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Abstract: Polymers with light-responsive groups have gained increased attention in the design of
functional materials, as they allow changes in polymers properties, on demand, and simply by light
exposure. For the synthesis of polymers and polymer networks with photolabile properties, the
introduction o-nitrobenzyl alcohol (o-NB) derivatives as light-responsive chromophores has become
a convenient and powerful route. Although o-NB groups were successfully exploited in numerous
applications, this review pays particular attention to the studies in which they were included as
photo-responsive moieties in thin polymer films and functional polymer coatings. The review is
divided into four different sections according to the chemical structure of the polymer networks: (i)
acrylate and methacrylate; (ii) thiol-click; (iii) epoxy; and (iv) polydimethylsiloxane. We conclude
with an outlook of the present challenges and future perspectives of the versatile and unique features
of o-NB chemistry.

Keywords: ortho-nitrobenzyl ester; stimuli responsive polymers; smart coatings; light responsive
coatings; photopatterning

1. Introduction

Responsive molecules that undergo changes in structure or properties upon the application of
external stimuli represent one of the most ambitious research areas in many scientific fields such as
nanomedicine, biology, and functional coatings [1–4]. Typical external stimuli include both physical
stimuli such as temperature, light, or magnetic field and chemical stimuli such as redox, pH value, or
biological [5–7].

Among these stimuli, light has undoubted advantages in terms of spatial and temporal accuracy,
the possibility to be activated and deactivated on demand and photo-triggered reactions typically
proceed under mild reaction conditions [8,9]. For these reasons, several photo-responsive molecules
were synthetized and exploited in numerous areas ranging from organic synthesis to polymer
chemistry [8–11]

In a further distinction, light-responsive molecules may undergo through reversible or
irreversible reactions, depending on the possibility or not for the molecules to recover their initial
structures [8,9,12–14]. Prominent chromophores undergoing reversible reactions are azobenzene
groups (cis-trans isomerization) or coumarin and anthracene derivatives (reversible cycloaddition
reactions) [12,14].
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In the class of irreversible photo-responsive molecules, ortho-nitrobenzyl alcohol derivatives
have become one of the most investigated groups in polymer science, for their versatility in being
included in many different polymer networks and applications [15–19]. Initially, they were used as
photo-protected groups in organic chemistry. A first application in this sense was presented in the
work of Barltrop and co-workers in 1966, in which ortho-nitro benzyl ester groups (o-NBE) were
employed as photo-protected groups for carboxylic acid [20]. The photo-deprotection under UV light
occurs following this reaction mechanism (Figure 1).
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Figure 1. Photoreactions of ortho-nitro benzyl esters (Reproduced by [21] published by the Royal 
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Figure 1. Photoreactions of ortho-nitro benzyl esters (Reproduced by [21] published by the Royal
Society of Chemistry).

Upon UV irradiation (300–365 nm) the excited o-NBE chromophore abstracts a hydrogen
from the methylene or methine carbon in γ-position with the formation of aci-nitro tautomers.
This is followed by a molecular rearrangement, with the formation of a benzoisoxaline derivative
that subsequently cleaves, yielding a carboxylic acid and an o-nitrosobenzaldehyde as primary
photoproducts. Secondary photoreactions involve the formation of azobenzene groups by dimerization
of the o-nitrosobenzaldehyde [15–19].

Along with carboxylic acids, the idea of employing o-nitrobenzyl alcohol derivatives as
photo-protected groups was extended to several other functional groups such as carbamates and
peptides [22–25]. Various strategies were pursued in order to shift the absorption window of the o-NB
chromophores to longer wavelengths, to increase the quantum yield and to prevent the formation of
photo-dimerized by-products [16,26–30]. These strategies include chemical modification either on
the aromatic ring or at the benzyl position of the linker, and photo-sensitization mechanism [31,32].
The possibility to induce the cleavage of the o-NBE with near infrared light via 2 photon absorption
mechanism opened an interesting opportunity for deep-tissue biomedical applications [33–35].

A first adoption of o-nitrobenzyl alcohol moieties as photolabile groups in polymer chemistry is
reported in the work of Petropoulos in 1977 [36]. They were initially introduced in polymer networks for
the fabrication of UV-sensitive photoresists and progressively adopted as photocleavable crosslinkers
for light-triggered drug delivery or as photocleavable junctions in copolymer blocks [37–49]. Advancing
from bulk properties, the photo-sensitive nature of o-NB groups was used to opto-regulate the surface
chemistry [50–52]. Examples are the fabrication of polyelectrolyte multilayers or the photopatterning
of micro and nano arrays for spatially controlled protein immobilization and cell culture [53–56].
Other interesting applications include photocleavable self-assembled monolayers (SAMs) and optical
devices [57–60].

Although there are numerous studies and applications of o-NB groups reported in literature, this
review highlights the studies in which o-NB chromophores are applied as photosensitive moieties
in thin polymer films, with a focus on the works made by the authors in the past years. In order to
improve the readability and the understanding through the manuscript, the literature was divided into
four main categories, according to the polymer matrix, which included (i) methacrylate and acrylates,
(ii) thiol-click networks, (iii) epoxy-based networks, and (iv) polydimethylsiloxane.
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We will conclude summarizing selected key-features of ortho-nitrobenzyl alcohol derivatives
in polymer chemistry, highlighting present challenges and future perspectives of this expanding
research area.

2. Photo-Responsive Acrylate and Methacrylate Polymers

Because of their versatile properties and their commercial availability, acrylate and methacrylate
monomers have been widely used in the fabrication of polymers since decades [61]. By carefully
selecting monomer structure and their functionalities, polymers can be synthesized for a plethora of
industrial applications such as industrial coatings, adhesives, inks, and biomaterials [62–65]. The high
reactivity of the carbon-carbon double bonds together with the possibility to be photo-initiated made
(meth) acrylic monomers also the most used compounds in new technologies such as light-activated
3D printing technologies [66,67].

The possibility to combine acrylate or methacrylate polymer networks with photolabile groups
could give further advantages in terms of “smart” properties and in 4D printing strategies [68]. In the
last decades, o-NB alcohol derivatives were employed in several applications based on methacrylate and
acrylate networks and the first interest in thin polymer films arose for the fabrication of photoresists [40].

A photoresist is a light sensitive polymeric compound, whose solubility properties are locally
changed through mask-mediated irradiation [69]. In particular, photolithographic techniques are
typically applied to inscribe patterns in thin films of the photoresists. In a subsequent step, the pattern
is developed with a proper solvent that either dissolves the irradiated (positive tone photoresist) or the
non-irradiated area (negative tone photoresist), leaving the desired architecture that could be then
used for further processes (metal deposition, epitaxial growth, surface functionalization, etc.) [70].

Different approaches were adopted in literature in order to exploit o-NBE chemistry for the
development of photoresists.

One of the first work in this sense was made by Reichmanis et al. [71] in the early
80s. They introduced o-nitrobenzyl cholate ester in a polymeric matrix of poly-co-(methyl
methacrylate-methacrylic acid) in order to inhibit the network’s solubility. Upon UV light irradiation,
the o-nitrobenzyl cholate ester was cleaved into soluble species allowing a selective extraction of the
irradiated area in an aqueous alkali developer. Results showed higher resolution (1 micron) compared
to other photopatterning techniques. The authors also demonstrated the possibility to increase the
reaction quantum yield, by proper substitutions on the o-nitro-benzyl chromophore.

In another work [72], Reinhold Schwalm compared different co-polymers containing o-nitrobenzyl
(meth)acrylates as solution inhibitor, in terms of quantum yields (referred to the isomerization reaction
of the nitro groups), resist sensitivity, and contrast. In this study the high influence of the network’s
glass transition temperature (Tg) on the ortho-nitro reaction was evidenced, that is a consequence of
the high free volume that the o-nitrobenzyl group requires for the photoisomerization reaction. In fact,
o-nitrobenzyl isomerization proceeds via some intermediates, which require at least rotational motions
of the nitro and benzyl moieties. Thus, relatively large amounts of free volume are necessary in order
to obtain high quantum yields. This property is also common in other Norrish type II reactions [73].
Consequently, in order to have high cleavage conversion of the nitro groups, the system should be
irradiated above its Tg. According to this logic, the author selected appropriate co-polymer films,
optimized the reaction parameters, and was able to fabricate micro-resists with a resolution between
0.75 and 1 µm.

In the late 1980s, particular interest was also focused on the exploitation of this photocleavage
reaction in chemical amplification concepts. Willson and co-workers synthetized poly(carbonate)s with
o-nitrobenzyl pendant groups, which form free hydroxymethyl pendant groups upon UV exposure [74].
Chemically amplified depolymerization of the illuminated polymer was then obtained during a
post-baking step in the presence of a photo acid. A route towards positive chemical amplification
was pursued by Wilkins et al. who described the synthesis of an o-NB ester of cholic acid [75]. The
ester acts as photosensitive dissolution inhibitor for copolymers of methyl methacrylate and methyl
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acrylic acid. Deep UV exposure changed the solubility characteristics of the inhibitor since the cleavage
products were highly soluble in alkaline solutions and positive tone patterns with a resolution of 0.5
µm were accomplished.

These works highlight the advantages of o-NBE links in photoresists compared to conventional ones
that employed moieties that are unusable at wavelength shorter than 300 nm, such as novolak-quinone
diazine [71,76]. Instead, with nitrobenzyl groups, being active to shorter wavelengths, it is possible to
reduce light diffraction effect, thus, increasing the definition and resolution of the photoresist [77]. The
high reaction quantum yields of o-NB isomerization reduces also the necessity to use high light energy
doses that could degrade the matrix producing poor profiles [72].

More recently, o-NBE-based photoresists were successfully adopted for the patterning of organic
light-emitting diode (OLED) displays and organic thin-film transistors (OTFTs). An interesting work
in this sense was made by Taylor and co-workers in 2009 [78]. They synthetized a photoresist based on
a co-polymer that contains monomers with highly fluorinated groups and methacrylic nitrobenzyl
ester monomers (Figure 2). After photolysis of the o-nitrobenzyl ester groups, the co-polymer
became insoluble in hydrofluoroethers solvents allowing selective network dissolutions. Taking
advantages from the photo-switchable solubility properties, the synthetized photoresist was employed
as photo-pattern system on PEDOT: PSS films. The results showed a sub-micrometer patterning, and,
generally higher performance compared to other chemically amplified techniques for PEDOT: PSS
photo-patterning. As a further application, they were able to fabricate a field-effect transistor, in which
an organic semiconductor material (pentacene) was patterned on the PEDOT: PSS coating.
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Figure 2. (a) Synthesis of the UV-sensitive acid-stable polymer resist 3 and photoinduced deprotection
reaction to polymeric carboxylic acid; (b) schematic device fabrication of PEDOT: PSS/pentacene
bottom-contact OTFT; and optical image of the OTFT (Reprinted with the permission from
Reference [78]).

Although the good resolutions, the typical dissolution mechanism of the previously reported
photoresist may include most of the time harsh developing solvents, which could be particularly
insidious for applications in biological field. Different approaches were developed in order to use mild
buffer solutions for the photoresist’s developing step [55,56,79–81]. The basic idea was the following:
being carboxylic acids one of the reaction products of the isomerization reaction of o-NBE (Figure 1),
they could be negatively charged after deprotonation at neutral or basic pH. Then, the electrostatic
charge repulsions could be conveniently exploited in order to dissolve the UV irradiated area in mild
aqueous solution at certain pH values. In order to exploit successfully this polyelectrolyte property in
aqueous media, the polymer network should be hydrophilic enough to ensure that water penetrates
the matrix.

The possibility to fabricate photoresist with high resolution and in mild reaction conditions
were widely explored for the fabrication of protein microarrays. Different works in this sense were
conducted by Doh and co-workers [79]. They synthetized a terpolymer (o-NBEMA-MMA-PEGMA)
containing an o-nitrobenzyl methacrylate (o-NBEMA), methyl methacrylate (MMA), and poly(ethylene
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glycol)methacrylate (PEGMA) for preparing thin photo-responsive films. The patterns were
accomplished after UV illumination, by dissolving the irradiated polymer area in a phosphate buffer
solution with a pH above 6.6. Further conjugation of biotin to the hydroxyl end groups of PEGMA
units allowed selective immobilization of streptavidin on the surface, enabling a multicomponent
protein patterning (Figure 3).Materials 2020, 13, x FOR PEER REVIEW 5 of 26 
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Figure 3. Chemical structure of Photoresist (PR) (a) spin-coated on Poly(allylamine) hydrochloride(PAH)
and its mechanism for in situ polyelectrolyte bilayer formation (Reprinted with the permission from
reference [79] Copyright 2004 American Chemical Society).

The same group fabricated micropatterns for protein adhesion and cells culture, with microscope
projection photolithography [80]. In a first step, they coated a biotinylated substrate (for proteins
adhesion), on the top of which they deposited a photo-responsive terpolymer (42 wt% DMNBMA
(4,5-dimethoxy-2-nitrobenzyl methacrylate), 24 wt% MMA, and 34 wt% PEGMA) by spin casting.
The photoresist design was then inscribed through microscope UV light projection, dissolving the
irradiated terpolymer coating. The exposed underlying biotin groups were subsequently exploited for
a selective immobilization of streptavidin proteins. By repeating the previous procedure, the authors
were able to immobilize different type of proteins in a selective manner, and in micro-arrays with
high-resolution capability (1 µm). In a further step they successfully extended the procedure to the
fabrication of micro-scaffolds for immune cells (Figure 4a).
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Figure 4. (a) Schematic of multiple streptavidin (SAv) patterning (Reprinted with the permission from
reference [80] Copyright 2010 American Chemical Society). (b) Schematic diagram of the sequential
fabrication of multiscale, multicomponent protein-patterned surfaces by combining CFL and MPP
(Reprinted with the permission from reference [81] Copyright 2011 American Chemical Society).

In a further work [81], they extended the concept to the fabrication of a multi-topographical
structures, combining two different lithographic techniques: capillary force lithography and microscope
projection photolithography (Figure 4b). In a double step procedure, they coated a first pattern of
the previously synthetized terpolymer on a biotinylated substrate using capillary force lithography,



Materials 2020, 13, 2777 6 of 26

and they immobilized a first type of streptavidin protein on the uncovered biotinylated area. In a
subsequent step, they projected a second pattern with UV light projection, and immobilised a second
type of protein on the exposed area. Combining these techniques, they were able to design more
complex topographical structures for protein microarrays, which were used as a scaffold for studying
cells behavior in a multi-topographical domain. This study reported that for a colon cancer cells culture
(SW480) the nanoscale topographical cues, as compared to microscale topographical cues, had an
ability to elicit the selective adhesion of the cells.

Because of their polyelectrolytes nature, o-NBE groups were also used for the fabrication of PEMs
(polyelectrolyte multilayers) [55,56].

PEMs are multi-layered films in which layers of polycations and layers of polyanions are
alternated [82,83]. The electrostatic attraction between oppositely charged macromolecules provides
the enthalpic driving force for the layer assembly [84]. In a responsive PEM network, an external
trigger (such as pH, light or temperature) could selectively change the charge interaction force among
the layers, thus promoting a de-assembly mechanism in proper solvents [85].

As regard to this concept, Thomas and co-workers employed an o-NBE methacrylate monomer
for the fabrication of photo-responsive PEMs networks. In a first work [55], photo-responsive PEMs
networks were fabricated overlapping two domains with different wavelength responsiveness (Figure 5).
Their idea was to selectively de-assembly the two PEMs domains using light sources operating at
different wavelengths. In order to meet this challenge, they included two photolabile groups; a
dialkylamino-coumarin ester molecule, which is responsive to visible light, and o-nitrobenzyl molecules,
which are excited with UV light. In particular, the first domain alternates layers of poly(styrene
sulfonate) (PSS), which contain polyanions (SO−3 ), with layers of 2-(N,N dimethylamino)ethyl
methacrylate-o-NBE-methacrylates), which contain polycations. A second domain alternates between
PSS and co-2-(N,N dimethylamino)ethyl methacrylate-dialkylaminocoumarin methacrylate, as shown
in Figure 5.
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Figure 5. (a) Schematic illustration of the de-assembly process through different wavelength irradiations.
(b) Design of photosensitive polycations that reduced net charge upon irradiation with either visible
(coumarinyl groups) or UV (coumarinyl or nitrobenzyl groups) light (Reprinted with the permission
from reference [55] Copyright 2014 American Chemical Society).

The layers electrostatic interaction was then selectively disrupted by irradiating in series the two
domains with two distinct wavelength sources: λ > 400 nm for the photolysis of the coumarin ester
and λ < 400 nm for the photocleavage of the o-NBE groups, taking advantage from the photo-release
of ionizable carboxylic acid species. The layers de-assembly was promoted in a buffer solution
since polyanions are formed by the de-protonation of the carboxylic acid groups in neutral and
basic environment.
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By including two different classes of pendant dyes in the two distinct domains, they demonstrated
high wavelength selectivity in the de-assembly process through fluorescent measurements.

In a follow-up work [56] the authors increased the level of selectivity by adding two other classes
of chromophores. Following the same procedure, four different domains were fabricated containing:
dialkylamino coumarin (DEACM) groups (λ < 450 nm), two ortho-nitrobenzyl ester groups (λ < 400
nm), and para-methoxyphenacyl (PMP) groups (λ < 320 nm).

In order to enhance the level of selectivity, they employed two different types of o-nitrobenzyl
molecules, which have similar absorbance spectra but different photolysis quantum yields: a
2-nitrobenzyl ester (NBE) unsubstituted at the benzylic position, and an α-methyl-2-nitrobenzyl
ester (MNBE). The MNBE has a methyl group at the benzylic position, and a quantum yield of
photolysis approximately five times higher than the unsubstituted NBE group. In this way, they were
able to design complex patterns by varying both wavelength and intensity of the light source.

The previously mentioned procedures are mainly based on the idea to use o-nitrobenzyl links,
in order to spatially control the solubility of thin polymer films in organic solvents or in aqueous
solutions. Although good resolutions are achieved, there are some disadvantages, which include
the impossibility to inscribe 2.5D or 3D profiles, because of the limitations of the photo-lithography
techniques [86]. Recent works have proposed a new original approach, that consists in exploiting
a direct cleavage of the o-NBE chromophores and surface ablation, by an UV laser source [87]. In this
way, the photoresist development is accomplished with a direct evaporation of the cleaved network
from the coating surface, thus avoiding the solvent developing step.

In a recent and very interesting work, Batchelor et al. [88] adopted this idea combing a 3D printing
process with a subsequent network erasing, only changing the wavelength emission of a 2 photons laser
source. They synthetized a diacrylate crosslinker with o-NBE groups. In the first step, they 3D printed
micrometric structures using a two photons emission laser source (900 nm). In a second step, they
selectively erased the structure by tuning the laser wavelength emission (700 nm). In particular, the
authors fabricated a cubic structure of length 15 µm using wavelength of 900 nm, and in a second step
they inscribed submicrometric tunnels, which crosses inside the 3D structure, with a laser irradiation
of 700 nm, owing to the two photons photocleavage of o-NBE groups (Figure 6).
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µm diameter tunnel, and (c) simple text “123” (Reprinted with the permission from reference [88]).

o-Nitrobenzyl chemistry was also widely explored as an efficient tool for tuning polymer surface
properties in terms of both physical-chemical properties and morphology.
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Properties such as adhesion, cohesion, optical refraction, surface wettability, or morphology on a
micro and nanoscale can be selectively tuned upon UV irradiations, because of the light-responsive
nature of nitro-benzyl ester moieties, and their reaction products [50–52,59,60,89,90]. An interesting
work in this sense is reported by Minkyu Kima and Hoyong Chung in 2017 [91].

They fabricated a photo-responsive bio-inspired adhesive based on a terpolymer
poly(MDOPA-co-SBMA-co-NBEDM), composed by a zwitterionic polymer poly(sulfobetaine
methacrylate) (pSBMA); a DOPA (3,4-dihydroxyphenylalanine) for the adhesion properties, and
a photo-responsive methacrylate-co-2-nitro 1,3-benzenedimethanol dimethacrylate (NBDM). The
photocleavage of the o-NBE groups in the synthetized terpolymer was conveniently exploited in
order to decrease the crosslinking density, and hence reducing the adhesion properties of the polymer
network. The results showed a decrease of the starting adhesion strength from 341 kPa to 223 kPa after
30 min of UV irradiation (38% reduction), and a further decrease to 150 kPa after 3 h of UV irradiation
(56%).

In another brilliant work [92], Xue and co-workers reported a photoinduced strategy for regulating
the localized growth of swollen microstructures, by coupling photolysis, photopolymerization, and
transesterification mechanism together. The material system consisted of a swellable matrix filled by a
swelling solution. The swellable matrix was made by a polymer structure composed of 4-hydroxybutyl
acrylate (HBA), for imparting good swelling ability, o-nitrobenzyl acrylate as photolabile linkers, and
1,6-hexanediol diacrylate (HDDA) for the transesterification reaction.

The swelling solution was instead composed by 4-hydroxybutyl acrylate (monomer),
1,6-hexanediol diacrylate (crosslinker), I-819 (photoinitiator), and benzenesulfonic acid (BZSA) as
transesterification catalyst. The basic swelling mechanism was the following: upon light exposure,
the solution on the irradiated area photopolymerizes, and consuming the monomers, creates a
concentration gradient of monomers and crosslinkers (swelling solution) to the irradiated areas. In this
way, unreacted species diffuse to the irradiated regions and swells the polymer surface. In addition
to this mechanism, the photolysis of the o-NBE groups releases ionizable carboxylic acid groups,
which enhance the swelling ability of the irradiated region, by expanding the polymer networks via
COO−–COO− electrostatic repulsions. The combined effect caused a localized swelling of the irradiated
network surface, with the formation of micro-pillars (Figure 7). The presence of o-nitrobenzyl ester
groups was crucial for enhancing the swelling process.Materials 2020, 13, x FOR PEER REVIEW 9 of 26 
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The authors further showed that the dimensions of the pillars could be properly designed and
controlled by tuning the light spot dimensions and intensity. Moreover, multi-pillars growing (one
above the others) could be realized by irradiating the surfaces of existing pillars in several steps. In
addition, the thermal effect generated by the photopolymerization triggers transesterification reactions,
which release any polymerization-induced mechanical tension in the dynamic networks, increasing
pillars’ mechanical properties. Finally, the authors showed different applications of this dynamic
networks, which include surface photo-patterning and healing ability on the millimeter level.

Although several studies report on the use of controlled radical polymerization (CRP) techniques
for the polymerization of o-NBE acrylate and methacrylate monomers, there are still some
challenges related to the difficulties to synthetize polymers with high molecular weight and low
polydispersity [93–96]. These difficulties are due to the intrinsic nature of the nitro-aromatic groups
that act as inhibitors in the radical polymer growths, particularly at high temperatures. These inhibition
effects were also found in living polymerization of other molecules that contain nitro aromatic
groups [95,97]. Below, we report some works related to CRP polymerization techniques in o-NBE
methacrylate and acrylate systems.

A first exhaustive study of o-nitrobenzyl methacrylate and acrylate monomers polymerized
by different controlled radical mediated polymerization, was made by Schumers and co-workers in
2011 [95]. The study analyzed different types of controlled-radical polymerization (CRP) techniques,
for o-nitrobenzyl methacrylate (NBMA) and o-nitrobenzyl acrylate (NBA) monomers. Particularly, they
analyzed (i) atom transfer radical polymerization (ATRP), (ii) reversible addition-fragmentation chain
transfer polymerization (RAFT), and (iii) nitroxide-mediated polymerization (NMP). Considering
RAFT polymerization, the authors could polymerize only methacrylate o-NBE monomers with some
degree of control (PDI 1.5) but reaching molar masses up to 11,000 g/mol only after 18 h of reaction.
The study showed that RAFT polymerization of NBA was almost completely inhibited. This behavior
was ascribed to the higher reactivity of the acrylate radicals, in comparison to the methacrylate
ones, and therefore higher tendency to undergo to side reactions with the o-nitrobenzyl group.
Regarding nitroxide-mediated polymerization (NMP), no polymerization was observed under the
employed reaction conditions. According to this study, ATRP proved to be the best method for
methacrylate monomers, achieving polymers with molar masses between 12,100 and 16,400 g/mol and
with low-polydispersity indices (Mw/Mn < 1.25). With ATPR, o-nitrobenzyl acrylate with low molar
masses and high polydispersity can be polymerized.

In a more recent work Soliman et al. [96] improved these results by single electron transfer–living
radical polymerization (SET–LRP). In this study, the authors investigated the influence on the reaction
kinetic determined by the presence of ligand, CuBr2 (used for preventing the formation of high
molecular weight contaminant), and Cu(0) wire length used as a catalyzer for starting the reaction.

In this study, the authors polymerized nitrobenzyl acrylate monomers through SET–LRP method,
showing the effect on the polymerization kinetics due by the ligand and CuBr2 concentration, as well
as Cu(0) wire length used as a catalyzer for starting the reaction.

Optimizing these parameters, they were able to synthetize polymers with a molecular weight up
to 28,600 g/mol and a narrow distribution (Mw/Mn < 1.2).

o-NBE moieties were also employed as photocleavable junctions in copolymer blocks, in order
to make micelles, or well-defined nano-porous structure in thin coating applications [26,38,48,98].
Block co-polymers comprise two or more chemically distinct homo-polymer units, linked by covalent
bonds [99]. They have attracted much interest in polymer chemistry because, in thin polymer
coatings, they are able to self-assembly into arrays of microscopic or nanoscopic domains [100,101].
The self-assembly behavior is a consequence of the intrinsic immiscibility between the two polymer
blocks, together with the presence of covalent bonds among the monomer units [102].

Under annealing treatment in vapor solvent, the intrinsic block immiscibility promotes
a self-assembling process of the co-polymer networks in well-defined and distinct domains.
Photocleavable junctions among the two polymer blocks were successfully exploited as powerful
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tool, in order to selectively photocleave only one domain of the co-polymer structure, thus realizing
porous-ordered domains or spatial-controlled surface post-modifications treatments [93,103].

In an interesting work, Schumers and co-workers [93] synthetized a copolymer block
(P(NBA-r-AA)-b-PS), based on a photo-responsive poly(2-nitrobenzyl acrylate-random-acrylic acid)
unit, and a polystyrene block, PS. After showing a convenient synthesis technique for the block
copolymers, they employed the (P(NBA-r-AA)-b-PS) for micelles preparation, by UV irradiating the
co-polymer block in a chloroform solution. Because of the UV-induced photo-deprotection mechanism
of insoluble acrylic acid functions were released, which promoted co-polymer self-assembling with
the formation of micelles with PAA core and a PS corona structure (Figure 8a). TEM characterization
showed the formation of 13 nm radius micelles, after 5 h of irradiation at 300 nm and 38.5 mW/cm2 of
light intensity. The authors were also able to encapsulate, and then photo-release, coumarin 343 as a
fluorescent dye. In a further step, thin coatings with a cylindrical morphology were accomplished
by self-assembling the P(NBA-r-AA) 74-b-PS581 block copolymers onto silicon substrates (Figure 8b).
The authors also studied the influence, in the annealing process, that different solvents had on the
co-polymers self-assembling. After UV irradiation, they were able to selectively photo-cleave and
extract the o-NBE domains, therefore obtaining well-ordered hollow structures (Figure 8c).
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Figure 8. Schematic representation of light-responsive behavior of P(NBA-r-AA)-b-PS photocleavable
block copolymers (a) light-induced micellization in a selective solvent of PS, (b) self-assembly in thin
film with a cylindrical morphology, and (c) light exposure leading to functional and nanostructured
thin films (Reprinted with permission from reference [93]).

The control of the self-assembly process of the copolymer blocks, and domains orientation, still
represents an ambitious challenge in coating applications. Several works have shown the influence
of the substrate on the orientation of the structure domains of a coated block co-polymer [104,105].
In a recent work, Sol and co-workers [106] proposed an interesting approach in order to control the
domains’ orientation of a coated co-polymer blocks, by photo-controlling the substrate wettability.
They fabricated a substrate with photo-responsive wettability based on a block copolymer of
poly(styrene-r-2-nitrobenzyl methacrylate-r-glycidyl methacrylate). Because of the release of
hydrophilic carboxylic acids under UV light, they were able to change the substrate’s surface polarity.
In a subsequent step, by coating block copolymers of poly(styrene-b-methyl methacrylate), they
demonstrated that the different substrate wettability was a crucial factor in the self-assemble process of
the coated block co-polymer, co-(PS-b-MM), into lamellar or cylinder-forming domains. Particularly,
they were able to control the domains’ orientation, from perpendicular to parallel orientation, changing
the surface polarity by appropriate UV exposure dose.
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In order to enhance the stimuli-responsiveness and the level of selectivity in changing polymer
properties, some researches have focused on the design of polymer networks with multi-responsive
properties [44,107,108].

Adopting a very original approach, Ionov and Diez [109] fabricated a polymer network that
combines thermo- and photo-responsive properties by incorporating o-NBE acrylate photocleavable
monomers into thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) chains. The photocleavage
of the o-NBE groups, upon UV irradiation, was conveniently exploited in order to tune the
thermo-responsive behavior of the o-NBE-PNIPAM networks. In particular, the o-NBE photocleavage
reaction influenced the low critical solution temperature (LCST), defined as the temperature below
which the network is soluble in aqueous solutions. The results showed a decrease of the LCST in
aqueous solutions of 50 °C after UV irradiation, because of the formation of hydrophilic carboxylic
acid species. This temperature-responsive behavior was used in order to sequentially remove
irradiated and non-irradiated areas of a photo-patterned surface by carrying out developing steps at
different temperatures. In a subsequent step, they were able to selectively immobilize proteins on the
patterned surfaces.

3. Photo-Responsive “Thiol-Tlick” Networks

Introduced in 2001 by Kolb and co-workers, click chemistry refers to a group of reactions in
organic chemistry, that are characterized by fast reaction rates, regioselectivity and stereospecificity,
high yields and mild reaction conditions [110]. The term “thiol-click” refers to a large subcategory of
click reactions, in which monomers with thiol functionalities react with different type of co-monomers
via radical or catalyzed reactions [111]. The reason why they have attracted particular interest in
polymer chemistry, is related to their fast reaction rate and the high final monomers conversion. In
addition, thiol-click reactions do not suffer from oxygen or water inhibition [111–114]. The step-growth
polymerization mechanism further leads to homogeneous polymer matrix with low shrinkage stresses
and narrow glass transition regions [111–116].

Taking advantage of the unique properties of thiol-click reactions and the versatile nature of
o-NBE chemistry, our research group designed various photocleavable “thiol-click” networks with
photosensitive o-nitrobenzyl ester moieties [21,87,89,90,117]. For this purpose, a series of o-nitrobenzyl
ester monomers with terminal functionalities such as alkene, acrylate, epoxy, and alkyne were
synthetized. Thiol-click networks were then prepared by light-induced reaction with different thiol
crosslinker (Figure 9).

The design of photocleavable “thiol-click” photopolymers by introducing o-NBE chromophores
was reported by Radl and co-workers in 2017 [117]. Radical-mediated thiol-ene photopolymerization
of a photo-sensitive alkene(2-nitro-1,4-phenylene)bis(methylene) acetate with multi-functional thiols
yielded polymer networks with photosensitive covalent links. The curing of the monomers was
carried out by visible light exposure using phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide as
long wavelength absorbing photoinitiator (λ = 360–440 nm). The absorbance of the initiating system
did not interfere with the absorbance of the o-NBE links, as vinyl-NBE absorbs below 380 nm. Thus,
efficient photoinitiation of the thiol-ene reaction was accomplished without electronically exciting
the photosensitive vinyl-NBE. Going beyond the fabrication of positive tone patterns, the spatial and
temporal control of the photocuring process enabled the fabrication of complex two-dimensional
polymer patterns with photo-responsive properties. Microstructures with a resolution of 4 µm were
accomplished by dissolving the cleaved networks in organic solvents (Figure 10).
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Chemistry).

Inspired by this work, Romano and co-workers [21] synthetized a photo-responsive thiol-epoxy
network by using a photolabile o-NBE derivative with terminal epoxy groups (epoxy-NBE) (Figure 9).
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Crosslinking of epoxy-NBE with multi-functional thiols was accomplished through a photo-base
catalyzed nucleophilic ring opening of the epoxy monomers. The chosen catalyst was a photo-latent
base, which releases strong amidine-type base (pH around 13) under light exposure, thus initiating the
thiol-epoxy addition reaction. The spectral sensitivity of the photo-latent base was extended to the
visible light region by adding a selected photosensitizer to the resin formulation. With this approach
the initiation of the crosslinking reaction was carried out with light in the visible wavelength region
without interfering with the absorbance of the o-NBE groups. In a second step, the o-NBE groups
selectively cleaved upon UV exposure, obtaining a well-defined network degradation. Positive tone
photo-patterns with a good resolution were inscribed into thin films of the thiol-epoxy networks by
lithography techniques. Going a step beyond, the photo-release of hydrophilic carboxylic acid species
was exploited in order to tune the surface wettability. Contact angle measurements revealed a change
of the water contact angle from 75◦ to 62◦ if the UV irradiation was carried out in nitrogen atmosphere.
However, nearly fully wettable surfaces were obtained with water contact angles lower than 10◦ if the
UV exposure was performed under air. The pronounced shift of the water contact angle under air was
mainly attributed to a photo-oxidation of the polymer surface.

Rossegger and co-workers [89] exploited the significant change in surface wettability to photo-tune
the surface properties of thiol-click networks. In particular, they demonstrated the possibility to drive
water droplets across the surfaces through a photo-inscribed wettability gradient. They synthetized
o-nitrobenzyl alcohol derivatives with terminal alkyne groups, which were then crosslinked across
multi-functional thiols, by a photo-induced thiol-yne reaction. In order to maintain orthogonality
between the crosslinking and the cleavage step, the curing reaction was initiated by visible light
exposure, using phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide as photoinitiator. They showed
that the surface wettability can be controlled over a broad range, with water contact angles ranging
from 97◦ to 27◦ upon UV irradiation under air, and from 97◦ to 82◦ upon UV irradiation in nitrogen
atmosphere. The authors demonstrated with XPS measurements that the higher wettability change in
air relies on the photooxidation of the unreacted thiol groups yielding sulfonic acid moieties. The high
wettability gradient generated upon gradual UV exposure together with a Laplace pressure gradient
were used to move water droplets on the sample’s surface. For the preparation of this multi-gradient
surfaces, a V-shaped pattern geometry with a lengthwise wettability gradient was inscribed into the
thin films by photolithography (Figure 11). Because of this design, they were able to move a 2 µL water
droplet over a distance of 10 mm; not only on a planar polymer surface but also on surface, which
were tilted (20◦) or turned upside down.
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Figure 11. Schematic illustration of (a) photopolymerization of the thiol-yne network at long wavelength.
(b) Patterned and asymmetrical UV exposure to realize (c) a wedge-shaped surface area with a lengthwise
wettability gradient, which is surrounded by the hydrophobic (not exposed and thus, not-cleaved)
thiol-yne network. (d) Water contact angle and droplet movement on the irradiated surface (Adapted
from reference [89] published by the Royal Society of Chemistry).

The wettability of solid surfaces mainly depends on the chemical surface composition and on
the microstructure morphology [118]. It is well-known, through the Wenzel equations and other
physical models, that surface roughness influences the wettability properties compared to an ideal
planar surface with the same chemical composition [118,119]. In particular, Picraux et al. reported
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that an appropriate surface roughness amplifies the light-induced change in water contact angle of a
photo-responsive silica surface [120].

Taking advantages of this effect, in a further work, Rossegger and co-workers [90] increased the
wettability gradient by introducing a needle-like micropatterns on the sample surface, with visible
light-assisted nanoimprint lithography (NIL). In order to increase the mechanical properties of the
coating, for the light-assisted NIL procedure, they prepared a thiol-acrylate photopolymer with a
higher Tg. For the sample preparation, an o-nitrobenzyl alcohol derivative with terminal acrylate
groups (acrylate-NBE) was synthetized and cured upon visible light exposure in the presence of
multi-functional thiols, isobornyl acrylate, and a fluorinated methacrylate. The combined effect of the
needle-like microstructures and the fluorine groups increased the surface hydrophobicity, with static
water contact angle of 140◦. Under UV light irradiation, not only the chemical surface composition but
also a photoablation of the microstructures was observed (Figure 12). With this combined effect, they
were able to increase the surface hydrophilicity in a controlled manner and obtained photopolymer
surfaces with a water contact angle of 7◦. The higher wettability gradient, in combination with a
Laplace pressure gradient (V-shaped pattern), was exploited in order to move a water droplet over a
distance of 22 mm, double than the distance reported in the previous work (Figure 12).
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Figure 12. Schematic illustration of (a,b) Patterned and asymmetrical UV exposure on NIL thiol-acrylate
structure. (c) SEM micrographs of the topography of needle-like micropatterns inscribed by visible
light assisted NIL (d) Surface structures of the photocured photopolymer after 1500 s of UV exposure
(269 mW/cm2) under air (Adapted from reference [90] published by the Royal Society of Chemistry).

Some general considerations could be made concerning the o-NBE cleavage reaction in the
analyzed thiol-click networks. In all previously cited works, the o-NBE cleavage reaction proceeds
with fast rate and high reaction yields. This result could be mainly attributed to the typical low Tg,
and thus high network flexibility, of the thiol-click networks, which is an effect of the thioether bonds.
As already reported in the work of Schwalm, high network mobility allows large free volume for the
photoisomerization of the o-NBE groups, thus ensuring high reaction yields [72].

Considering instead the formation of soluble species as a function of UV irradiation dose,
the reaction proceeds with hyperbolic trend in which, a first initial fast reaction rate is followed
by a progressively decrease at higher energy dose (Figure 13a). This result, that is common also
in other polymer coatings with photolabile o-NBE groups, is due to the formation of secondary
photoproducts [21]. On the one side, they act as inner UV filter and reduce the intensity of the incident
light. On the other side, the formation of secondary photoproducts can lead to a re-crosslinking of the
polymer chains at prolonged UV exposure [117].
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Figure 13. (a) Typical ortho-nitrobenzyl cleavage kinetic in thiol-click network. (b) Thiol-ene 

network’s normalized gel fraction after o-NBE photo-cleavage (Adapted from reference [117] 

published by the Royal Society of Chemistry). 
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Figure 13. (a) Typical ortho-nitrobenzyl cleavage kinetic in thiol-click network. (b) Thiol-ene network’s
normalized gel fraction after o-NBE photo-cleavage (Adapted from reference [117] published by the
Royal Society of Chemistry).

This behavior was confirmed by sol-gel analysis of thiol-click networks with o-NBE chromophores
as function of UV irradiations dose [21,89,90,117]. As shown in Figure 13b, after a first decrease of
the gel content, the network followed a re-crosslinking process, thus decreasing the amount of the
extractable soluble species. As shown by solid state NMR experiments, this mechanism is mainly
related to azobenzene side products, which are formed by a dimerization of the nitroso-benzaldehyde.
These side reactions limit the performance in photoresist applications.

In order to overcome these limitations, Romano and co-workers [87] recently proposed a new
patterning approach based on direct laser writing with a UV-laser. For this purpose, they prepared
photocleavable thiol-ene networks by photo-curing a trifunctional thiol with vinyl-NBE (Figure 9). In a
further step, the network degradation was selectively accomplished through a laser beam source with
a wavelength of 375 nm (Figure 14). Contrary to conventional photolithography, in which 2D patterns
are inscribed by photomasking techniques and the soluble species are extracted by means of solvents
in the development step, in this work a 2.5D profile was simply manufactured by modulating the
energy dose of the laser beam in dry conditions, by direct surface ablation of the cleaved network. The
direct laser writing offered a further advantage in terms of secondary reaction products. As previously
mentioned, prolonged UV exposure significantly limits the amount of extractable soluble species
because of the formation of side products and re-crosslinking of the networks. In contrast, with laser
irradiation technique, the cleaved off polymer chains are immediately removed by evaporation during
the laser writing process, without the possibility for the degraded network to go through secondary
photoreactions. In a further step, the authors showed the possibility to tailor the presence of carboxylic
acids on the network surface by tuning the laser energy dose. The carboxylic acid groups were further
employed as reactor anchor points for immobilizing a conjugated protein (Alexa-546). The results
showed a selective anchoring of the fluorescent proteins on sample surface only on the irradiated areas,
and within a density correlating to the laser energy irradiation dose and thus, the number of carboxylic
acid groups present on the surface.
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Figure 14. Comparison between photolithography and direct laser writing for the introduction of
micropatterns in photosensitive thiol-ene networks (Reprinted with permission from reference [87]).

Thiol-click reactions have been also widely explored as facile and efficient coupling procedures
in surface modifications [121]. As regard to this, Li and co-workers [122] accomplished photolabile
network containing both o-NBE and “clickable” groups, in order to realize photoresists with “click”
modifiable surfaces (Figure 15). They synthetized three different monomers containing o-NBE links
and with three different functionalities; allyl (M1), propargyl (M2), and epoxy (M3). In a second
step, polymer chains were accomplished through Passerini MCP reactions, containing the synthetized
monomers (M1, M2, and M3), 1,6-hexanedioic acid, and 1,6-diisocyanohexane. The synthetized
polymer chains were then crosslinked through amine-epoxy reactions, coupling the epoxy groups
(M3) of the polymer chains and diethylenetriamine monomers. The o-NBE groups of the amine-epoxy
networks were then exploited as decrosslinking points for fabricating positive tone photoresists. In a
further step, the allyl and propargyl groups on the photoresist surface were used as “clickable” points,
for anchoring fluorescent molecules with copper(I)-catalyzed azide alkyne cycloaddition (CuAAC),
and thiol−ene reactions (Figure 15).
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Figure 15. Schematic representation of the process for generation of multifunctional pattern on silicon
wafer (Reprinted with the permission from reference [122] Copyright 2014 American Chemical Society).

4. Photo-Responsive Epoxy Networks

Although there are several studies reporting the use of o-nitrobenzyl ester chromophores in
acrylate and methacrylate coatings, there are few works in literature on their use in epoxy-based
networks [123–125].

Because of their salient properties, such as low shrinkage upon polymerization, insensitivity to
oxygen inhibition, good mechanical strength and adhesions to various substrates, epoxy resins have
become popular materials in numerous fields of applications ranging from lightweight composites,
functional coatings, electronics, and adhesives [126]. The curing of epoxy monomers either proceeds
in the presence of hardeners (e.g., amines, amides, anhydrides, phenols, thiols, and imidazoles) or
through anionic or cationic homo-polymerization [127]. In the last years, cationic curing of epoxy
resins has gained increased attention since the initiator are usually inert in the presence of epoxy
monomers, and could be activated on demand by external stimuli such as temperature or light [127].
In particular, the remarkable work of James Crivello on diarylsulfonium and triarylsulfonium salts,
which can be used as cationic photoinitiators for the homo-polymerization of epoxy monomers, has
become the starting point for studying photo-triggered curing reactions of epoxy networks [126,128].

A first work on photo-responsive epoxy networks containing o-NBE moieties was made by Radl
and co-workers in 2015 [124]. In this study, a di-functional epoxy monomer containing o-NBE groups
(epoxy-NBE) was synthesized and thermally cured with an anhydride hardener. In a further step,
positive tone photoresists with pattern resolution in the range of 8µm were inscribed, taking advantages
of the photo-cleavage of o-NBE groups. In order to study the applicability also in recycling concepts,
the o-NBE photo-cleavage reaction was also exploited in order to promote network degradability in
thicker coatings (1 mm), and for reducing the matrix-fiber adhesions in polymer-based composites.
Mechanical tests showed a good degradation behavior of the UV irradiated coatings, with a depletion of
the storage modulus and glass transition temperature with increasing UV exposure dose (see Figure 16).
Additionally, single fiber pull-out tests revealed a significant decrease of the interfacial adhesion at the
fiber-matrix interface due to the photo-triggered cleavage reaction.
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In a follow-up study, the same working group [125] highlighted the possibility to cure epoxy-NBE
through a cationic ring opening mechanism using an appropriate photoacid generator as initiator. Two
different approaches were explored to activate the photoacid generator without premature cleavage of
the o-NBE links, which absorb between 300 and 365 nm. The first approach included the use of a radical
promoted sensitization mechanism of the photoacid generator, enabling an excitation upon visible light
exposure (λ > 400 nm). The second approach involved a photo-initiation mechanism by sulfonic acids,
formed by a direct photolysis of N-hydroxynaphthalimide triflate upon deep UV exposure. In both
concepts, the cationic ring opening reaction progressed very slowly and a thermal post-treatment was
necessary in order to obtain high final monomer conversions. These results could be related to the low
reactivity of the epoxy monomers because of the presence of the o-NBE groups. A possible explanation
can be found in a previous work of Crivello and Sangermano [129], which demonstrated that the
presence of nucleophilic ester groups decreases the reactivity of epoxy monomers in cationic ring
opening reactions. However, after thermal post-treatment, epoxy networks with stimuli-responsive
properties were successfully obtained, and positive tone photoresists with pattern definition of 20 µm
were inscribed onto the polymer surface.

Regarding the photo-cleavage reaction of the o-NBE groups in epoxy networks, the trends and
kinetics are comparable to the previously cited thiol-click networks. In order to better understand
how the photocleavage reaction is influenced by the network properties, Giebler and co-workers [123]
recently studied different epoxy-anhydride networks containing o-NBE groups. In particular, they
thermally cured epoxy-NBE with different types of cycloaliphatic anhydrides in order to obtain
networks with varying thermo-mechanical properties. Their results demonstrated that the networks
with glass transition temperature (Tg) below room temperature exhibited a higher cleavage reaction rate,
but were more prone to undergo secondary photoreactions, and therefore, leading to a re-crosslinking of
the cleaved polymer chains. This result is easily explained considering that, higher network flexibility
allows large free volume space for the photolysis, but at the same time, higher probability for the
photocleaved chains to couple and to re-crosslink. At the same time, networks with a Tg above room
temperature showed lower cleavage reaction rate, but at the same time lower tendency to go through
secondary photoreactions. Networks with a higher Tg also exhibited superior resist performance, with
a contrast of 1.17 and a resolution of 8 µm. These results are in good agreement with other studies cited
in this review and evidence how the polymer network properties are crucial for the photo-cleavage
kinetics of the o-NBE groups and in general for the photoresist performance.
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5. Photo-Responsive PDMS Networks

Polydimethylsiloxane (PDMS), also known as dimethylpolysiloxane or dimethicone, is by far the
most widely used siloxane (“silicone”) elastomer in technical application [130]. Its fame in polymer
chemistry stems from the special rheological properties and other remarkable material properties such
as nontoxicity, biocompatibility, blood compatibility, elasticity, transparency, and durability [130–132].
Because of these unique properties, PDMS-based polymer networks are widely used in numerous
applications ranging from electrical insulations to contact lenses. PDMS is also often employed in soft
lithography and in 3D printing, for the fabrication of micro-scaffold and microfluidic devices [133].
Despite the widespread use of PDMS, there are almost no studies on the design of photo-responsive
PDMS coatings with photolabile o-NBE groups.

The first study on PDMS polymer networks with o-NBE junctions was conducted by Giebler
and co-workers [134] in 2018. In this work, polydimethylsiloxane (PDMS) oligomers with terminal
anhydride groups were thermally crosslinked with epoxy-NBE. The introduction of o-NBE groups
enabled the introduction of a dual-responsive behavior in the PDMS network, which were degraded
either upon UV light exposure or in alkaline environment. In addition to the well-known UV
degradation mechanism, the hydrolysis-sensitive ester groups of the epoxy-NBE crosslinker undergo
hydrolytic degradation in alkaline environments. As regard to this, the results demonstrated a complete
hydrolytic network degradation within few hours or some days, as a function of the NaOH molar
content in the alkaline solution. In order to show the dual-responsiveness, the o-NBE groups were
also employed for a selective photo-degradation, and positive tone photoresist with a resolution of
50 µm were inscribed into the PDMS surface. However, re-crosslinking reactions because of the side
reactions were observed at high UV energy dose. Taking advantages from the reformed crosslinks that
showed less sensitivity to hydrolytic degradation, the authors were able to inscribe also negative tone
photoresist microstructures, in which the not irradiated area were dissolved in alkaline environment
(Figure 17).
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Figure 17. Schematic representation of the formation of a positive-tone resist and (a) subsequent
removal of the resist by hydrolytic degradation of the PDMS network. (b and c) Confocal micrographs
of positive-tone relief structures (100 µm lines and spaces) inscribed into PDMS-1 by photolithography
after the development in chloroform. (d) Schematic representation of the formation of a negative-tone
resist. (e and f) Confocal micrographs of negative-tone relief structures (50 and 100 µm lines and spaces)
inscribed into polymer network by photolithography after the development in 1 M aqueous NaOH
(Reprinted with permission from reference [134]).

6. Conclusions

Because of their versatility, o-nitrobenzyl derivatives were successfully exploited in numerous
polymer applications and various studies have shown the potential of o-NB chemistry in the design of
different photo-responsive polymer networks. In this review, we highlighted the latest researches on
o-nitrobenzyl ester chemistry with a focus on thin polymer films applications. The first application
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in polymer coatings concerned the design of photoresists with high contrast and resolution. The
possibility to develop the photoresists in aqueous solvents arose the interest also in biological fields such
as protein and cell microarrays. The photo-release of protected groups, such as carboxylic acid, was
exploited for opto-regulating the surface’s chemistry in different applications such as SAMs or surface
tunable wettability. o-NB groups were also successfully employed in “click” polymer network, hence
combining all the advantages of click chemistry with the light responsiveness of o-nitrobenzyl groups.
In a recent work, we showed the potentiality in using UV-laser source in order to develop photoresist
with 2.5D patterns profiles and in dry conditions, avoiding the use of harsh solvents in the developing
step. The possibility to induce the photocleavage through two photons laser sources also opened
interesting opportunities in nano-engineering applications which still need to be discovered. Despite
the all cited recent progress, present challenges concern the difficulties to induce the photo-cleavage
of the nitro groups in thicker coatings due to the presence of byproducts that act as inner filter, and
generally, because of the low penetration of UV light. Recent works partially overcame this limitation
by two photons emission source or with the use of photobleaching compounds, but there are still some
challenges related to the utilization in tissue engineering applications which are mainly due to usual
toxicity of these compounds or to the low quantum yields efficiency.

An interesting possible solution in this sense was proposed by Pirrung and co-workers that
proposed a way of dealing with the nitroso side-product, that were trapped in situ by a Diels–Alder
reaction with a diene function included at the benzylic site [135].

Other challenges are related to the low polymerization kinetics of the nitro-benzyl monomers
which limits the applicability in radical controlled polymerization and in 3D printing. RAFT method
showed the best results as well as single electron transfer–living radical polymerization (SET–LRP).
Other strategies to enhance the polymerization kinetics exploit different o-NB structures as well as
different molecular substitutions. We experienced for example how thiol-acrylateNBE monomers
compared to thiol-vynilNBE monomers showed better performance in terms of curing kinetic. In
this sense, trying different o-NBE monomers functionalities or also polymerization technique could
partially overcome the low reactivity given by the o-nitrobenzyl moieties. Overcoming these listed
limitations will provide new opportunities to apply o-nitrobenzyl chemistry in other different areas of
polymer science for the next years.
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