, ��

Z = ESO,R =
0.25 meV. For values �Z > ��

Z [red, blue, and green curves
in Fig. 4(b)], where the bound state exists, a comparison of
the height of the peak of ρbs with the profile of the full ρ

[Fig. 4(a)] suggests that the increase of ρ across the interface
is mainly due to the presence of the bound state. However,
for a magnetic gap energy �Z < ��

Z [black dashed curve in
Fig. 4(b)], ρbs is vanishing because the bound state is absent.
Note the striking difference from the behavior of the full ρ(x)
across the interface [Fig. 4(a)], which is instead qualitatively
very similar for all values of the magnetic gap energy �Z . In
conclusion, the increase of the profile of ρ at the interface is
not necessarily ascribed to a bound state. This sounds reason-
able, since the electron density is a bulk property receiving
contributions from all states up to the chemical potential, and
the bound state is just one of such contributions. The same
reasoning holds for the sx component of the spin density [see
Eq. (19)], which is also a bulk quantity, due to the applied
magnetic field hx.

Let us now turn to consider the spin density sy. Differently
from ρ and from sx, the orthogonal spin density sy is vanishing
in the bulk of a homogeneous NW, as observed above. Thus, sy

can only exist (if it does) in the presence of inhomogeneities,
and one could naively expect that it is the hallmark of the
presence of a bound state localized at the interface. The profile
of the full sy, plotted in Fig. 4(c), provides two important
insights. First, a peak of the orthogonal spin density sy does
exist, even if the NW is in the topologically trivial phase,
implying that it cannot be a unique signature of MQP. Second,
the central peak at the interface is weakly sensitive to the
values of the magnetic gap energy �Z . This is in striking
contrast to the behavior of the bound state contribution sy,bs,
shown in Fig. 4(d), which is again strongly dependent on the
magnetic field. In particular, just like the density ρbs, for weak
Zeeman field sy,bs vanishes since the bound state is absent
(dashed curve), while for higher magnetic field its broadening
depends on �Z . These results show that a localized peak of
orthogonal spin density sy is not necessarily ascribed to the
presence of a bound state, neither topological nor trivial.

Before concluding this subsection, a few further comments
about Fig. 4 are in order. We observe that, while the spatial
profile of the bound state density ρbs [Fig. 4(b)] is smooth, the
profile of sy,bs [Fig. 4(d)] exhibits a cusp at the interface. This
difference originates from the boundary conditions induced by
the sharp profile (13), which cause spin-diagonal observables
like ρ and sz to have continuous derivatives, while spin off-
diagonal observables like sx and sy exhibit a cusp at the
interface (see Appendix A). Moreover, for �Z = 0.3 meV,
i.e., slightly above the threshold ��

Z = 0.25 meV, the profiles
of the bound state contributions exhibit a slowly decaying
oscillations on the right-hand side, since the bound state wave
function is characterized by a complex wave vector k on such
side. In contrast, for �Z = 0.5 meV and �Z = 1.0 meV the
wave vector is purely imaginary, and the bound state density
profile has an exponential decay without oscillations. Finally,
the peak of the orthogonal spin density sy,bs has a narrower
extension than the one of ρbs. This is due to the fact that,
since on each interface side the bound state wave function is
a linear combination of two elementary spinorial waves [see

FIG. 5. Spatial profile of the orthogonal spin density for a NW
interface with αL/αR = −1 and a smoothening length of λs = 50 nm.
The maximal spin-orbit energy is ESO,R = 0.25 meV, and the mag-
netic gap is �Z = 0.50 meV. Different curves refer to different
values of the magnetic field component hz parallel to the spin-orbit
field. (a) The actual sy due to all states, with the inset magnifying the
peaks. (b) The bound state contribution to sy.

Eq. (7)], ρbs and sy,bs are determined by different combinations
of w-spinor components of the wave functions, resulting also
into different weights for the space-dependent profiles.

B. Effects of a smoothened profile and parallel magnetic field
on the orthogonal spin density

In the previous subsection we have shown that the peak
of the orthogonal spin density is far more robust than the
bound state. In order to test how general such effect is, we now
extend the previous analysis including the presence of a finite
smoothening length in the RSOC profile and a magnetic field
component hz parallel to the spin-orbit field. For simplicity we
focus on the optimal configuration αL/αR = −1 and ESO,R =
0.25 meV, with a smoothening length λs = 50 nm. These are
the parameters also used in Fig. 3(b), where we observe that,
keeping a fixed value of the magnetic gap energy �Z , and
varying the additional parallel field component hz represents a
natural physical knob to control the weight and the existence
of the bound state.
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Figure 5 shows the spatial profile of the orthogonal spin
density for �Z = 0.50 meV and for various values of hz.
In particular, Fig. 5(a) displays the full sy, while Fig. 5(b)
shows the bound state contribution sy,bs. Two features are
noteworthy. In the first instance, as compared to the cuspid
peaks obtained at the interface in the case of the sharp
profile [Figs. 4(c) and 4(d)], the peaks of Fig. 5 are rounded
off by the finite smoothening length λs. Second, while the
peak of the full sy [Fig. 5(a)] is very weakly affected by
the parallel magnetic field component hz, the bound state
peak shown in Fig. 5(b) rapidly decreases and eventually
disappears when the parallel magnetic field component hz is
ramped up, yielding a vanishing contribution (dashed line).
This is in agreement with the binding energy behavior previ-
ously shown in Fig. 3(b), where one can see that, at �Z =
0.50 meV, the bound state disappears for hz = 0.50 meV.
The comparison between Figs. 5(a) and 5(b) clearly indicates
that, when the bound state exists and has a relatively high
binding energy, the peak of sy is mainly due to it. How-
ever, when the binding energy decreases, the bound state
contribution to the peak is replaced by the one of the ex-
cited states, so that the orthogonal spin density peak remains
present.

V. DISCUSSION

We have demonstrated that the peak of the orthogonal
spin density localized at the interface does not necessar-
ily stem from a localized bound state, and appears to be
a quite general feature. Two natural questions then arise,
namely (i) what parameters characterizing the interface de-
termine such peak? (ii) Can one explain its presence on
some general principle? Here we wish to address these two
questions.

A. General features of the orthogonal spin density

To answer the first question, we consider for definiteness
the case of magnetic gap energy �Z = 0.50 meV and a
maximal spin-orbit energy ESO,R = 0.25 meV. Two param-
eters characterize the interface, namely the ratio αL/αR of
the two RSOC, and the smoothening length of the profile. In
Fig. 6(a) we show, for a fixed smoothening length λs = 50 nm,
the orthogonal spin density profile for different values of
the RSOC ratio αL/αR across the interface. As one can see,
the height of the peak grows with the relative RSOC jump, in
a roughly linear way.

In Fig. 6(b), keeping now the ratio of the two RSOC bulk
values to αL/αR = −1, we vary the smoothening length λs of
the profile. The peak decreases and broadens with increasing
λs. Importantly, one can verify by a numerical integration
that the area underneath each sy(x) profile is to a very good
approximation independent of the value of the smoothening
length λs.

B. Origin of the orthogonal spin density

Keeping in mind the two features described in the previous
subsection, let us now discuss the origin of the orthogonal spin
density peak. As is well know, a magnetic moment exposed
to a magnetic field experiences a magnetic torque [64]. So is

FIG. 6. Spatial profile of the orthogonal spin density for an
interface with ESO,R = 0.25 meV, and a magnetic gap energy �Z =
0.50 meV. (a) The effects of the ratio between the two values of
RSOC, for a fixed smoothening length λs = 50 nm. (b) Effects of
the smoothening length, for the configuration αL/αR = −1.

the case for spin magnetic moments of electrons moving in a
NW, where both the externally applied magnetic field h and
the effective spin-orbit field hSO give rise to corresponding
torques, defined as

T̂h ≡ �̂†(σ × h)�̂, (20)

T̂SO ≡ 1
2 (�̂†(σ × hSO)�̂ + H.c.), (21)

respectively, where

hSO(x, t ) = {α(x), px}
2h̄

(0, 0, 1) (22)

is the spin-orbit field. Note that, by definition Eqs. (21)
and (22), the spin-orbit torque T̂SO = (T̂SO

x , T̂SO
y , 0) has no

component along the Rashba field direction z.
Importantly, the torques determine the spin dynamics

through the operator identity

∂t Ŝ + ∂xĴs = T̂h + T̂SO, (23)
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where Ŝ is the spin density operator in Eq. (17), and

Ĵs = h̄

2

(
− ih̄

2m∗ [�̂†(x) σ ∂x�̂ (x) − ∂x�̂
†(x) σ �̂ (x)]

− α(x)

h̄
�̂†(x)

{σ, σz}
2

�̂ (x)

)
(24)

is the spin current density operator [64,65]. Differently from
the continuity equation for charge, in Eq. (23) the torques on
the right-hand side play the role of sources and sinks of spin.

At equilibrium the expectation values of Ŝ is time indepen-
dent, while the one of the magnetic torque is straightforwardly
related to the equilibrium spin-density Eq. (19), through Th =
〈T̂h〉◦ = s × h. Thus, taking the equilibrium expectation value
Eq. (23) one has

∂xJs = s(x) × h + TSO(x), (25)

where TSO = 〈T̂SO〉◦. Let us focus on the most customary
situation where the magnetic field is directed along the NW
axis x (h = hxix), i.e., orthogonal to the spin-orbit field. In this
case, one can show that the spin-orbit torque TSO(x) vanishes,
and that the spin current is oriented along z, so that Eq. (25)
reduces to

∂xJs
z = −hx sy(x). (26)

We shall now argue that this equation, derived under quite
general hypotheses, is the key to interpret the appearance of
the orthogonal spin density at the interface, even when the
bound state is absent.

Indeed, as has been demonstrated in Ref. [58], when
uniform spin-orbit and magnetic fields are present in a NW,
an equilibrium spin current Js

z flows in its bulk. Such bulk
spin current arises from the interplay between spin-orbit field
and a magnetic field orthogonal to it, which induce nontriv-
ial quantum correlation between spin and velocity, in close
similarity to what happens in the helical states of a quantum
spin Hall system. The bulk equilibrium spin current is odd in
α and even in hx. For example, for μ = 0 and in the regime
�Z  ESO, one has Js

z = −sgn(α)
√

�Z ESO/3π . Equilibrium
spin currents have been predicted for other RSOC systems
as well [64–79] and, in fact, they can be regarded to as
the diamagnetic color currents associated to the non-Abelian
spin-orbit gauge fields [80]. However, its measurement in
actual experiments has not been achieved thus far. In this
respect, Eq. (26) suggests that, while the equilibrium spin
current itself is perhaps elusive, its variation in the presence of
inhomogeneities could be detected, as it is straightforwardly
connected to the orthogonal spin density. Indeed, when two
regions with different RSOC are connected, a kink ∂xJs

z must
arise at the interface to match the different spin current
values in the two bulks. In view of Eq. (26), a peak in
the orthogonal spin density sy necessarily appears. This is
the reason why the peak of sy shown in Fig. 6(a) is more
pronounced the higher the difference in the RSOC of the two
regions. Furthermore, integrating both sides of Eq. (26), one
can see that the integral of the sy profile equals the difference
between the two bulk spin currents, which is independent
of the smoothening length. This is precisely what we found
in Fig. 6(b). Finally, this argument is quite general and is
not based on the existence of a bound state at the interface.

This explains why the peak shown in Fig. 4(d) persists even
when the bound state is absent, and shows that the naive
interpretation of an orthogonal spin density localized peak in
terms of a bound state is in general wrong.

C. The case of two interfaces

Thus far we have considered the case of one single inter-
face along the NW. Here we wish to briefly discuss the case of
two interfaces, modeling a NW inner region characterized by
a RSOC parameter αin sandwiched between two outer regions,
where the RSOC shall be taken for simplicity equal to αout in
both. This corresponds to a profile

α(x) = αout + αin − αout

2

×
{

Erf

[√
8

λs

(
x + L

2

)]
− Erf

[√
8

λs

(
x − L

2

)]}
,

(27)

sketched in Fig. 7(a), where L denotes the length of the inner
NW region, supposed to be much bigger than the smoothening
length (L  λs), so that the notion of interfaces still makes
sense. When the distance L is much larger than the typical
variation length scale for observables in the single interface
problem, the two interfaces act independently. However, when
such two scales become comparable, noteworthy aspects
emerge, which are illustrated in Fig. 7.

First, if the interface bound states exist, they overlap across
the distance L, causing a splitting of their degeneracy. The
density profile of the resulting lowest eigenstate is mainly
peaked at the interfaces, but is nonvanishing also in the
center of the inner region, as illustrated by the black curve
in Fig. 7(b). Second, even if the interface bound states are
not present, another type of bound states may appear. Indeed,
when the inner region is Rashba dominated and |αin| > |αout|,
the band bottom of the inner region is lower than in the outer
regions. Thus, for short L the two interfaces give rise to an
effective Rashba quantum dot [59,60], with discrete bound
states localized within the confinement length L. This is the
case depicted by the red curve in Fig. 7(b), where the density
profile of the lowest eigenstate corresponds to a Rashba dot
bound state. Such quantum dot bound states thus have a
completely different origin from the interface bound states.
In particular, while the interface bound states are present only
in the presence of an applied magnetic field, the Rashba dot
bound states are intrinsic, as they may also be present without
magnetic field [81].

The third interesting feature of the double interface prob-
lem is that, in all cases, pronounced orthogonal spin density
peaks appear at the interfaces, regardless of whether interface
bound states exist or not. Remarkably, the signs of the peaks
are opposite at the two interfaces, as shown in Fig. 7(c). This
is because the opposite jump in the RSOC across the two
interfaces causes two opposite kinks in the equilibrium spin
current, as observed in Sec. V B. Thus, despite the NW is
in the topologically trivial phase, the emerging scenario is
identical to the one occurring in a NW in the topological
phase, where the spin density of the MQPs is orthogonal
to both the magnetic field and the RSOC field direction,
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FIG. 7. (a) Sketch of a double interface problem, modeled by the
RSOC profile (27). The parameters are L = 1 μm, λs = 50 nm, the
value αin > 0 in the inner region corresponds to ESO,in = 0.25 meV,
while the magnetic gap energy is �Z = 0.25 meV. (b) The density
profile of the lowest electron state, for two values αout = −αin (black
curve) and αout = 0 (red curve), showing the difference between
interface and Rashba dot bound states. (c) The total orthogonal spin
density, for the same two values of αin, shows two opposite peaks at
the interfaces.

and takes opposite signs at the two NW ends [47–49]. This
explicitly demonstrates that such orthogonal spin polarization
pinned at the NW ends can neither be taken as a hallmark of
the topological phase nor as an evidence of bound states. Note
also that the orthogonal spin polarization peaks are typically
narrower than the interface bound state and are thus more
robust to finite length L effects too.

D. Possible setup realizations

Several experiments in topological systems are based on
InSb [30,34,52,82–84] or InAs [33,50,53,85–87] NWs de-
posited on a substrate. In the case of InSb the effective
mass and the g factor are m∗ � 0.015 me and g � 50, re-
spectively, while the value of the RSOC depends on the spe-
cific implementation and experimental conditions and can be
widely tunable, ranging from α ∼ 0.03 eV Å to α ∼ 1 eV Å

[27,30,50,52,82,83]. The spin-orbit energy ESO resulting from
these values [see Eq. (5)] is a fraction of meV. The same order
of magnitude is obtained for the magnetic gap energy �Z in
a magnetic field range of some hundreds of mT. These are
the values adopted in our plots. Similarly, in the case of InAs
nanowires m∗ � 0.022 me, g � 20 and the RSOC ranges from
α ∼ 0.05 to α ∼ 0.3 eV Å [29,50,85,86]. The temperature
value of 250 mK used in our plots is state of the art with
modern refrigeration techniques.

Interfaces between regions with different RSOC emerge
quite naturally in typical NW setups, where a portion of the
NW is covered by, e.g., a superconductor or by a normal metal
to induce proximity effect, to measure the current, or to locally
vary the potential. The resulting SIA is inhomogeneous along
the NW, and can be controlled, e.g., by the application of
different gate voltage values applied to top/bottom gates or
to the substrate, similarly to the case of constrictions in quan-
tum spin Hall systems [88–90]. In particular, covering one
portion with the gate-all-around technique and by applying
a sufficiently strong gate voltage, it is reasonable to achieve
an inversion of the sign of the RSOC as compared to the
uncovered NW portion, as has already been done in similar
setups [51,57,91–93].

Finally, the orthogonal spin polarization predicted here
can be measured by spatially resolved detection of spin
orientation. In particular, nanometer scale resolution can be
reached with various methods such as magnetic resonance
force microscopy [94,95], spin-polarized scanning electron
microscopy [96,97], by using quantum dots as probes [98,99],
or also electrically by potentiometric measurements exploit-
ing ferromagnetic detector contacts [100,101].

VI. CONCLUSIONS

In conclusion, in this paper we have considered a NW with
an interface between two regions with different RSOC values,
as sketched in Fig. 1, when proximity effect is turned off and
the NW is in the topologically trivial phase.

In Sec. III we have shown that at the interface bound states
may appear, whose energy is located below the continuum
spectrum minimum. Such bound states are neither topological
(since proximity effect is absent) nor intrinsic interface bound
states (since they only exist if an external magnetic field
is applied along the NW axis). Analyzing first the case of
a sharp interface RSOC profile Eq. (13), we have obtained
the phase diagram determining the existence of the bound
state [see Fig. 2(a)], as well as the dependence of its binding
energy on the magnetic gap energy [see Fig. 2(b)]. While
the bound state always exists if the RSOC takes equal and
opposite values across the interface (optimal configuration),
for all other situations it only exists if the magnetic field
overcomes a minimal threshold value. Furthermore, even in
the optimal configuration, it can be suppressed by either a
finite smoothening length in the RSOC profile or a magnetic
field component parallel to the spin-orbit field (see Fig. 3).

In Sec. IV we have then investigated the spatial profile
of the charge density ρ and the spin density, with a special
focus on the spin density component sy, orthogonal to both the
applied magnetic field and the RSOC field direction, which
is known to characterize the MQPs localized at the edges
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of a NW in the topological phase. By analyzing both the
full equilibrium values ρ and sy due to all occupied states,
and the bound state contributions ρbs and sy,bs, we have been
able to gain two useful insights. First, the orthogonal spin
density appears also in the topologically trivial phase as a
quite general effect characterizing any interface between two
different RSOC regions under a magnetic field. This extends
our previous results of Ref. [58] related to NW contacted to
normal leads without RSOC. Second, for realistic and typical
values of chemical potential and temperature, the orthogonal
spin density peak is relatively robust to parameter changes,
and persists even when the bound state is absent (see Figs. 4
and 5). This means that also the propagating states of the
continuum spectrum modify their spin texture around the
interface to preserve the peak, so that a localized orthogonal
spin density cannot be considered a signature of a bound state.

Furthermore, in Sec.V, after analyzing in Fig. 6 the peak
dependence on the single interface parameters, we have ad-
dressed the case of two interfaces (see Fig. 7). While for a
large distance L between the interfaces the single-interface
scenario is merely doubled, for a shorter L the interface
bound states may overlap and additional Rashba quantum
dot states may appear. In all cases, and independently of
the presence of interface bound states, the spin density sy,
orthogonal to both the magnetic field and the Rashba spin-
orbit field, exhibits relatively robust peaks taking opposite
signs at the two interfaces [see Fig. 7(c)]. Remarkably, these
are the same features predicted for the spin density of the
MQPs emerging at the ends of a NW in the topological
phase, despite the NW considered here is in the topologically
trivial phase. Our results thus show that such orthogonal spin
polarization pinned at the NW ends can neither be taken as a

hallmark of the topological phase nor as an evidence of bound
states.

However, we have also shown in Sec. V that such stable
peaks may in fact have an impact on the detection of spin
currents. Indeed a spin current flows in the bulk of a NW as
a result of quantum correlations between spin and velocity
induced by the interplay between magnetic and spin-orbit
field, similarly to the case of quantum spin Hall helical states.
Despite various proposals in the literature, the measurement
of equilibrium spin currents has not been achieved yet. Our
results suggest that, while the equilibrium spin current itself
may be elusive, its variations can be detected through the
orthogonal spin density sy, which is instead experimentally
observable with spin-resolved detection techniques. Indeed
the orthogonal spin density peak is precisely related to the
kink of the spin current localized at the interface. With the pro-
vided description of possible implementations in realistic NW
setups, the predicted effects seem to be at experimental reach.
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APPENDIX A: CALCULATION FOR SHARP
PROFILE INTERFACE

In this Appendix we provide details about the calculation
for a sharp profile interface (13). In such a situation the
eigenvalue equation stemming from the Hamiltonian (2) at
energy E reads

(
− h̄2

2m∗ ∂
2
x + iα(x)∂x + i αR−αL

2 δ(x) − hz −hx

−hx − h̄2

2m∗ ∂
2
x − iα(x)∂x − i αR−αL

2 δ(x) + hz

)(
ψ

(E )
↑ (x)

ψ
(E )
↓ (x)

)
= E

(
ψ

(E )
↑ (x)

ψ
(E )
↓ (x)

)
(A1)

equipped with the boundary conditions at the interface

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ↑(0−) = ψ↑(0+),

ψ↓(0−) = ψ↓(0+),

∂xψ↑(0−) = ∂xψ↑(0+) − i m∗
h̄2 (αR − αL )ψ↑(0),

∂xψ↓(0−) = ∂xψ↓(0+) + i m∗
h̄2 (αR − αL )ψ↓(0).

(A2)

A few remarks about the boundary conditions (A2) are in
order. First, the discontinuity in the derivative of the wave
function involves an imaginary unit too, making such bound-
ary conditions intrinsically different from the ones of the
well known problem of a particle in a scalar δ potential.
Second, as a consequence of such imaginary unit, it can
straightforwardly be shown that, despite the derivative ∂xψs

is discontinuous (s =↑,↓), the derivative ∂xρs of the quantity
ρs(x) ≡ ψ∗

s (x)ψs(x) is continuous at the interface x = 0. For
this reason, both the density ρ(x) = ρ↑ + ρ↓ [see Eq. (18)]
and the spin density component sz = ρ↑ − ρ↓ [see Eq. (19)]
do not exhibit any cusp in their spatial profile. In contrast,
off-diagonal spin density components sx and sy, which cannot
be expressed in terms of the ρs’s, do exhibit a cusp due to the

discontinuity of the derivative implied by the boundary condi-
tions (A2). This difference becomes apparent by comparing,
e.g., Figs. 4(b) and 4(d).

Let us now proceed with the calculation of the energy
spectrum. As observed above, we have assumed αR > 0 and
|αL| � |αR| without loss of generality. As a consequence
ESO,R is the higher spin-orbit energy, ESO,R � ESO,L [see
Eq. (10)]. By denoting the ratio between the two RSOC values

r ≡ αL

αR
∈ [ −1 , 1 ] (A3)

one has ESO,L = r2ESO,R. One can introduce the momentum
space Hamiltonian H ν

k = ε0
k − ανkσz − hxσx − hzσz describ-

ing the homogeneous bulk of each side ν = R/L of the inter-
face, and match the related eigenfunctions with the boundary
conditions (A2).

The energy spectrum characterizing the NW on the right-
hand side and on the left-hand side of the interface can be
suitably rewritten as

ER
±(K ) = K2

4ESO,R
±

√
�2

Z + (K + hz )2, (A4)
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EL
±(K ) = (rK )2

4ESO,L
±

√
�2

Z + (rK + hz )2, (A5)

respectively, where K = αRk has the dimension of an energy,
while �Z is the magnetic gap energy Eq. (4).

The eigenstates of the momentum Hamiltonian in each side
can be written, for arbitrary complex wave vector K , in the
following explicit form:

for x > 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w−(K ) = 1√
�2

Z +|z(K )|2

(
z(K )

�Z

)
,

w+(K ) = 1√
�2

Z +|z(K )|2

( −�Z

z(K )

)
,

(A6)

for x < 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w−(rK ) = 1√
�2

Z +|z(rK )|2

(
z(rK )

�Z

)
,

w+(rK ) = 1√
�2

Z +|z(rK )|2

(−�Z

z(rK )

)
,

(A7)

where z(K ) =
√

�2
Z + (K + hz )2 + (K + hz ).

In order to determine the energy Ebs of the bound state, the
crucial point is to correctly re-express Eqs. (A6) and (A7) as
a function of the energy E , and then to impose the boundary
conditions (A2). To this purpose, the first step is to invert the
dispersion relation in each side ν = R/L. This can be done
analytically in two specific cases, namely for hz = 0 or for
hx = 0. Here below we shall discuss these two situations,
while the general case hx, hz �= 0 will be approached numeri-
cally as described in Appendix B.

1. The case hz = 0

In this case the dispersion relation can be inverted yielding
four possible K values

Kν
ε,ε′ (E )

= ε

√
4ESO,R

[
E + 2ESO,ν + ε′

√
�2

Z + 4E2
SO,ν

+ 4ESO,νE
]
,

(A8)

where ε, ε′ = ±1. Note that K ∈ C, and we have adopted the
convention

√
z = √|z|ei φ

2 for the square root of a complex
number z = |z|eiφ with φ ∈ (−π , π ].

One then inserts the four possible values (A8) of Kν
ε,ε′

into the two eigenvectors Eqs. (A6) and (A7). In doing that,
some caution must be taken, since for a given energy E and
each side of the interface a seeming redundancy of eigenstates
appears. However, only half of the possible eigenstates actu-
ally fulfill the equation Hk[K (E )]w[K (E )] = E w[K (E )], as
it should be. Their explicit expressions depend on the regime
of the involved energy scales E , �Z , and ESO,ν , Focusing, e.g.,
on the right-hand side of the interface, one can identify three
regimes where, for a given energy E lower than the overall
minimum of the bulk bands, the corresponding four correct
eigenspinors are given in Eq. (A9).

Regime 2 differs from regime 3 because in the former
wave vectors turn out to be strictly imaginary, while in the
latter they exhibit a real part as well. The expression for
the eigenspinors on the left-hand side, together with their
corresponding domain, can be directly obtained from the ones
in (A9) by simply replacing ESO,R → ESO,L and KR

±±(E ) →
r KL

±±(E ).

Regime Eigenvectors

1) �Z > 4ESO,R and − �2
Z + 4E2

SO,R

4ESO,R
< E < −�Z

w−
[
KR

ε,+(E )
]

w+
[
KR

ε,+(E )
] ε = ±1

2) �Z > 2ESO,R and − �2
Z + 4E2

SO,R

4ESO,R
< E < min

[
− �2

Z

4ESO,R
,−�Z

]
w−

[
KR

ε,ε′ (E )
]

ε, ε′ = ±1

3) �Z < 4ESO,R and E < −�2
Z + 4E2

SO,R

4ESO,R
w−

[
KR

ε,ε′ (E )
]

ε, ε′ = ±1

(A9)

Once the four eigenspinors w and momenta K are iden-
tified, the wave function ψ is constructed as a linear super-
position of each spinor w multiplied by the related phase
factor eiKx/αR . In doing that, the requirement that ψ does not
diverge at x → ±∞ reduces the four terms to two in each
side. Let thus wν

j (E ) and Kν
j (E ) with j = 1, 2 denote such

two eigenspinors and momenta related to nondivergent wave
functions in the region ν = R/L at energy E in a given regime.
Then the eigenfunction ψ (E )(x) can be written as a linear
superposition

ψ (E )(x) =

⎧⎪⎨
⎪⎩

∑2
j=1 l jw

R
j (E ) ei

KR
j (E )

αR
x
, x > 0,∑2

j=1 r jw
L
j (E ) ei

KL
j (E )

αR
x
, x < 0.

(A10)

Thus, the boundary condition Eq. (A2) leads to a homoge-
neous system of four linear equations in four unknowns l1,

l2, r1, and r2. Imposing the solvability of the system one
obtains an equation for the energy E whose solutions, if they
exist, correspond to the energy Eb of the bound state for given
values of �Z , ESO,R, and r. The binding energy (12) is then
straightforwardly obtained.

2. The case hx = 0

In this case the eigenvalue problem (A1) decouples into
two separate problems for the spin-↑ and spin-↓ components
of the wave function, and the magnetic gap energy �Z =
|hx| vanishes. Accordingly, the eigenvectors (A6) acquire the
simple form

w−(K )|�Z=0 =
(

1
0

)
, w+(K )|�Z =0 =

(
0
1

)
(A11)
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both for x > 0 and x < 0, while the eigenvalues have a
quadratic dependence on K ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ER
↑ (K ) = K2

4ESO,R
− (K + hz ), x > 0,

EL
↑ (K ) = (rK )2

4ESO,L
− (rK + hz ), x < 0,

ER
↓ (K ) = K2

4ESO,R
+ (K + hz ), x > 0,

EL
↓ (K ) = (rK )2

4ESO,L
+ (rK + hz ), x < 0.

(A12)

Without loss of generality, we can focus on the spin-↑ com-
ponent of the wave function. The dispersion relation can be
easily inverted

{
KR

±(E ) = 2ESO,R ± √
(2ESO,R)2 + 4ESO,R(hz + E ),

KL
±(E ) = 2rESO,R ± √

(2rESO,R)2 + 4ESO,R(hz + E ).

(A13)

In order for Kν
±(E ) to exhibit an imaginary part, one has to

consider energies in the range E < −hz − ESO,ν and the most
general eigenfunction of energy E can thus be written as

ψ (E )(x) =
⎧⎨
⎩a ei

KR+ (E )

αR
x + b ei

KR− (E )

αR
x
, x > 0,

c ei
KL+ (E )

αR
x + d ei

KL− (E )

αR
x
, x < 0,

(A14)

where a, b, c, d are complex coefficients to be determined.
The regularity at x → ±∞ and the continuity in x = 0 reduce
the wave function to the form

ψ (E )(x) =
⎧⎨
⎩a e

iKR+ (E )x

αR , x > 0,

a e
iKL− (E )x

αR , x < 0,

(A15)

while the matching condition (A2) on the first derivative in
x = 0 implies

KL
−(E ) = KR

+(E ) − 2ESO,R(1 − r) (A16)

whose only possible solution is

{
r2 = 1,

E = −hz − ESO,R.
(A17)

However, this corresponds to the lowest energy eigenfunction
of the continuum, demonstrating that no bound state exists in
such case.

APPENDIX B: DIAGONALIZATION STRATEGY IN THE
PRESENCE OF A SMOOTHENING LENGTH

Here we describe how to numerically approach the prob-
lem in the presence of the RSOC profile (15) characterized by
a finite smoothening length λs, and when both perpendicular
and parallel magnetic field components hx, hz �= 0 are present.
To this end, we impose periodic boundary conditions onto
the NW, and express the electron spinor field in terms of

discretized Fourier components k = 2πn/
, namely

�̂(x) =
∑

k

eikx

√



(
ĉk↑
ĉk↓

)
, (B1)

where 
 is the (large) NW periodicity length and ĉk,s denotes
the Fourier mode operators for spin s =↑,↓. The Hamiltonian
(1) is thus rewritten in terms of the discretized k basis intro-
duced in Eq. (B1) as

Ĥ =
∑
k1,k2

∑
s1,s2=↑,↓

ĉ†
k1,s1

Hk1,s1;k2s2 ĉk2,s2
, (B2)

where

Hk1,s1;k2s2 =
[(

ε0
k1
σ0 − h · σ

)
δk1,k2

−αk1−k2

k1 + k2

2
σz

]
s1,s2

, (B3)

where αq is the (discretized) Fourier transform of the RSOC
profile α(x). Specifically, taking for αq the following expres-
sion:

αq =
⎧⎨
⎩

αL+αR
2 , for q = 0,

e− q2λ2
s

32
αL (e

iq

2 −1)−αR (e− iq


2 −1)
iq


, otherwise,
(B4)

one obtains the (periodic version) of the prototypical profile
Eq. (15) as Fourier series α(x) = ∑

q αqeiqx.
Then we have performed an exact numerical diagonaliza-

tion of the Hamiltonian matrix Eq. (B3), thereby obtaining
diagonalizing operators d̂ξ defined through ĉa = ∑

ξ Ua,ξ d̂ξ ,
where a = (k, s) is a compact quantum number notation for
the original basis, and U is the matrix of the eigenvectors of
Eq. (B3). Denoting by Eξ the eigenvalues, the NW Hamilto-
nian can be rewritten as

Ĥ =
∑

ξ

Eξ d̂†
ξ d̂ξ . (B5)

Finally, to compute the equilibrium expectation values 〈· · · 〉◦
of the operators (16) and (17), one can reexpress the electron
field operator �s(x) with spin component s =↑,↓ in terms of
the diagonalizing operators d̂ξ ’s,

�̂s(x) = 1√



∑
k,ξ

eikxUks,ξ d̂ξ (B6)

and to exploit 〈d̂†
ξ d̂ξ ′ 〉◦ = δξξ ′ f ◦(Eξ ), with f ◦(E ) =

{1 + exp [(E − μ)/kBT ]}−1 denoting the Fermi distribution
function. For instance, the density Eq. (18) is obtained as
ρ(x) = ∑

ξ ρξ (x), where

ρξ (x) = 1




∑
s=↑,↓

∑
k1,k2

e−i(k1−k2 )x U ∗
k1s,ξUk2s,ξ f ◦(Eξ ) (B7)

is the contribution arising from the ξ th eigenstate. In this way,
the contribution of each eigenstate (in particular the bound
state) can be singled out.
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[56] Ch. Kloeffel, M. J. Rančić, and D. Loss, Phys. Rev. B 97,

235422 (2018).
[57] H. Tsai, S. Karube, K. Kondou, N. Yamaguchi, and Y. Otani,

Sci. Rep. 8, 5564 (2018).
[58] F. Dolcini and F. Rossi, Phys. Rev. B 98, 045436 (2018).
[59] D. Sánchez and L. Serra, Phys. Rev. B 74, 153313 (2006).
[60] D. Sánchez, L. Serra, and M.-S. Choi, Phys. Rev. B 77, 035315

(2008).
[61] M. Cheng and R. M. Lutchyn, Phys. Rev. B 86, 134522 (2012).
[62] P. Szumniak, D. Chevallier, D. Loss, and J. Klinovaja, Phys.

Rev. B 96, 041401(R) (2017).
[63] The case where αR < 0 can easily be mapped into the one

considered here, since the case with a α(x) profile can be
mapped into the case −α(x) by space parity (px → −px), as
is clear from the Hamiltonian (2).

195421-15

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.100.236601
https://doi.org/10.1103/PhysRevLett.100.236601
https://doi.org/10.1103/PhysRevLett.100.236601
https://doi.org/10.1103/PhysRevLett.100.236601
https://doi.org/10.1143/JPSJ.77.031007
https://doi.org/10.1143/JPSJ.77.031007
https://doi.org/10.1143/JPSJ.77.031007
https://doi.org/10.1143/JPSJ.77.031007
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevLett.101.120403
https://doi.org/10.1103/PhysRevB.89.205115
https://doi.org/10.1103/PhysRevB.89.205115
https://doi.org/10.1103/PhysRevB.89.205115
https://doi.org/10.1103/PhysRevB.89.205115
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevB.97.045410
https://doi.org/10.1103/PhysRevB.97.045410
https://doi.org/10.1103/PhysRevB.97.045410
https://doi.org/10.1103/PhysRevB.97.045410
https://doi.org/10.1103/PhysRevLett.120.220504
https://doi.org/10.1103/PhysRevLett.120.220504
https://doi.org/10.1103/PhysRevLett.120.220504
https://doi.org/10.1103/PhysRevLett.120.220504
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1103/PhysRevLett.109.186802
https://doi.org/10.1103/PhysRevLett.109.186802
https://doi.org/10.1103/PhysRevLett.109.186802
https://doi.org/10.1103/PhysRevLett.109.186802
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1103/PhysRevB.97.155425
https://doi.org/10.1103/PhysRevB.97.155425
https://doi.org/10.1103/PhysRevB.97.155425
https://doi.org/10.1103/PhysRevB.97.155425
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1103/PhysRevB.100.155429
https://doi.org/10.1103/PhysRevB.100.155429
https://doi.org/10.1103/PhysRevB.100.155429
https://doi.org/10.1103/PhysRevB.100.155429
http://arxiv.org/abs/arXiv:1911.04512
http://arxiv.org/abs/arXiv:1911.03133
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevB.92.214501
https://doi.org/10.1103/PhysRevB.92.214501
https://doi.org/10.1103/PhysRevB.92.214501
https://doi.org/10.1103/PhysRevB.92.214501
https://doi.org/10.1038/s41598-017-16323-3
https://doi.org/10.1038/s41598-017-16323-3
https://doi.org/10.1038/s41598-017-16323-3
https://doi.org/10.1038/s41598-017-16323-3
https://doi.org/10.1021/nl301325h
https://doi.org/10.1021/nl301325h
https://doi.org/10.1021/nl301325h
https://doi.org/10.1021/nl301325h
https://doi.org/10.1088/1367-2630/15/12/125031
https://doi.org/10.1088/1367-2630/15/12/125031
https://doi.org/10.1088/1367-2630/15/12/125031
https://doi.org/10.1088/1367-2630/15/12/125031
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.94.035444
https://doi.org/10.1103/PhysRevB.94.035444
https://doi.org/10.1103/PhysRevB.94.035444
https://doi.org/10.1103/PhysRevB.94.035444
https://doi.org/10.1038/s41598-017-01080-0
https://doi.org/10.1038/s41598-017-01080-0
https://doi.org/10.1038/s41598-017-01080-0
https://doi.org/10.1038/s41598-017-01080-0
https://doi.org/10.1103/PhysRevB.96.115445
https://doi.org/10.1103/PhysRevB.96.115445
https://doi.org/10.1103/PhysRevB.96.115445
https://doi.org/10.1103/PhysRevB.96.115445
https://doi.org/10.1103/PhysRevB.97.235422
https://doi.org/10.1103/PhysRevB.97.235422
https://doi.org/10.1103/PhysRevB.97.235422
https://doi.org/10.1103/PhysRevB.97.235422
https://doi.org/10.1038/s41598-018-23787-4
https://doi.org/10.1038/s41598-018-23787-4
https://doi.org/10.1038/s41598-018-23787-4
https://doi.org/10.1038/s41598-018-23787-4
https://doi.org/10.1103/PhysRevB.98.045436
https://doi.org/10.1103/PhysRevB.98.045436
https://doi.org/10.1103/PhysRevB.98.045436
https://doi.org/10.1103/PhysRevB.98.045436
https://doi.org/10.1103/PhysRevB.74.153313
https://doi.org/10.1103/PhysRevB.74.153313
https://doi.org/10.1103/PhysRevB.74.153313
https://doi.org/10.1103/PhysRevB.74.153313
https://doi.org/10.1103/PhysRevB.77.035315
https://doi.org/10.1103/PhysRevB.77.035315
https://doi.org/10.1103/PhysRevB.77.035315
https://doi.org/10.1103/PhysRevB.77.035315
https://doi.org/10.1103/PhysRevB.86.134522
https://doi.org/10.1103/PhysRevB.86.134522
https://doi.org/10.1103/PhysRevB.86.134522
https://doi.org/10.1103/PhysRevB.86.134522
https://doi.org/10.1103/PhysRevB.96.041401
https://doi.org/10.1103/PhysRevB.96.041401
https://doi.org/10.1103/PhysRevB.96.041401
https://doi.org/10.1103/PhysRevB.96.041401


ROSSI, DOLCINI, AND ROSSI PHYSICAL REVIEW B 101, 195421 (2020)

[64] E. B. Sonin, Adv. Phys. 59, 181 (2010).
[65] E. I. Rashba, Phys. Rev. B 68, 241315(R) (2003).
[66] J. Splettstoesser, M. Governale, and U. Zülicke, Phys. Rev. B

68, 165341 (2003).
[67] G. Usaj and C. A. Balseiro, Europhys. Lett. 72, 631 (2005).
[68] E. B. Sonin, Phys. Rev. B 76, 033306 (2007).
[69] E. B. Sonin, Phys. Rev. Lett. 99, 266602 (2007).
[70] Q.-F. Sun, X. C. Xie, and J. Wang, Phys. Rev. Lett. 98, 196801

(2007).
[71] Q.-F. Sun, X. C. Xie, and J. Wang, Phys. Rev. B 77, 035327

(2008).
[72] V. A. Sablikov, A. A. Sukhanov, and Y. Ya. Tkach, Phys. Rev.

B 78, 153302 (2008).
[73] F. Liang, Y. G. Shen, and Y. H. Yang, Phys. Lett. A 372, 4634

(2008).
[74] B. Berche, C. Chatelain, and E. Medina, Eur. J. Phys. 31, 1267

(2010).
[75] E. Nakhmedov and O. Alekperov, Phys. Rev. B 85, 153302

(2012).
[76] H. Zhang, Z. Ma, and J. F. Liu, Sci. Rep. 4, 6464 (2014).
[77] F. Liang, B.-L. Gao, G. Hu, Y. Gu, and N. Xu, Phys. Lett. A

379, 3114 (2015).
[78] T.-W. Chen, C.-M. Huang, and G. Y. Guo, Phys. Rev. B 73,

235309 (2006).
[79] F. Meier and D. Loss, Phys. Rev. Lett. 90, 167204 (2003).
[80] I. V. Tokatly, Phys. Rev. Lett. 101, 106601 (2008).
[81] Without magnetic field the problem Eqs. (1) and (2) can

be mapped into the problem of a particle in a quan-
tum well with a potential ESO(x) = −m∗α2(x)/2h̄2 by per-
forming the spin-dependent gauge transformation �̂(x) =
exp [im∗σz

∫ x
0 α(x′)dx′/h̄2]�̂ ′(x).

[82] H. A. Nilsson, Ph. Caroff, C. Thelander, M. Larsson, J. B.
Wagner, L.-E. Wernersson, L. Samuelson, and H. Q. Xu, Nano
Lett. 9, 3151 (2009).

[83] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo,
S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P.
Kouwenhoven, Phys. Rev. Lett. 108, 166801 (2012).

[84] Ö. Gü, H. Zhang, F. K. de Vries, J. van Veen, K. Zuo, V.
Mourik, S. Conesa-Boj, M. P. Nowak, D. J. van Woerkom,
M. Quintero-Pérez, M. C. Cassidy, A. Geresdi, S. Koelling,
D. Car, S. R. Plissard, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Nano Lett. 17, 2690 (2017).

[85] P. Roulleau, T. Choi, S. Riedi, T. Heinzel, I. Shorubalko,
T. Ihn, and K. Ensslin, Phys. Rev. B 81, 155449
(2010).

[86] H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C.
Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston,
Nanotechnology 24, 214006 (2013).

[87] S. Heedt, N. Traverso Ziani, F. Crépin, W. Prost, St.
Trellenkamp, J. Schubert, D. Grützmacher, B. Trauzettel, and
Th. Schäpers, Nat. Phys. 13, 563 (2017).

[88] F. Romeo, R. Citro, D. Ferraro, and M. Sassetti, Phys. Rev. B
86, 165418 (2012).

[89] P. Sternativo and F. Dolcini, Phys. Rev. B 89, 035415
(2014).

[90] J. Strunz, J. Wiedenmann, C. Fleckenstein, L. Lunczer, W.
Beugeling, V. L. Müller, P. Shekhar, N. T. Ziani, S. Shamim, J.
Kleinlein, H. Buhmann, B. Trauzettel, and L. W. Molenkamp,
Nat. Phys. 16, 83 (2020).

[91] O. Krupin, G. Bihlmayer, K. Starke, S. Gorovikov, J. E.
Prieto, K. Döbrich, S. Blügel, and G. Kaindl, Phys. Rev. B
71, 201403(R) (2005).

[92] W. Wang, X. M. Li, and J. Y. Fu, J. Magn. Magn. Mater. 411,
84 (2016).

[93] F. Nagasawa, A. A. Reynoso, J. P. Baltanás, D. Frustaglia,
H. Saarikoski, and J. Nitta, Phys. Rev. B 98, 245301
(2018).

[94] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature
(London) 430, 329 (2004).

[95] J. Cardellino, N. Scozzaro, M. Herman, A J. Berger, C.
Zhang, K. C. Fong, C. Jayaprakash, D. V. Pelekhov, and P. C.
Hammel, Nat. Nanotech. 9, 343 (2015).

[96] K. Koyke, H. Matsuyama, H. Todokoro, and K. Hayakawa,
Jpn. J. Appl. Phys. 24, 1078 (1985).

[97] T. Kohashi, J. Magn. Soc. Jpn. 39, 131 (2015).
[98] T. Otsuka, E. Abe, Y. Iye, and S. Katsumoto, Phys. Rev. B 79,

195313 (2009).
[99] T. Otsuka, Y. Sugihara, J. Yoneda, S. Katsumoto, and S.

Tarucha, Phys. Rev B 86, 081308(R) (2012).
[100] C. H. Li, O. M. J. van’t Erve, J. T. Robinson, Y. Liu, L. Li, and

B. T. Jonker, Nature Nanotech. 9, 218 (2014).
[101] J. Tang, L.-T. Chang, X. Kou, K. Murata, E. S. Choi, M. Lang,

Y. Fan, Y. Jiang, M. Montazeri, W. Jiang, Y. Wang, L. He, and
K. L. Wang, Nano Lett. 14, 5423 (2014).

195421-16

https://doi.org/10.1080/00018731003739943
https://doi.org/10.1080/00018731003739943
https://doi.org/10.1080/00018731003739943
https://doi.org/10.1080/00018731003739943
https://doi.org/10.1103/PhysRevB.68.241315
https://doi.org/10.1103/PhysRevB.68.241315
https://doi.org/10.1103/PhysRevB.68.241315
https://doi.org/10.1103/PhysRevB.68.241315
https://doi.org/10.1103/PhysRevB.68.165341
https://doi.org/10.1103/PhysRevB.68.165341
https://doi.org/10.1103/PhysRevB.68.165341
https://doi.org/10.1103/PhysRevB.68.165341
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1103/PhysRevB.76.033306
https://doi.org/10.1103/PhysRevB.76.033306
https://doi.org/10.1103/PhysRevB.76.033306
https://doi.org/10.1103/PhysRevB.76.033306
https://doi.org/10.1103/PhysRevLett.99.266602
https://doi.org/10.1103/PhysRevLett.99.266602
https://doi.org/10.1103/PhysRevLett.99.266602
https://doi.org/10.1103/PhysRevLett.99.266602
https://doi.org/10.1103/PhysRevLett.98.196801
https://doi.org/10.1103/PhysRevLett.98.196801
https://doi.org/10.1103/PhysRevLett.98.196801
https://doi.org/10.1103/PhysRevLett.98.196801
https://doi.org/10.1103/PhysRevB.77.035327
https://doi.org/10.1103/PhysRevB.77.035327
https://doi.org/10.1103/PhysRevB.77.035327
https://doi.org/10.1103/PhysRevB.77.035327
https://doi.org/10.1103/PhysRevB.78.153302
https://doi.org/10.1103/PhysRevB.78.153302
https://doi.org/10.1103/PhysRevB.78.153302
https://doi.org/10.1103/PhysRevB.78.153302
https://doi.org/10.1016/j.physleta.2008.04.029
https://doi.org/10.1016/j.physleta.2008.04.029
https://doi.org/10.1016/j.physleta.2008.04.029
https://doi.org/10.1016/j.physleta.2008.04.029
https://doi.org/10.1088/0143-0807/31/5/026
https://doi.org/10.1088/0143-0807/31/5/026
https://doi.org/10.1088/0143-0807/31/5/026
https://doi.org/10.1088/0143-0807/31/5/026
https://doi.org/10.1103/PhysRevB.85.153302
https://doi.org/10.1103/PhysRevB.85.153302
https://doi.org/10.1103/PhysRevB.85.153302
https://doi.org/10.1103/PhysRevB.85.153302
https://doi.org/10.1038/srep06464
https://doi.org/10.1038/srep06464
https://doi.org/10.1038/srep06464
https://doi.org/10.1038/srep06464
https://doi.org/10.1016/j.physleta.2015.09.037
https://doi.org/10.1016/j.physleta.2015.09.037
https://doi.org/10.1016/j.physleta.2015.09.037
https://doi.org/10.1016/j.physleta.2015.09.037
https://doi.org/10.1103/PhysRevB.73.235309
https://doi.org/10.1103/PhysRevB.73.235309
https://doi.org/10.1103/PhysRevB.73.235309
https://doi.org/10.1103/PhysRevB.73.235309
https://doi.org/10.1103/PhysRevLett.90.167204
https://doi.org/10.1103/PhysRevLett.90.167204
https://doi.org/10.1103/PhysRevLett.90.167204
https://doi.org/10.1103/PhysRevLett.90.167204
https://doi.org/10.1103/PhysRevLett.101.106601
https://doi.org/10.1103/PhysRevLett.101.106601
https://doi.org/10.1103/PhysRevLett.101.106601
https://doi.org/10.1103/PhysRevLett.101.106601
https://doi.org/10.1021/nl901333a
https://doi.org/10.1021/nl901333a
https://doi.org/10.1021/nl901333a
https://doi.org/10.1021/nl901333a
https://doi.org/10.1103/PhysRevLett.108.166801
https://doi.org/10.1103/PhysRevLett.108.166801
https://doi.org/10.1103/PhysRevLett.108.166801
https://doi.org/10.1103/PhysRevLett.108.166801
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1103/PhysRevB.81.155449
https://doi.org/10.1103/PhysRevB.81.155449
https://doi.org/10.1103/PhysRevB.81.155449
https://doi.org/10.1103/PhysRevB.81.155449
https://doi.org/10.1088/0957-4484/24/21/214006
https://doi.org/10.1088/0957-4484/24/21/214006
https://doi.org/10.1088/0957-4484/24/21/214006
https://doi.org/10.1088/0957-4484/24/21/214006
https://doi.org/10.1038/nphys4070
https://doi.org/10.1038/nphys4070
https://doi.org/10.1038/nphys4070
https://doi.org/10.1038/nphys4070
https://doi.org/10.1103/PhysRevB.86.165418
https://doi.org/10.1103/PhysRevB.86.165418
https://doi.org/10.1103/PhysRevB.86.165418
https://doi.org/10.1103/PhysRevB.86.165418
https://doi.org/10.1103/PhysRevB.89.035415
https://doi.org/10.1103/PhysRevB.89.035415
https://doi.org/10.1103/PhysRevB.89.035415
https://doi.org/10.1103/PhysRevB.89.035415
https://doi.org/10.1038/s41567-019-0692-4
https://doi.org/10.1038/s41567-019-0692-4
https://doi.org/10.1038/s41567-019-0692-4
https://doi.org/10.1038/s41567-019-0692-4
https://doi.org/10.1103/PhysRevB.71.201403
https://doi.org/10.1103/PhysRevB.71.201403
https://doi.org/10.1103/PhysRevB.71.201403
https://doi.org/10.1103/PhysRevB.71.201403
https://doi.org/10.1016/j.jmmm.2016.03.053
https://doi.org/10.1016/j.jmmm.2016.03.053
https://doi.org/10.1016/j.jmmm.2016.03.053
https://doi.org/10.1016/j.jmmm.2016.03.053
https://doi.org/10.1103/PhysRevB.98.245301
https://doi.org/10.1103/PhysRevB.98.245301
https://doi.org/10.1103/PhysRevB.98.245301
https://doi.org/10.1103/PhysRevB.98.245301
https://doi.org/10.1038/nature02658
https://doi.org/10.1038/nature02658
https://doi.org/10.1038/nature02658
https://doi.org/10.1038/nature02658
https://doi.org/10.1038/nnano.2014.39
https://doi.org/10.1038/nnano.2014.39
https://doi.org/10.1038/nnano.2014.39
https://doi.org/10.1038/nnano.2014.39
https://doi.org/10.1143/JJAP.24.1078
https://doi.org/10.1143/JJAP.24.1078
https://doi.org/10.1143/JJAP.24.1078
https://doi.org/10.1143/JJAP.24.1078
https://doi.org/10.3379/msjmag.1506R001
https://doi.org/10.3379/msjmag.1506R001
https://doi.org/10.3379/msjmag.1506R001
https://doi.org/10.3379/msjmag.1506R001
https://doi.org/10.1103/PhysRevB.79.195313
https://doi.org/10.1103/PhysRevB.79.195313
https://doi.org/10.1103/PhysRevB.79.195313
https://doi.org/10.1103/PhysRevB.79.195313
https://doi.org/10.1103/PhysRevB.86.081308
https://doi.org/10.1103/PhysRevB.86.081308
https://doi.org/10.1103/PhysRevB.86.081308
https://doi.org/10.1103/PhysRevB.86.081308
https://doi.org/10.1038/nnano.2014.16
https://doi.org/10.1038/nnano.2014.16
https://doi.org/10.1038/nnano.2014.16
https://doi.org/10.1038/nnano.2014.16
https://doi.org/10.1021/nl5026198
https://doi.org/10.1021/nl5026198
https://doi.org/10.1021/nl5026198
https://doi.org/10.1021/nl5026198

