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a b s t r a c t

Recently, we have introduced a new bioeconomic indicator in order to avoid the difficulties in
evaluating the process and technologies for sustainability. In this paper, we wish to improve this
new indicator for the analysis of sustainability. Indeed, the indicator has been based on the exergy
analysis of dissipation and irreversibility, and it was proven in some social and technical application.
In this work, a more general definition has been introduced in order to use it in any evaluation
of sustainability. In particular, it has been applied to improve the biofuel production obtained by
microorganisms, starting from the biophysical behaviour of the microorganisms themselves. Indeed, in
industrialised countries, the management of CO2 emissions represents one of the present compelling
issues. In this context, the improvement of the energy efficiency, and its rational use, can be considered
a fundamental economic strategy for the sustainable development of the industrialised countries. Our
indicator takes into account all these requests for the development and sustainability, resulting a very
interesting thermoeconomic quantity to be used by decision makers. Moreover, it is used to prove that
mutualism can represent a new approach for the optimisation of biofuels production.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

During all the history of humanity, the impact of technology
and engineering on society is being an evidence, from the met-
allurgy era to the industrial revolution, from the steam engine
to electronics and information technologies. The link between
technology and engineering represents the basis for any change
in society (Clay and Fong, 2013).

Often, not all the results related to the scientific and engi-
neering researches are directly introduced in application fields,
because the use these results is a decision-making process for
technical problems, and often, it is brought only by an economic
or financial approach.

Business activities play a fundamental role in the control of
every stage of the value creation and production chain, and,
consequently, of their impacts on the use of resources and on
the natural environment (Corbett, 2009). On the other hand,
just business activities can constitute a powerful tool to achieve
sustainability (Tang and Yeoh, 2007).

Indeed, today, sustainability and sustainable development rep-
resent a fundamental topic of investigation with particular re-
gards to their link to global warming and local pollution (Corbett,
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2009). There are several issues and questions related to sustain-
ability and sustainable development which have to be solved or
improved. For instance, a first problem associated to sustainabil-
ity is how to measure the resources (Sciubba and Zullo, 2011,
2012), which implies the construction of an effective method
to quantify the resources themselves. A second problem can be
identified in the empirical evidence that most natural species
display a multitude of modes of interaction, from indifference
to competition, from antagonism to adaptation, etc. Moreover, a
third problem is represented by the ability of the natural species
to the substitutable use of their resources (Sciubba and Zullo,
2012).

For example, as regards the use of resources, recently op-
erations management has been introduced also in relation to
circular economy and sustainability (de Sousa Jabboura et al.,
2019). Operations management is an engineering approach to:

• The management of the physical resources required for pro-
duction, whether the product be a manufactured item or a
service (Constable and New, 1976);

• The design, operation, and improvement of the systems in
order to obtain the primary products and services (Chase
et al., 2006);

The efficient management of these resources and systems is fun-
damental in relation to the great number of people employed.

https://doi.org/10.1016/j.egyr.2020.06.014
2352-4847/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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The sustainable development has been introduced even in the
natural and environmental sciences with the aim of attracting the
interest of political and business stakeholders in order to meet
the needs of the present generations without compromising the
ability of the future ones to meet their own needs (WCED, 1987).

Sustainability is by its nature a multidisciplinary topic. In the
last decades, researches on sustainability have continuously been
growing in number with a wide variety of interest. Of course, we
have to focus our attention on the fundamental topics of sustain-
able development: Environment, Economy and Society (Giddings
et al., 2002; Tracey and Anne, 2008).

These subjects of study must be linked with the technological
improvement, which represents the boost of development in:
clean technologies, labour changes and management, and new
markets.

In this context, some considerations must be introduced. Dur-
ing the decades of the XX century, economical choices have
always become more a product of social and political require-
ments than the results of a scientific approach. Moreover, recently
the roles and responsibilities of individuals have been redefined
and the decision making has become decentralised (Ruth, 2006).
The technological innovations of the production systems revo-
lutions have been driven by economic growth and changes on
society (Polaskya et al., 2019). The improvements in the knowl-
edge in physical, engineering and health sciences, have played a
fundamental role in the economists approaches to the complexity
of the present society.

At the end of the XIX century, mathematical approaches to
economic activity were developed, based on natural-law-like
principles (Ackerman, 2002), obtaining objective functions for
households and firms and also conditions of equilibrium for
decisions in the economy. On the other hand, when conditions
for optimality have not been achieved, policy of interventions
was introduced in order to establish just the foreseen economic
equilibrium. To do so, the main instruments used have been:
changes in relative prices of goods and services, introduction of
taxes, or changes in the forms of markets themselves.

But, the approach based on equilibrium and stability has been
contrasted (Ackerman, 2002), also by the thermodynamic ap-
proach to open systems, based on steady state conditions. So,
economy, as living systems, develops within the constraints re-
lated to finite resources of the Earth system. This new approach
attracted the economists interest to the ecological problems, al-
lowing the inclusion of the resources and wastes in the econom-
ical theories.

Economy, finance, production, transportations, etc., all con-
stitute human activities. But, the man is part of the ecosystem,
consequently, all his activities must be considered in relation to
the laws of nature. What can link all these (apparently) different
topics one another? Energy is the quantity essential for all these
activities (Stern, 2017); indeed, from production to services, from
economy to finance, etc. energy is required. But, energy is a ther-
modynamics topic of research, so we must develop an approach
able to link economy to thermodynamics.

In particular, this approach can be useful for all complex and
multidisciplinary themes, including biofuels, due to their wide
diversity of topics and details to be considered. Indeed, in relation
to biofuels there are several aspects that must be taken into
account such as:

• Ethics: biofuels must be produced without any reduction of
the cultures for human supply;

• Technics: biofuels must be produced by using technical ap-
proaches without generating a relevant increase in local
pollution;

• Economics: biofuels must be able to generate labour.

Two main risks on actual society have been identified by
Rittmann (2008) about fossil fuel consumption and their relative
depletion:

• The possibility of geopolitical turmoil due to the scarcity of
resources;

• The increasing amount of greenhouse gasses in the atmo-
sphere.

Biofuels have been introduced in order to find an alternative way
to fossil fuels, due to the depletion of the latter and to their
related environmental issues (Nigam and Singh, 2011). So, some
of required characteristics of the biofuels can be summarised
as (Lang et al., 2001):

• Easy availability;
• Technical and environmental feasibility;
• Economic competitivity.

One of the advantages of being generated from different
biomasses is represented by diversification in terms of supply:
each Country could produce locally the row materials needed
to biofuels production (Lee and Lavoie, 2013). Moreover, those
which are derived from biomasses that perform photosynthesis
during their living cycle, use CO2 as a feedstock. Biofuels have
been classified at least in three different generations, depending
on the biomass feedstock from which they are originated as
follows:

• The first generation biofuels, which are those derived from
food yields (Immethun et al., 2016);

• The second generation biofuels, which are those derived
from non edible biomasses, or lignocellulosic biomasses
(Saladini et al., 2016), including the ones discarded from
food and agricultural industry and urban wastes (Battista
et al., 2016; Bensaid et al., 2012);

• The third generation biofuels, which are those derived
from photosynthetic microorganisms as microalgae
(Alaswad et al., 2015).

So, the main concerns related to the first generation of biofuels
are the use of agricultural yields and all its consequences (includ-
ing the competition with edible crops, the loss of biodiversity,
land-use changes and water depletion Correa et al., 2019) which
cannot be considered sustainable (Chowdhury and Loganathan,
2019) and ethical, while, for the second generation, it exists a
barrier due to their energy and costs requirements (Carriquiry
et al., 2011). Consequently, a development of new generation of
biofuels (the third one) is required. Biofuels produced from mi-
croalgae and photosynthetic microorganisms are widely studied:
they present many advantages such as:

• The non competition with edible crops;
• The absorption of CO2 during their life cycle (Chisti, 2007;

Mata et al., 2010);
• The relatively high efficiency in performing photosynthe-

sis (Pols and Spahn, 2014).

Moreover, compared to the higher plants,

• Microalgae have major oil yield (delivering the highest
quantity of lipids juxtaposed to all other biomass feed-
stock Ziolkowska and Simon, 2014);

• They need less water than terrestrial plants;
• They can grow in any kind of water (also in wastewa-

ter Leong et al., 2019) or non-arable land without competing
with terrestrial crops;

• Their cultivation does not require pesticides or herbicides;
• A large variety of biofuels can be obtained from their

biomass (Rodolfi et al., 2009).
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On the contrary, their production process in large scale has not
been yet largely developed (Rodolfi et al., 2009). The main draw-
backs that make them not yet competitive with the fossil fuels
have been noticed in costs of production and extraction compared
to the amount of fuel obtainable per litre of culture (Enamala
et al., 2018).

In this context, biofuel production must be analysed just to
optimise their production process (Musa et al., 2019) due to the
necessary transition from fossil fuels to renewable ones. More-
over, this requirement is also imposed by the legislation. Indeed,
in the last decade biofuels have been developed also in order
to fulfil government policies (Saravanan et al., 2018; Su et al.,
2015). For example, as regards the European Union, the Direc-
tive on the Promotion of the Use of Biofuels or Other Renewable
Fuels for Transport (2003/30/EC), the Renewable Energy Directive
(2009/29/EC) which has been recently modified by the Renewable
Energy Directive II (2018/2011/EC) in which the overall target
for renewable energy sources use (to achieve within 2030) has
been raised to 32%. In particular, for the sub-sectors of road and
rail transport the minimum level has been setted to 14%, with a
limitation for biofuels of first generation due to their nature and
to their Indirect Land Use Change (Commission, 2018).

So, in order to improve biodiesel production from living mi-
croorganisms, the idea of symbiotic cultures has been suggested
in literature (Santos and Reis, 2014; Shurin et al., 2013; Kazamia
et al., 2014; Cooper and Smith, 2015; Heimann, 2016) and, in this
paper the use of our indicator will point out the improvement
of the sustainability in the biofuels production. Indeed, the lipid
production can be enhanced if the two symbionts take an advan-
tage from the metabolism of the other one symbiont. Moreover, it
could be a possible solution to create advanced biorefineries (Cho
et al., 2015) by using a natural association’s characteristic existing
between the metabolisms of the species employed, obtaining a
higher quantity of the desired row materials (lipid production
for the biodiesel case), jointly with less organic wastes (Ramanan
et al., 2016) from the production processes.

The aim of this paper is just to propose new indicators useful
to evaluate the processes, the services, etc., in summary the
human activities in relation to their impact on the human life,
on the environment and on the social economy introducing the
econophysical and thermoeconomic approaches to optimisation,
in order to reduce the environmental impact and to improve
the human wellness. To use the introduced indicator, we will
focus on the biofuels production by microorganisms, developing
the biophysical optimisation of the lipid formation for biodiesel
production and responding to the previous highlighted questions.
In order to develop our analysis, we will introduce the definition
of our indicator, but also its generalisation. Then, we will use
the indicator in the analysis of two different cases, just studied
by using other thermoeconomic approach, in order to verify its
effectiveness. Lastly, we will use the indicator in the study of the
biofuel production by microorganism, suggesting the mutualism
as an optimisation method for the lipid production.

2. Methods

The aim of this paper is to link the economical and social
approach to the thermophysical one, allowing the decision mak-
ers to improve their assessments for a really sustainable society
and sustainable productive processes. In particular, we apply this
approach to the biofuels production.

To do so, we must consider the fundamental quantities which
are used in the different scientific areas of research:

• The Energy Intensity EI , defined as (Cleveland et al., 1984;
Csereklyei et al., 2016; Agovino et al., 2019):

EI =
Ein
GDP

(1)

where Ein is the energy used to obtain the value of GDP , and
the GDP is the Gross Domestic Product which has classically
been interpreted as the wealth of a country or of a produc-
tive system (Vincent and Hartwick, 1997; Hoekstra, 2019).
Here, we suggest to consider the energy that can really be
used in the process (the exergy), so a new definition can be
introduced:

ExI =
Exin
GDP

(2)

where Exin is the input exergy;
• The Labour Productivity, LP , defined as (OECD, 2019; Blain,

1996; Zhang and Dornfeld, 2007):

LP =
GDP
nwh

(3)

where nwh = nw · nh is the total number of worked hours
needed to obtain the GDP , with nh number of worked hours
and nw number of workers;

• The Second Law Inefficiency ηλ, defined as (Lucia and Griso-
lia, 2019a):

ηλ =
Wλ

Exin
(4)

where Wλ is the work lost due to irreversibility and fric-
tion (Bejan and Lorente, 2004):

Wλ = Exin − Exout − W (5)

while Ex is the exergy and the subscripts in and out mean
respectively inflow and outflow, while W is the work which
can be expressed by the exergy balance (Bejan, 2006):

W =

∑
α

Jex,α +

∑
β

ExQ ,β − ∆B − T0Sg (6)

where:

– Jex,α =
∫ τ

0 ṁα

(
eα − T0sα

)
dt is the flow exergy due to

the αth mass flow;
– ExQ ,β = Qβ

(
1−T0/Tβ

)
is the exergy transfer due to the

βth heat transfer;
– ∆B = E + p0V − T0S is the accumulation of non-flow

exergy;
– Sg is the entropy variation due to irreversibility, named

entropy generation (Lucia, 2007, 2013b; Bejan, 2000;
Sciaccovelli et al., 2015; Bejan, 1982, 1995; Bejan et al.,
1996; Bejan and Lorente, 2004, 2010);

and the subscript 0 means environment, while ṁ is the mass
flow, e is the specific energy, s is the specific entropy, Q is
the heat exchanged, E is the total energy, S is entropy, T is
the temperature, p is the pressure and V is the volume.
Now, considering that any process, interaction, cycle, etc.
occurs in a definite time τ , the lifetime of this phenomenon
then, for any process or interaction of any open system,
and by following the Gouy–Stodola theorem (Bejan, 2006),
the work lost due to irreversibility and friction Wλ, is pro-
portional to the entropy variation due to irreversibility, as
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follows:

Wλ =T0Sg =

∑
i

(
1 −

T0
Ti

)
Qi − W − ∆E + T0∆S+

+

∑
j

∫ τ

0
dt ṁi

(
hj + ek,j + ep,j + ech,j − T0 s

)
+

+

∑
ℓ

∫ τ

0
dt ṅℓ

(
g⊕

ℓ − ex⊕

ch,ℓ

)
(7)

where h is the specific enthalpy, and the subscripts k, p
and ch mean kinetic, potential and chemical respectively,
i and j are related to the number of fluxes of heat and
mass respectively, ṅ is the molar flux, ν is the stoichiometric
coefficient, g is the molar specific Gibbs potential, exch =

y
(
µ − µ0

)
T0,p0

is the molar specific chemical exergy at the
reference atmosphere conditions, y is the molar fraction, µ
is the chemical potential, ⊕ means standard conditions and
∆S is the system entropy variation.
The energy variation ∆E during the life time τ results:

∆E =

∑
i

Qi − W +

∑
j

∫ τ

0
ṁj
(
hj + ek,j + ep,j + ech,j

)
dt (8)

As a consequence of the previous equations related to the First
and the Second Laws of Thermodynamics for open systems, it is
possible to highlight that any change in the energy of the system
can be expressed in terms of the transfer of:

1. Flows of matter across the system boundary, which bring
internal, kinetic, chemical and other forms of energy;

2. Heat across the system boundary;
3. Performance of work developed by or on the system.

Consequently, an analogy between physics (or thermal engi-
neering) and the interactions analysis among technical, econom-
ical and social effects, can be carried out. In bioeconomy, the
thermodynamic quantities have been introduced in order to de-
scribe the socio-economic system as a biosystem. In engineering
thermodynamics, the global effect of the different efficiencies,
due to the different phenomena which occur in a thermal system,
is considered by introducing only one overall efficiency that is the
result of the multiplication of each single efficiency referred to
each single effect (Grimaldi and Millo, 2015). Moreover, in physics
the interaction is usually expressed by multiplying the physical
quantities which describe the natural phenomenon.

Therefore, we consider the interaction between technical, eco-
nomical and social effects by introducing a new indicator, synthe-
sis of the previous ones, defined as:

I = ηλ · ExI · LP =
Wλ

nwh
=

T0 Sg
nwh

(9)

Generalising this relation we can state that the new indicator
can be obtained as:

I =
exergy lost

quantity related to the required effect
(10)

Now, we wish to introduce our results to some applications.

2.1. Thermodynamic cycles for solar power plant

The first application regards the use of our indicator in relation
to the engineering analysis developed in Ref. Reyes-Belmonte
et al. (2017). In this work, five thermodynamic cycles are cou-
pled to a solar tower central receiver in order to compare their
efficiencies also in relation to the operating working fluid. Indeed,
the high temperature at the solar receiver is consider the key

Table 1
Net electrical power of the different cycles Ẇel and relative calculated indicator
I as defined in (11).
Cycle Ẇel [MW] I

Standard Rankine 9.1 5.26
Standard Brayton 6.8 7.38
Brayton 750 ◦C 7.6 6.50
Brayton 1000 ◦C 9.4 5.06
Combined cycle 21.5 1.65
Brayton He 7.4 6.70
Brayton sCO2 10.4 4.48

quantity for selecting the optimal power cycle to match with
the solar concentrator. The different cycles compared one an-
other are: the subcritical steam Rankine–Hirn cycle, the open
regenerative Brayton air cycle, configured at medium (750 ◦C)
and high temperature (1000 ◦C), the combined cycle, the closed
regenerative Brayton helium scheme and closed recompression
supercritical carbon dioxide Brayton cycle (Reyes-Belmonte et al.,
2017). Power cycles and working conditions are compared in
relation to a reference thermal power supply by the receiver of
57 MWth. Moreover, the environmental conditions are the same,
with consequence to realise five different cycles, working at the
same operational conditions.

As a consequence of these operational conditions, we can
highlight that our indicator allows us to compare the cycles in
relation to their sustainability.

So, for this application, we can define our indicator (10) as
follows:

I =
T0Ṡg
Ẇel

(11)

where T0 is the environmental temperature, Ṡg is the entropy gen-
eration rate and Ẇel is the electric power. In order to numerically
evaluate the indicator we use the data collected in the Ref. Reyes-
Belmonte et al. (2017). Our results are summarised in Table 1.
We can highlight that the indicator decreases when the electric
power produced increases. So, the indicator assumes the lower
value when the cycle is more efficient, which means that lower is
the indicator, higher is the sustainable level of the cycle and our
results are in agreement with the ones of Ref. Reyes-Belmonte
et al. (2017).

2.2. Power cycle with a gas turbine with an absorption chiller

Now, in order to validate the indicator, we can consider a
second example of use. We take under analysis a gas turbine
cycle with an absorption chiller in two different configurations,
as performed in Ref. Ahmadi et al. (2012):

• Gas turbine with inlet cooler;
• Gas turbine with inlet cooler and injection.

The use of this kind of plants is useful where the environmen-
tal temperature is high, in particular when the climate is arid or
tropical. In this cases the intake air of the compressor is cooled
in order to avoid the negative effect of high temperatures which
limit the air mass intake, reducing the turbine useful output.
The inlet air on the compressor is cooled by using an absorption
chiller for increasing the gas turbine capacity (Mohanty and Jr.,
1995).

A schematic diagram of the plant considered (and deeply anal-
ysed) in Ref. Ahmadi et al. (2012) is represented in Fig. 1, where
the main plant elements are the compressor, the combustion
chamber, the gas turbine, the heat recovery steam generator,
the absorption chiller unit and the inlet cooler. As presented in
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Fig. 1. The plant considered is composed by: a Compressor (1), a Combustion chamber (2), a Gas turbine (3), a Heat recovery steam generator (4), an Absorption
chiller system (5), and an Inlet cooler (6).

Table 2
Power loss due to irreversibility T0 Ṡg [MW] for each plant element, useful net
power Ẇn [MW] and the relative value of the indicator I , calculated as defined
in (12) for two different configurations: A - Gas turbine with inlet cooler & B -
Gas turbine with inlet cooler and injection (as presented in Ref. Ahmadi et al.,
2012).

A B

Element T0 Ṡg [MW]
(1) Compressor 6 6
(2) Combustion chamber 96 103
(3) Gas turbine 7 9
(4) Heat recovery steam generator 45 11
(5) Absorption chiller unit 5 5
(6) Inlet cooler 1 1

Net power output Ẇn [MW]
57 74

Indicator I [-]
2.8 1.8

Ref. Ahmadi et al. (2012), the plants are compared considering
the same reference environment and the same exergy inlet per
unit of time Ėxin which numerically corresponds to Ėxin = 195
MW.

In order to use our indicator, we define the it (10) For this
application, as follows:

I =
T0Ṡg
Ẇn

(12)

where T0 is the environmental temperature, Ṡg is the entropy
generation rate and Ẇn is the net power achieved in the cy-
cle. The numerical results are summarised in Table 2, and they
are obtained by using the data collected in Ref. Ahmadi et al.
(2012). We can highlight that the indicator decreases when the
efficiency of the cycle increases, in agreement with te results of
the Ref. Ahmadi et al. (2012).

2.3. Biofuels production & mutualism

In our times, the growing attention to the reduction of the
emissions of greenhouse gases is moving the strong dependence
upon fossil fuels as sources of energy towards alternatives. In-
deed, for example the land-based transport is gradually coming
to abandon liquid hydrocarbons and internal combustion engines

for electrical power, even if, at present, for aviation transport and
shipping, there are no viable alternatives yet. Consequently, this
new sensibility towards the reduction of CO2 emissions drives our
energy production systems towards the development of liquid
biofuels. Although the production of biodiesel and bioethanol has
increased rapidly since the 1970s, at 30 − 40% per annum, the
total energy production of bioethanol and biodiesel is only of the
order of 106 TJ in relation to the total global energy use of the
order of 108 TJ (Williams and Laurens, 2010).

So, we wish to introduce our results in the analysis of the third
generation biofuels production. To do so, we must develop some
considerations on biosystems.

To live, organisms have to interact with their environment,
exchanging with it flows of matter and energy; thus, from a
thermodynamic point of view involves the possibility to study
them as open systems by using the First and the Second Law
of Thermodynamics (Demirel and Sandler, 2002; Demirel, 2010;
Lucia, 2015). Life could not exist without any interaction with the
environment, so that it can be considered as the key factor of life,
including the possible interactions with the other species present
in the environment itself.

When more species co-exist in the same ambient, a natural
phenomenon, called symbiosis, can occur. The term symbiosis
was first introduced in 1879 by Heinrich Anton de Bary, re-
ferred to the living together of different interacting species of
organisms (Oulhen et al., 2016). Symbiosis has represented, and
still represents a fundamental component in Earth’s life devel-
opment and for the evolution of living organisms, as Stanley
has pointed out (Stanley, 2006). So, symbiosis can be defined as
the association between at least two distinct species of living
organisms (Paracer and Ahmadjian, 2000). This association can
persist on time for an undefined duration or for a finite time
and can change its effects along the same period, depending also
on the environment conditions in which the interaction takes
place (Bronstein, 1994).

The interaction between living organisms can lead to an ad-
vantage for at least one of the symbionts or to a disadvantage or
to nothing at all, and this different kinds of symbiosis that can
occur in nature have been categorised, distinguishing the effects
of the association between the organisms considered (Willey
et al., 2013):

• Mutualism, which implies an obligatory interaction with a
reciprocal benefit for both species;
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• Cooperation, which implies a non-obligatory interaction
with a reciprocal benefit for both species;

• Commensalism, which implies a positive relationship be-
tween the species, where one of them takes an advantage
and the other is neutral to the interaction (usually the waste
of one organism is used by the other one as a nutrient);

• Predation, which is a negative form of symbiosis, one organ-
ism is attacked and preyed by the other one;

• Parasitism, which is a complex interaction in which an or-
ganism (parasite) gains a benefit and the other one is dam-
aged (host);

• Amensalism, which is an unidirectional interaction and im-
plies the production by one organism of a compound that
has a negative effect on the other one;

• Competition, which overcomes when both species need the
same resource (nutrient) to live, the organisms can co-exist
at lower levels or one organism can overwhelm the other
one.

All these subcategories are useful from a theoretical biol-
ogy standpoint to define and to classify all kind of interactions.
However, over time it has emerged that from an experimental
point of view, it is very difficult to distinguish in which cate-
gory of symbiosis each single case analysed falls under (Willey
et al., 2013), because they can switch from one form to another
one during organisms life (Douglas, 1994), too. Moreover, there
is not a universally recognised definition of all types of sym-
biosis and mutualism declinations (Martin and Schwab, 2013;
Peacock, 2011; Boucher et al., 1982; Dimijian, 2000; Mazan-
court et al., 2005; Munzi et al., 2019). So, following Paracer and
Ahmadjian (Paracer and Ahmadjian, 2000) we adopt the term
mutualism as the association in which each symbiont gets a ben-
efit. However, in literature (Begon et al., 2006; Dodds and Whiles,
2020b; Glavic̆ and Lukman, 2007; Dodds and Whiles, 2020a)
other definitions have been introduced in relation to the cooper-
ative interaction between species/organisms; some examples are
the following:

• Detritivory, which is considered as a kind of commensalism,
where one species gets a benefit from the other one that
is no more alive (thus, the latter is neutral) (Begon et al.,
2006);

• Facilitation, which is defined as any unidirectional bene-
fit for one of the involved organisms (Dodds and Whiles,
2020b);

• Protocooperation, where both organisms get conditional
benefits even if they are able to continue to live indepen-
dently one from another (Glavic̆ and Lukman, 2007);

• Synergism, which is considered the general non obligatory
relationship in which the two organisms get benefit one
from another (Dodds and Whiles, 2020a);

• Syntrophy, which is considered as a kind of mutualism and
synergism where the metabolisms of the two species are
complementary one to another (Dodds and Whiles, 2020a);

We suggest to consider that a complete review of the termi-
nology associated to symbiosis is presented and discussed in
Reference (Martin and Schwab, 2013).

Mathematical approach to mutualism is based on the preda-
tor/prey or consumer/resource interactions (Berryman, 1992). In
this approach, the terms ‘‘type I’’ and ‘‘type II’’ functional re-
sponses are introduced in relation to the linear and saturat-
ing relationships respectively, between benefit provided to an
individual of species 1 on the density of species 2.

The Type I functional response can be developed by intro-
ducing the Lotka–Volterra approach, obtaining that the change

in population density of the two mutualists results (Berryman,
1992):⎧⎪⎪⎨⎪⎪⎩

dN1

dt
= r1N1 − r11N2

1 + r12N1N2

dN2

dt
= r2N1 − r21N2

1 + r22N1N2

(13)

where N is the numerical density of the population of the two
species (1 and 2), r1 is the intrinsic growth rate of the population,
rii is the negative effect of within-species crowding and rij is
the beneficial effect of a mutualistic partners density. Mutualism
represents a logistic growth equation together with a mutual-
istic interaction. The latter results as the growth in population
density of i-species due to the hereness of greater numbers of
j-species, and the other way around. It includes also a saturation
mechanism in order to avoid that the species densities increase
indefinitely.

In 1989, the Lotka–Volterra equations were modified by
Wright, who added a new term just to represent the mutualistic
relationship. Moreover, in 1959, Holling improved the analyti-
cal analysis by introducing two constraints, as follows (Wright,
1989):

• There exists a relation of proportionality between the num-
ber of food items caught and the allotted searching time;

• There exists a second variable of time, which is distin-
guished from the search time: the handling time.

So, Holling obtained an equation for the Type II mutualistic func-
tional response as follows (Wright, 1989):

dN1

dt
= N1 ·

[
r1
(
1 − cN1

)
+

β N2

X + N2

]
(14)

where X = 1/(aτH ), τH is the handling time, a is the instanta-
neous discovery rate, c is the coefficient that takes into account
the negative aspects of growth due to the interactions between
species, β = b/τH , b is the coefficient converting encounters with
N2 to new units of N1, and N1 and N2 are the densities of the two
mutualists.

But, when we consider the two species of microorganisms
(i.e. bacteria, bacteria/alga, alga/alga) living together, we consider
that they absorb exergy Exin in different forms (heat, metabolites,
etc.) and they release biofuels, bioplastics or other useful bio-
products. The entropy generation will be obtained by evaluation
of the photosynthetic contribution of each species and of the
contribution of the interaction between the two species. This last
contribution is the more difficult to be evaluated. So, we can
directly obtain the evaluation of the efficiency of the symbiosis
by considering the useful effect required, that in our case is
the lipid mass production. Indeed, to produce biodiesel from
photosynthetic microorganisms the fundamental parameters are
the biomass productivity and the amount of lipids stored inside
their cells. So, we consider that if the two species live separately
they release the mass of products m1 and m2 respectively, which
holds m1hf and m2hf respectively in terms of energy releases,
where hf is the formation enthalpy of the product which is the
same in both cases. If the species live together, we aspect that
they release (m1 + m2)hf , while in the case of mutualism they
release (m1 + m2 + ∆m)hf .

In this case the indicator (10) can be written as:

I =
T0Sg
Exin

=
Exin − mhf

Exin
(15)

where T0 [K] is the environmental temperature, Exin is the inflow
exergy [J], m is the lipid mass produced [kg], and hf is the specific
enthalpy of formation [J kg−1]. Consequently, the indicator for the
two processes results:
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Fig. 2. Co-culture of two different micro-organisms performing symbiosis. Their biomass contains lipids, from which it is possible to obtain biodiesel. From the
residual biomass other valuable co-products could be obtained. The symbiotic interaction leads to an exchange of metabolites, nutrients and other key factors for
the growth of the microorganisms.

• non-mutualistic process:

I =
Exin −

(
m1 + m2

)
hf

Exin
(16)

• mutualistic process:

Im =
Exin −

(
m1 + m2 + ∆m

)
hf

Exin
(17)

We consider the process as a thermodynamic regenerative
process and we can obtain that:

Im = I + (I − 1) ·
∆m

m1 + m2
< I always (18)

which means that the mutualistic process is more sustainable
because the related indicator is lower than the non-mutualistic
process one.

Here we consider two different examples of co-cultivation.
In each case, two different photosynthetic microorganisms were
cultivated together in order to investigate their behaviour and
their lipid and biomass productivity to produce biodiesel (and
eventually other useful co-products from their biomass residues
Saravanan et al., 2018, left after the process of lipid extraction, as
shown in Fig. 2).

By using the data collected in Refs. Rashid et al. (2019) and
Zhao et al. (2014), two different examples of comparison for the
mutualistic and non-mutualistic cultivation can be summarised
as follows:

• Coproduction of Ettlia sp. and Chlorella sp. (Rashid et al.,
2019):

– Ettlia sp. lipid mass produced in mono-cultivationm1 =

30.3 ± 4.7 mg L−1;
– Chlorella sp. lipid mass produced in mono-cultivation

m2 = 201.7 ± 8.2 mg L−1;
– Mutualistic lipid production of Ettlia sp. & Chlorella sp.

m1 + m2 + ∆m = 353.7 ± 6.0 mg L−1;

• Coproduction of Chlorella sp. and Monoraphidium sp. (Zhao
et al., 2014):

– Chlorella sp. lipid mass produced in mono-cultivation
m1 = 370.6 ± 177.3 mg L−1;

– Monoraphidium sp. lipid mass produced in mono-
cultivation m2 = 95.6 ± 26.7 mg L−1;

– Mutualistic lipid production of Chlorella sp and Mono-
raphidium sp. m1 + m2 + ∆m = 592.6 ± 184.6 mg
L−1.

Using these data (Rashid et al., 2019; Zhao et al., 2014), we
can verify our approach; indeed, the results are represented in
Figs. 3 and 4 respectively. We can highlight that the indicator for
the mutualistic condition is always lower than the indicator in
non-mutualistic condition, with the consequence that it results
more sustainable. Consequently, the mutualist behaviour allows
us to obtain an improvement in the lipid production with an
efficiency around of (1.53±0.09) and of (1.27±0.95) respectively
for the two cases considered in relation to the efficiency of the
single species culture. So, we can conclude that the mutualistic
interactions represent an improvement the biodiesel production.

3. Results

The sustainable use of the earth limited resources represents
the key for resource efficiency. Natural resources (metals, miner-
als, fuels, water and land, etc.) are fundamental for the economy
because they represent the vital inputs for all the economic pro-
cesses. The demand and use of resource materials is continuously
increasing (Alonso et al., 2012). In relation to this topic it is
possible to highlight at least two kinds of risks (Valero et al.,
2015):

• The supply risk, which allows us to take into account the
political-economic stability of the producing countries, the
concentration level of production, the potential for substitu-
tion and the recycling rate;

• The environmental country risk, which allows us to take into
account the risks for the countries with weak environmental
performance, to protect the environment.

In this context, we have introduced an indicator useful to
quantify the sustainable resources usage in relation to their eco-
nomic and environmental meaning. This has been done by intro-
ducing the entropy generation in relation to the CO2 production
weighted by the useful results of the considered process. Further-
more, the entropy generation can be expressed in kWh (Lucia
and Grisolia, 2018b); so, it is possible to introduce a link to
a reference energetic cost, for example the cost of the electric
energy, enabling the comparison among different processes in
relation to the desired product obtained.
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Fig. 3. Mutualistic indicator vs non-mutualistic one in relation to the better and worst condition of growth in non-mutualistic conditions, calculated by using the
data collected in Ref. Rashid et al. (2019).

Fig. 4. Mutualistic indicator vs non-mutualistic one in relation to the better and worst condition of growth in non-mutualistic conditions, calculated by using the
data collected in Ref. Zhao et al. (2014).

Moreover, the expression of our indicator allows us to evaluate
the sustainability of the considered process because the entropy
generated is weighted by the desired product, which means that
lower is the indicator value higher is the sustainability of the
process.

Lastly, the use of our indicator in the analysis of biofuel pro-
duction allows us to suggest that a natural optimisation for the
biofuel production process is the exploitation of a natural be-
haviour that can occur between two different species of inter-
acting living organisms, or the introduction of the concept of
mutualism. Indeed, mutualism allows us to improve the lipid
production useful for the biodiesel production. In this context,
we have introduced a simplified approach useful to evaluate the
efficiency of mutualism, in order to quantify the optimisation of
the process in relation to the same biochemical process carried
out by the single species. The mutualistic efficiency results 1.53
times the efficiency of the lipid production of the single species.

4. Conclusions

Nowadays, the human history has come to a crossroad, driven
mainly by social and economic deepening, which has led to com-
plex dynamics and to a difficult to manage socio-economic sys-
tem. As a matter of fact, both the socio-economic degradation and
the environmental problems are continuously growing (Hath-
away and Boff, 2009). At the same time, new opportunities for
an improvement are deriving from scientific and technological
advances in fields such as healthcare and to the growing of
consciousness of environmental issues.

Economy as a physical system (Cleveland and Ruth, 1997;
Gowdy and Mesner, 1998; Hammond and Winnett, 2009; Ker-
schner, 2010; Levallois, 2010) can be studied by Laws of Thermo-
dynamics; indeed, it can be introduced by defining the system
boundary in relation to producers and consumers of goods and
services and the intermediate inputs and final output. Moreover,
it must be considered also the environment, which represents the
set of all the natural resources and the sinks, but also the place
which receives the wastes of all human activities. Energy is the
fundamental quantity for all the transformations and transitions
within the system (Faber et al., 1990; Feidt et al., 2012). During
the social and economic development humans must increase
their knowledge about the technologies related to the useful
processes. Lastly, due to the Second Law of Thermodynamics,
high-quality energy is degraded to produce work.

Spreng (1988) introduced the evaluation of the economic ac-
tivities in relation to the importance of their output by a measure
of their information and their efficiency.

Consequently, we stress that the choice among alternative
technologies can be based on entropy, because entropy is the
thermodynamic quantity related both to information and to ef-
ficiency (Lucia and Grisolia, 2017).

Since the ’80, optimisation of energy processes and systems
has been reconsidered (Curzon and Ahlborn, 1975), and Bejan
introduced a new viewpoint of maximisation of power with heat
engine models associated to heat transfer irreversibility, with the
result that maximum power corresponds to minimum entropy
generation rate (Bejan, 1994), or maximum entropy generation,
which agrees with the Gouy–Stodola theorem (Lucia, 2013c,a).
So, entropy generation analysis has shown to be a design tool
to recognise system improvements, but also a measure of sus-
tainability. The process with the lower entropy generation rate
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is more sustainable than others because it is able to realise
the energy conversion more efficiently (Kowalski et al., 2013;
Hepbasli, 2008). Moreover, recently, it has also been pointed out
the fundamental role of the thermodynamic analysis of fluxes and
irreversibility in biology systems, economy, ecology and more in
general in physics, chemistry, bioeconomy, biology and engineer-
ing, with particular interest in optimisation, design and control on
systems behaviour (Rocha et al., 2018; Lucia et al., 2016; Lorente
and Bejan, 2019; Lucia and Grisolia, 2019b; Reis, 2006; Gulotta
et al., 2018; Lucia et al., 2017; Lorenzini et al., 2017; Lucia and
Grisolia, 2018a; Clausse et al., 2012; Bejan et al., 2000; Lucia et al.,
2015).

So, we have introduced a new indicator which allows us
to take into account the cooperative effect of the interaction
between technological, economical and social requirements of
sustainability by means of thermodynamics. The result is an
indicator which allows us to take into account:

• The effect of the human activities on the environment, by
considering the thermodynamic waste by using the entropy
generation;

• The effect on economy and society is considered in the
total hour of labour, but what is very interesting is the
GDP disappears, and this is a concrete answer to the recent
Nobel laureate Joseph E. Stiglitz pointed out (Stiglitz et al.,
2010) and responds to the European Commissions initiative
“Beyond GDP” (Goossens et al., 2007).

In relation to the resource consumption, we have highlighted
the fundamental role of the exergy flows, by which we can
evaluate the entropy generation.

Now, we will focus our comments only on biofuels because
the different applications on the plants are examples usually
discussed in literature (Bejan et al., 1996). So, in relation to the
lipid production for biodiesel from microorganisms, we can high-
light that two mutualistic species improve the lipid production
with higher efficiency. In order to evaluate this effect we have
introduced a simple analytical model. Its limit is that nature is
complex and non-linear, so our model represents a simplified
approach to obtain quantitative results, without a deep analysis
of the biophysical processes.

Indeed, biotechnology has historically utilised organisms for
a variety of purposes. Recently, a directed modifications of or-
ganisms for chemical production has been developed (Jin et al.,
2016). Indeed, changes in available information present in the
microorganisms DNA may be useful to improve the biofuels pro-
duction (Gimpel et al., 2013; Goers et al., 2014). But, the synthetic
biological improvement can be considered more effective if con-
strained by a well defined aim, which can be pointed out by
a deep analysis of the natural behaviours of the microorgan-
isms themselves (Clay and Fong, 2013). We have developed our
analysis just with this aim. We have highlighted that a natural op-
timisation of the lipid production consists in the co-cultivation of
the microorganisms, so that a driven approach for any synthetic
biological manipulation can be to improve this natural behaviour,
with the result of amplifying the spontaneous behaviour of the
microorganisms. Symbiosis improves some favourable aspects of
the biofuel production; indeed:

• In relation to ethics, symbiosis improves the productivity of
the algae and bacteria, with the consequence of a reduction
of surface required for their cultivation;

• In relation to technics, symbiosis increases the optimisation
of nutrients and water used with the related decreasing in
the request of molecules and energy required for the culti-
vation of the algae and bacteria; consequently, it generates
a reduction in local pollution;

• In relation to economics, symbiosis increases the profit be-
cause it increases the productivity with a decrease of the
requests in energy and nutrients.
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