
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Deterministic Cache-based Execution of On-line Self-Test Routines in Multi-core Automotive System-on-Chips / Floridia,
Andrea; Carmona, Tzamn Melendez; Piumatti, Davide; Ruospo, Annachiara; Sanchez, Ernesto; Luca, Sergio De;
Martorana, Rosario; Pernice, Mose Alessandro. - ELETTRONICO. - (2020), pp. 1235-1240. (Intervento presentato al
convegno 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) tenutosi a Grenoble, France nel
9-13 March, 2020) [10.23919/DATE48585.2020.9116239].

Original

Deterministic Cache-based Execution of On-line Self-Test Routines in Multi-core Automotive System-on-
Chips

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/DATE48585.2020.9116239

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2837295 since: 2020-06-25T12:19:30Z

IEEE

Deterministic Cache-based Execution of On-line
Self-Test Routines in Multi-core Automotive

System-on-Chips
Andrea Floridia∗, Tzamn Melendez Carmona∗, Davide Piumatti∗, Annachiara Ruospo∗, Ernesto Sanchez∗

Sergio De Luca†, Rosario Martorana†, Mose Alessandro Pernice †
∗Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

†STMicroelectronics, Italy

Abstract—Traditionally, the usage of caches and deterministic
execution of on-line self-test procedures have been considered two
mutually exclusive concepts. At the same time, software executed
in a multi-core context suffers of a limited timing predictability
due to the higher system bus contention. When dealing with self-
test procedures, this higher contention might lead to a fluctuating
fault coverage or even the failure of some test programs. This
paper presents a cache-based strategy for achieving both deter-
ministic behaviour and stable fault coverage from the execution of
self-test procedures in multi-core systems. The proposed strategy
is applied to two representative modules negatively affected by a
multi-core execution: synchronous imprecise interrupts logic and
pipeline hazard detection unit. The experiments illustrate that it
is possible to achieve a stable execution while also improving
the state-of-the-art approaches for the on-line testing of embed-
ded microprocessors. The effectiveness of the methodology was
assessed on all the three cores of a multi-core industrial System-
on-Chip intended for automotive ASIL D applications.

I. INTRODUCTION

Test solutions based on the usage of Software Test Li-
braries (STLs) are increasingly becoming adopted for the on-
line testing of automotive processor-based System-on-Chips
(SoCs) [1]–[7]. They are based on a set of software self-test
procedures, intended for detecting the occurrence of possible
permanent faults affecting the processor core. The main idea
of this approach (initially proposed in [8]) is to convert test
patterns into software instructions and accumulate their results
to create a so-called test signature. Then, such a signature is
compared with the expected test signature (obtained in a fault-
free scenario) to determine whether the test passed or failed.
When the test is executed in field, the test signature represents
the only way to safely detect the occurrence of faults [9]–
[12]. Self-test procedures can be broadly distinguished into
two main categories [2], [7]: boot-time and run-time tests.
The former are executed during the namesake phase of the
device, when it is entering the on-line phase. The latter are
executed concurrently with the application software. Some
boot-time test programs, in order to be effective, require a
proper sequence of instructions to be executed without any
interruption. Moreover, the STL must comply with the typical
requirements of the embedded software, since it coexists with
an Operating System or an application program. Therefore,
the resources usage (namely code and data memory) should

be minimal. The vast majority of the existing Software-
Based Self-Test (SBST) techniques [10] were conceived con-
sidering exclusively a single-core execution. However, high-
performance multi-core System-on-Chips are nowadays mas-
sively deployed in automotive applications. When dealing with
these systems, to increase the system availability, parallel test
is highly desirable. The run-time tests can be executed in
parallel, usually during the processor idle times. On the other
hand, the boot-time tests require special considerations [13]
due to the shared portion of system RAM devoted to the
test and the fact that cannot be interrupted. In particular, this
last assumption cannot be guaranteed anymore. Indeed, the
embedded software running in a multi-core context suffers of a
limited timing predictability [14], due to the higher system bus
contention. These conflicts on the system bus generate stalls
when fetching instructions from the main memory and thus
the exact stream of instructions entering the pipeline cannot
be determined in advance anymore. In a multi-core SoC, this
has two important consequences on the self-test procedures
requiring a specific sequence of instructions. The first one
concerns the fault grading: the fault coverage is uncertain and
it might vary depending on which portion of the processor is
excited due to the system bus activity. Because of this, a given
fault location might not be excited correctly and therefore
remains undetected. The second one is related to the signature
generated by the test program, which is now unstable. It means
that the self-test procedure cannot safely identify whether the
mismatch in the signature is due to the occurrence of a fault
or due to an unexpected instructions stream.

The novelty of this paper consists in the establishment of
a deterministic methodology for executing in-field self-test
routines in a multi-core scenario. The proposed method, based
on cache memories, guarantees stable signature and determin-
istic fault coverage of those test routines (targeting specific
CPU modules) negatively affected by a multi-core execution.
The methodology does not require significant modifications
of the already-existing algorithms and it does not introduce
penalties from the memory footprint perspective. Along with
these advantages, it does not require any additional on-chip
resources.

The usage of caches has been explored to store the self-

test procedures intended for end-of-manufacturing testing of
processors within a shared-memory multi-core system [15].
The purpose of that work was to reduce the test applica-
tion time, avoiding off-chip memory accesses. The method
is applicable exclusively for end-of-manufacturing, since it
assumes that the self-test procedures are loaded into the caches
through an external tester (which is not available when in
field). Similarly, in [16] it was shown that a cache-aware test
scheduler can take advantage of the memory hierarchy for
speeding-up the run-time tests. Differently from these related
works, the proposed approach deals with the in-field execution
of boot-time procedures, and it uses caches for addressing the
uncertainties introduced by a multi-core architecture.

Finally, the parallel execution of boot-time tests was ana-
lyzed in [13]. The paper presents some scheduling alternatives,
exclusively considering the possible existing conflicts due to
shared resources without properly addressing the determinism
of the self-test procedures themselves in a multi-core scenario.

The paper is structured as follows: Section II describes
the main issues arising from a multi-core execution. Section
III presents the proposed strategy. Section IV describes the
experimental results gathered on an industrial design. Section
V concludes the paper, outlining future directions.

II. MULTI-CORE ISSUES

The aim of this section is to introduce the main issues
related to the execution of a Software Test Library (STL) in
a multi-core scenario. The STL is historically considered an
on-line test solution targeting exclusively the processor core.
However, when deploying the STL in a multi-core system, the
situation radically changes. Specifically, the behavior of some
boot-time self-test procedures cannot be guaranteed anymore,
producing unforeseen outcomes. In this context, as the experi-
ments of Section IV confirm, a given self-test procedure might
produce a wrong signature or an uncertain fault coverage.
The former inhibits the self-diagnostic capabilities of the test
program when in field. The latter concerns the fault grading,
since it is not possible to guarantee a given fault coverage. This
represents a serious concern, since modern functional safety
standards impose stringent quality requirements (e.g., the ISO
26262 for the automotive domain).

For clarity, let us consider a simple but yet effective
example: the forwarding mechanism of the classical 5-stage
pipeline DLX processor and a self-test routine for testing such
mechanism.

The reported example considers forwarding among two
consecutive instructions. However, the reader should note that
the same reasoning is perfectly applicable even to more com-
plex multiple-issue processors. The only difference is that the
forwarding can also take place among two consecutive issue
packets. Let us focus on the following forwarding path: the
EX to EX path that fed the processor adder. Figure 1a shows
a portion of the assembly code testing the aforementioned
path, along with its evolution across the pipeline stages in a
single-core scenario. In this case, the forwarding mechanism
is excited correctly. The second add instruction enters the

(a)

(b)

Fig. 1. Forwarding path (a), Broken forwarding path (b).

pipeline exactly one clock cycle after the first one, since the
memory subsystem has not produced any stall. In order to
detect the occurrence of performance faults [17] the processor
Performance Counters can be exploited (when available).
When testing these mechanisms, Performance Counters that
count the number of pipeline stalls are often used since
they could ease the detection of malfunctions in the hazard
detection unit (e.g., stalls inserted between instructions when
not needed). Figure 1b represents still the same code fragment,
but in a quite different scenario.

It is assumed that the processor is part of a larger multi-
core system, and the self-test procedure is executed in parallel
by the other cores. As a result of the other processors’
activities, the accesses to the memory subsystem are delayed.
As depicted in that figure, the forwarding mechanism is not
triggered at all. The second add enters the pipeline at the fifth
clock cycle and can retrieve the content of R7 directly from
the register file, without exercising the forwarding path. This
is a possible scenario that a self-test routine might encounter
when executed in parallel in a multi-core SoC. In this context,
the self-test procedure yields two possible outcomes:

• Wrong signature;
• Exact signature but lower fault coverage.

When the Performance Counters contribute to the signature,
it is likely that the test program will produce an unstable
signature. Considering the examples of Figure 1a and 1b, the
execution time is slightly increased in 1b due to the additional
stalls, but yet enough for altering the values of the Performance
Counters, that will report 3 additional stalls. Once again,
these stalls are completely unpredictable and consequently
also the signature. However, it might happen that the self-
test procedure does not use the Performance Counters, making
the signature stable. One could erroneously believe that the
test program still performs correctly as expected: however,
although it returns a correct signature, the fault coverage
is likely to be quite different (specifically, lower than the
expected one) considering that some processor portions are
not exercised. Indeed, in the scenario depicted in Figure 1b
the forwarding path EX to EX is not excited at all (along
with the possible permanent faults on that path). The signature
is identical to the case in Figure 1a (assuming Performance
Counters are not used) since all the instructions, even if
delayed, will properly yield the correct results but using
different processor paths. Even though these phenomena have

been described using as example the forwarding unit, they
are applicable to all those self-test procedures that require
a specific sequence of instructions to be executed without
interruptions. These claims will be experimentally justified in
Section IV.

III. PROPOSED APPROACH

The main intent of this paper is to propose a strategy for
executing in a deterministic manner self-test routines in a
multi-core context, while striving for a low system resources
occupation. These requirements are those commonly found in
safety-critical embedded applications, in which the software
has to be predictable and the memory resources are limited.

The vast majority of computer programs exhibit the so-
called principle of locality: that is, a given program will access
a (relatively) small portion of the available address space. Two
locality principles exist: temporal and spatial locality. The for-
mer states that if a given memory address is referenced, then it
is likely that it will be referenced again soon. The latter stems
from the observation that programs are generally executed
sequentially and data are often stored in contiguous memory
locations: therefore, if a given memory location is accessed,
then it is likely that the locations nearby will be accessed
soon. Caches leverage these principles, by storing the content
the most referenced addresses (i.e., data and instructions).
This provides isolation, considerably increasing the processor
performances. Although these advantages, the caches are not
deterministic since the actual increase in performance depends
on the program length and organization, the cache size itself,
and how often a context switch is performed. Therefore, issues
could arise when using caches in conjunction with self-test
procedures, since they require a precise execution.

However, it is possible to achieve a deterministic cache-
based execution if the test program is executed without any
interruption and it exhibits strong temporal and spatial locality.
The idea is to move the self-test routine within the innermost
level of caches (i.e., the ones private to each processor core),
isolating its execution from the rest of the system. From the
above mentioned definitions of the locality principles, it is
possible to derive a general structure, that embeds the single-
core version of the self-test procedure. Given a generic boot-
time test program, the few modifications required are:

1) The test program should be executed twice in a loop-
based fashion. The body of the loop (blocks c and d in
Figure 2b) is represented by the instructions intended for
testing the processor which compose the single-core self-
test procedure (Figure 2a, blocks b and c). This allows
for a strong temporal locality, since all the addresses
are referenced exactly twice. During the first iteration
(hereinafter loading loop), the test program is moved into
the instruction cache. At the same time, the content of the
data memory addresses referenced (if any) during this
first iteration are moved within the data cache, assuming
a write allocate cache memory. If this is not the case
(i.e., a no-write allocate policy) each store operation must
be followed by a dummy load operation to the same

(a) (b)

Fig. 2. The proposed Cache-based strategy. On the left-hand side the single-
core version. On the right-hand side the modified multi-core test program
version. In case of no-write allocate caches, the Test Program Body might be
lightly modified.

address. This will provoke a read cache miss, that in turn
causes data to be moved within the data cache. Therefore,
during the execution loop all the store operations will
not generate a write miss, since they will find the proper
data already in cache. It is important to note that during
the loading loop the test program must not perform any
check of the signature. Since the first execution might
be still influenced by the other processors’ activity, the
computation of the signature is unreliable. Instead, the
second iteration (the execution loop) is the real test
program execution. Since the program is executed entirely
from the caches, the signature can be computed without
the risk of being influenced by the rest of the system.

2) The entire test procedure code must be loaded in the
instruction cache during the loading loop. This feature
brings spatial locality and it avoids instruction cache
misses during the execution loop that could potentially
alter the signature. This condition implies that:

2.1) Conditional branches that could potentially yield a
different execution flow in the execution loop must
be avoided. Exceptions are those conditional branches
that intentionally alter the execution flow but due to
the effect of a fault. Moreover, this does not preclude
the applicability of the proposed methodology to loop-
based test programs, as long as by the end of the test
program all the possible branches are taken.

2.2) The size of the multi-core version (Figure 2b) of the
self-test procedure must fit into the available cache
memory. If the resulting test program is larger than the
available cache size, it must be split into two or more
smaller self-test procedures. It is important to note that
this step is exclusively required if the cache memory is
not large enough, and it does not compromise the fault
coverage of the original single-core test procedure.

3) Both data and instruction caches should be initialized, by
invalidating their content (Figure 2b, block b) prior the
test program execution (Figure 2b, block c and d).

The proposed strategy based on cache memories achieves

the requirements of both deterministic behavior and low re-
sources usage since:

• Caches decouple the processor from the rest of the
system. Therefore, the instruction stream is not altered
by other processors’ activity;

• The code is allocated in the cache memories, without
altering the self-test routine memory footprint.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

This Section is organized as follows: the first subsection
describes the target multi-core device. From the second sub-
section, the experimental results are reported. These include
the evidences of issues presented in Section II and then the
gathered results for the proposed methodology. Its effective-
ness is also compared with other possible alternatives.

A. Case Study

The device used in the experimental part of this work
was an industrial triple-core System-on-Chip, manufactured
for automotive safety-critical applications ranked as ASIL D.
It embeds three dual-issue processor cores. Hereinafter, these
cores will be labeled as cores A, B and C. The two cores A
and B are the same 32-bit processor model, while the core
C is different since it implements an extended instruction set
able to deal with 64-bit operands. Each processor includes
two Tightly-Coupled Memories modules (for data and instruc-
tions), along with private data (4 kB) and instruction (8 kB)
caches. The caches support both write allocate and no-write
allocate policies (configurable before being used).

For the purpose of this work, stuck-at faults were exclu-
sively considered. Nevertheless, the applicability of the pro-
posed methodology is not limited exclusively to this specific
fault model. The total number of stuck-at faults of these
processors varies from 643,209 (core C) to 473,052 (core B).
It is worth noting that although core A and B are conceptually
identical, they underwent different physical design processes.
Therefore, from the testing viewpoint they are quite different,
since the stuck-at fault lists are different. Accordingly with
the aim of this paper, the faults belonging to the Interrupt
Control Unit and Hazard Detection Unit were exclusively
considered. The self-test procedures developed for these units
are significant examples of the complications that arise when
considering a multi-core execution.

The problems related to the Hazard Detection Unit (which
includes also the forwarding mechanism) were already pre-
sented in Section II. In the considered processors, the Hazard
Detection Unit is composed of a Hazard Detection Control
Unit and a Forwarding Logic. The former detects dependencies
among issue packets, driving the forwarding paths and possi-
bly stalls the pipeline if the forwarding is not possible. The
latter is composed by the multiplexers that directly fed and col-
lect the results produced by the different execution units of the
processor. Several algorithms exist in the literature for testing
these mechanisms [18], [19]: in the following it was decided to
implement the one presented in [19] since it targets a multiple-
issue processor. The above-mentioned testing algorithm ex-

TABLE I
MULTI-CORE STLS EXECUTION: STALLS DUE TO THE MEMORY

SUBSYSTEM

Active Cores IF Stalls
[clock cycles]

MEM stalls
[clock cycles]

1 200,679 117,965
2 717,538 305,801
3 1,878,336 663,386

haustively test all the possible existing forwarding paths, both
interpipeline (that is, dependencies between instructions of the
same issue packet) and intrapipeline (dependencies between
instructions of two consecutive issue packets). Moreover, it
leverages performance counters for tracking the number of
pipeline stalls in the processor during the self-test procedure
execution (for detecting wrongly inserted stalls by the hazard
control unit).

Concerning the Interrupt Control Unit, synchronous impre-
cise interrupts were examined. Such class of interrupts are
still generated as consequence of a particular instruction being
executed (i.e., synchronously) and from sources within the
CPU. But, unlike precise interrupts [20], the imprecise ones
are not recognized immediately, but only after that a variable
number of instructions are executed beyond the interrupting
instruction. The actual number of instructions depends on
the instructions stream entering the pipeline, which is highly
unpredictable in a multi-core system. Therefore, also the self-
test procedures targeting these interrupts suffer of an unstable
signature that varies depending on the other processors’ activ-
ity. For testing this mechanism, a self-test procedure based on
the strategy presented in [21] was implemented. The second
column of Table II and the third of Table III report the number
of faults within these units. Finally, caches were configured
with a write allocate policy: therefore, for both test programs,
it was not required to insert additional load operations to avoid
write misses in the execution loop (as explained in Section III).
Furthermore, for both test programs, it was not necessary to
split them, since the instruction cache was large enough to
contain the entire self-test procedure code.

B. Uncertainties in multi-core SoC

A first set of experiments consisted in analysing the behavior
of the STL in a multi-core context. Considering the system
under analysis, two STLs were developed (core A and B
share the same STL). The test programs targeting imprecise
interrupts and hazard detection unit were not included in the
library for this initial set of experiments, since their behavior
was analyzed separately. The STLs were executed in parallel
on the physical microcontroller, with a software structure
similar to the one presented by the authors of [13]. Their
execution was tracked leveraging an external debugger, that
monitored the number of clock cycles of stall due to the
memory subsystem in each processor core. Table I reports the
gathered measurements. As it can be noticed, when moving
from a single-core scenario (in which all the other cores are
completely turned off) to a triple-core scenario, the number of
stalls in the system increased considerably. As it can be noted,

the major source of stalls is the instruction fetch unit (second
column of Table I). This is a direct consequence of the higher
bus contention: the instruction fetch operations are delayed
due to the other processors requests, and as a consequence
the pipeline is stalled. Moreover, it is worth noting that the
figures in the second and third row of Table I represent average
values gathered across several executions. The actual number
of clock cycles of stall varies depending on the initial SoC
configuration (and therefore it is not predictable).

C. Uncertain Fault Coverage

From the experiments described above it is clear that the
behavior of an STL is highly unpredictable in a multi-core
context, since it is influenced by the whole system activity. The
second set of experiments focused on demonstrating the effects
of these pipeline stalls on the self-test procedures. Specifically,
these experiments involved the achievable fault coverage on
the processor hazard detection unit. For these experiments,
the SoC post-layout gate-level netlist and a commercial fault
simulator were used. As extensively explained in Section
II and demonstrated with the previous experiments (Table
I) Performance Counters (PCs) are unreliable in a multi-
core scenario. Therefore, when they contribute to the self-
test procedure signature, a straightforward solution for dealing
with the instability of the signature might be removing the
usage of PCs, sacrificing fault coverage. However, as depicted
in Table II this is not enough for guaranteeing a deterministic
fault coverage of the forwarding logic. First, the algorithm [19]
was modified, removing the usage of PCs. Then, the obtained
self-test procedure was executed in parallel on the different
processors considering different scenarios: number of active
cores (two or three), code position in memory (low, mid and
high Flash addresses) and different code alignment options
(e.g., aligned at word, double-word or double double-word).

TABLE II
FORWARDING LOGIC FAULT SIMULATION RESULTS

Core # of Faults min - max FC [%]
no caches no PCs

FC [%]
with caches no PCs

A 53,298 64.14 - 75.19 79.61
B 57,506 63.61 - 79.59 82.08
C 113,212 56.24 - 66.48 68.79

Each of these logic simulations was then fault simulated,
and the results are shown in third column of Table II. For
sake of conciseness, the minimum and the maximum value of
fault coverage are reported only. As it can be observed, the
fault coverage considerably oscillates: in the worst case, it was
observed a difference of about 16%. It is important to note that
the signature did not change during the logic simulations and
yet the fault coverage varied significantly. These fluctuations
depend on how many issue packets consecutively (namely
in consecutive clock cycles, without any stall in between)
enter the processor pipeline, activating different forwarding
paths. On the contrary, when executing the self-test procedure
embedded in proposed cache-based approach (fourth column
of Table II), the fault coverage significantly increased (about
the 4% in the best case) while being stable across the different

TABLE III
ICU AND HDCU FAULT SIMULATION RESULTS

Core Module # of Faults FC Sigle-Core
no caches [%]

FC Multi-Core
with caches [%]

A ICU 14,230 46.57 51.36
HDCU 16,096 62.53 70.37

B ICU 13,149 46.39 50.97
HDCU 15,783 63.84 70.12

C ICU 13,888 54.94 60.91
HDCU 19,931 65.66 68.09

scenarios. The fault coverage obtained for core C is lower
compared to the one of cores A and B because the multiplexers
are 64-bit wide to support 64-bit operations. However, general
purpose registers are still 32-bit wide. Therefore, the signature
must be represented using 32 bits, which causes some faults
effects to be masked. Nevertheless, the reader should note
that improvements of the already existing algorithm for the
forwarding logic would have been outside the scope of this
work. For this reason, increasing further the fault coverage
was not considered.

D. Unstable Signature

The third set of experiments (Table III) concerned Interrupt
Control Unit and Hazard Detection Control Unit (ICU and
HDCU respectively). For the HDCU, the complete algorithm
of [19] was used (namely with performance counters). For
the ICU, the aforementioned self-test procedure based on [21]
was used. The fourth column of Table III represents the fault
coverage figures when the self-test procedures were executed
in the selected SoC in a single-core scenario (i.e., with the
other cores switched off) without resorting to the proposed
approach. In this scenario, the signatures produced by the test
programs were stable as the fault coverage. However, when
moving to a multi-core execution without using the caches
the test procedures inevitably failed in any configuration.
Introducing caches, the produced signatures become stable,
and therefore the fault coverage can be computed. As the
reader can notice, the achieved fault coverage in a multi-core
execution is higher than in the single-core scenario. This lower
fault coverage stems from the fact that the memory subsystem
introduces 8 clock cycles of latency when fetching an issue
packet from the Flash even in a single-core execution. Thus, it
is not possible to fully excite all the forwarding paths or trigger
correctly all the imprecise interrupts. Furthermore, while for
the HDCU the coverage was similar over the three processors,
the coverage for the ICU is about 10% higher in the core
C. This arises from the implementation of the ICU itself. In
details, the unit exposes some software-accessible registers for
differentiating among the possible sources of interrupt. In the
core A and B, different interrupt events are mapped to the
same bits. As a result, even here some fault effects are masked
(unlike core C).

E. Comparisons with other solutions

Finally, a common alternative to the proposed one consists
in exploiting the processor Tightly-Coupled Memories (TCMs,
also known as scratchpad memories) [22], [23]. This approach

TABLE IV
TCM-BASED VERSUS CACHE-BASED APPROACHES FOR IMPRECISE

INTERRUPTS

Approach Overall Memory Overhead
[bytes]

Execution Time
[clock clycles]

TCM-based 2,874 16,463
Cache-based 0 18,043

is typically adopted for the execution of real-time programs.
Such programs are copied (during the system boot) and then
executed from the instruction TCM when required. Conceptu-
ally, TCMs are similar to caches since they consist in a bank
of SRAM local to each processor. Unlike caches, there is not
the concept of cache miss or hit, since data or instructions
have to be copied explicitly to these memories before being
used. This approach shows most of the advantages of the
proposed one. However, the fundamental drawback is that part
of the TCM should be permanently reserved for test purposes
(the amount of extra memory occupied is proportional to the
size of the test program). Clearly, this impacts negatively on
both portability and flexibility of the STL. Table IV compares
the two strategies (namely TCM-based versus cache-based
execution) for the self-test procedure targeting the imprecise
interrupts (similar results were obtained also for the hazard
detection units, but they were not reported for conciseness).
Since both approaches require few additional instructions to be
implemented, the flash overhead is negligible and not reported.
The same reasoning applies also for the fault coverage,
which is the same for both. Concerning the TCM-based, the
execution time consists in the time required for copying the
entire self-test procedure in the Instruction TCM and then
execute from there the self-test program. For the cache-based
one, it is the time required for executing as in Figure 2b. As
it can be viewed, the cache-based approach does not increase
the overall memory footprint of the self-test procedure, while it
requires to be executed slightly more than 1,500 clock cycles
compared to the TCM-based approach. It is worth noting that
this overhead might be negligible when the STL is executed
at-speed (8.25µs when the considered SoC operates at its
maximum frequency of 180 MHz).

V. CONCLUSION

This paper described a cache-based approach for achieving a
deterministic execution of self-test procedures when deployed
in field in a multi-core SoC. In this context, the suggested
methodology is able to deliver stable signature and determin-
istic fault coverage, without requiring additional on-chip re-
sources. Through the experiments, it was demonstrated the ap-
plicability to any self-test procedure without altering its overall
memory footprint. On the other hand, it requires slightly more
clock cycle to be executed compared to other strategies (e.g.,
the TCM-based ones). While considering stuck-at faults, few
specific test programs exhibit these issues in a multi-core
execution. Instead, it might be further emphasized with delay
faults which require test patterns applied in a timed sequence.

REFERENCES

[1] F. Reimann et al., “Advanced diagnosis: Sbst and bist integration in
automotive e/e architectures,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2014, pp. 1–6.

[2] (2019) ARM Software Test Library: [Online]. Available:
https://www.arm.com/products/development-tools/embedded-and-
software/software-test-libraries.

[3] (2019) Infineon Software Test Library: [Online]. Available:
https://www.hitex.com/tools-components/software-components/selftest-
libraries-safety-libs/pro-sil-safetcore-safetlib/.

[4] (2019) Cypress Software Test Library: [Online]. Available:
http://www.cypress.com/file/249196/download.

[5] (2019) Renesas Software Test Library: [Online]. Available:
https://www.renesas.com/en-eu/products/synergy/software/add-
ons.html#read.

[6] (2019) Microchip Software Test Library: [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf.

[7] P. Bernardi et al., “Development flow for on-line core self-test of
automotive microcontrollers,” IEEE Transactions on Computers, vol. 65,
no. 3, pp. 744–754, March 2016.

[8] Thatte and Abraham, “Test generation for microprocessors,” IEEE
Transactions on Computers, vol. C-29, no. 6, pp. 429–441, June 1980.

[9] A. Paschalis et al., “Deterministic software-based self-testing of embed-
ded processor cores,” in Proceedings Design, Automation and Test in
Europe. Conference and Exhibition 2001, March 2001, pp. 92–96.

[10] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4–19, May 2010.

[11] N. Kranitis et al., “Hybrid-sbst methodology for efficient testing of
processor cores,” IEEE Design Test of Computers, vol. 25, no. 1, pp.
64–75, Jan 2008.

[12] L. Chen and S. Dey, “Software-based self-testing methodology for
processor cores,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 3, pp. 369–380, March
2001.

[13] A. Floridia et al., “A decentralized scheduler for on-line self-test routines
in multi-core automotive system-on-chips,” in 2019 50th International
Test Conference, Nov 2019, pp. 1-10.

[14] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation
with model checking for timing analysis of multicore software,” in 2010
31st IEEE Real-Time Systems Symposium, Nov 2010, pp. 339–349.

[15] A. Apostolakis, D. Gizopoulos, M. Psarakis, and A. Paschalis,
“Software-based self-testing of symmetric shared-memory multiproces-
sors,” IEEE Transactions on Computers, vol. 58, no. 12, pp. 1682–1694,
Dec 2009.

[16] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “Daemonguard:
Enabling o/s-orchestrated fine-grained software-based selective-testing
in multi-/many-core microprocessors,” IEEE Transactions on Comput-
ers, vol. 65, no. 5, pp. 1453–1466, May 2016.

[17] T. Hsieh et al., “Tolerance of performance degrading faults for effective
yield improvement,” in 2009 International Test Conference, Nov 2009,
pp. 1–10.

[18] M. Psarakis et al., “Systematic software-based self-test for pipelined
processors,” in 2006 43rd ACM/IEEE Design Automation Conference,
July 2006, pp. 393–398.

[19] P. Bernardi et al., “Software-based self-test techniques for dual-issue
embedded processors,” IEEE Transactions on Emerging Topics in Com-
puting, pp. 1–1, 2018.

[20] J. E. Smith and A. R. Pleszkun, “Implementing precise interrupts in
pipelined processors,” IEEE Transactions on Computers, vol. 37, no. 5,
pp. 562–573, May 1988.

[21] P. Singh, D. L. Landis, and V. Narayanan, “Test generation for precise
interrupts on out-of-order microprocessors,” in 2009 10th International
Workshop on Microprocessor Test and Verification, Dec 2009, pp. 79–
82.

[22] J. Ax et al., “Coreva-mpsoc: A many-core architecture with tightly
coupled shared and local data memories,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 5, pp. 1030–1043, May 2018.

[23] R. Banakar et al., “Scratchpad memory: a design alternative for cache
on-chip memory in embedded systems,” in Proceedings of the Tenth In-
ternational Symposium on Hardware/Software Codesign. CODES 2002
(IEEE Cat. No.02TH8627), May 2002, pp. 73–78.

